4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
68 typedef unsigned __bitwise__ reclaim_mode_t
;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned
;
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed
;
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim
;
85 unsigned long hibernation_mode
;
87 /* This context's GFP mask */
92 /* Can mapped pages be reclaimed? */
95 /* Can pages be swapped as part of reclaim? */
103 * Intend to reclaim enough continuous memory rather than reclaim
104 * enough amount of memory. i.e, mode for high order allocation.
106 reclaim_mode_t reclaim_mode
;
108 /* Which cgroup do we reclaim from */
109 struct mem_cgroup
*mem_cgroup
;
112 * Nodemask of nodes allowed by the caller. If NULL, all nodes
115 nodemask_t
*nodemask
;
118 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field) \
123 if ((_page)->lru.prev != _base) { \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field) \
137 if ((_page)->lru.prev != _base) { \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
149 * From 0 .. 100. Higher means more swappy.
151 int vm_swappiness
= 60;
152 long vm_total_pages
; /* The total number of pages which the VM controls */
154 static LIST_HEAD(shrinker_list
);
155 static DECLARE_RWSEM(shrinker_rwsem
);
157 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
158 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
160 #define scanning_global_lru(sc) (1)
163 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
164 struct scan_control
*sc
)
166 if (!scanning_global_lru(sc
))
167 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
169 return &zone
->reclaim_stat
;
172 static unsigned long zone_nr_lru_pages(struct zone
*zone
,
173 struct scan_control
*sc
, enum lru_list lru
)
175 if (!scanning_global_lru(sc
))
176 return mem_cgroup_zone_nr_lru_pages(sc
->mem_cgroup
, zone
, lru
);
178 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
183 * Add a shrinker callback to be called from the vm
185 void register_shrinker(struct shrinker
*shrinker
)
188 down_write(&shrinker_rwsem
);
189 list_add_tail(&shrinker
->list
, &shrinker_list
);
190 up_write(&shrinker_rwsem
);
192 EXPORT_SYMBOL(register_shrinker
);
197 void unregister_shrinker(struct shrinker
*shrinker
)
199 down_write(&shrinker_rwsem
);
200 list_del(&shrinker
->list
);
201 up_write(&shrinker_rwsem
);
203 EXPORT_SYMBOL(unregister_shrinker
);
205 static inline int do_shrinker_shrink(struct shrinker
*shrinker
,
206 struct shrink_control
*sc
,
207 unsigned long nr_to_scan
)
209 sc
->nr_to_scan
= nr_to_scan
;
210 return (*shrinker
->shrink
)(shrinker
, sc
);
213 #define SHRINK_BATCH 128
215 * Call the shrink functions to age shrinkable caches
217 * Here we assume it costs one seek to replace a lru page and that it also
218 * takes a seek to recreate a cache object. With this in mind we age equal
219 * percentages of the lru and ageable caches. This should balance the seeks
220 * generated by these structures.
222 * If the vm encountered mapped pages on the LRU it increase the pressure on
223 * slab to avoid swapping.
225 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
227 * `lru_pages' represents the number of on-LRU pages in all the zones which
228 * are eligible for the caller's allocation attempt. It is used for balancing
229 * slab reclaim versus page reclaim.
231 * Returns the number of slab objects which we shrunk.
233 unsigned long shrink_slab(struct shrink_control
*shrink
,
234 unsigned long nr_pages_scanned
,
235 unsigned long lru_pages
)
237 struct shrinker
*shrinker
;
238 unsigned long ret
= 0;
240 if (nr_pages_scanned
== 0)
241 nr_pages_scanned
= SWAP_CLUSTER_MAX
;
243 if (!down_read_trylock(&shrinker_rwsem
)) {
244 /* Assume we'll be able to shrink next time */
249 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
250 unsigned long long delta
;
251 unsigned long total_scan
;
252 unsigned long max_pass
;
256 long batch_size
= shrinker
->batch
? shrinker
->batch
260 * copy the current shrinker scan count into a local variable
261 * and zero it so that other concurrent shrinker invocations
262 * don't also do this scanning work.
266 } while (cmpxchg(&shrinker
->nr
, nr
, 0) != nr
);
269 max_pass
= do_shrinker_shrink(shrinker
, shrink
, 0);
270 delta
= (4 * nr_pages_scanned
) / shrinker
->seeks
;
272 do_div(delta
, lru_pages
+ 1);
274 if (total_scan
< 0) {
275 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
277 shrinker
->shrink
, total_scan
);
278 total_scan
= max_pass
;
282 * We need to avoid excessive windup on filesystem shrinkers
283 * due to large numbers of GFP_NOFS allocations causing the
284 * shrinkers to return -1 all the time. This results in a large
285 * nr being built up so when a shrink that can do some work
286 * comes along it empties the entire cache due to nr >>>
287 * max_pass. This is bad for sustaining a working set in
290 * Hence only allow the shrinker to scan the entire cache when
291 * a large delta change is calculated directly.
293 if (delta
< max_pass
/ 4)
294 total_scan
= min(total_scan
, max_pass
/ 2);
297 * Avoid risking looping forever due to too large nr value:
298 * never try to free more than twice the estimate number of
301 if (total_scan
> max_pass
* 2)
302 total_scan
= max_pass
* 2;
304 trace_mm_shrink_slab_start(shrinker
, shrink
, nr
,
305 nr_pages_scanned
, lru_pages
,
306 max_pass
, delta
, total_scan
);
308 while (total_scan
>= batch_size
) {
311 nr_before
= do_shrinker_shrink(shrinker
, shrink
, 0);
312 shrink_ret
= do_shrinker_shrink(shrinker
, shrink
,
314 if (shrink_ret
== -1)
316 if (shrink_ret
< nr_before
)
317 ret
+= nr_before
- shrink_ret
;
318 count_vm_events(SLABS_SCANNED
, batch_size
);
319 total_scan
-= batch_size
;
325 * move the unused scan count back into the shrinker in a
326 * manner that handles concurrent updates. If we exhausted the
327 * scan, there is no need to do an update.
331 new_nr
= total_scan
+ nr
;
334 } while (cmpxchg(&shrinker
->nr
, nr
, new_nr
) != nr
);
336 trace_mm_shrink_slab_end(shrinker
, shrink_ret
, nr
, new_nr
);
338 up_read(&shrinker_rwsem
);
344 static void set_reclaim_mode(int priority
, struct scan_control
*sc
,
347 reclaim_mode_t syncmode
= sync
? RECLAIM_MODE_SYNC
: RECLAIM_MODE_ASYNC
;
350 * Initially assume we are entering either lumpy reclaim or
351 * reclaim/compaction.Depending on the order, we will either set the
352 * sync mode or just reclaim order-0 pages later.
354 if (COMPACTION_BUILD
)
355 sc
->reclaim_mode
= RECLAIM_MODE_COMPACTION
;
357 sc
->reclaim_mode
= RECLAIM_MODE_LUMPYRECLAIM
;
360 * Avoid using lumpy reclaim or reclaim/compaction if possible by
361 * restricting when its set to either costly allocations or when
362 * under memory pressure
364 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
365 sc
->reclaim_mode
|= syncmode
;
366 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
367 sc
->reclaim_mode
|= syncmode
;
369 sc
->reclaim_mode
= RECLAIM_MODE_SINGLE
| RECLAIM_MODE_ASYNC
;
372 static void reset_reclaim_mode(struct scan_control
*sc
)
374 sc
->reclaim_mode
= RECLAIM_MODE_SINGLE
| RECLAIM_MODE_ASYNC
;
377 static inline int is_page_cache_freeable(struct page
*page
)
380 * A freeable page cache page is referenced only by the caller
381 * that isolated the page, the page cache radix tree and
382 * optional buffer heads at page->private.
384 return page_count(page
) - page_has_private(page
) == 2;
387 static int may_write_to_queue(struct backing_dev_info
*bdi
,
388 struct scan_control
*sc
)
390 if (current
->flags
& PF_SWAPWRITE
)
392 if (!bdi_write_congested(bdi
))
394 if (bdi
== current
->backing_dev_info
)
397 /* lumpy reclaim for hugepage often need a lot of write */
398 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
404 * We detected a synchronous write error writing a page out. Probably
405 * -ENOSPC. We need to propagate that into the address_space for a subsequent
406 * fsync(), msync() or close().
408 * The tricky part is that after writepage we cannot touch the mapping: nothing
409 * prevents it from being freed up. But we have a ref on the page and once
410 * that page is locked, the mapping is pinned.
412 * We're allowed to run sleeping lock_page() here because we know the caller has
415 static void handle_write_error(struct address_space
*mapping
,
416 struct page
*page
, int error
)
419 if (page_mapping(page
) == mapping
)
420 mapping_set_error(mapping
, error
);
424 /* possible outcome of pageout() */
426 /* failed to write page out, page is locked */
428 /* move page to the active list, page is locked */
430 /* page has been sent to the disk successfully, page is unlocked */
432 /* page is clean and locked */
437 * pageout is called by shrink_page_list() for each dirty page.
438 * Calls ->writepage().
440 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
441 struct scan_control
*sc
)
444 * If the page is dirty, only perform writeback if that write
445 * will be non-blocking. To prevent this allocation from being
446 * stalled by pagecache activity. But note that there may be
447 * stalls if we need to run get_block(). We could test
448 * PagePrivate for that.
450 * If this process is currently in __generic_file_aio_write() against
451 * this page's queue, we can perform writeback even if that
454 * If the page is swapcache, write it back even if that would
455 * block, for some throttling. This happens by accident, because
456 * swap_backing_dev_info is bust: it doesn't reflect the
457 * congestion state of the swapdevs. Easy to fix, if needed.
459 if (!is_page_cache_freeable(page
))
463 * Some data journaling orphaned pages can have
464 * page->mapping == NULL while being dirty with clean buffers.
466 if (page_has_private(page
)) {
467 if (try_to_free_buffers(page
)) {
468 ClearPageDirty(page
);
469 printk("%s: orphaned page\n", __func__
);
475 if (mapping
->a_ops
->writepage
== NULL
)
476 return PAGE_ACTIVATE
;
477 if (!may_write_to_queue(mapping
->backing_dev_info
, sc
))
480 if (clear_page_dirty_for_io(page
)) {
482 struct writeback_control wbc
= {
483 .sync_mode
= WB_SYNC_NONE
,
484 .nr_to_write
= SWAP_CLUSTER_MAX
,
486 .range_end
= LLONG_MAX
,
490 SetPageReclaim(page
);
491 res
= mapping
->a_ops
->writepage(page
, &wbc
);
493 handle_write_error(mapping
, page
, res
);
494 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
495 ClearPageReclaim(page
);
496 return PAGE_ACTIVATE
;
500 * Wait on writeback if requested to. This happens when
501 * direct reclaiming a large contiguous area and the
502 * first attempt to free a range of pages fails.
