Merge branch 'rio.b19' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/bird
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blob832f676ca038837ab87c7544d4c3344b45cdc264
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
22 #include "internal.h"
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, reserved_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
33 static DEFINE_SPINLOCK(hugetlb_lock);
35 static void clear_huge_page(struct page *page, unsigned long addr)
37 int i;
39 might_sleep();
40 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41 cond_resched();
42 clear_user_highpage(page + i, addr);
46 static void copy_huge_page(struct page *dst, struct page *src,
47 unsigned long addr)
49 int i;
51 might_sleep();
52 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53 cond_resched();
54 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
58 static void enqueue_huge_page(struct page *page)
60 int nid = page_to_nid(page);
61 list_add(&page->lru, &hugepage_freelists[nid]);
62 free_huge_pages++;
63 free_huge_pages_node[nid]++;
66 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67 unsigned long address)
69 int nid = numa_node_id();
70 struct page *page = NULL;
71 struct zonelist *zonelist = huge_zonelist(vma, address);
72 struct zone **z;
74 for (z = zonelist->zones; *z; z++) {
75 nid = (*z)->zone_pgdat->node_id;
76 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
77 !list_empty(&hugepage_freelists[nid]))
78 break;
81 if (*z) {
82 page = list_entry(hugepage_freelists[nid].next,
83 struct page, lru);
84 list_del(&page->lru);
85 free_huge_pages--;
86 free_huge_pages_node[nid]--;
88 return page;
91 static void free_huge_page(struct page *page)
93 BUG_ON(page_count(page));
95 INIT_LIST_HEAD(&page->lru);
97 spin_lock(&hugetlb_lock);
98 enqueue_huge_page(page);
99 spin_unlock(&hugetlb_lock);
102 static int alloc_fresh_huge_page(void)
104 static int nid = 0;
105 struct page *page;
106 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
107 HUGETLB_PAGE_ORDER);
108 nid = next_node(nid, node_online_map);
109 if (nid == MAX_NUMNODES)
110 nid = first_node(node_online_map);
111 if (page) {
112 page[1].lru.next = (void *)free_huge_page; /* dtor */
113 spin_lock(&hugetlb_lock);
114 nr_huge_pages++;
115 nr_huge_pages_node[page_to_nid(page)]++;
116 spin_unlock(&hugetlb_lock);
117 put_page(page); /* free it into the hugepage allocator */
118 return 1;
120 return 0;
123 static struct page *alloc_huge_page(struct vm_area_struct *vma,
124 unsigned long addr)
126 struct inode *inode = vma->vm_file->f_dentry->d_inode;
127 struct page *page;
128 int use_reserve = 0;
129 unsigned long idx;
131 spin_lock(&hugetlb_lock);
133 if (vma->vm_flags & VM_MAYSHARE) {
135 /* idx = radix tree index, i.e. offset into file in
136 * HPAGE_SIZE units */
137 idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
138 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
140 /* The hugetlbfs specific inode info stores the number
141 * of "guaranteed available" (huge) pages. That is,
142 * the first 'prereserved_hpages' pages of the inode
143 * are either already instantiated, or have been
144 * pre-reserved (by hugetlb_reserve_for_inode()). Here
145 * we're in the process of instantiating the page, so
146 * we use this to determine whether to draw from the
147 * pre-reserved pool or the truly free pool. */
148 if (idx < HUGETLBFS_I(inode)->prereserved_hpages)
149 use_reserve = 1;
152 if (!use_reserve) {
153 if (free_huge_pages <= reserved_huge_pages)
154 goto fail;
155 } else {
156 BUG_ON(reserved_huge_pages == 0);
157 reserved_huge_pages--;
160 page = dequeue_huge_page(vma, addr);
161 if (!page)
162 goto fail;
164 spin_unlock(&hugetlb_lock);
165 set_page_refcounted(page);
166 return page;
168 fail:
169 WARN_ON(use_reserve); /* reserved allocations shouldn't fail */
170 spin_unlock(&hugetlb_lock);
171 return NULL;
174 /* hugetlb_extend_reservation()
176 * Ensure that at least 'atleast' hugepages are, and will remain,
177 * available to instantiate the first 'atleast' pages of the given
178 * inode. If the inode doesn't already have this many pages reserved
179 * or instantiated, set aside some hugepages in the reserved pool to
180 * satisfy later faults (or fail now if there aren't enough, rather
181 * than getting the SIGBUS later).
