ide: remove PIO "downgrade" quirk
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ide / ppc / pmac.c
blob177961edc430b890609f198c04a2da7bbdf83ac8
1 /*
2 * Support for IDE interfaces on PowerMacs.
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
5 * for doing DMA.
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/dbdma.h>
40 #include <asm/ide.h>
41 #include <asm/pci-bridge.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/sections.h>
45 #include <asm/irq.h>
47 #ifndef CONFIG_PPC64
48 #include <asm/mediabay.h>
49 #endif
51 #include "../ide-timing.h"
53 #undef IDE_PMAC_DEBUG
55 #define DMA_WAIT_TIMEOUT 50
57 typedef struct pmac_ide_hwif {
58 unsigned long regbase;
59 int irq;
60 int kind;
61 int aapl_bus_id;
62 unsigned cable_80 : 1;
63 unsigned mediabay : 1;
64 unsigned broken_dma : 1;
65 unsigned broken_dma_warn : 1;
66 struct device_node* node;
67 struct macio_dev *mdev;
68 u32 timings[4];
69 volatile u32 __iomem * *kauai_fcr;
70 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
71 /* Those fields are duplicating what is in hwif. We currently
72 * can't use the hwif ones because of some assumptions that are
73 * beeing done by the generic code about the kind of dma controller
74 * and format of the dma table. This will have to be fixed though.
76 volatile struct dbdma_regs __iomem * dma_regs;
77 struct dbdma_cmd* dma_table_cpu;
78 #endif
80 } pmac_ide_hwif_t;
82 enum {
83 controller_ohare, /* OHare based */
84 controller_heathrow, /* Heathrow/Paddington */
85 controller_kl_ata3, /* KeyLargo ATA-3 */
86 controller_kl_ata4, /* KeyLargo ATA-4 */
87 controller_un_ata6, /* UniNorth2 ATA-6 */
88 controller_k2_ata6, /* K2 ATA-6 */
89 controller_sh_ata6, /* Shasta ATA-6 */
92 static const char* model_name[] = {
93 "OHare ATA", /* OHare based */
94 "Heathrow ATA", /* Heathrow/Paddington */
95 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
96 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
97 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
98 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
99 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
103 * Extra registers, both 32-bit little-endian
105 #define IDE_TIMING_CONFIG 0x200
106 #define IDE_INTERRUPT 0x300
108 /* Kauai (U2) ATA has different register setup */
109 #define IDE_KAUAI_PIO_CONFIG 0x200
110 #define IDE_KAUAI_ULTRA_CONFIG 0x210
111 #define IDE_KAUAI_POLL_CONFIG 0x220
114 * Timing configuration register definitions
117 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
118 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
119 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
120 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
121 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
123 /* 133Mhz cell, found in shasta.
124 * See comments about 100 Mhz Uninorth 2...
125 * Note that PIO_MASK and MDMA_MASK seem to overlap
127 #define TR_133_PIOREG_PIO_MASK 0xff000fff
128 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
129 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
130 #define TR_133_UDMAREG_UDMA_EN 0x00000001
132 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
133 * this one yet, it appears as a pci device (106b/0033) on uninorth
134 * internal PCI bus and it's clock is controlled like gem or fw. It
135 * appears to be an evolution of keylargo ATA4 with a timing register
136 * extended to 2 32bits registers and a similar DBDMA channel. Other
137 * registers seem to exist but I can't tell much about them.
139 * So far, I'm using pre-calculated tables for this extracted from
140 * the values used by the MacOS X driver.
142 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
143 * register controls the UDMA timings. At least, it seems bit 0
144 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
145 * cycle time in units of 10ns. Bits 8..15 are used by I don't
146 * know their meaning yet
148 #define TR_100_PIOREG_PIO_MASK 0xff000fff
149 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
150 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
151 #define TR_100_UDMAREG_UDMA_EN 0x00000001
154 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
155 * 40 connector cable and to 4 on 80 connector one.
156 * Clock unit is 15ns (66Mhz)
158 * 3 Values can be programmed:
159 * - Write data setup, which appears to match the cycle time. They
160 * also call it DIOW setup.
161 * - Ready to pause time (from spec)
162 * - Address setup. That one is weird. I don't see where exactly
163 * it fits in UDMA cycles, I got it's name from an obscure piece
164 * of commented out code in Darwin. They leave it to 0, we do as
165 * well, despite a comment that would lead to think it has a
166 * min value of 45ns.
167 * Apple also add 60ns to the write data setup (or cycle time ?) on
168 * reads.
170 #define TR_66_UDMA_MASK 0xfff00000
171 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
172 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
173 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
174 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
175 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
176 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
177 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
178 #define TR_66_MDMA_MASK 0x000ffc00
179 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
180 #define TR_66_MDMA_RECOVERY_SHIFT 15
181 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
182 #define TR_66_MDMA_ACCESS_SHIFT 10
183 #define TR_66_PIO_MASK 0x000003ff
184 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
185 #define TR_66_PIO_RECOVERY_SHIFT 5
186 #define TR_66_PIO_ACCESS_MASK 0x0000001f
187 #define TR_66_PIO_ACCESS_SHIFT 0
189 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
190 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
192 * The access time and recovery time can be programmed. Some older
193 * Darwin code base limit OHare to 150ns cycle time. I decided to do
194 * the same here fore safety against broken old hardware ;)
195 * The HalfTick bit, when set, adds half a clock (15ns) to the access
196 * time and removes one from recovery. It's not supported on KeyLargo
197 * implementation afaik. The E bit appears to be set for PIO mode 0 and
198 * is used to reach long timings used in this mode.