504 if (PageWriteback(page
) &&
505 (sc
->reclaim_mode
& RECLAIM_MODE_SYNC
))
506 wait_on_page_writeback(page
);
508 if (!PageWriteback(page
)) {
509 /* synchronous write or broken a_ops? */
510 ClearPageReclaim(page
);
512 trace_mm_vmscan_writepage(page
,
513 trace_reclaim_flags(page
, sc
->reclaim_mode
));
514 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
522 * Same as remove_mapping, but if the page is removed from the mapping, it
523 * gets returned with a refcount of 0.
525 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
527 BUG_ON(!PageLocked(page
));
528 BUG_ON(mapping
!= page_mapping(page
));
530 spin_lock_irq(&mapping
->tree_lock
);
532 * The non racy check for a busy page.
534 * Must be careful with the order of the tests. When someone has
535 * a ref to the page, it may be possible that they dirty it then
536 * drop the reference. So if PageDirty is tested before page_count
537 * here, then the following race may occur:
539 * get_user_pages(&page);
540 * [user mapping goes away]
542 * !PageDirty(page) [good]
543 * SetPageDirty(page);
545 * !page_count(page) [good, discard it]
547 * [oops, our write_to data is lost]
549 * Reversing the order of the tests ensures such a situation cannot
550 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
551 * load is not satisfied before that of page->_count.
553 * Note that if SetPageDirty is always performed via set_page_dirty,
554 * and thus under tree_lock, then this ordering is not required.
556 if (!page_freeze_refs(page
, 2))
558 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
559 if (unlikely(PageDirty(page
))) {
560 page_unfreeze_refs(page
, 2);
564 if (PageSwapCache(page
)) {
565 swp_entry_t swap
= { .val
= page_private(page
) };
566 __delete_from_swap_cache(page
);
567 spin_unlock_irq(&mapping
->tree_lock
);
568 swapcache_free(swap
, page
);
570 void (*freepage
)(struct page
*);
572 freepage
= mapping
->a_ops
->freepage
;
574 __delete_from_page_cache(page
);
575 spin_unlock_irq(&mapping
->tree_lock
);
576 mem_cgroup_uncharge_cache_page(page
);
578 if (freepage
!= NULL
)
585 spin_unlock_irq(&mapping
->tree_lock
);
590 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
591 * someone else has a ref on the page, abort and return 0. If it was
592 * successfully detached, return 1. Assumes the caller has a single ref on
595 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
597 if (__remove_mapping(mapping
, page
)) {
599 * Unfreezing the refcount with 1 rather than 2 effectively
600 * drops the pagecache ref for us without requiring another
603 page_unfreeze_refs(page
, 1);
610 * putback_lru_page - put previously isolated page onto appropriate LRU list
611 * @page: page to be put back to appropriate lru list
613 * Add previously isolated @page to appropriate LRU list.
614 * Page may still be unevictable for other reasons.
616 * lru_lock must not be held, interrupts must be enabled.
618 void putback_lru_page(struct page
*page
)
621 int active
= !!TestClearPageActive(page
);
622 int was_unevictable
= PageUnevictable(page
);
624 VM_BUG_ON(PageLRU(page
));
627 ClearPageUnevictable(page
);
629 if (page_evictable(page
, NULL
)) {
631 * For evictable pages, we can use the cache.
632 * In event of a race, worst case is we end up with an
633 * unevictable page on [in]active list.
634 * We know how to handle that.
636 lru
= active
+ page_lru_base_type(page
);
637 lru_cache_add_lru(page
, lru
);
640 * Put unevictable pages directly on zone's unevictable
643 lru
= LRU_UNEVICTABLE
;
644 add_page_to_unevictable_list(page
);
646 * When racing with an mlock clearing (page is
647 * unlocked), make sure that if the other thread does
648 * not observe our setting of PG_lru and fails
649 * isolation, we see PG_mlocked cleared below and move
650 * the page back to the evictable list.
652 * The other side is TestClearPageMlocked().
658 * page's status can change while we move it among lru. If an evictable
659 * page is on unevictable list, it never be freed. To avoid that,
660 * check after we added it to the list, again.
662 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
663 if (!isolate_lru_page(page
)) {
667 /* This means someone else dropped this page from LRU
668 * So, it will be freed or putback to LRU again. There is
669 * nothing to do here.
673 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
674 count_vm_event(UNEVICTABLE_PGRESCUED
);
675 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
676 count_vm_event(UNEVICTABLE_PGCULLED
);
678 put_page(page
); /* drop ref from isolate */
681 enum page_references
{
683 PAGEREF_RECLAIM_CLEAN
,
688 static enum page_references
page_check_references(struct page
*page
,
689 struct scan_control
*sc
)
691 int referenced_ptes
, referenced_page
;
692 unsigned long vm_flags
;
694 referenced_ptes
= page_referenced(page
, 1, sc
->mem_cgroup
, &vm_flags
);
695 referenced_page
= TestClearPageReferenced(page
);
697 /* Lumpy reclaim - ignore references */
698 if (sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
)
699 return PAGEREF_RECLAIM
;
702 * Mlock lost the isolation race with us. Let try_to_unmap()
703 * move the page to the unevictable list.
705 if (vm_flags
& VM_LOCKED
)
706 return PAGEREF_RECLAIM
;
708 if (referenced_ptes
) {
710 return PAGEREF_ACTIVATE
;
712 * All mapped pages start out with page table
713 * references from the instantiating fault, so we need
714 * to look twice if a mapped file page is used more
717 * Mark it and spare it for another trip around the
718 * inactive list. Another page table reference will
719 * lead to its activation.
721 * Note: the mark is set for activated pages as well
722 * so that recently deactivated but used pages are
725 SetPageReferenced(page
);
728 return PAGEREF_ACTIVATE
;
733 /* Reclaim if clean, defer dirty pages to writeback */
734 if (referenced_page
&& !PageSwapBacked(page
))
735 return PAGEREF_RECLAIM_CLEAN
;
737 return PAGEREF_RECLAIM
;
740 static noinline_for_stack
void free_page_list(struct list_head
*free_pages
)
742 struct pagevec freed_pvec
;
743 struct page
*page
, *tmp
;
745 pagevec_init(&freed_pvec
, 1);
747 list_for_each_entry_safe(page
, tmp
, free_pages
, lru
) {
748 list_del(&page
->lru
);
749 if (!pagevec_add(&freed_pvec
, page
)) {
750 __pagevec_free(&freed_pvec
);
751 pagevec_reinit(&freed_pvec
);
755 pagevec_free(&freed_pvec
);
759 * shrink_page_list() returns the number of reclaimed pages
761 static unsigned long shrink_page_list(struct list_head
*page_list
,
763 struct scan_control
*sc
)
765 LIST_HEAD(ret_pages
);
766 LIST_HEAD(free_pages
);
768 unsigned long nr_dirty
= 0;
769 unsigned long nr_congested
= 0;
770 unsigned long nr_reclaimed
= 0;
774 while (!list_empty(page_list
)) {
775 enum page_references references
;
776 struct address_space
*mapping
;
782 page
= lru_to_page(page_list
);
783 list_del(&page
->lru
);
785 if (!trylock_page(page
))
788 VM_BUG_ON(PageActive(page
));
789 VM_BUG_ON(page_zone(page
) != zone
);
793 if (unlikely(!page_evictable(page
, NULL
)))
796 if (!sc
->may_unmap
&& page_mapped(page
))
799 /* Double the slab pressure for mapped and swapcache pages */
800 if (page_mapped(page
) || PageSwapCache(page
))
803 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
804 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
806 if (PageWriteback(page
)) {
808 * Synchronous reclaim is performed in two passes,
809 * first an asynchronous pass over the list to
810 * start parallel writeback, and a second synchronous
811 * pass to wait for the IO to complete. Wait here
812 * for any page for which writeback has already
815 if ((sc
->reclaim_mode
& RECLAIM_MODE_SYNC
) &&
817 wait_on_page_writeback(page
);
824 references
= page_check_references(page
, sc
);
825 switch (references
) {
826 case PAGEREF_ACTIVATE
:
827 goto activate_locked
;
830 case PAGEREF_RECLAIM
:
831 case PAGEREF_RECLAIM_CLEAN
:
832 ; /* try to reclaim the page below */
836 * Anonymous process memory has backing store?
837 * Try to allocate it some swap space here.
839 if (PageAnon(page
) && !PageSwapCache(page
)) {
840 if (!(sc
->gfp_mask
& __GFP_IO
))
842 if (!add_to_swap(page
))
843 goto activate_locked
;
847 mapping
= page_mapping(page
);
850 * The page is mapped into the page tables of one or more
851 * processes. Try to unmap it here.
853 if (page_mapped(page
) && mapping
) {
854 switch (try_to_unmap(page
, TTU_UNMAP
)) {
856 goto activate_locked
;
862 ; /* try to free the page below */
866 if (PageDirty(page
)) {
869 if (references
== PAGEREF_RECLAIM_CLEAN
)
873 if (!sc
->may_writepage
)
876 /* Page is dirty, try to write it out here */
877 switch (pageout(page
, mapping
, sc
)) {
882 goto activate_locked
;
884 if (PageWriteback(page
))
890 * A synchronous write - probably a ramdisk. Go
891 * ahead and try to reclaim the page.
893 if (!trylock_page(page
))
895 if (PageDirty(page
) || PageWriteback(page
))
897 mapping
= page_mapping(page
);
899 ; /* try to free the page below */
904 * If the page has buffers, try to free the buffer mappings
905 * associated with this page. If we succeed we try to free
908 * We do this even if the page is PageDirty().
909 * try_to_release_page() does not perform I/O, but it is
910 * possible for a page to have PageDirty set, but it is actually
911 * clean (all its buffers are clean). This happens if the
912 * buffers were written out directly, with submit_bh(). ext3
913 * will do this, as well as the blockdev mapping.
914 * try_to_release_page() will discover that cleanness and will
915 * drop the buffers and mark the page clean - it can be freed.
917 * Rarely, pages can have buffers and no ->mapping. These are
918 * the pages which were not successfully invalidated in
919 * truncate_complete_page(). We try to drop those buffers here
920 * and if that worked, and the page is no longer mapped into
921 * process address space (page_count == 1) it can be freed.
922 * Otherwise, leave the page on the LRU so it is swappable.
924 if (page_has_private(page
)) {
925 if (!try_to_release_page(page
, sc
->gfp_mask
))
926 goto activate_locked
;
927 if (!mapping
&& page_count(page
) == 1) {
929 if (put_page_testzero(page
))
933 * rare race with speculative reference.
934 * the speculative reference will free
935 * this page shortly, so we may
936 * increment nr_reclaimed here (and
937 * leave it off the LRU).