183 int hugetlb_extend_reservation(struct hugetlbfs_inode_info *info,
184 unsigned long atleast)
186 struct inode *inode = &info->vfs_inode;
187 unsigned long change_in_reserve = 0;
188 int ret = 0;
190 spin_lock(&hugetlb_lock);
191 read_lock_irq(&inode->i_mapping->tree_lock);
193 if (info->prereserved_hpages >= atleast)
194 goto out;
196 /* Because we always call this on shared mappings, none of the
197 * pages beyond info->prereserved_hpages can have been
198 * instantiated, so we need to reserve all of them now. */
199 change_in_reserve = atleast - info->prereserved_hpages;
201 if ((reserved_huge_pages + change_in_reserve) > free_huge_pages) {
202 ret = -ENOMEM;
203 goto out;
206 reserved_huge_pages += change_in_reserve;
207 info->prereserved_hpages = atleast;
209 out:
210 read_unlock_irq(&inode->i_mapping->tree_lock);
211 spin_unlock(&hugetlb_lock);
213 return ret;
216 /* hugetlb_truncate_reservation()
218 * This returns pages reserved for the given inode to the general free
219 * hugepage pool. If the inode has any pages prereserved, but not
220 * instantiated, beyond offset (atmost << HPAGE_SIZE), then release
221 * them.
223 void hugetlb_truncate_reservation(struct hugetlbfs_inode_info *info,
224 unsigned long atmost)
226 struct inode *inode = &info->vfs_inode;
227 struct address_space *mapping = inode->i_mapping;
228 unsigned long idx;
229 unsigned long change_in_reserve = 0;
230 struct page *page;
232 spin_lock(&hugetlb_lock);
233 read_lock_irq(&inode->i_mapping->tree_lock);
235 if (info->prereserved_hpages <= atmost)
236 goto out;
238 /* Count pages which were reserved, but not instantiated, and
239 * which we can now release. */
240 for (idx = atmost; idx < info->prereserved_hpages; idx++) {
241 page = radix_tree_lookup(&mapping->page_tree, idx);
242 if (!page)
243 /* Pages which are already instantiated can't
244 * be unreserved (and in fact have already
245 * been removed from the reserved pool) */
246 change_in_reserve++;
249 BUG_ON(reserved_huge_pages < change_in_reserve);
250 reserved_huge_pages -= change_in_reserve;
251 info->prereserved_hpages = atmost;
253 out:
254 read_unlock_irq(&inode->i_mapping->tree_lock);
255 spin_unlock(&hugetlb_lock);
258 static int __init hugetlb_init(void)
260 unsigned long i;
262 if (HPAGE_SHIFT == 0)
263 return 0;
265 for (i = 0; i < MAX_NUMNODES; ++i)
266 INIT_LIST_HEAD(&hugepage_freelists[i]);
268 for (i = 0; i < max_huge_pages; ++i) {
269 if (!alloc_fresh_huge_page())
270 break;
272 max_huge_pages = free_huge_pages = nr_huge_pages = i;
273 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
274 return 0;
276 module_init(hugetlb_init);
278 static int __init hugetlb_setup(char *s)
280 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
281 max_huge_pages = 0;
282 return 1;
284 __setup("hugepages=", hugetlb_setup);
286 #ifdef CONFIG_SYSCTL
287 static void update_and_free_page(struct page *page)
289 int i;
290 nr_huge_pages--;
291 nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
292 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
293 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
294 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
295 1 << PG_private | 1<< PG_writeback);
297 page[1].lru.next = NULL;
298 set_page_refcounted(page);
299 __free_pages(page, HUGETLB_PAGE_ORDER);
302 #ifdef CONFIG_HIGHMEM
303 static void try_to_free_low(unsigned long count)
305 int i, nid;
306 for (i = 0; i < MAX_NUMNODES; ++i) {
307 struct page *page, *next;
308 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
309 if (PageHighMem(page))
310 continue;
311 list_del(&page->lru);
312 update_and_free_page(page);
313 nid = page_zone(page)->zone_pgdat->node_id;
314 free_huge_pages--;
315 free_huge_pages_node[nid]--;
316 if (count >= nr_huge_pages)
317 return;
321 #else
322 static inline void try_to_free_low(unsigned long count)
325 #endif