200 #define TR_33_MDMA_MASK 0x003ff800
201 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
202 #define TR_33_MDMA_RECOVERY_SHIFT 16
203 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
204 #define TR_33_MDMA_ACCESS_SHIFT 11
205 #define TR_33_MDMA_HALFTICK 0x00200000
206 #define TR_33_PIO_MASK 0x000007ff
207 #define TR_33_PIO_E 0x00000400
208 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
209 #define TR_33_PIO_RECOVERY_SHIFT 5
210 #define TR_33_PIO_ACCESS_MASK 0x0000001f
211 #define TR_33_PIO_ACCESS_SHIFT 0
214 * Interrupt register definitions
216 #define IDE_INTR_DMA 0x80000000
217 #define IDE_INTR_DEVICE 0x40000000
220 * FCR Register on Kauai. Not sure what bit 0x4 is ...
222 #define KAUAI_FCR_UATA_MAGIC 0x00000004
223 #define KAUAI_FCR_UATA_RESET_N 0x00000002
224 #define KAUAI_FCR_UATA_ENABLE 0x00000001
226 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
228 /* Rounded Multiword DMA timings
230 * I gave up finding a generic formula for all controller
231 * types and instead, built tables based on timing values
232 * used by Apple in Darwin's implementation.
234 struct mdma_timings_t {
235 int accessTime;
236 int recoveryTime;
237 int cycleTime;
240 struct mdma_timings_t mdma_timings_33[] =
242 { 240, 240, 480 },
243 { 180, 180, 360 },
244 { 135, 135, 270 },
245 { 120, 120, 240 },
246 { 105, 105, 210 },
247 { 90, 90, 180 },
248 { 75, 75, 150 },
249 { 75, 45, 120 },
250 { 0, 0, 0 }
253 struct mdma_timings_t mdma_timings_33k[] =
255 { 240, 240, 480 },
256 { 180, 180, 360 },
257 { 150, 150, 300 },
258 { 120, 120, 240 },
259 { 90, 120, 210 },
260 { 90, 90, 180 },
261 { 90, 60, 150 },
262 { 90, 30, 120 },
263 { 0, 0, 0 }
266 struct mdma_timings_t mdma_timings_66[] =
268 { 240, 240, 480 },
269 { 180, 180, 360 },
270 { 135, 135, 270 },
271 { 120, 120, 240 },
272 { 105, 105, 210 },
273 { 90, 90, 180 },
274 { 90, 75, 165 },
275 { 75, 45, 120 },
276 { 0, 0, 0 }
279 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
280 struct {
281 int addrSetup; /* ??? */
282 int rdy2pause;
283 int wrDataSetup;
284 } kl66_udma_timings[] =
286 { 0, 180, 120 }, /* Mode 0 */
287 { 0, 150, 90 }, /* 1 */
288 { 0, 120, 60 }, /* 2 */
289 { 0, 90, 45 }, /* 3 */
290 { 0, 90, 30 } /* 4 */
293 /* UniNorth 2 ATA/100 timings */
294 struct kauai_timing {
295 int cycle_time;
296 u32 timing_reg;
299 static struct kauai_timing kauai_pio_timings[] =
301 { 930 , 0x08000fff },
302 { 600 , 0x08000a92 },
303 { 383 , 0x0800060f },
304 { 360 , 0x08000492 },
305 { 330 , 0x0800048f },
306 { 300 , 0x080003cf },
307 { 270 , 0x080003cc },
308 { 240 , 0x0800038b },
309 { 239 , 0x0800030c },
310 { 180 , 0x05000249 },
311 { 120 , 0x04000148 },
312 { 0 , 0 },
315 static struct kauai_timing kauai_mdma_timings[] =
317 { 1260 , 0x00fff000 },
318 { 480 , 0x00618000 },
319 { 360 , 0x00492000 },
320 { 270 , 0x0038e000 },
321 { 240 , 0x0030c000 },
322 { 210 , 0x002cb000 },
323 { 180 , 0x00249000 },
324 { 150 , 0x00209000 },
325 { 120 , 0x00148000 },
326 { 0 , 0 },
329 static struct kauai_timing kauai_udma_timings[] =
331 { 120 , 0x000070c0 },
332 { 90 , 0x00005d80 },
333 { 60 , 0x00004a60 },
334 { 45 , 0x00003a50 },
335 { 30 , 0x00002a30 },
336 { 20 , 0x00002921 },
337 { 0 , 0 },
340 static struct kauai_timing shasta_pio_timings[] =
342 { 930 , 0x08000fff },
343 { 600 , 0x0A000c97 },
344 { 383 , 0x07000712 },
345 { 360 , 0x040003cd },
346 { 330 , 0x040003cd },
347 { 300 , 0x040003cd },
348 { 270 , 0x040003cd },
349 { 240 , 0x040003cd },
350 { 239 , 0x040003cd },
351 { 180 , 0x0400028b },
352 { 120 , 0x0400010a },
353 { 0 , 0 },
356 static struct kauai_timing shasta_mdma_timings[] =
358 { 1260 , 0x00fff000 },
359 { 480 , 0x00820800 },
360 { 360 , 0x00820800 },
361 { 270 , 0x00820800 },
362 { 240 , 0x00820800 },
363 { 210 , 0x00820800 },
364 { 180 , 0x00820800 },
365 { 150 , 0x0028b000 },
366 { 120 , 0x001ca000 },
367 { 0 , 0 },
370 static struct kauai_timing shasta_udma133_timings[] =
372 { 120 , 0x00035901, },
373 { 90 , 0x000348b1, },
374 { 60 , 0x00033881, },
375 { 45 , 0x00033861, },
376 { 30 , 0x00033841, },
377 { 20 , 0x00033031, },
378 { 15 , 0x00033021, },
379 { 0 , 0 },
383 static inline u32
384 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
386 int i;
388 for (i=0; table[i].cycle_time; i++)
389 if (cycle_time > table[i+1].cycle_time)
390 return table[i].timing_reg;
391 BUG();
392 return 0;
395 /* allow up to 256 DBDMA commands per xfer */
396 #define MAX_DCMDS 256
399 * Wait 1s for disk to answer on IDE bus after a hard reset
400 * of the device (via GPIO/FCR).