945 if (!mapping
|| !__remove_mapping(mapping
, page
))
949 * At this point, we have no other references and there is
950 * no way to pick any more up (removed from LRU, removed
951 * from pagecache). Can use non-atomic bitops now (and
952 * we obviously don't have to worry about waking up a process
953 * waiting on the page lock, because there are no references.
955 __clear_page_locked(page
);
960 * Is there need to periodically free_page_list? It would
961 * appear not as the counts should be low
963 list_add(&page
->lru
, &free_pages
);
967 if (PageSwapCache(page
))
968 try_to_free_swap(page
);
970 putback_lru_page(page
);
971 reset_reclaim_mode(sc
);
975 /* Not a candidate for swapping, so reclaim swap space. */
976 if (PageSwapCache(page
) && vm_swap_full())
977 try_to_free_swap(page
);
978 VM_BUG_ON(PageActive(page
));
984 reset_reclaim_mode(sc
);
986 list_add(&page
->lru
, &ret_pages
);
987 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
991 * Tag a zone as congested if all the dirty pages encountered were
992 * backed by a congested BDI. In this case, reclaimers should just
993 * back off and wait for congestion to clear because further reclaim
994 * will encounter the same problem
996 if (nr_dirty
&& nr_dirty
== nr_congested
&& scanning_global_lru(sc
))
997 zone_set_flag(zone
, ZONE_CONGESTED
);
999 free_page_list(&free_pages
);
1001 list_splice(&ret_pages
, page_list
);
1002 count_vm_events(PGACTIVATE
, pgactivate
);
1003 return nr_reclaimed
;
1007 * Attempt to remove the specified page from its LRU. Only take this page
1008 * if it is of the appropriate PageActive status. Pages which are being
1009 * freed elsewhere are also ignored.
1011 * page: page to consider
1012 * mode: one of the LRU isolation modes defined above
1014 * returns 0 on success, -ve errno on failure.
1016 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
1020 /* Only take pages on the LRU. */
1025 * When checking the active state, we need to be sure we are
1026 * dealing with comparible boolean values. Take the logical not
1029 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
1032 if (mode
!= ISOLATE_BOTH
&& page_is_file_cache(page
) != file
)
1036 * When this function is being called for lumpy reclaim, we
1037 * initially look into all LRU pages, active, inactive and
1038 * unevictable; only give shrink_page_list evictable pages.
1040 if (PageUnevictable(page
))
1045 if (likely(get_page_unless_zero(page
))) {
1047 * Be careful not to clear PageLRU until after we're
1048 * sure the page is not being freed elsewhere -- the
1049 * page release code relies on it.
1059 * zone->lru_lock is heavily contended. Some of the functions that
1060 * shrink the lists perform better by taking out a batch of pages
1061 * and working on them outside the LRU lock.
1063 * For pagecache intensive workloads, this function is the hottest
1064 * spot in the kernel (apart from copy_*_user functions).
1066 * Appropriate locks must be held before calling this function.
1068 * @nr_to_scan: The number of pages to look through on the list.
1069 * @src: The LRU list to pull pages off.
1070 * @dst: The temp list to put pages on to.
1071 * @scanned: The number of pages that were scanned.
1072 * @order: The caller's attempted allocation order
1073 * @mode: One of the LRU isolation modes
1074 * @file: True [1] if isolating file [!anon] pages
1076 * returns how many pages were moved onto *@dst.
1078 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1079 struct list_head
*src
, struct list_head
*dst
,
1080 unsigned long *scanned
, int order
, int mode
, int file
)
1082 unsigned long nr_taken
= 0;
1083 unsigned long nr_lumpy_taken
= 0;
1084 unsigned long nr_lumpy_dirty
= 0;
1085 unsigned long nr_lumpy_failed
= 0;
1088 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
1091 unsigned long end_pfn
;
1092 unsigned long page_pfn
;
1095 page
= lru_to_page(src
);
1096 prefetchw_prev_lru_page(page
, src
, flags
);
1098 VM_BUG_ON(!PageLRU(page
));
1100 switch (__isolate_lru_page(page
, mode
, file
)) {
1102 list_move(&page
->lru
, dst
);
1103 mem_cgroup_del_lru(page
);
1104 nr_taken
+= hpage_nr_pages(page
);
1108 /* else it is being freed elsewhere */
1109 list_move(&page
->lru
, src
);
1110 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1121 * Attempt to take all pages in the order aligned region
1122 * surrounding the tag page. Only take those pages of
1123 * the same active state as that tag page. We may safely
1124 * round the target page pfn down to the requested order
1125 * as the mem_map is guaranteed valid out to MAX_ORDER,
1126 * where that page is in a different zone we will detect
1127 * it from its zone id and abort this block scan.
1129 zone_id
= page_zone_id(page
);
1130 page_pfn
= page_to_pfn(page
);
1131 pfn
= page_pfn
& ~((1 << order
) - 1);
1132 end_pfn
= pfn
+ (1 << order
);
1133 for (; pfn
< end_pfn
; pfn
++) {
1134 struct page
*cursor_page
;
1136 /* The target page is in the block, ignore it. */
1137 if (unlikely(pfn
== page_pfn
))
1140 /* Avoid holes within the zone. */
1141 if (unlikely(!pfn_valid_within(pfn
)))
1144 cursor_page
= pfn_to_page(pfn
);
1146 /* Check that we have not crossed a zone boundary. */
1147 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
1151 * If we don't have enough swap space, reclaiming of
1152 * anon page which don't already have a swap slot is
1155 if (nr_swap_pages
<= 0 && PageAnon(cursor_page
) &&
1156 !PageSwapCache(cursor_page
))
1159 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
1160 list_move(&cursor_page
->lru
, dst
);
1161 mem_cgroup_del_lru(cursor_page
);
1162 nr_taken
+= hpage_nr_pages(page
);
1164 if (PageDirty(cursor_page
))
1169 * Check if the page is freed already.
1171 * We can't use page_count() as that
1172 * requires compound_head and we don't
1173 * have a pin on the page here. If a
1174 * page is tail, we may or may not
1175 * have isolated the head, so assume
1176 * it's not free, it'd be tricky to
1177 * track the head status without a
1180 if (!PageTail(cursor_page
) &&
1181 !atomic_read(&cursor_page
->_count
))
1187 /* If we break out of the loop above, lumpy reclaim failed */
1194 trace_mm_vmscan_lru_isolate(order
,
1197 nr_lumpy_taken
, nr_lumpy_dirty
, nr_lumpy_failed
,
1202 static unsigned long isolate_pages_global(unsigned long nr
,
1203 struct list_head
*dst
,
1204 unsigned long *scanned
, int order
,
1205 int mode
, struct zone
*z
,
1206 int active
, int file
)
1213 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
1218 * clear_active_flags() is a helper for shrink_active_list(), clearing
1219 * any active bits from the pages in the list.
1221 static unsigned long clear_active_flags(struct list_head
*page_list
,
1222 unsigned int *count
)
1228 list_for_each_entry(page
, page_list
, lru
) {
1229 int numpages
= hpage_nr_pages(page
);
1230 lru
= page_lru_base_type(page
);
1231 if (PageActive(page
)) {
1233 ClearPageActive(page
);
1234 nr_active
+= numpages
;
1237 count
[lru
] += numpages
;
1244 * isolate_lru_page - tries to isolate a page from its LRU list
1245 * @page: page to isolate from its LRU list
1247 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1248 * vmstat statistic corresponding to whatever LRU list the page was on.
1250 * Returns 0 if the page was removed from an LRU list.
1251 * Returns -EBUSY if the page was not on an LRU list.
1253 * The returned page will have PageLRU() cleared. If it was found on
1254 * the active list, it will have PageActive set. If it was found on
1255 * the unevictable list, it will have the PageUnevictable bit set. That flag
1256 * may need to be cleared by the caller before letting the page go.
1258 * The vmstat statistic corresponding to the list on which the page was
1259 * found will be decremented.
1262 * (1) Must be called with an elevated refcount on the page. This is a
1263 * fundamentnal difference from isolate_lru_pages (which is called
1264 * without a stable reference).
1265 * (2) the lru_lock must not be held.
1266 * (3) interrupts must be enabled.
1268 int isolate_lru_page(struct page
*page
)
1272 VM_BUG_ON(!page_count(page
));
1274 if (PageLRU(page
)) {
1275 struct zone
*zone
= page_zone(page
);
1277 spin_lock_irq(&zone
->lru_lock
);
1278 if (PageLRU(page
)) {
1279 int lru
= page_lru(page
);
1284 del_page_from_lru_list(zone
, page
, lru
);
1286 spin_unlock_irq(&zone
->lru_lock
);
1292 * Are there way too many processes in the direct reclaim path already?
1294 static int too_many_isolated(struct zone
*zone
, int file
,
1295 struct scan_control
*sc
)
1297 unsigned long inactive
, isolated
;
1299 if (current_is_kswapd())
1302 if (!scanning_global_lru(sc
))
1306 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1307 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1309 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1310 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1313 return isolated
> inactive
;
1317 * TODO: Try merging with migrations version of putback_lru_pages
1319 static noinline_for_stack
void
1320 putback_lru_pages(struct zone
*zone
, struct scan_control
*sc
,
1321 unsigned long nr_anon
, unsigned long nr_file
,
1322 struct list_head
*page_list
)
1325 struct pagevec pvec
;
1326 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1328 pagevec_init(&pvec
, 1);
1331 * Put back any unfreeable pages.
1333 spin_lock(&zone
->lru_lock
);
1334 while (!list_empty(page_list
)) {
1336 page
= lru_to_page(page_list
);
1337 VM_BUG_ON(PageLRU(page
));
1338 list_del(&page
->lru
);
1339 if (unlikely(!page_evictable(page
, NULL
))) {
1340 spin_unlock_irq(&zone
->lru_lock
);
1341 putback_lru_page(page
);
1342 spin_lock_irq(&zone
->lru_lock
);
1346 lru
= page_lru(page
);
1347 add_page_to_lru_list(zone
, page
, lru
);
1348 if (is_active_lru(lru
)) {
1349 int file
= is_file_lru(lru
);
1350 int numpages
= hpage_nr_pages(page
);
1351 reclaim_stat
->recent_rotated
[file
] += numpages
;
1353 if (!pagevec_add(&pvec
, page
)) {
1354 spin_unlock_irq(&zone
->lru_lock
);
1355 __pagevec_release(&pvec
);
1356 spin_lock_irq(&zone
->lru_lock
);
1359 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, -nr_anon
);
1360 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -nr_file
);
1362 spin_unlock_irq(&zone
->lru_lock
);
1363 pagevec_release(&pvec
);
1366 static noinline_for_stack
void update_isolated_counts(struct zone
*zone
,
1367 struct scan_control
*sc
,
1368 unsigned long *nr_anon
,
1369 unsigned long *nr_file
,
1370 struct list_head
*isolated_list
)
1372 unsigned long nr_active
;
1373 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1374 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1376 nr_active
= clear_active_flags(isolated_list
, count
);
1377 __count_vm_events(PGDEACTIVATE
, nr_active
);
1379 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1380 -count
[LRU_ACTIVE_FILE
]);
1381 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1382 -count
[LRU_INACTIVE_FILE
]);
1383 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1384 -count
[LRU_ACTIVE_ANON
]);
1385 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1386 -count
[LRU_INACTIVE_ANON
]);
1388 *nr_anon
= count
[LRU_ACTIVE_ANON
] + count
[LRU_INACTIVE_ANON
];
1389 *nr_file
= count
[LRU_ACTIVE_FILE
] + count
[LRU_INACTIVE_FILE
];
1390 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, *nr_anon
);
1391 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, *nr_file
);
1393 reclaim_stat
->recent_scanned
[0] += *nr_anon
;
1394 reclaim_stat
->recent_scanned
[1] += *nr_file
;
1398 * Returns true if the caller should wait to clean dirty/writeback pages.