327 static unsigned long set_max_huge_pages(unsigned long count)
329 while (count > nr_huge_pages) {
330 if (!alloc_fresh_huge_page())
331 return nr_huge_pages;
333 if (count >= nr_huge_pages)
334 return nr_huge_pages;
336 spin_lock(&hugetlb_lock);
337 count = max(count, reserved_huge_pages);
338 try_to_free_low(count);
339 while (count < nr_huge_pages) {
340 struct page *page = dequeue_huge_page(NULL, 0);
341 if (!page)
342 break;
343 update_and_free_page(page);
345 spin_unlock(&hugetlb_lock);
346 return nr_huge_pages;
349 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
350 struct file *file, void __user *buffer,
351 size_t *length, loff_t *ppos)
353 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
354 max_huge_pages = set_max_huge_pages(max_huge_pages);
355 return 0;
357 #endif /* CONFIG_SYSCTL */
359 int hugetlb_report_meminfo(char *buf)
361 return sprintf(buf,
362 "HugePages_Total: %5lu\n"
363 "HugePages_Free: %5lu\n"
364 "HugePages_Rsvd: %5lu\n"
365 "Hugepagesize: %5lu kB\n",
366 nr_huge_pages,
367 free_huge_pages,
368 reserved_huge_pages,
369 HPAGE_SIZE/1024);
372 int hugetlb_report_node_meminfo(int nid, char *buf)
374 return sprintf(buf,
375 "Node %d HugePages_Total: %5u\n"
376 "Node %d HugePages_Free: %5u\n",
377 nid, nr_huge_pages_node[nid],
378 nid, free_huge_pages_node[nid]);
381 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
382 unsigned long hugetlb_total_pages(void)
384 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
388 * We cannot handle pagefaults against hugetlb pages at all. They cause
389 * handle_mm_fault() to try to instantiate regular-sized pages in the
390 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
391 * this far.
393 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
394 unsigned long address, int *unused)
396 BUG();
397 return NULL;
400 struct vm_operations_struct hugetlb_vm_ops = {
401 .nopage = hugetlb_nopage,
404 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
405 int writable)
407 pte_t entry;
409 if (writable) {
410 entry =
411 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
412 } else {
413 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
415 entry = pte_mkyoung(entry);
416 entry = pte_mkhuge(entry);
418 return entry;
421 static void set_huge_ptep_writable(struct vm_area_struct *vma,
422 unsigned long address, pte_t *ptep)
424 pte_t entry;
426 entry = pte_mkwrite(pte_mkdirty(*ptep));
427 ptep_set_access_flags(vma, address, ptep, entry, 1);
428 update_mmu_cache(vma, address, entry);
429 lazy_mmu_prot_update(entry);
433 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
434 struct vm_area_struct *vma)
436 pte_t *src_pte, *dst_pte, entry;
437 struct page *ptepage;
438 unsigned long addr;
439 int cow;
441 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
443 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
444 src_pte = huge_pte_offset(src, addr);
445 if (!src_pte)
446 continue;
447 dst_pte = huge_pte_alloc(dst, addr);
448 if (!dst_pte)
449 goto nomem;
450 spin_lock(&dst->page_table_lock);
451 spin_lock(&src->page_table_lock);
452 if (!pte_none(*src_pte)) {
453 if (cow)
454 ptep_set_wrprotect(src, addr, src_pte);
455 entry = *src_pte;
456 ptepage = pte_page(entry);
457 get_page(ptepage);
458 add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
459 set_huge_pte_at(dst, addr, dst_pte, entry);
461 spin_unlock(&src->page_table_lock);
462 spin_unlock(&dst->page_table_lock);
464 return 0;
466 nomem:
467 return -ENOMEM;
470 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
471 unsigned long end)
473 struct mm_struct *mm = vma->vm_mm;
474 unsigned long address;
475 pte_t *ptep;
476 pte_t pte;
477 struct page *page;
479 WARN_ON(!is_vm_hugetlb_page(vma));
480 BUG_ON(start & ~HPAGE_MASK);
481 BUG_ON(end & ~HPAGE_MASK);
483 spin_lock(&mm->page_table_lock);
485 /* Update high watermark before we lower rss */