402 * Some devices seem to "pollute" the bus even after dropping
403 * the BSY bit (typically some combo drives slave on the UDMA
404 * bus) after a hard reset. Since we hard reset all drives on
405 * KeyLargo ATA66, we have to keep that delay around. I may end
406 * up not hard resetting anymore on these and keep the delay only
407 * for older interfaces instead (we have to reset when coming
408 * from MacOS...) --BenH.
410 #define IDE_WAKEUP_DELAY (1*HZ)
412 static int pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
413 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
414 static void pmac_ide_selectproc(ide_drive_t *drive);
415 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
417 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
419 #define PMAC_IDE_REG(x) \
420 ((void __iomem *)((drive)->hwif->io_ports[IDE_DATA_OFFSET] + (x)))
423 * Apply the timings of the proper unit (master/slave) to the shared
424 * timing register when selecting that unit. This version is for
425 * ASICs with a single timing register
427 static void
428 pmac_ide_selectproc(ide_drive_t *drive)
430 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
432 if (pmif == NULL)
433 return;
435 if (drive->select.b.unit & 0x01)
436 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
437 else
438 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
439 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
443 * Apply the timings of the proper unit (master/slave) to the shared
444 * timing register when selecting that unit. This version is for
445 * ASICs with a dual timing register (Kauai)
447 static void
448 pmac_ide_kauai_selectproc(ide_drive_t *drive)
450 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
452 if (pmif == NULL)
453 return;
455 if (drive->select.b.unit & 0x01) {
456 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
457 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
458 } else {
459 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
460 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
462 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
466 * Force an update of controller timing values for a given drive
468 static void
469 pmac_ide_do_update_timings(ide_drive_t *drive)
471 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
473 if (pmif == NULL)
474 return;
476 if (pmif->kind == controller_sh_ata6 ||
477 pmif->kind == controller_un_ata6 ||
478 pmif->kind == controller_k2_ata6)
479 pmac_ide_kauai_selectproc(drive);
480 else
481 pmac_ide_selectproc(drive);
484 static void
485 pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
487 u32 tmp;
489 writeb(value, (void __iomem *) port);
490 tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
494 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
496 static void
497 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
499 u32 *timings, t;
500 unsigned accessTicks, recTicks;
501 unsigned accessTime, recTime;
502 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
503 unsigned int cycle_time;
505 if (pmif == NULL)
506 return;
508 /* which drive is it ? */
509 timings = &pmif->timings[drive->select.b.unit & 0x01];
510 t = *timings;
512 cycle_time = ide_pio_cycle_time(drive, pio);
514 switch (pmif->kind) {
515 case controller_sh_ata6: {
516 /* 133Mhz cell */
517 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
518 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
519 break;
521 case controller_un_ata6:
522 case controller_k2_ata6: {
523 /* 100Mhz cell */
524 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
525 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
526 break;
528 case controller_kl_ata4:
529 /* 66Mhz cell */
530 recTime = cycle_time - ide_pio_timings[pio].active_time
531 - ide_pio_timings[pio].setup_time;
532 recTime = max(recTime, 150U);
533 accessTime = ide_pio_timings[pio].active_time;
534 accessTime = max(accessTime, 150U);
535 accessTicks = SYSCLK_TICKS_66(accessTime);
536 accessTicks = min(accessTicks, 0x1fU);
537 recTicks = SYSCLK_TICKS_66(recTime);
538 recTicks = min(recTicks, 0x1fU);
539 t = (t & ~TR_66_PIO_MASK) |
540 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
541 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
542 break;
543 default: {
544 /* 33Mhz cell */
545 int ebit = 0;
546 recTime = cycle_time - ide_pio_timings[pio].active_time
547 - ide_pio_timings[pio].setup_time;
548 recTime = max(recTime, 150U);
549 accessTime = ide_pio_timings[pio].active_time;
550 accessTime = max(accessTime, 150U);
551 accessTicks = SYSCLK_TICKS(accessTime);
552 accessTicks = min(accessTicks, 0x1fU);
553 accessTicks = max(accessTicks, 4U);
554 recTicks = SYSCLK_TICKS(recTime);
555 recTicks = min(recTicks, 0x1fU);
556 recTicks = max(recTicks, 5U) - 4;
557 if (recTicks > 9) {
558 recTicks--; /* guess, but it's only for PIO0, so... */
559 ebit = 1;
561 t = (t & ~TR_33_PIO_MASK) |
562 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
563 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
564 if (ebit)
565 t |= TR_33_PIO_E;
566 break;
570 #ifdef IDE_PMAC_DEBUG
571 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
572 drive->name, pio, *timings);
573 #endif
575 *timings = t;
576 pmac_ide_do_update_timings(drive);
579 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
582 * Calculate KeyLargo ATA/66 UDMA timings
584 static int
585 set_timings_udma_ata4(u32 *timings, u8 speed)
587 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
589 if (speed > XFER_UDMA_4)
590 return 1;
592 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
593 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
594 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
596 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
597 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
598 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
599 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
600 TR_66_UDMA_EN;
601 #ifdef IDE_PMAC_DEBUG
602 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
603 speed & 0xf, *timings);
604 #endif
606 return 0;
610 * Calculate Kauai ATA/100 UDMA timings
612 static int
613 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
615 struct ide_timing *t = ide_timing_find_mode(speed);
616 u32 tr;
618 if (speed > XFER_UDMA_5 || t == NULL)
619 return 1;
620 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