1400 * If we are direct reclaiming for contiguous pages and we do not reclaim
1401 * everything in the list, try again and wait for writeback IO to complete.
1402 * This will stall high-order allocations noticeably. Only do that when really
1403 * need to free the pages under high memory pressure.
1405 static inline bool should_reclaim_stall(unsigned long nr_taken
,
1406 unsigned long nr_freed
,
1408 struct scan_control
*sc
)
1410 int lumpy_stall_priority
;
1412 /* kswapd should not stall on sync IO */
1413 if (current_is_kswapd())
1416 /* Only stall on lumpy reclaim */
1417 if (sc
->reclaim_mode
& RECLAIM_MODE_SINGLE
)
1420 /* If we have relaimed everything on the isolated list, no stall */
1421 if (nr_freed
== nr_taken
)
1425 * For high-order allocations, there are two stall thresholds.
1426 * High-cost allocations stall immediately where as lower
1427 * order allocations such as stacks require the scanning
1428 * priority to be much higher before stalling.
1430 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1431 lumpy_stall_priority
= DEF_PRIORITY
;
1433 lumpy_stall_priority
= DEF_PRIORITY
/ 3;
1435 return priority
<= lumpy_stall_priority
;
1439 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1440 * of reclaimed pages
1442 static noinline_for_stack
unsigned long
1443 shrink_inactive_list(unsigned long nr_to_scan
, struct zone
*zone
,
1444 struct scan_control
*sc
, int priority
, int file
)
1446 LIST_HEAD(page_list
);
1447 unsigned long nr_scanned
;
1448 unsigned long nr_reclaimed
= 0;
1449 unsigned long nr_taken
;
1450 unsigned long nr_anon
;
1451 unsigned long nr_file
;
1453 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1454 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1456 /* We are about to die and free our memory. Return now. */
1457 if (fatal_signal_pending(current
))
1458 return SWAP_CLUSTER_MAX
;
1461 set_reclaim_mode(priority
, sc
, false);
1463 spin_lock_irq(&zone
->lru_lock
);
1465 if (scanning_global_lru(sc
)) {
1466 nr_taken
= isolate_pages_global(nr_to_scan
,
1467 &page_list
, &nr_scanned
, sc
->order
,
1468 sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
?
1469 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1471 zone
->pages_scanned
+= nr_scanned
;
1472 if (current_is_kswapd())
1473 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
,
1476 __count_zone_vm_events(PGSCAN_DIRECT
, zone
,
1479 nr_taken
= mem_cgroup_isolate_pages(nr_to_scan
,
1480 &page_list
, &nr_scanned
, sc
->order
,
1481 sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
?
1482 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1483 zone
, sc
->mem_cgroup
,
1486 * mem_cgroup_isolate_pages() keeps track of
1487 * scanned pages on its own.
1491 if (nr_taken
== 0) {
1492 spin_unlock_irq(&zone
->lru_lock
);
1496 update_isolated_counts(zone
, sc
, &nr_anon
, &nr_file
, &page_list
);
1498 spin_unlock_irq(&zone
->lru_lock
);
1500 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
);
1502 /* Check if we should syncronously wait for writeback */
1503 if (should_reclaim_stall(nr_taken
, nr_reclaimed
, priority
, sc
)) {
1504 set_reclaim_mode(priority
, sc
, true);
1505 nr_reclaimed
+= shrink_page_list(&page_list
, zone
, sc
);
1508 local_irq_disable();
1509 if (current_is_kswapd())
1510 __count_vm_events(KSWAPD_STEAL
, nr_reclaimed
);
1511 __count_zone_vm_events(PGSTEAL
, zone
, nr_reclaimed
);
1513 putback_lru_pages(zone
, sc
, nr_anon
, nr_file
, &page_list
);
1515 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1517 nr_scanned
, nr_reclaimed
,
1519 trace_shrink_flags(file
, sc
->reclaim_mode
));
1520 return nr_reclaimed
;
1524 * This moves pages from the active list to the inactive list.
1526 * We move them the other way if the page is referenced by one or more
1527 * processes, from rmap.
1529 * If the pages are mostly unmapped, the processing is fast and it is
1530 * appropriate to hold zone->lru_lock across the whole operation. But if
1531 * the pages are mapped, the processing is slow (page_referenced()) so we
1532 * should drop zone->lru_lock around each page. It's impossible to balance
1533 * this, so instead we remove the pages from the LRU while processing them.
1534 * It is safe to rely on PG_active against the non-LRU pages in here because
1535 * nobody will play with that bit on a non-LRU page.
1537 * The downside is that we have to touch page->_count against each page.
1538 * But we had to alter page->flags anyway.
1541 static void move_active_pages_to_lru(struct zone
*zone
,
1542 struct list_head
*list
,
1545 unsigned long pgmoved
= 0;
1546 struct pagevec pvec
;
1549 pagevec_init(&pvec
, 1);
1551 while (!list_empty(list
)) {
1552 page
= lru_to_page(list
);
1554 VM_BUG_ON(PageLRU(page
));
1557 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1558 mem_cgroup_add_lru_list(page
, lru
);
1559 pgmoved
+= hpage_nr_pages(page
);
1561 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1562 spin_unlock_irq(&zone
->lru_lock
);
1563 if (buffer_heads_over_limit
)
1564 pagevec_strip(&pvec
);
1565 __pagevec_release(&pvec
);
1566 spin_lock_irq(&zone
->lru_lock
);
1569 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1570 if (!is_active_lru(lru
))
1571 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1574 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1575 struct scan_control
*sc
, int priority
, int file
)
1577 unsigned long nr_taken
;
1578 unsigned long pgscanned
;
1579 unsigned long vm_flags
;
1580 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1581 LIST_HEAD(l_active
);
1582 LIST_HEAD(l_inactive
);
1584 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1585 unsigned long nr_rotated
= 0;
1588 spin_lock_irq(&zone
->lru_lock
);
1589 if (scanning_global_lru(sc
)) {
1590 nr_taken
= isolate_pages_global(nr_pages
, &l_hold
,
1591 &pgscanned
, sc
->order
,
1592 ISOLATE_ACTIVE
, zone
,
1594 zone
->pages_scanned
+= pgscanned
;
1596 nr_taken
= mem_cgroup_isolate_pages(nr_pages
, &l_hold
,
1597 &pgscanned
, sc
->order
,
1598 ISOLATE_ACTIVE
, zone
,
1599 sc
->mem_cgroup
, 1, file
);
1601 * mem_cgroup_isolate_pages() keeps track of
1602 * scanned pages on its own.
1606 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1608 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1610 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -nr_taken
);
1612 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -nr_taken
);
1613 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1614 spin_unlock_irq(&zone
->lru_lock
);
1616 while (!list_empty(&l_hold
)) {
1618 page
= lru_to_page(&l_hold
);
1619 list_del(&page
->lru
);
1621 if (unlikely(!page_evictable(page
, NULL
))) {
1622 putback_lru_page(page
);
1626 if (page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1627 nr_rotated
+= hpage_nr_pages(page
);
1629 * Identify referenced, file-backed active pages and
1630 * give them one more trip around the active list. So
1631 * that executable code get better chances to stay in
1632 * memory under moderate memory pressure. Anon pages
1633 * are not likely to be evicted by use-once streaming
1634 * IO, plus JVM can create lots of anon VM_EXEC pages,
1635 * so we ignore them here.
1637 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1638 list_add(&page
->lru
, &l_active
);
1643 ClearPageActive(page
); /* we are de-activating */
1644 list_add(&page
->lru
, &l_inactive
);
1648 * Move pages back to the lru list.
1650 spin_lock_irq(&zone
->lru_lock
);
1652 * Count referenced pages from currently used mappings as rotated,
1653 * even though only some of them are actually re-activated. This
1654 * helps balance scan pressure between file and anonymous pages in
1657 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1659 move_active_pages_to_lru(zone
, &l_active
,
1660 LRU_ACTIVE
+ file
* LRU_FILE
);
1661 move_active_pages_to_lru(zone
, &l_inactive
,
1662 LRU_BASE
+ file
* LRU_FILE
);
1663 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1664 spin_unlock_irq(&zone
->lru_lock
);
1668 static int inactive_anon_is_low_global(struct zone
*zone
)
1670 unsigned long active
, inactive
;
1672 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1673 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1675 if (inactive
* zone
->inactive_ratio
< active
)
1682 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1683 * @zone: zone to check
1684 * @sc: scan control of this context
1686 * Returns true if the zone does not have enough inactive anon pages,
1687 * meaning some active anon pages need to be deactivated.
1689 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1694 * If we don't have swap space, anonymous page deactivation
1697 if (!total_swap_pages
)
1700 if (scanning_global_lru(sc
))
1701 low
= inactive_anon_is_low_global(zone
);
1703 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1707 static inline int inactive_anon_is_low(struct zone
*zone
,
1708 struct scan_control
*sc
)
1714 static int inactive_file_is_low_global(struct zone
*zone
)
1716 unsigned long active
, inactive
;
1718 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1719 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1721 return (active
> inactive
);
1725 * inactive_file_is_low - check if file pages need to be deactivated
1726 * @zone: zone to check
1727 * @sc: scan control of this context
1729 * When the system is doing streaming IO, memory pressure here
1730 * ensures that active file pages get deactivated, until more
1731 * than half of the file pages are on the inactive list.
1733 * Once we get to that situation, protect the system's working
1734 * set from being evicted by disabling active file page aging.
1736 * This uses a different ratio than the anonymous pages, because
1737 * the page cache uses a use-once replacement algorithm.