486 update_hiwater_rss(mm);
488 for (address = start; address < end; address += HPAGE_SIZE) {
489 ptep = huge_pte_offset(mm, address);
490 if (!ptep)
491 continue;
493 pte = huge_ptep_get_and_clear(mm, address, ptep);
494 if (pte_none(pte))
495 continue;
497 page = pte_page(pte);
498 put_page(page);
499 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
502 spin_unlock(&mm->page_table_lock);
503 flush_tlb_range(vma, start, end);
506 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
507 unsigned long address, pte_t *ptep, pte_t pte)
509 struct page *old_page, *new_page;
510 int avoidcopy;
512 old_page = pte_page(pte);
514 /* If no-one else is actually using this page, avoid the copy
515 * and just make the page writable */
516 avoidcopy = (page_count(old_page) == 1);
517 if (avoidcopy) {
518 set_huge_ptep_writable(vma, address, ptep);
519 return VM_FAULT_MINOR;
522 page_cache_get(old_page);
523 new_page = alloc_huge_page(vma, address);
525 if (!new_page) {
526 page_cache_release(old_page);
527 return VM_FAULT_OOM;
530 spin_unlock(&mm->page_table_lock);
531 copy_huge_page(new_page, old_page, address);
532 spin_lock(&mm->page_table_lock);
534 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
535 if (likely(pte_same(*ptep, pte))) {
536 /* Break COW */
537 set_huge_pte_at(mm, address, ptep,
538 make_huge_pte(vma, new_page, 1));
539 /* Make the old page be freed below */
540 new_page = old_page;
542 page_cache_release(new_page);
543 page_cache_release(old_page);
544 return VM_FAULT_MINOR;
547 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
548 unsigned long address, pte_t *ptep, int write_access)
550 int ret = VM_FAULT_SIGBUS;
551 unsigned long idx;
552 unsigned long size;
553 struct page *page;
554 struct address_space *mapping;
555 pte_t new_pte;
557 mapping = vma->vm_file->f_mapping;
558 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
559 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
562 * Use page lock to guard against racing truncation
563 * before we get page_table_lock.
565 retry:
566 page = find_lock_page(mapping, idx);
567 if (!page) {
568 if (hugetlb_get_quota(mapping))
569 goto out;
570 page = alloc_huge_page(vma, address);
571 if (!page) {
572 hugetlb_put_quota(mapping);
573 ret = VM_FAULT_OOM;
574 goto out;
576 clear_huge_page(page, address);
578 if (vma->vm_flags & VM_SHARED) {
579 int err;
581 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
582 if (err) {
583 put_page(page);
584 hugetlb_put_quota(mapping);
585 if (err == -EEXIST)
586 goto retry;
587 goto out;
589 } else
590 lock_page(page);
593 spin_lock(&mm->page_table_lock);
594 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
595 if (idx >= size)
596 goto backout;
598 ret = VM_FAULT_MINOR;
599 if (!pte_none(*ptep))
600 goto backout;
602 add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
603 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
604 && (vma->vm_flags & VM_SHARED)));
605 set_huge_pte_at(mm, address, ptep, new_pte);
607 if (write_access && !(vma->vm_flags & VM_SHARED)) {
608 /* Optimization, do the COW without a second fault */
609 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
612 spin_unlock(&mm->page_table_lock);
613 unlock_page(page);
614 out:
615 return ret;
617 backout:
618 spin_unlock(&mm->page_table_lock);
619 hugetlb_put_quota(mapping);
620 unlock_page(page);
621 put_page(page);
622 goto out;
625 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
626 unsigned long address, int write_access)
628 pte_t *ptep;
629 pte_t entry;
630 int ret;
631 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
633 ptep = huge_pte_alloc(mm, address);
634 if (!ptep)
635 return VM_FAULT_OOM;
638 * Serialize hugepage allocation and instantiation, so that we don't
639 * get spurious allocation failures if two CPUs race to instantiate
640 * the same page in the page cache.