621 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
622 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
624 return 0;
628 * Calculate Shasta ATA/133 UDMA timings
630 static int
631 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
633 struct ide_timing *t = ide_timing_find_mode(speed);
634 u32 tr;
636 if (speed > XFER_UDMA_6 || t == NULL)
637 return 1;
638 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
639 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
640 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
642 return 0;
646 * Calculate MDMA timings for all cells
648 static void
649 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
650 u8 speed)
652 int cycleTime, accessTime = 0, recTime = 0;
653 unsigned accessTicks, recTicks;
654 struct hd_driveid *id = drive->id;
655 struct mdma_timings_t* tm = NULL;
656 int i;
658 /* Get default cycle time for mode */
659 switch(speed & 0xf) {
660 case 0: cycleTime = 480; break;
661 case 1: cycleTime = 150; break;
662 case 2: cycleTime = 120; break;
663 default:
664 BUG();
665 break;
668 /* Check if drive provides explicit DMA cycle time */
669 if ((id->field_valid & 2) && id->eide_dma_time)
670 cycleTime = max_t(int, id->eide_dma_time, cycleTime);
672 /* OHare limits according to some old Apple sources */
673 if ((intf_type == controller_ohare) && (cycleTime < 150))
674 cycleTime = 150;
675 /* Get the proper timing array for this controller */
676 switch(intf_type) {
677 case controller_sh_ata6:
678 case controller_un_ata6:
679 case controller_k2_ata6:
680 break;
681 case controller_kl_ata4:
682 tm = mdma_timings_66;
683 break;
684 case controller_kl_ata3:
685 tm = mdma_timings_33k;
686 break;
687 default:
688 tm = mdma_timings_33;
689 break;
691 if (tm != NULL) {
692 /* Lookup matching access & recovery times */
693 i = -1;
694 for (;;) {
695 if (tm[i+1].cycleTime < cycleTime)
696 break;
697 i++;
699 cycleTime = tm[i].cycleTime;
700 accessTime = tm[i].accessTime;
701 recTime = tm[i].recoveryTime;
703 #ifdef IDE_PMAC_DEBUG
704 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
705 drive->name, cycleTime, accessTime, recTime);
706 #endif
708 switch(intf_type) {
709 case controller_sh_ata6: {
710 /* 133Mhz cell */
711 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
712 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
713 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
715 case controller_un_ata6:
716 case controller_k2_ata6: {
717 /* 100Mhz cell */
718 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
719 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
720 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
722 break;
723 case controller_kl_ata4:
724 /* 66Mhz cell */
725 accessTicks = SYSCLK_TICKS_66(accessTime);
726 accessTicks = min(accessTicks, 0x1fU);
727 accessTicks = max(accessTicks, 0x1U);
728 recTicks = SYSCLK_TICKS_66(recTime);
729 recTicks = min(recTicks, 0x1fU);
730 recTicks = max(recTicks, 0x3U);
731 /* Clear out mdma bits and disable udma */
732 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
733 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
734 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
735 break;
736 case controller_kl_ata3:
737 /* 33Mhz cell on KeyLargo */
738 accessTicks = SYSCLK_TICKS(accessTime);
739 accessTicks = max(accessTicks, 1U);
740 accessTicks = min(accessTicks, 0x1fU);
741 accessTime = accessTicks * IDE_SYSCLK_NS;
742 recTicks = SYSCLK_TICKS(recTime);
743 recTicks = max(recTicks, 1U);
744 recTicks = min(recTicks, 0x1fU);
745 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
746 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
747 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
748 break;
749 default: {
750 /* 33Mhz cell on others */
751 int halfTick = 0;
752 int origAccessTime = accessTime;
753 int origRecTime = recTime;
755 accessTicks = SYSCLK_TICKS(accessTime);
756 accessTicks = max(accessTicks, 1U);
757 accessTicks = min(accessTicks, 0x1fU);
758 accessTime = accessTicks * IDE_SYSCLK_NS;
759 recTicks = SYSCLK_TICKS(recTime);
760 recTicks = max(recTicks, 2U) - 1;
761 recTicks = min(recTicks, 0x1fU);
762 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
763 if ((accessTicks > 1) &&
764 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
765 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
766 halfTick = 1;
767 accessTicks--;
769 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
770 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
771 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
772 if (halfTick)
773 *timings |= TR_33_MDMA_HALFTICK;
776 #ifdef IDE_PMAC_DEBUG
777 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
778 drive->name, speed & 0xf, *timings);
779 #endif
781 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
783 static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
785 int unit = (drive->select.b.unit & 0x01);
786 int ret = 0;
787 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
788 u32 *timings, *timings2, tl[2];
790 timings = &pmif->timings[unit];
791 timings2 = &pmif->timings[unit+2];
793 /* Copy timings to local image */
794 tl[0] = *timings;
795 tl[1] = *timings2;
797 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
798 if (speed >= XFER_UDMA_0) {
799 if (pmif->kind == controller_kl_ata4)
800 ret = set_timings_udma_ata4(&tl[0], speed);
801 else if (pmif->kind == controller_un_ata6
802 || pmif->kind == controller_k2_ata6)
803 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
804 else if (pmif->kind == controller_sh_ata6)
805 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
806 else
807 ret = -1;
808 } else
809 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
810 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
811 if (ret)
812 return;
814 /* Apply timings to controller */
815 *timings = tl[0];
816 *timings2 = tl[1];
818 pmac_ide_do_update_timings(drive);
822 * Blast some well known "safe" values to the timing registers at init or
823 * wakeup from sleep time, before we do real calculation
825 static void
826 sanitize_timings(pmac_ide_hwif_t *pmif)
828 unsigned int value, value2 = 0;
830 switch(pmif->kind) {
831 case controller_sh_ata6:
832 value = 0x0a820c97;
833 value2 = 0x00033031;
834 break;
835 case controller_un_ata6:
836 case controller_k2_ata6:
837 value = 0x08618a92;