1739 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1743 if (scanning_global_lru(sc
))
1744 low
= inactive_file_is_low_global(zone
);
1746 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1750 static int inactive_list_is_low(struct zone
*zone
, struct scan_control
*sc
,
1754 return inactive_file_is_low(zone
, sc
);
1756 return inactive_anon_is_low(zone
, sc
);
1759 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1760 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1762 int file
= is_file_lru(lru
);
1764 if (is_active_lru(lru
)) {
1765 if (inactive_list_is_low(zone
, sc
, file
))
1766 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1770 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1774 * Determine how aggressively the anon and file LRU lists should be
1775 * scanned. The relative value of each set of LRU lists is determined
1776 * by looking at the fraction of the pages scanned we did rotate back
1777 * onto the active list instead of evict.
1779 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1781 static void get_scan_count(struct zone
*zone
, struct scan_control
*sc
,
1782 unsigned long *nr
, int priority
)
1784 unsigned long anon
, file
, free
;
1785 unsigned long anon_prio
, file_prio
;
1786 unsigned long ap
, fp
;
1787 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1788 u64 fraction
[2], denominator
;
1794 anon
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1795 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1796 file
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1797 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1799 if (((anon
+ file
) >> priority
) < SWAP_CLUSTER_MAX
) {
1800 /* kswapd does zone balancing and need to scan this zone */
1801 if (scanning_global_lru(sc
) && current_is_kswapd())
1803 /* memcg may have small limit and need to avoid priority drop */
1804 if (!scanning_global_lru(sc
))
1808 /* If we have no swap space, do not bother scanning anon pages. */
1809 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1817 if (scanning_global_lru(sc
)) {
1818 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1819 /* If we have very few page cache pages,
1820 force-scan anon pages. */
1821 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1830 * With swappiness at 100, anonymous and file have the same priority.
1831 * This scanning priority is essentially the inverse of IO cost.
1833 anon_prio
= sc
->swappiness
;
1834 file_prio
= 200 - sc
->swappiness
;
1837 * OK, so we have swap space and a fair amount of page cache
1838 * pages. We use the recently rotated / recently scanned
1839 * ratios to determine how valuable each cache is.
1841 * Because workloads change over time (and to avoid overflow)
1842 * we keep these statistics as a floating average, which ends
1843 * up weighing recent references more than old ones.
1845 * anon in [0], file in [1]
1847 spin_lock_irq(&zone
->lru_lock
);
1848 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1849 reclaim_stat
->recent_scanned
[0] /= 2;
1850 reclaim_stat
->recent_rotated
[0] /= 2;
1853 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1854 reclaim_stat
->recent_scanned
[1] /= 2;
1855 reclaim_stat
->recent_rotated
[1] /= 2;
1859 * The amount of pressure on anon vs file pages is inversely
1860 * proportional to the fraction of recently scanned pages on
1861 * each list that were recently referenced and in active use.
1863 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1864 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1866 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1867 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1868 spin_unlock_irq(&zone
->lru_lock
);
1872 denominator
= ap
+ fp
+ 1;
1874 for_each_evictable_lru(l
) {
1875 int file
= is_file_lru(l
);
1878 scan
= zone_nr_lru_pages(zone
, sc
, l
);
1879 if (priority
|| noswap
) {
1881 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1885 * If zone is small or memcg is small, nr[l] can be 0.
1886 * This results no-scan on this priority and priority drop down.
1887 * For global direct reclaim, it can visit next zone and tend
1888 * not to have problems. For global kswapd, it's for zone
1889 * balancing and it need to scan a small amounts. When using
1890 * memcg, priority drop can cause big latency. So, it's better
1891 * to scan small amount. See may_noscan above.
1893 if (!scan
&& force_scan
) {
1895 scan
= SWAP_CLUSTER_MAX
;
1897 scan
= SWAP_CLUSTER_MAX
;
1904 * Reclaim/compaction depends on a number of pages being freed. To avoid
1905 * disruption to the system, a small number of order-0 pages continue to be
1906 * rotated and reclaimed in the normal fashion. However, by the time we get
1907 * back to the allocator and call try_to_compact_zone(), we ensure that
1908 * there are enough free pages for it to be likely successful
1910 static inline bool should_continue_reclaim(struct zone
*zone
,
1911 unsigned long nr_reclaimed
,
1912 unsigned long nr_scanned
,
1913 struct scan_control
*sc
)
1915 unsigned long pages_for_compaction
;
1916 unsigned long inactive_lru_pages
;
1918 /* If not in reclaim/compaction mode, stop */
1919 if (!(sc
->reclaim_mode
& RECLAIM_MODE_COMPACTION
))
1922 /* Consider stopping depending on scan and reclaim activity */
1923 if (sc
->gfp_mask
& __GFP_REPEAT
) {
1925 * For __GFP_REPEAT allocations, stop reclaiming if the
1926 * full LRU list has been scanned and we are still failing
1927 * to reclaim pages. This full LRU scan is potentially
1928 * expensive but a __GFP_REPEAT caller really wants to succeed
1930 if (!nr_reclaimed
&& !nr_scanned
)
1934 * For non-__GFP_REPEAT allocations which can presumably
1935 * fail without consequence, stop if we failed to reclaim
1936 * any pages from the last SWAP_CLUSTER_MAX number of
1937 * pages that were scanned. This will return to the
1938 * caller faster at the risk reclaim/compaction and
1939 * the resulting allocation attempt fails
1946 * If we have not reclaimed enough pages for compaction and the
1947 * inactive lists are large enough, continue reclaiming
1949 pages_for_compaction
= (2UL << sc
->order
);
1950 inactive_lru_pages
= zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
) +
1951 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1952 if (sc
->nr_reclaimed
< pages_for_compaction
&&
1953 inactive_lru_pages
> pages_for_compaction
)
1956 /* If compaction would go ahead or the allocation would succeed, stop */
1957 switch (compaction_suitable(zone
, sc
->order
)) {
1958 case COMPACT_PARTIAL
:
1959 case COMPACT_CONTINUE
:
1967 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1969 static void shrink_zone(int priority
, struct zone
*zone
,
1970 struct scan_control
*sc
)
1972 unsigned long nr
[NR_LRU_LISTS
];
1973 unsigned long nr_to_scan
;
1975 unsigned long nr_reclaimed
, nr_scanned
;
1976 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1980 nr_scanned
= sc
->nr_scanned
;
1981 get_scan_count(zone
, sc
, nr
, priority
);
1983 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1984 nr
[LRU_INACTIVE_FILE
]) {
1985 for_each_evictable_lru(l
) {
1987 nr_to_scan
= min_t(unsigned long,
1988 nr
[l
], SWAP_CLUSTER_MAX
);
1989 nr
[l
] -= nr_to_scan
;
1991 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1992 zone
, sc
, priority
);
1996 * On large memory systems, scan >> priority can become
1997 * really large. This is fine for the starting priority;
1998 * we want to put equal scanning pressure on each zone.
1999 * However, if the VM has a harder time of freeing pages,
2000 * with multiple processes reclaiming pages, the total
2001 * freeing target can get unreasonably large.
2003 if (nr_reclaimed
>= nr_to_reclaim
&& priority
< DEF_PRIORITY
)
2006 sc
->nr_reclaimed
+= nr_reclaimed
;
2009 * Even if we did not try to evict anon pages at all, we want to
2010 * rebalance the anon lru active/inactive ratio.
2012 if (inactive_anon_is_low(zone
, sc
))
2013 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
2015 /* reclaim/compaction might need reclaim to continue */
2016 if (should_continue_reclaim(zone
, nr_reclaimed
,
2017 sc
->nr_scanned
- nr_scanned
, sc
))
2020 throttle_vm_writeout(sc
->gfp_mask
);
2024 * This is the direct reclaim path, for page-allocating processes. We only
2025 * try to reclaim pages from zones which will satisfy the caller's allocation
2028 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2030 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2032 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2033 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2034 * zone defense algorithm.
2036 * If a zone is deemed to be full of pinned pages then just give it a light
2037 * scan then give up on it.
2039 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
2040 struct scan_control
*sc
)
2044 unsigned long nr_soft_reclaimed
;
2045 unsigned long nr_soft_scanned
;
2047 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2048 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2049 if (!populated_zone(zone
))
2052 * Take care memory controller reclaiming has small influence
2055 if (scanning_global_lru(sc
)) {
2056 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2058 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2059 continue; /* Let kswapd poll it */
2061 * This steals pages from memory cgroups over softlimit
2062 * and returns the number of reclaimed pages and
2063 * scanned pages. This works for global memory pressure
2064 * and balancing, not for a memcg's limit.
2066 nr_soft_scanned
= 0;
2067 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2068 sc
->order
, sc
->gfp_mask
,
2070 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2071 sc
->nr_scanned
+= nr_soft_scanned
;
2072 /* need some check for avoid more shrink_zone() */
2075 shrink_zone(priority
, zone
, sc
);
2079 static bool zone_reclaimable(struct zone
*zone
)
2081 return zone
->pages_scanned
< zone_reclaimable_pages(zone
) * 6;
2084 /* All zones in zonelist are unreclaimable? */
2085 static bool all_unreclaimable(struct zonelist
*zonelist
,
2086 struct scan_control
*sc
)
2091 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2092 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2093 if (!populated_zone(zone
))
2095 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2097 if (!zone
->all_unreclaimable
)
2105 * This is the main entry point to direct page reclaim.
2107 * If a full scan of the inactive list fails to free enough memory then we
2108 * are "out of memory" and something needs to be killed.
2110 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2111 * high - the zone may be full of dirty or under-writeback pages, which this
2112 * caller can't do much about. We kick the writeback threads and take explicit
2113 * naps in the hope that some of these pages can be written. But if the
2114 * allocating task holds filesystem locks which prevent writeout this might not
2115 * work, and the allocation attempt will fail.
2117 * returns: 0, if no pages reclaimed
2118 * else, the number of pages reclaimed
2120 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2121 struct scan_control
*sc
,
2122 struct shrink_control
*shrink
)
2125 unsigned long total_scanned
= 0;
2126 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2129 unsigned long writeback_threshold
;
2132 delayacct_freepages_start();
2134 if (scanning_global_lru(sc
))
2135 count_vm_event(ALLOCSTALL
);
2137 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2140 disable_swap_token(sc
->mem_cgroup
);
2141 shrink_zones(priority
, zonelist
, sc
);
2143 * Don't shrink slabs when reclaiming memory from
2144 * over limit cgroups
2146 if (scanning_global_lru(sc
)) {
2147 unsigned long lru_pages
= 0;
2148 for_each_zone_zonelist(zone
, z
, zonelist
,
2149 gfp_zone(sc
->gfp_mask
)) {
2150 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2153 lru_pages
+= zone_reclaimable_pages(zone
);
2156 shrink_slab(shrink
, sc
->nr_scanned
, lru_pages
);
2157 if (reclaim_state
) {
2158 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2159 reclaim_state
->reclaimed_slab
= 0;
2162 total_scanned
+= sc
->nr_scanned
;
2163 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2167 * Try to write back as many pages as we just scanned. This
2168 * tends to cause slow streaming writers to write data to the
2169 * disk smoothly, at the dirtying rate, which is nice. But
2170 * that's undesirable in laptop mode, where we *want* lumpy
2171 * writeout. So in laptop mode, write out the whole world.
