2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
39 #include <asm/irq_regs.h>
44 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
47 atomic_t perf_task_events __read_mostly
;
48 static atomic_t nr_mmap_events __read_mostly
;
49 static atomic_t nr_comm_events __read_mostly
;
50 static atomic_t nr_task_events __read_mostly
;
52 static LIST_HEAD(pmus
);
53 static DEFINE_MUTEX(pmus_lock
);
54 static struct srcu_struct pmus_srcu
;
57 * perf event paranoia level:
58 * -1 - not paranoid at all
59 * 0 - disallow raw tracepoint access for unpriv
60 * 1 - disallow cpu events for unpriv
61 * 2 - disallow kernel profiling for unpriv
63 int sysctl_perf_event_paranoid __read_mostly
= 1;
65 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
68 * max perf event sample rate
70 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
72 static atomic64_t perf_event_id
;
74 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
75 enum event_type_t event_type
);
77 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
78 enum event_type_t event_type
);
80 void __weak
perf_event_print_debug(void) { }
82 extern __weak
const char *perf_pmu_name(void)
87 static inline u64
perf_clock(void)
92 void perf_pmu_disable(struct pmu
*pmu
)
94 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
96 pmu
->pmu_disable(pmu
);
99 void perf_pmu_enable(struct pmu
*pmu
)
101 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
103 pmu
->pmu_enable(pmu
);
106 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
109 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
110 * because they're strictly cpu affine and rotate_start is called with IRQs
111 * disabled, while rotate_context is called from IRQ context.
113 static void perf_pmu_rotate_start(struct pmu
*pmu
)
115 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
116 struct list_head
*head
= &__get_cpu_var(rotation_list
);
118 WARN_ON(!irqs_disabled());
120 if (list_empty(&cpuctx
->rotation_list
))
121 list_add(&cpuctx
->rotation_list
, head
);
124 static void get_ctx(struct perf_event_context
*ctx
)
126 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
129 static void free_ctx(struct rcu_head
*head
)
131 struct perf_event_context
*ctx
;
133 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
137 static void put_ctx(struct perf_event_context
*ctx
)
139 if (atomic_dec_and_test(&ctx
->refcount
)) {
141 put_ctx(ctx
->parent_ctx
);
143 put_task_struct(ctx
->task
);
144 call_rcu(&ctx
->rcu_head
, free_ctx
);
148 static void unclone_ctx(struct perf_event_context
*ctx
)
150 if (ctx
->parent_ctx
) {
151 put_ctx(ctx
->parent_ctx
);
152 ctx
->parent_ctx
= NULL
;
156 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
159 * only top level events have the pid namespace they were created in
162 event
= event
->parent
;
164 return task_tgid_nr_ns(p
, event
->ns
);
167 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
170 * only top level events have the pid namespace they were created in
173 event
= event
->parent
;
175 return task_pid_nr_ns(p
, event
->ns
);
179 * If we inherit events we want to return the parent event id
182 static u64
primary_event_id(struct perf_event
*event
)
187 id
= event
->parent
->id
;
193 * Get the perf_event_context for a task and lock it.
194 * This has to cope with with the fact that until it is locked,
195 * the context could get moved to another task.
197 static struct perf_event_context
*
198 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
200 struct perf_event_context
*ctx
;
204 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
207 * If this context is a clone of another, it might
208 * get swapped for another underneath us by
209 * perf_event_task_sched_out, though the
210 * rcu_read_lock() protects us from any context
211 * getting freed. Lock the context and check if it
212 * got swapped before we could get the lock, and retry
213 * if so. If we locked the right context, then it
214 * can't get swapped on us any more.
216 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
217 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
218 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
222 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
223 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
232 * Get the context for a task and increment its pin_count so it
233 * can't get swapped to another task. This also increments its
234 * reference count so that the context can't get freed.
236 static struct perf_event_context
*
237 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
239 struct perf_event_context
*ctx
;
242 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
245 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
250 static void perf_unpin_context(struct perf_event_context
*ctx
)
254 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
256 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
261 * Update the record of the current time in a context.
263 static void update_context_time(struct perf_event_context
*ctx
)
265 u64 now
= perf_clock();
267 ctx
->time
+= now
- ctx
->timestamp
;
268 ctx
->timestamp
= now
;
271 static u64
perf_event_time(struct perf_event
*event
)
273 struct perf_event_context
*ctx
= event
->ctx
;
274 return ctx
? ctx
->time
: 0;
278 * Update the total_time_enabled and total_time_running fields for a event.