838 value2 = 0x00002921;
839 break;
840 case controller_kl_ata4:
841 value = 0x0008438c;
842 break;
843 case controller_kl_ata3:
844 value = 0x00084526;
845 break;
846 case controller_heathrow:
847 case controller_ohare:
848 default:
849 value = 0x00074526;
850 break;
852 pmif->timings[0] = pmif->timings[1] = value;
853 pmif->timings[2] = pmif->timings[3] = value2;
856 /* Suspend call back, should be called after the child devices
857 * have actually been suspended
859 static int
860 pmac_ide_do_suspend(ide_hwif_t *hwif)
862 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
864 /* We clear the timings */
865 pmif->timings[0] = 0;
866 pmif->timings[1] = 0;
868 disable_irq(pmif->irq);
870 /* The media bay will handle itself just fine */
871 if (pmif->mediabay)
872 return 0;
874 /* Kauai has bus control FCRs directly here */
875 if (pmif->kauai_fcr) {
876 u32 fcr = readl(pmif->kauai_fcr);
877 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
878 writel(fcr, pmif->kauai_fcr);
881 /* Disable the bus on older machines and the cell on kauai */
882 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
885 return 0;
888 /* Resume call back, should be called before the child devices
889 * are resumed
891 static int
892 pmac_ide_do_resume(ide_hwif_t *hwif)
894 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
896 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
897 if (!pmif->mediabay) {
898 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
899 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
900 msleep(10);
901 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
903 /* Kauai has it different */
904 if (pmif->kauai_fcr) {
905 u32 fcr = readl(pmif->kauai_fcr);
906 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
907 writel(fcr, pmif->kauai_fcr);
910 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
913 /* Sanitize drive timings */
914 sanitize_timings(pmif);
916 enable_irq(pmif->irq);
918 return 0;
921 static const struct ide_port_info pmac_port_info = {
922 .chipset = ide_pmac,
923 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
924 IDE_HFLAG_POST_SET_MODE |
925 IDE_HFLAG_NO_DMA | /* no SFF-style DMA */
926 IDE_HFLAG_UNMASK_IRQS,
927 .pio_mask = ATA_PIO4,
928 .mwdma_mask = ATA_MWDMA2,
932 * Setup, register & probe an IDE channel driven by this driver, this is
933 * called by one of the 2 probe functions (macio or PCI). Note that a channel
934 * that ends up beeing free of any device is not kept around by this driver
935 * (it is kept in 2.4). This introduce an interface numbering change on some
936 * rare machines unfortunately, but it's better this way.
938 static int __devinit
939 pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif, hw_regs_t *hw)
941 struct device_node *np = pmif->node;
942 const int *bidp;
943 u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
944 struct ide_port_info d = pmac_port_info;
946 pmif->cable_80 = 0;
947 pmif->broken_dma = pmif->broken_dma_warn = 0;
948 if (of_device_is_compatible(np, "shasta-ata")) {
949 pmif->kind = controller_sh_ata6;
950 d.udma_mask = ATA_UDMA6;
951 } else if (of_device_is_compatible(np, "kauai-ata")) {
952 pmif->kind = controller_un_ata6;
953 d.udma_mask = ATA_UDMA5;
954 } else if (of_device_is_compatible(np, "K2-UATA")) {
955 pmif->kind = controller_k2_ata6;
956 d.udma_mask = ATA_UDMA5;
957 } else if (of_device_is_compatible(np, "keylargo-ata")) {
958 if (strcmp(np->name, "ata-4") == 0) {
959 pmif->kind = controller_kl_ata4;
960 d.udma_mask = ATA_UDMA4;
961 } else
962 pmif->kind = controller_kl_ata3;
963 } else if (of_device_is_compatible(np, "heathrow-ata")) {
964 pmif->kind = controller_heathrow;
965 } else {
966 pmif->kind = controller_ohare;
967 pmif->broken_dma = 1;
970 bidp = of_get_property(np, "AAPL,bus-id", NULL);
971 pmif->aapl_bus_id = bidp ? *bidp : 0;
973 /* Get cable type from device-tree */
974 if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
975 || pmif->kind == controller_k2_ata6
976 || pmif->kind == controller_sh_ata6) {
977 const char* cable = of_get_property(np, "cable-type", NULL);
978 if (cable && !strncmp(cable, "80-", 3))
979 pmif->cable_80 = 1;
981 /* G5's seem to have incorrect cable type in device-tree. Let's assume
982 * they have a 80 conductor cable, this seem to be always the case unless
983 * the user mucked around
985 if (of_device_is_compatible(np, "K2-UATA") ||
986 of_device_is_compatible(np, "shasta-ata"))
987 pmif->cable_80 = 1;
989 /* On Kauai-type controllers, we make sure the FCR is correct */
990 if (pmif->kauai_fcr)
991 writel(KAUAI_FCR_UATA_MAGIC |
992 KAUAI_FCR_UATA_RESET_N |
993 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
995 pmif->mediabay = 0;
997 /* Make sure we have sane timings */
998 sanitize_timings(pmif);
1000 #ifndef CONFIG_PPC64
1001 /* XXX FIXME: Media bay stuff need re-organizing */
1002 if (np->parent && np->parent->name
1003 && strcasecmp(np->parent->name, "media-bay") == 0) {
1004 #ifdef CONFIG_PMAC_MEDIABAY
1005 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
1006 hwif);
1007 #endif /* CONFIG_PMAC_MEDIABAY */
1008 pmif->mediabay = 1;
1009 if (!bidp)
1010 pmif->aapl_bus_id = 1;
1011 } else if (pmif->kind == controller_ohare) {
1012 /* The code below is having trouble on some ohare machines
1013 * (timing related ?). Until I can put my hand on one of these
1014 * units, I keep the old way
1016 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1017 } else
1018 #endif
1020 /* This is necessary to enable IDE when net-booting */
1021 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1022 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1023 msleep(10);
1024 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1025 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1028 /* Setup MMIO ops */
1029 default_hwif_mmiops(hwif);
1030 hwif->OUTBSYNC = pmac_outbsync;
1032 /* Tell common code _not_ to mess with resources */
1033 hwif->mmio = 1;
1034 hwif->hwif_data = pmif;
1035 ide_init_port_hw(hwif, hw);
1036 hwif->noprobe = pmif->mediabay;
1037 hwif->cbl = pmif->cable_80 ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
1038 hwif->set_pio_mode = pmac_ide_set_pio_mode;
1039 if (pmif->kind == controller_un_ata6
1040 || pmif->kind == controller_k2_ata6
1041 || pmif->kind == controller_sh_ata6)
1042 hwif->selectproc = pmac_ide_kauai_selectproc;
1043 else