2173 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2174 if (total_scanned
> writeback_threshold
) {
2175 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
);
2176 sc
->may_writepage
= 1;
2179 /* Take a nap, wait for some writeback to complete */
2180 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
2181 priority
< DEF_PRIORITY
- 2) {
2182 struct zone
*preferred_zone
;
2184 first_zones_zonelist(zonelist
, gfp_zone(sc
->gfp_mask
),
2185 &cpuset_current_mems_allowed
,
2187 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/10);
2192 delayacct_freepages_end();
2195 if (sc
->nr_reclaimed
)
2196 return sc
->nr_reclaimed
;
2199 * As hibernation is going on, kswapd is freezed so that it can't mark
2200 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2203 if (oom_killer_disabled
)
2206 /* top priority shrink_zones still had more to do? don't OOM, then */
2207 if (scanning_global_lru(sc
) && !all_unreclaimable(zonelist
, sc
))
2213 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2214 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2216 unsigned long nr_reclaimed
;
2217 struct scan_control sc
= {
2218 .gfp_mask
= gfp_mask
,
2219 .may_writepage
= !laptop_mode
,
2220 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2223 .swappiness
= vm_swappiness
,
2226 .nodemask
= nodemask
,
2228 struct shrink_control shrink
= {
2229 .gfp_mask
= sc
.gfp_mask
,
2232 trace_mm_vmscan_direct_reclaim_begin(order
,
2236 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2238 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2240 return nr_reclaimed
;
2243 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2245 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*mem
,
2246 gfp_t gfp_mask
, bool noswap
,
2247 unsigned int swappiness
,
2249 unsigned long *nr_scanned
)
2251 struct scan_control sc
= {
2253 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2254 .may_writepage
= !laptop_mode
,
2256 .may_swap
= !noswap
,
2257 .swappiness
= swappiness
,
2262 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2263 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2265 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2270 * NOTE: Although we can get the priority field, using it
2271 * here is not a good idea, since it limits the pages we can scan.
2272 * if we don't reclaim here, the shrink_zone from balance_pgdat
2273 * will pick up pages from other mem cgroup's as well. We hack
2274 * the priority and make it zero.
2276 shrink_zone(0, zone
, &sc
);
2278 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2280 *nr_scanned
= sc
.nr_scanned
;
2281 return sc
.nr_reclaimed
;
2284 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
2287 unsigned int swappiness
)
2289 struct zonelist
*zonelist
;
2290 unsigned long nr_reclaimed
;
2292 struct scan_control sc
= {
2293 .may_writepage
= !laptop_mode
,
2295 .may_swap
= !noswap
,
2296 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2297 .swappiness
= swappiness
,
2299 .mem_cgroup
= mem_cont
,
2300 .nodemask
= NULL
, /* we don't care the placement */
2301 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2302 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
2304 struct shrink_control shrink
= {
2305 .gfp_mask
= sc
.gfp_mask
,
2309 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2310 * take care of from where we get pages. So the node where we start the
2311 * scan does not need to be the current node.
2313 nid
= mem_cgroup_select_victim_node(mem_cont
);
2315 zonelist
= NODE_DATA(nid
)->node_zonelists
;
2317 trace_mm_vmscan_memcg_reclaim_begin(0,
2321 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2323 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2325 return nr_reclaimed
;
2330 * pgdat_balanced is used when checking if a node is balanced for high-order
2331 * allocations. Only zones that meet watermarks and are in a zone allowed
2332 * by the callers classzone_idx are added to balanced_pages. The total of
2333 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2334 * for the node to be considered balanced. Forcing all zones to be balanced
2335 * for high orders can cause excessive reclaim when there are imbalanced zones.
2336 * The choice of 25% is due to
2337 * o a 16M DMA zone that is balanced will not balance a zone on any
2338 * reasonable sized machine
2339 * o On all other machines, the top zone must be at least a reasonable
2340 * percentage of the middle zones. For example, on 32-bit x86, highmem
2341 * would need to be at least 256M for it to be balance a whole node.
2342 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2343 * to balance a node on its own. These seemed like reasonable ratios.
2345 static bool pgdat_balanced(pg_data_t
*pgdat
, unsigned long balanced_pages
,
2348 unsigned long present_pages
= 0;
2351 for (i
= 0; i
<= classzone_idx
; i
++)
2352 present_pages
+= pgdat
->node_zones
[i
].present_pages
;
2354 /* A special case here: if zone has no page, we think it's balanced */
2355 return balanced_pages
>= (present_pages
>> 2);
2358 /* is kswapd sleeping prematurely? */
2359 static bool sleeping_prematurely(pg_data_t
*pgdat
, int order
, long remaining
,
2363 unsigned long balanced
= 0;
2364 bool all_zones_ok
= true;
2366 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2370 /* Check the watermark levels */
2371 for (i
= 0; i
<= classzone_idx
; i
++) {
2372 struct zone
*zone
= pgdat
->node_zones
+ i
;
2374 if (!populated_zone(zone
))
2378 * balance_pgdat() skips over all_unreclaimable after
2379 * DEF_PRIORITY. Effectively, it considers them balanced so
2380 * they must be considered balanced here as well if kswapd
2383 if (zone
->all_unreclaimable
) {
2384 balanced
+= zone
->present_pages
;
2388 if (!zone_watermark_ok_safe(zone
, order
, high_wmark_pages(zone
),
2390 all_zones_ok
= false;
2392 balanced
+= zone
->present_pages
;
2396 * For high-order requests, the balanced zones must contain at least
2397 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2401 return !pgdat_balanced(pgdat
, balanced
, classzone_idx
);
2403 return !all_zones_ok
;
2407 * For kswapd, balance_pgdat() will work across all this node's zones until
2408 * they are all at high_wmark_pages(zone).
2410 * Returns the final order kswapd was reclaiming at
2412 * There is special handling here for zones which are full of pinned pages.
2413 * This can happen if the pages are all mlocked, or if they are all used by
2414 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2415 * What we do is to detect the case where all pages in the zone have been
2416 * scanned twice and there has been zero successful reclaim. Mark the zone as
2417 * dead and from now on, only perform a short scan. Basically we're polling
2418 * the zone for when the problem goes away.
2420 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2421 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2422 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2423 * lower zones regardless of the number of free pages in the lower zones. This
2424 * interoperates with the page allocator fallback scheme to ensure that aging
2425 * of pages is balanced across the zones.
2427 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
,
2431 unsigned long balanced
;
2434 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2435 unsigned long total_scanned
;
2436 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2437 unsigned long nr_soft_reclaimed
;
2438 unsigned long nr_soft_scanned
;
2439 struct scan_control sc
= {
2440 .gfp_mask
= GFP_KERNEL
,
2444 * kswapd doesn't want to be bailed out while reclaim. because
2445 * we want to put equal scanning pressure on each zone.
2447 .nr_to_reclaim
= ULONG_MAX
,
2448 .swappiness
= vm_swappiness
,
2452 struct shrink_control shrink
= {
2453 .gfp_mask
= sc
.gfp_mask
,
2457 sc
.nr_reclaimed
= 0;
2458 sc
.may_writepage
= !laptop_mode
;
2459 count_vm_event(PAGEOUTRUN
);
2461 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2462 unsigned long lru_pages
= 0;
2463 int has_under_min_watermark_zone
= 0;
2465 /* The swap token gets in the way of swapout... */
2467 disable_swap_token(NULL
);
2473 * Scan in the highmem->dma direction for the highest
2474 * zone which needs scanning
2476 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2477 struct zone
*zone
= pgdat
->node_zones
+ i
;
2479 if (!populated_zone(zone
))
2482 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2486 * Do some background aging of the anon list, to give
2487 * pages a chance to be referenced before reclaiming.
2489 if (inactive_anon_is_low(zone
, &sc
))
2490 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
2493 if (!zone_watermark_ok_safe(zone
, order
,
2494 high_wmark_pages(zone
), 0, 0)) {
2502 for (i
= 0; i
<= end_zone
; i
++) {
2503 struct zone
*zone
= pgdat
->node_zones
+ i
;
2505 lru_pages
+= zone_reclaimable_pages(zone
);
2509 * Now scan the zone in the dma->highmem direction, stopping
2510 * at the last zone which needs scanning.
2512 * We do this because the page allocator works in the opposite
2513 * direction. This prevents the page allocator from allocating
2514 * pages behind kswapd's direction of progress, which would
2515 * cause too much scanning of the lower zones.
2517 for (i
= 0; i
<= end_zone
; i
++) {
2518 struct zone
*zone
= pgdat
->node_zones
+ i
;
2520 unsigned long balance_gap
;
2522 if (!populated_zone(zone
))
2525 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2530 nr_soft_scanned
= 0;
2532 * Call soft limit reclaim before calling shrink_zone.
2534 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2537 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
2538 total_scanned
+= nr_soft_scanned
;
2541 * We put equal pressure on every zone, unless
2542 * one zone has way too many pages free
2543 * already. The "too many pages" is defined
2544 * as the high wmark plus a "gap" where the
2545 * gap is either the low watermark or 1%
2546 * of the zone, whichever is smaller.
2548 balance_gap
= min(low_wmark_pages(zone
),
2549 (zone
->present_pages
+
2550 KSWAPD_ZONE_BALANCE_GAP_RATIO
-1) /
2551 KSWAPD_ZONE_BALANCE_GAP_RATIO
);
2552 if (!zone_watermark_ok_safe(zone
, order
,
2553 high_wmark_pages(zone
) + balance_gap
,
2555 shrink_zone(priority
, zone
, &sc
);
2557 reclaim_state
->reclaimed_slab
= 0;
2558 nr_slab
= shrink_slab(&shrink
, sc
.nr_scanned
, lru_pages
);
2559 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2560 total_scanned
+= sc
.nr_scanned
;
2562 if (nr_slab
== 0 && !zone_reclaimable(zone
))
2563 zone
->all_unreclaimable
= 1;
2567 * If we've done a decent amount of scanning and
2568 * the reclaim ratio is low, start doing writepage
2569 * even in laptop mode
2571 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
2572 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
2573 sc
.may_writepage
= 1;
2575 if (zone
->all_unreclaimable
) {
2576 if (end_zone
&& end_zone
== i
)
2581 if (!zone_watermark_ok_safe(zone
, order
,
2582 high_wmark_pages(zone
), end_zone
, 0)) {
2585 * We are still under min water mark. This
2586 * means that we have a GFP_ATOMIC allocation
2587 * failure risk. Hurry up!