280 static void update_event_times(struct perf_event
*event
)
282 struct perf_event_context
*ctx
= event
->ctx
;
285 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
286 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
290 run_end
= perf_event_time(event
);
292 run_end
= event
->tstamp_stopped
;
294 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
296 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
297 run_end
= event
->tstamp_stopped
;
299 run_end
= perf_event_time(event
);
301 event
->total_time_running
= run_end
- event
->tstamp_running
;
305 * Update total_time_enabled and total_time_running for all events in a group.
307 static void update_group_times(struct perf_event
*leader
)
309 struct perf_event
*event
;
311 update_event_times(leader
);
312 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
313 update_event_times(event
);
316 static struct list_head
*
317 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
319 if (event
->attr
.pinned
)
320 return &ctx
->pinned_groups
;
322 return &ctx
->flexible_groups
;
326 * Add a event from the lists for its context.
327 * Must be called with ctx->mutex and ctx->lock held.
330 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
332 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
333 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
336 * If we're a stand alone event or group leader, we go to the context
337 * list, group events are kept attached to the group so that
338 * perf_group_detach can, at all times, locate all siblings.
340 if (event
->group_leader
== event
) {
341 struct list_head
*list
;
343 if (is_software_event(event
))
344 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
346 list
= ctx_group_list(event
, ctx
);
347 list_add_tail(&event
->group_entry
, list
);
350 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
352 perf_pmu_rotate_start(ctx
->pmu
);
354 if (event
->attr
.inherit_stat
)
359 * Called at perf_event creation and when events are attached/detached from a
362 static void perf_event__read_size(struct perf_event
*event
)
364 int entry
= sizeof(u64
); /* value */
368 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
371 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
374 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
375 entry
+= sizeof(u64
);
377 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
378 nr
+= event
->group_leader
->nr_siblings
;
383 event
->read_size
= size
;
386 static void perf_event__header_size(struct perf_event
*event
)
388 struct perf_sample_data
*data
;
389 u64 sample_type
= event
->attr
.sample_type
;
392 perf_event__read_size(event
);
394 if (sample_type
& PERF_SAMPLE_IP
)
395 size
+= sizeof(data
->ip
);
397 if (sample_type
& PERF_SAMPLE_ADDR
)
398 size
+= sizeof(data
->addr
);
400 if (sample_type
& PERF_SAMPLE_PERIOD
)
401 size
+= sizeof(data
->period
);
403 if (sample_type
& PERF_SAMPLE_READ
)
404 size
+= event
->read_size
;
406 event
->header_size
= size
;
409 static void perf_event__id_header_size(struct perf_event
*event
)
411 struct perf_sample_data
*data
;
412 u64 sample_type
= event
->attr
.sample_type
;
415 if (sample_type
& PERF_SAMPLE_TID
)
416 size
+= sizeof(data
->tid_entry
);
418 if (sample_type
& PERF_SAMPLE_TIME
)
419 size
+= sizeof(data
->time
);
421 if (sample_type
& PERF_SAMPLE_ID
)
422 size
+= sizeof(data
->id
);
424 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
425 size
+= sizeof(data
->stream_id
);
427 if (sample_type
& PERF_SAMPLE_CPU
)
428 size
+= sizeof(data
->cpu_entry
);
430 event
->id_header_size
= size
;
433 static void perf_group_attach(struct perf_event
*event
)
435 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
438 * We can have double attach due to group movement in perf_event_open.
440 if (event
->attach_state
& PERF_ATTACH_GROUP
)
443 event
->attach_state
|= PERF_ATTACH_GROUP
;
445 if (group_leader
== event
)
448 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
449 !is_software_event(event
))
450 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
452 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
453 group_leader
->nr_siblings
++;
455 perf_event__header_size(group_leader
);
457 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
458 perf_event__header_size(pos
);
462 * Remove a event from the lists for its context.
463 * Must be called with ctx->mutex and ctx->lock held.
466 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
469 * We can have double detach due to exit/hot-unplug + close.
471 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
474 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
477 if (event
->attr
.inherit_stat
)
480 list_del_rcu(&event
->event_entry
);
482 if (event
->group_leader
== event
)
483 list_del_init(&event
->group_entry
);
485 update_group_times(event
);
488 * If event was in error state, then keep it
489 * that way, otherwise bogus counts will be
490 * returned on read(). The only way to get out
491 * of error state is by explicit re-enabling
494 if (event
->state
> PERF_EVENT_STATE_OFF
)
495 event
->state
= PERF_EVENT_STATE_OFF
;
498 static void perf_group_detach(struct perf_event
*event
)
500 struct perf_event
*sibling
, *tmp
;
501 struct list_head
*list
= NULL
;
504 * We can have double detach due to exit/hot-unplug + close.