1044 hwif->selectproc = pmac_ide_selectproc;
1045 hwif->set_dma_mode = pmac_ide_set_dma_mode;
1047 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1048 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1049 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1051 #ifdef CONFIG_PMAC_MEDIABAY
1052 if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
1053 hwif->noprobe = 0;
1054 #endif /* CONFIG_PMAC_MEDIABAY */
1056 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1057 if (pmif->cable_80 == 0)
1058 d.udma_mask &= ATA_UDMA2;
1059 /* has a DBDMA controller channel */
1060 if (pmif->dma_regs == 0 || pmac_ide_setup_dma(pmif, hwif) < 0)
1061 #endif
1062 d.udma_mask = d.mwdma_mask = 0;
1064 idx[0] = hwif->index;
1066 ide_device_add(idx, &d);
1068 return 0;
1071 static void __devinit pmac_ide_init_ports(hw_regs_t *hw, unsigned long base)
1073 int i;
1075 for (i = 0; i < 8; ++i)
1076 hw->io_ports[i] = base + i * 0x10;
1077 hw->io_ports[8] = base + 0x160;
1081 * Attach to a macio probed interface
1083 static int __devinit
1084 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1086 void __iomem *base;
1087 unsigned long regbase;
1088 ide_hwif_t *hwif;
1089 pmac_ide_hwif_t *pmif;
1090 int irq, rc;
1091 hw_regs_t hw;
1093 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1094 if (pmif == NULL)
1095 return -ENOMEM;
1097 hwif = ide_find_port();
1098 if (hwif == NULL) {
1099 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1100 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
1101 rc = -ENODEV;
1102 goto out_free_pmif;
1105 if (macio_resource_count(mdev) == 0) {
1106 printk(KERN_WARNING "ide-pmac: no address for %s\n",
1107 mdev->ofdev.node->full_name);
1108 rc = -ENXIO;
1109 goto out_free_pmif;
1112 /* Request memory resource for IO ports */
1113 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1114 printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1115 "%s!\n", mdev->ofdev.node->full_name);
1116 rc = -EBUSY;
1117 goto out_free_pmif;
1120 /* XXX This is bogus. Should be fixed in the registry by checking
1121 * the kind of host interrupt controller, a bit like gatwick
1122 * fixes in irq.c. That works well enough for the single case
1123 * where that happens though...
1125 if (macio_irq_count(mdev) == 0) {
1126 printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1127 "13\n", mdev->ofdev.node->full_name);
1128 irq = irq_create_mapping(NULL, 13);
1129 } else
1130 irq = macio_irq(mdev, 0);
1132 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1133 regbase = (unsigned long) base;
1135 hwif->dev = &mdev->bus->pdev->dev;
1137 pmif->mdev = mdev;
1138 pmif->node = mdev->ofdev.node;
1139 pmif->regbase = regbase;
1140 pmif->irq = irq;
1141 pmif->kauai_fcr = NULL;
1142 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1143 if (macio_resource_count(mdev) >= 2) {
1144 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1145 printk(KERN_WARNING "ide-pmac: can't request DMA "
1146 "resource for %s!\n",
1147 mdev->ofdev.node->full_name);
1148 else
1149 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1150 } else
1151 pmif->dma_regs = NULL;
1152 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1153 dev_set_drvdata(&mdev->ofdev.dev, hwif);
1155 memset(&hw, 0, sizeof(hw));
1156 pmac_ide_init_ports(&hw, pmif->regbase);
1157 hw.irq = irq;
1158 hw.dev = &mdev->ofdev.dev;
1160 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1161 if (rc != 0) {
1162 /* The inteface is released to the common IDE layer */
1163 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1164 iounmap(base);
1165 if (pmif->dma_regs) {
1166 iounmap(pmif->dma_regs);
1167 macio_release_resource(mdev, 1);
1169 macio_release_resource(mdev, 0);
1170 kfree(pmif);
1173 return rc;
1175 out_free_pmif:
1176 kfree(pmif);
1177 return rc;
1180 static int
1181 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1183 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1184 int rc = 0;
1186 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1187 && (mesg.event & PM_EVENT_SLEEP)) {
1188 rc = pmac_ide_do_suspend(hwif);
1189 if (rc == 0)
1190 mdev->ofdev.dev.power.power_state = mesg;
1193 return rc;
1196 static int
1197 pmac_ide_macio_resume(struct macio_dev *mdev)
1199 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1200 int rc = 0;
1202 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1203 rc = pmac_ide_do_resume(hwif);
1204 if (rc == 0)
1205 mdev->ofdev.dev.power.power_state = PMSG_ON;
1208 return rc;
1212 * Attach to a PCI probed interface
1214 static int __devinit
1215 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1217 ide_hwif_t *hwif;
1218 struct device_node *np;
1219 pmac_ide_hwif_t *pmif;
1220 void __iomem *base;
1221 unsigned long rbase, rlen;
1222 int rc;
1223 hw_regs_t hw;
1225 np = pci_device_to_OF_node(pdev);
1226 if (np == NULL) {
1227 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1228 return -ENODEV;
1231 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1232 if (pmif == NULL)
1233 return -ENOMEM;
1235 hwif = ide_find_port();
1236 if (hwif == NULL) {
1237 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1238 printk(KERN_ERR " %s\n", np->full_name);
1239 rc = -ENODEV;
1240 goto out_free_pmif;
1243 if (pci_enable_device(pdev)) {
1244 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1245 "%s\n", np->full_name);
1246 rc = -ENXIO;
1247 goto out_free_pmif;
1249 pci_set_master(pdev);
1251 if (pci_request_regions(pdev, "Kauai ATA")) {
1252 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1253 "%s\n", np->full_name);
1254 rc = -ENXIO;
1255 goto out_free_pmif;
1258 hwif->dev = &pdev->dev;
1259 pmif->mdev = NULL;
1260 pmif->node = np;
1262 rbase = pci_resource_start(pdev, 0);
1263 rlen = pci_resource_len(pdev, 0);
1265 base = ioremap(rbase, rlen);
1266 pmif->regbase = (unsigned long) base + 0x2000;
1267 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1268 pmif->dma_regs = base + 0x1000;
1269 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1270 pmif->kauai_fcr = base;
1271 pmif->irq = pdev->irq;
1273 pci_set_drvdata(pdev, hwif);
1275 memset(&hw, 0, sizeof(hw));
1276 pmac_ide_init_ports(&hw, pmif->regbase);
1277 hw.irq = pdev->irq;
1278 hw.dev = &pdev->dev;
1280 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1281 if (rc != 0) {
1282 /* The inteface is released to the common IDE layer */