642 mutex_lock(&hugetlb_instantiation_mutex);
643 entry = *ptep;
644 if (pte_none(entry)) {
645 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
646 mutex_unlock(&hugetlb_instantiation_mutex);
647 return ret;
650 ret = VM_FAULT_MINOR;
652 spin_lock(&mm->page_table_lock);
653 /* Check for a racing update before calling hugetlb_cow */
654 if (likely(pte_same(entry, *ptep)))
655 if (write_access && !pte_write(entry))
656 ret = hugetlb_cow(mm, vma, address, ptep, entry);
657 spin_unlock(&mm->page_table_lock);
658 mutex_unlock(&hugetlb_instantiation_mutex);
660 return ret;
663 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
664 struct page **pages, struct vm_area_struct **vmas,
665 unsigned long *position, int *length, int i)
667 unsigned long pfn_offset;
668 unsigned long vaddr = *position;
669 int remainder = *length;
671 spin_lock(&mm->page_table_lock);
672 while (vaddr < vma->vm_end && remainder) {
673 pte_t *pte;
674 struct page *page;
677 * Some archs (sparc64, sh*) have multiple pte_ts to
678 * each hugepage. We have to make * sure we get the
679 * first, for the page indexing below to work.
681 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
683 if (!pte || pte_none(*pte)) {
684 int ret;
686 spin_unlock(&mm->page_table_lock);
687 ret = hugetlb_fault(mm, vma, vaddr, 0);
688 spin_lock(&mm->page_table_lock);
689 if (ret == VM_FAULT_MINOR)
690 continue;
692 remainder = 0;
693 if (!i)
694 i = -EFAULT;
695 break;
698 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
699 page = pte_page(*pte);
700 same_page:
701 if (pages) {
702 get_page(page);
703 pages[i] = page + pfn_offset;
706 if (vmas)
707 vmas[i] = vma;
709 vaddr += PAGE_SIZE;
710 ++pfn_offset;
711 --remainder;
712 ++i;
713 if (vaddr < vma->vm_end && remainder &&
714 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
716 * We use pfn_offset to avoid touching the pageframes
717 * of this compound page.
719 goto same_page;
722 spin_unlock(&mm->page_table_lock);
723 *length = remainder;
724 *position = vaddr;
726 return i;
729 void hugetlb_change_protection(struct vm_area_struct *vma,
730 unsigned long address, unsigned long end, pgprot_t newprot)
732 struct mm_struct *mm = vma->vm_mm;
733 unsigned long start = address;
734 pte_t *ptep;
735 pte_t pte;
737 BUG_ON(address >= end);
738 flush_cache_range(vma, address, end);
740 spin_lock(&mm->page_table_lock);
741 for (; address < end; address += HPAGE_SIZE) {
742 ptep = huge_pte_offset(mm, address);
743 if (!ptep)
744 continue;
745 if (!pte_none(*ptep)) {
746 pte = huge_ptep_get_and_clear(mm, address, ptep);
747 pte = pte_mkhuge(pte_modify(pte, newprot));
748 set_huge_pte_at(mm, address, ptep, pte);
749 lazy_mmu_prot_update(pte);
752 spin_unlock(&mm->page_table_lock);
754 flush_tlb_range(vma, start, end);