2589 if (!zone_watermark_ok_safe(zone
, order
,
2590 min_wmark_pages(zone
), end_zone
, 0))
2591 has_under_min_watermark_zone
= 1;
2594 * If a zone reaches its high watermark,
2595 * consider it to be no longer congested. It's
2596 * possible there are dirty pages backed by
2597 * congested BDIs but as pressure is relieved,
2598 * spectulatively avoid congestion waits
2600 zone_clear_flag(zone
, ZONE_CONGESTED
);
2601 if (i
<= *classzone_idx
)
2602 balanced
+= zone
->present_pages
;
2606 if (all_zones_ok
|| (order
&& pgdat_balanced(pgdat
, balanced
, *classzone_idx
)))
2607 break; /* kswapd: all done */
2609 * OK, kswapd is getting into trouble. Take a nap, then take
2610 * another pass across the zones.
2612 if (total_scanned
&& (priority
< DEF_PRIORITY
- 2)) {
2613 if (has_under_min_watermark_zone
)
2614 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT
);
2616 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2620 * We do this so kswapd doesn't build up large priorities for
2621 * example when it is freeing in parallel with allocators. It
2622 * matches the direct reclaim path behaviour in terms of impact
2623 * on zone->*_priority.
2625 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2631 * order-0: All zones must meet high watermark for a balanced node
2632 * high-order: Balanced zones must make up at least 25% of the node
2633 * for the node to be balanced
2635 if (!(all_zones_ok
|| (order
&& pgdat_balanced(pgdat
, balanced
, *classzone_idx
)))) {
2641 * Fragmentation may mean that the system cannot be
2642 * rebalanced for high-order allocations in all zones.
2643 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2644 * it means the zones have been fully scanned and are still
2645 * not balanced. For high-order allocations, there is
2646 * little point trying all over again as kswapd may
2649 * Instead, recheck all watermarks at order-0 as they
2650 * are the most important. If watermarks are ok, kswapd will go
2651 * back to sleep. High-order users can still perform direct
2652 * reclaim if they wish.
2654 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2655 order
= sc
.order
= 0;
2661 * If kswapd was reclaiming at a higher order, it has the option of
2662 * sleeping without all zones being balanced. Before it does, it must
2663 * ensure that the watermarks for order-0 on *all* zones are met and
2664 * that the congestion flags are cleared. The congestion flag must
2665 * be cleared as kswapd is the only mechanism that clears the flag
2666 * and it is potentially going to sleep here.
2669 for (i
= 0; i
<= end_zone
; i
++) {
2670 struct zone
*zone
= pgdat
->node_zones
+ i
;
2672 if (!populated_zone(zone
))
2675 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2678 /* Confirm the zone is balanced for order-0 */
2679 if (!zone_watermark_ok(zone
, 0,
2680 high_wmark_pages(zone
), 0, 0)) {
2681 order
= sc
.order
= 0;
2685 /* If balanced, clear the congested flag */
2686 zone_clear_flag(zone
, ZONE_CONGESTED
);
2691 * Return the order we were reclaiming at so sleeping_prematurely()
2692 * makes a decision on the order we were last reclaiming at. However,
2693 * if another caller entered the allocator slow path while kswapd
2694 * was awake, order will remain at the higher level
2696 *classzone_idx
= end_zone
;
2700 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2705 if (freezing(current
) || kthread_should_stop())
2708 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2710 /* Try to sleep for a short interval */
2711 if (!sleeping_prematurely(pgdat
, order
, remaining
, classzone_idx
)) {
2712 remaining
= schedule_timeout(HZ
/10);
2713 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2714 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2718 * After a short sleep, check if it was a premature sleep. If not, then
2719 * go fully to sleep until explicitly woken up.
2721 if (!sleeping_prematurely(pgdat
, order
, remaining
, classzone_idx
)) {
2722 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
2725 * vmstat counters are not perfectly accurate and the estimated
2726 * value for counters such as NR_FREE_PAGES can deviate from the
2727 * true value by nr_online_cpus * threshold. To avoid the zone
2728 * watermarks being breached while under pressure, we reduce the
2729 * per-cpu vmstat threshold while kswapd is awake and restore
2730 * them before going back to sleep.
2732 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
2734 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
2737 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2739 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2741 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2745 * The background pageout daemon, started as a kernel thread
2746 * from the init process.
2748 * This basically trickles out pages so that we have _some_
2749 * free memory available even if there is no other activity
2750 * that frees anything up. This is needed for things like routing
2751 * etc, where we otherwise might have all activity going on in
2752 * asynchronous contexts that cannot page things out.
2754 * If there are applications that are active memory-allocators
2755 * (most normal use), this basically shouldn't matter.
2757 static int kswapd(void *p
)
2759 unsigned long order
, new_order
;
2760 int classzone_idx
, new_classzone_idx
;
2761 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2762 struct task_struct
*tsk
= current
;
2764 struct reclaim_state reclaim_state
= {
2765 .reclaimed_slab
= 0,
2767 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2769 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2771 if (!cpumask_empty(cpumask
))
2772 set_cpus_allowed_ptr(tsk
, cpumask
);
2773 current
->reclaim_state
= &reclaim_state
;
2776 * Tell the memory management that we're a "memory allocator",
2777 * and that if we need more memory we should get access to it
2778 * regardless (see "__alloc_pages()"). "kswapd" should
2779 * never get caught in the normal page freeing logic.
2781 * (Kswapd normally doesn't need memory anyway, but sometimes
2782 * you need a small amount of memory in order to be able to
2783 * page out something else, and this flag essentially protects
2784 * us from recursively trying to free more memory as we're
2785 * trying to free the first piece of memory in the first place).
2787 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2790 order
= new_order
= 0;
2791 classzone_idx
= new_classzone_idx
= pgdat
->nr_zones
- 1;
2796 * If the last balance_pgdat was unsuccessful it's unlikely a
2797 * new request of a similar or harder type will succeed soon
2798 * so consider going to sleep on the basis we reclaimed at
2800 if (classzone_idx
>= new_classzone_idx
&& order
== new_order
) {
2801 new_order
= pgdat
->kswapd_max_order
;
2802 new_classzone_idx
= pgdat
->classzone_idx
;
2803 pgdat
->kswapd_max_order
= 0;
2804 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
2807 if (order
< new_order
|| classzone_idx
> new_classzone_idx
) {
2809 * Don't sleep if someone wants a larger 'order'
2810 * allocation or has tigher zone constraints
2813 classzone_idx
= new_classzone_idx
;
2815 kswapd_try_to_sleep(pgdat
, order
, classzone_idx
);
2816 order
= pgdat
->kswapd_max_order
;
2817 classzone_idx
= pgdat
->classzone_idx
;
2818 pgdat
->kswapd_max_order
= 0;
2819 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
2822 ret
= try_to_freeze();
2823 if (kthread_should_stop())
2827 * We can speed up thawing tasks if we don't call balance_pgdat
2828 * after returning from the refrigerator
2831 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
2832 order
= balance_pgdat(pgdat
, order
, &classzone_idx
);
2839 * A zone is low on free memory, so wake its kswapd task to service it.
2841 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
2845 if (!populated_zone(zone
))
2848 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2850 pgdat
= zone
->zone_pgdat
;
2851 if (pgdat
->kswapd_max_order
< order
) {
2852 pgdat
->kswapd_max_order
= order
;
2853 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
, classzone_idx
);
2855 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2857 if (zone_watermark_ok_safe(zone
, order
, low_wmark_pages(zone
), 0, 0))
2860 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
2861 wake_up_interruptible(&pgdat
->kswapd_wait
);
2865 * The reclaimable count would be mostly accurate.
2866 * The less reclaimable pages may be
2867 * - mlocked pages, which will be moved to unevictable list when encountered
2868 * - mapped pages, which may require several travels to be reclaimed
2869 * - dirty pages, which is not "instantly" reclaimable
2871 unsigned long global_reclaimable_pages(void)
2875 nr
= global_page_state(NR_ACTIVE_FILE
) +
2876 global_page_state(NR_INACTIVE_FILE
);
2878 if (nr_swap_pages
> 0)
2879 nr
+= global_page_state(NR_ACTIVE_ANON
) +
2880 global_page_state(NR_INACTIVE_ANON
);
2885 unsigned long zone_reclaimable_pages(struct zone
*zone
)
2889 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2890 zone_page_state(zone
, NR_INACTIVE_FILE
);
2892 if (nr_swap_pages
> 0)
2893 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
2894 zone_page_state(zone
, NR_INACTIVE_ANON
);
2899 #ifdef CONFIG_HIBERNATION
2901 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2904 * Rather than trying to age LRUs the aim is to preserve the overall
2905 * LRU order by reclaiming preferentially
2906 * inactive > active > active referenced > active mapped
2908 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
2910 struct reclaim_state reclaim_state
;
2911 struct scan_control sc
= {
2912 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
2916 .nr_to_reclaim
= nr_to_reclaim
,
2917 .hibernation_mode
= 1,
2918 .swappiness
= vm_swappiness
,
2921 struct shrink_control shrink
= {
2922 .gfp_mask
= sc
.gfp_mask
,
2924 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
2925 struct task_struct
*p
= current
;
2926 unsigned long nr_reclaimed
;
2928 p
->flags
|= PF_MEMALLOC
;
2929 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
2930 reclaim_state
.reclaimed_slab
= 0;
2931 p
->reclaim_state
= &reclaim_state
;
2933 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2935 p
->reclaim_state
= NULL
;
2936 lockdep_clear_current_reclaim_state();
2937 p
->flags
&= ~PF_MEMALLOC
;
2939 return nr_reclaimed
;
2941 #endif /* CONFIG_HIBERNATION */
2943 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2944 not required for correctness. So if the last cpu in a node goes
2945 away, we get changed to run anywhere: as the first one comes back,
2946 restore their cpu bindings. */
2947 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2948 unsigned long action
, void *hcpu
)
2952 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2953 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2954 pg_data_t
*pgdat
= NODE_DATA(nid
);
2955 const struct cpumask
*mask
;
2957 mask
= cpumask_of_node(pgdat
->node_id
);
2959 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2960 /* One of our CPUs online: restore mask */
2961 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2968 * This kswapd start function will be called by init and node-hot-add.
2969 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2971 int kswapd_run(int nid
)
2973 pg_data_t
*pgdat
= NODE_DATA(nid
);
2979 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2980 if (IS_ERR(pgdat
->kswapd
)) {
2981 /* failure at boot is fatal */
2982 BUG_ON(system_state
== SYSTEM_BOOTING
);
2983 printk("Failed to start kswapd on node %d\n",nid
);
2990 * Called by memory hotplug when all memory in a node is offlined.