1283 pci_set_drvdata(pdev, NULL);
1284 iounmap(base);
1285 pci_release_regions(pdev);
1286 kfree(pmif);
1289 return rc;
1291 out_free_pmif:
1292 kfree(pmif);
1293 return rc;
1296 static int
1297 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1299 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1300 int rc = 0;
1302 if (mesg.event != pdev->dev.power.power_state.event
1303 && (mesg.event & PM_EVENT_SLEEP)) {
1304 rc = pmac_ide_do_suspend(hwif);
1305 if (rc == 0)
1306 pdev->dev.power.power_state = mesg;
1309 return rc;
1312 static int
1313 pmac_ide_pci_resume(struct pci_dev *pdev)
1315 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1316 int rc = 0;
1318 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1319 rc = pmac_ide_do_resume(hwif);
1320 if (rc == 0)
1321 pdev->dev.power.power_state = PMSG_ON;
1324 return rc;
1327 static struct of_device_id pmac_ide_macio_match[] =
1330 .name = "IDE",
1333 .name = "ATA",
1336 .type = "ide",
1339 .type = "ata",
1344 static struct macio_driver pmac_ide_macio_driver =
1346 .name = "ide-pmac",
1347 .match_table = pmac_ide_macio_match,
1348 .probe = pmac_ide_macio_attach,
1349 .suspend = pmac_ide_macio_suspend,
1350 .resume = pmac_ide_macio_resume,
1353 static const struct pci_device_id pmac_ide_pci_match[] = {
1354 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1355 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1356 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1357 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1358 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1362 static struct pci_driver pmac_ide_pci_driver = {
1363 .name = "ide-pmac",
1364 .id_table = pmac_ide_pci_match,
1365 .probe = pmac_ide_pci_attach,
1366 .suspend = pmac_ide_pci_suspend,
1367 .resume = pmac_ide_pci_resume,
1369 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1371 int __init pmac_ide_probe(void)
1373 int error;
1375 if (!machine_is(powermac))
1376 return -ENODEV;
1378 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1379 error = pci_register_driver(&pmac_ide_pci_driver);
1380 if (error)
1381 goto out;
1382 error = macio_register_driver(&pmac_ide_macio_driver);
1383 if (error) {
1384 pci_unregister_driver(&pmac_ide_pci_driver);
1385 goto out;
1387 #else
1388 error = macio_register_driver(&pmac_ide_macio_driver);
1389 if (error)
1390 goto out;
1391 error = pci_register_driver(&pmac_ide_pci_driver);
1392 if (error) {
1393 macio_unregister_driver(&pmac_ide_macio_driver);
1394 goto out;
1396 #endif
1397 out:
1398 return error;
1401 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1404 * pmac_ide_build_dmatable builds the DBDMA command list
1405 * for a transfer and sets the DBDMA channel to point to it.
1407 static int
1408 pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1410 struct dbdma_cmd *table;
1411 int i, count = 0;
1412 ide_hwif_t *hwif = HWIF(drive);
1413 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1414 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1415 struct scatterlist *sg;
1416 int wr = (rq_data_dir(rq) == WRITE);
1418 /* DMA table is already aligned */
1419 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1421 /* Make sure DMA controller is stopped (necessary ?) */
1422 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1423 while (readl(&dma->status) & RUN)
1424 udelay(1);
1426 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1428 if (!i)
1429 return 0;
1431 /* Build DBDMA commands list */
1432 sg = hwif->sg_table;
1433 while (i && sg_dma_len(sg)) {
1434 u32 cur_addr;
1435 u32 cur_len;
1437 cur_addr = sg_dma_address(sg);
1438 cur_len = sg_dma_len(sg);
1440 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1441 if (pmif->broken_dma_warn == 0) {
1442 printk(KERN_WARNING "%s: DMA on non aligned address, "
1443 "switching to PIO on Ohare chipset\n", drive->name);
1444 pmif->broken_dma_warn = 1;
1446 goto use_pio_instead;
1448 while (cur_len) {
1449 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1451 if (count++ >= MAX_DCMDS) {
1452 printk(KERN_WARNING "%s: DMA table too small\n",
1453 drive->name);
1454 goto use_pio_instead;
1456 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1457 st_le16(&table->req_count, tc);
1458 st_le32(&table->phy_addr, cur_addr);
1459 table->cmd_dep = 0;
1460 table->xfer_status = 0;
1461 table->res_count = 0;
1462 cur_addr += tc;
1463 cur_len -= tc;
1464 ++table;
1466 sg = sg_next(sg);
1467 i--;
1470 /* convert the last command to an input/output last command */
1471 if (count) {
1472 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1473 /* add the stop command to the end of the list */
1474 memset(table, 0, sizeof(struct dbdma_cmd));
1475 st_le16(&table->command, DBDMA_STOP);
1476 mb();
1477 writel(hwif->dmatable_dma, &dma->cmdptr);
1478 return 1;
1481 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1483 use_pio_instead:
1484 ide_destroy_dmatable(drive);
1486 return 0; /* revert to PIO for this request */
1489 /* Teardown mappings after DMA has completed. */
1490 static void
1491 pmac_ide_destroy_dmatable (ide_drive_t *drive)
1493 ide_hwif_t *hwif = drive->hwif;
1495 if (hwif->sg_nents) {
1496 ide_destroy_dmatable(drive);
1497 hwif->sg_nents = 0;
1502 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1503 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1505 static int
1506 pmac_ide_dma_setup(ide_drive_t *drive)
1508 ide_hwif_t *hwif = HWIF(drive);
1509 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1510 struct request *rq = HWGROUP(drive)->rq;
1511 u8 unit = (drive->select.b.unit & 0x01);
1512 u8 ata4;
1514 if (pmif == NULL)
1515 return 1;
1516 ata4 = (pmif->kind == controller_kl_ata4);
1518 if (!pmac_ide_build_dmatable(drive, rq)) {
1519 ide_map_sg(drive, rq);
1520 return 1;
1523 /* Apple adds 60ns to wrDataSetup on reads */
1524 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1525 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1526 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1527 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1530 drive->waiting_for_dma = 1;
1532 return 0;
1535 static void
1536 pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1538 /* issue cmd to drive */
1539 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1543 * Kick the DMA controller into life after the DMA command has been issued
1544 * to the drive.