2992 void kswapd_stop(int nid
)
2994 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
2997 kthread_stop(kswapd
);
3000 static int __init
kswapd_init(void)
3005 for_each_node_state(nid
, N_HIGH_MEMORY
)
3007 hotcpu_notifier(cpu_callback
, 0);
3011 module_init(kswapd_init
)
3017 * If non-zero call zone_reclaim when the number of free pages falls below
3020 int zone_reclaim_mode __read_mostly
;
3022 #define RECLAIM_OFF 0
3023 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3024 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3025 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3028 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3029 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3032 #define ZONE_RECLAIM_PRIORITY 4
3035 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3038 int sysctl_min_unmapped_ratio
= 1;
3041 * If the number of slab pages in a zone grows beyond this percentage then
3042 * slab reclaim needs to occur.
3044 int sysctl_min_slab_ratio
= 5;
3046 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
3048 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
3049 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
3050 zone_page_state(zone
, NR_ACTIVE_FILE
);
3053 * It's possible for there to be more file mapped pages than
3054 * accounted for by the pages on the file LRU lists because
3055 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3057 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3060 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3061 static long zone_pagecache_reclaimable(struct zone
*zone
)
3063 long nr_pagecache_reclaimable
;
3067 * If RECLAIM_SWAP is set, then all file pages are considered
3068 * potentially reclaimable. Otherwise, we have to worry about
3069 * pages like swapcache and zone_unmapped_file_pages() provides
3072 if (zone_reclaim_mode
& RECLAIM_SWAP
)
3073 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
3075 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
3077 /* If we can't clean pages, remove dirty pages from consideration */
3078 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
3079 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
3081 /* Watch for any possible underflows due to delta */
3082 if (unlikely(delta
> nr_pagecache_reclaimable
))
3083 delta
= nr_pagecache_reclaimable
;
3085 return nr_pagecache_reclaimable
- delta
;
3089 * Try to free up some pages from this zone through reclaim.
3091 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3093 /* Minimum pages needed in order to stay on node */
3094 const unsigned long nr_pages
= 1 << order
;
3095 struct task_struct
*p
= current
;
3096 struct reclaim_state reclaim_state
;
3098 struct scan_control sc
= {
3099 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
3100 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
3102 .nr_to_reclaim
= max_t(unsigned long, nr_pages
,
3104 .gfp_mask
= gfp_mask
,
3105 .swappiness
= vm_swappiness
,
3108 struct shrink_control shrink
= {
3109 .gfp_mask
= sc
.gfp_mask
,
3111 unsigned long nr_slab_pages0
, nr_slab_pages1
;
3115 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3116 * and we also need to be able to write out pages for RECLAIM_WRITE
3119 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3120 lockdep_set_current_reclaim_state(gfp_mask
);
3121 reclaim_state
.reclaimed_slab
= 0;
3122 p
->reclaim_state
= &reclaim_state
;
3124 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
3126 * Free memory by calling shrink zone with increasing
3127 * priorities until we have enough memory freed.
3129 priority
= ZONE_RECLAIM_PRIORITY
;
3131 shrink_zone(priority
, zone
, &sc
);
3133 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
3136 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3137 if (nr_slab_pages0
> zone
->min_slab_pages
) {
3139 * shrink_slab() does not currently allow us to determine how
3140 * many pages were freed in this zone. So we take the current
3141 * number of slab pages and shake the slab until it is reduced
3142 * by the same nr_pages that we used for reclaiming unmapped
3145 * Note that shrink_slab will free memory on all zones and may
3149 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
3151 /* No reclaimable slab or very low memory pressure */
3152 if (!shrink_slab(&shrink
, sc
.nr_scanned
, lru_pages
))
3155 /* Freed enough memory */
3156 nr_slab_pages1
= zone_page_state(zone
,
3157 NR_SLAB_RECLAIMABLE
);
3158 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
3163 * Update nr_reclaimed by the number of slab pages we
3164 * reclaimed from this zone.
3166 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3167 if (nr_slab_pages1
< nr_slab_pages0
)
3168 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
3171 p
->reclaim_state
= NULL
;
3172 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3173 lockdep_clear_current_reclaim_state();
3174 return sc
.nr_reclaimed
>= nr_pages
;
3177 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3183 * Zone reclaim reclaims unmapped file backed pages and
3184 * slab pages if we are over the defined limits.
3186 * A small portion of unmapped file backed pages is needed for
3187 * file I/O otherwise pages read by file I/O will be immediately
3188 * thrown out if the zone is overallocated. So we do not reclaim
3189 * if less than a specified percentage of the zone is used by
3190 * unmapped file backed pages.
3192 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3193 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3194 return ZONE_RECLAIM_FULL
;
3196 if (zone
->all_unreclaimable
)
3197 return ZONE_RECLAIM_FULL
;
3200 * Do not scan if the allocation should not be delayed.
3202 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
3203 return ZONE_RECLAIM_NOSCAN
;
3206 * Only run zone reclaim on the local zone or on zones that do not
3207 * have associated processors. This will favor the local processor
3208 * over remote processors and spread off node memory allocations
3209 * as wide as possible.
3211 node_id
= zone_to_nid(zone
);
3212 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3213 return ZONE_RECLAIM_NOSCAN
;
3215 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
3216 return ZONE_RECLAIM_NOSCAN
;
3218 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3219 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
3222 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3229 * page_evictable - test whether a page is evictable
3230 * @page: the page to test
3231 * @vma: the VMA in which the page is or will be mapped, may be NULL
3233 * Test whether page is evictable--i.e., should be placed on active/inactive
3234 * lists vs unevictable list. The vma argument is !NULL when called from the
3235 * fault path to determine how to instantate a new page.
3237 * Reasons page might not be evictable:
3238 * (1) page's mapping marked unevictable
3239 * (2) page is part of an mlocked VMA
3242 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
3245 if (mapping_unevictable(page_mapping(page
)))
3248 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
3255 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3256 * @page: page to check evictability and move to appropriate lru list
3257 * @zone: zone page is in
3259 * Checks a page for evictability and moves the page to the appropriate
3262 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3263 * have PageUnevictable set.
3265 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
3267 VM_BUG_ON(PageActive(page
));
3270 ClearPageUnevictable(page
);
3271 if (page_evictable(page
, NULL
)) {
3272 enum lru_list l
= page_lru_base_type(page
);
3274 __dec_zone_state(zone
, NR_UNEVICTABLE
);
3275 list_move(&page
->lru
, &zone
->lru
[l
].list
);
3276 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
3277 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
3278 __count_vm_event(UNEVICTABLE_PGRESCUED
);
3281 * rotate unevictable list
3283 SetPageUnevictable(page
);
3284 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
3285 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
3286 if (page_evictable(page
, NULL
))
3292 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3293 * @mapping: struct address_space to scan for evictable pages
3295 * Scan all pages in mapping. Check unevictable pages for
3296 * evictability and move them to the appropriate zone lru list.
3298 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
3301 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
3304 struct pagevec pvec
;
3306 if (mapping
->nrpages
== 0)
3309 pagevec_init(&pvec
, 0);
3310 while (next
< end
&&
3311 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
3317 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
3318 struct page
*page
= pvec
.pages
[i
];
3319 pgoff_t page_index
= page
->index
;
3320 struct zone
*pagezone
= page_zone(page
);
3323 if (page_index
> next
)
3327 if (pagezone
!= zone
) {
3329 spin_unlock_irq(&zone
->lru_lock
);
3331 spin_lock_irq(&zone
->lru_lock
);
3334 if (PageLRU(page
) && PageUnevictable(page
))
3335 check_move_unevictable_page(page
, zone
);
3338 spin_unlock_irq(&zone
->lru_lock
);
3339 pagevec_release(&pvec
);
3341 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
3347 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3348 * @zone - zone of which to scan the unevictable list
3350 * Scan @zone's unevictable LRU lists to check for pages that have become
3351 * evictable. Move those that have to @zone's inactive list where they
3352 * become candidates for reclaim, unless shrink_inactive_zone() decides
3353 * to reactivate them. Pages that are still unevictable are rotated
3354 * back onto @zone's unevictable list.
3356 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3357 static void scan_zone_unevictable_pages(struct zone
*zone
)
3359 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
3361 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
3363 while (nr_to_scan
> 0) {
3364 unsigned long batch_size
= min(nr_to_scan
,
3365 SCAN_UNEVICTABLE_BATCH_SIZE
);
3367 spin_lock_irq(&zone
->lru_lock
);
3368 for (scan
= 0; scan
< batch_size
; scan
++) {
3369 struct page
*page
= lru_to_page(l_unevictable
);
3371 if (!trylock_page(page
))
3374 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
3376 if (likely(PageLRU(page
) && PageUnevictable(page
)))
3377 check_move_unevictable_page(page
, zone
);
3381 spin_unlock_irq(&zone
->lru_lock
);
3383 nr_to_scan
-= batch_size
;
3389 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3391 * A really big hammer: scan all zones' unevictable LRU lists to check for
3392 * pages that have become evictable. Move those back to the zones'
3393 * inactive list where they become candidates for reclaim.
3394 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3395 * and we add swap to the system. As such, it runs in the context of a task
3396 * that has possibly/probably made some previously unevictable pages
3399 static void scan_all_zones_unevictable_pages(void)
3403 for_each_zone(zone
) {
3404 scan_zone_unevictable_pages(zone
);
3409 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3410 * all nodes' unevictable lists for evictable pages
3412 unsigned long scan_unevictable_pages
;
3414 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
3415 void __user
*buffer
,
3416 size_t *length
, loff_t
*ppos
)
3418 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3420 if (write
&& *(unsigned long *)table
->data
)
3421 scan_all_zones_unevictable_pages();
3423 scan_unevictable_pages
= 0;
3429 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3430 * a specified node's per zone unevictable lists for evictable pages.
3433 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
3434 struct sysdev_attribute
*attr
,
3437 return sprintf(buf
, "0\n"); /* always zero; should fit... */
3440 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
3441 struct sysdev_attribute
*attr
,
3442 const char *buf
, size_t count
)
3444 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
3447 unsigned long req
= strict_strtoul(buf
, 10, &res
);
3450 return 1; /* zero is no-op */
3452 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
3453 if (!populated_zone(zone
))
3455 scan_zone_unevictable_pages(zone
);
3461 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
3462 read_scan_unevictable_node
,
3463 write_scan_unevictable_node
);
3465 int scan_unevictable_register_node(struct node
*node
)
3467 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
3470 void scan_unevictable_unregister_node(struct node
*node
)
3472 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);