1546 static void
1547 pmac_ide_dma_start(ide_drive_t *drive)
1549 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1550 volatile struct dbdma_regs __iomem *dma;
1552 dma = pmif->dma_regs;
1554 writel((RUN << 16) | RUN, &dma->control);
1555 /* Make sure it gets to the controller right now */
1556 (void)readl(&dma->control);
1560 * After a DMA transfer, make sure the controller is stopped
1562 static int
1563 pmac_ide_dma_end (ide_drive_t *drive)
1565 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1566 volatile struct dbdma_regs __iomem *dma;
1567 u32 dstat;
1569 if (pmif == NULL)
1570 return 0;
1571 dma = pmif->dma_regs;
1573 drive->waiting_for_dma = 0;
1574 dstat = readl(&dma->status);
1575 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1576 pmac_ide_destroy_dmatable(drive);
1577 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1578 * in theory, but with ATAPI decices doing buffer underruns, that would
1579 * cause us to disable DMA, which isn't what we want
1581 return (dstat & (RUN|DEAD)) != RUN;
1585 * Check out that the interrupt we got was for us. We can't always know this
1586 * for sure with those Apple interfaces (well, we could on the recent ones but
1587 * that's not implemented yet), on the other hand, we don't have shared interrupts
1588 * so it's not really a problem
1590 static int
1591 pmac_ide_dma_test_irq (ide_drive_t *drive)
1593 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1594 volatile struct dbdma_regs __iomem *dma;
1595 unsigned long status, timeout;
1597 if (pmif == NULL)
1598 return 0;
1599 dma = pmif->dma_regs;
1601 /* We have to things to deal with here:
1603 * - The dbdma won't stop if the command was started
1604 * but completed with an error without transferring all
1605 * datas. This happens when bad blocks are met during
1606 * a multi-block transfer.
1608 * - The dbdma fifo hasn't yet finished flushing to
1609 * to system memory when the disk interrupt occurs.
1613 /* If ACTIVE is cleared, the STOP command have passed and
1614 * transfer is complete.
1616 status = readl(&dma->status);
1617 if (!(status & ACTIVE))
1618 return 1;
1619 if (!drive->waiting_for_dma)
1620 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1621 called while not waiting\n", HWIF(drive)->index);
1623 /* If dbdma didn't execute the STOP command yet, the
1624 * active bit is still set. We consider that we aren't
1625 * sharing interrupts (which is hopefully the case with
1626 * those controllers) and so we just try to flush the
1627 * channel for pending data in the fifo
1629 udelay(1);
1630 writel((FLUSH << 16) | FLUSH, &dma->control);
1631 timeout = 0;
1632 for (;;) {
1633 udelay(1);
1634 status = readl(&dma->status);
1635 if ((status & FLUSH) == 0)
1636 break;
1637 if (++timeout > 100) {
1638 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1639 timeout flushing channel\n", HWIF(drive)->index);
1640 break;
1643 return 1;
1646 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1650 static void
1651 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1653 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1654 volatile struct dbdma_regs __iomem *dma;
1655 unsigned long status;
1657 if (pmif == NULL)
1658 return;
1659 dma = pmif->dma_regs;
1661 status = readl(&dma->status);
1662 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1666 * Allocate the data structures needed for using DMA with an interface
1667 * and fill the proper list of functions pointers
1669 static int __devinit pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1671 struct pci_dev *dev = to_pci_dev(hwif->dev);
1673 /* We won't need pci_dev if we switch to generic consistent
1674 * DMA routines ...
1676 if (dev == NULL)
1677 return -ENODEV;
1679 * Allocate space for the DBDMA commands.
1680 * The +2 is +1 for the stop command and +1 to allow for
1681 * aligning the start address to a multiple of 16 bytes.
1683 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
1684 dev,
1685 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1686 &hwif->dmatable_dma);
1687 if (pmif->dma_table_cpu == NULL) {
1688 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1689 hwif->name);
1690 return -ENOMEM;
1693 hwif->sg_max_nents = MAX_DCMDS;
1695 hwif->dma_host_set = &pmac_ide_dma_host_set;
1696 hwif->dma_setup = &pmac_ide_dma_setup;
1697 hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
1698 hwif->dma_start = &pmac_ide_dma_start;
1699 hwif->ide_dma_end = &pmac_ide_dma_end;
1700 hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
1701 hwif->dma_timeout = &ide_dma_timeout;
1702 hwif->dma_lost_irq = &pmac_ide_dma_lost_irq;
1704 return 0;
1707 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1709 module_init(pmac_ide_probe);
1711 MODULE_LICENSE("GPL");