506 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
509 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
512 * If this is a sibling, remove it from its group.
514 if (event
->group_leader
!= event
) {
515 list_del_init(&event
->group_entry
);
516 event
->group_leader
->nr_siblings
--;
520 if (!list_empty(&event
->group_entry
))
521 list
= &event
->group_entry
;
524 * If this was a group event with sibling events then
525 * upgrade the siblings to singleton events by adding them
526 * to whatever list we are on.
528 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
530 list_move_tail(&sibling
->group_entry
, list
);
531 sibling
->group_leader
= sibling
;
533 /* Inherit group flags from the previous leader */
534 sibling
->group_flags
= event
->group_flags
;
538 perf_event__header_size(event
->group_leader
);
540 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
541 perf_event__header_size(tmp
);
545 event_filter_match(struct perf_event
*event
)
547 return event
->cpu
== -1 || event
->cpu
== smp_processor_id();
551 event_sched_out(struct perf_event
*event
,
552 struct perf_cpu_context
*cpuctx
,
553 struct perf_event_context
*ctx
)
555 u64 tstamp
= perf_event_time(event
);
558 * An event which could not be activated because of
559 * filter mismatch still needs to have its timings
560 * maintained, otherwise bogus information is return
561 * via read() for time_enabled, time_running:
563 if (event
->state
== PERF_EVENT_STATE_INACTIVE
564 && !event_filter_match(event
)) {
565 delta
= ctx
->time
- event
->tstamp_stopped
;
566 event
->tstamp_running
+= delta
;
567 event
->tstamp_stopped
= tstamp
;
570 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
573 event
->state
= PERF_EVENT_STATE_INACTIVE
;
574 if (event
->pending_disable
) {
575 event
->pending_disable
= 0;
576 event
->state
= PERF_EVENT_STATE_OFF
;
578 event
->tstamp_stopped
= tstamp
;
579 event
->pmu
->del(event
, 0);
582 if (!is_software_event(event
))
583 cpuctx
->active_oncpu
--;
585 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
586 cpuctx
->exclusive
= 0;
590 group_sched_out(struct perf_event
*group_event
,
591 struct perf_cpu_context
*cpuctx
,
592 struct perf_event_context
*ctx
)
594 struct perf_event
*event
;
595 int state
= group_event
->state
;
597 event_sched_out(group_event
, cpuctx
, ctx
);
600 * Schedule out siblings (if any):
602 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
603 event_sched_out(event
, cpuctx
, ctx
);
605 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
606 cpuctx
->exclusive
= 0;
609 static inline struct perf_cpu_context
*
610 __get_cpu_context(struct perf_event_context
*ctx
)
612 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
616 * Cross CPU call to remove a performance event
618 * We disable the event on the hardware level first. After that we
619 * remove it from the context list.
621 static void __perf_event_remove_from_context(void *info
)
623 struct perf_event
*event
= info
;
624 struct perf_event_context
*ctx
= event
->ctx
;
625 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
628 * If this is a task context, we need to check whether it is
629 * the current task context of this cpu. If not it has been
630 * scheduled out before the smp call arrived.
632 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
635 raw_spin_lock(&ctx
->lock
);
637 event_sched_out(event
, cpuctx
, ctx
);
639 list_del_event(event
, ctx
);
641 raw_spin_unlock(&ctx
->lock
);
646 * Remove the event from a task's (or a CPU's) list of events.
648 * Must be called with ctx->mutex held.
650 * CPU events are removed with a smp call. For task events we only
651 * call when the task is on a CPU.
653 * If event->ctx is a cloned context, callers must make sure that
654 * every task struct that event->ctx->task could possibly point to
655 * remains valid. This is OK when called from perf_release since
656 * that only calls us on the top-level context, which can't be a clone.
657 * When called from perf_event_exit_task, it's OK because the
658 * context has been detached from its task.
660 static void perf_event_remove_from_context(struct perf_event
*event
)
662 struct perf_event_context
*ctx
= event
->ctx
;
663 struct task_struct
*task
= ctx
->task
;
667 * Per cpu events are removed via an smp call and
668 * the removal is always successful.
670 smp_call_function_single(event
->cpu
,
671 __perf_event_remove_from_context
,
677 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
680 raw_spin_lock_irq(&ctx
->lock
);
682 * If the context is active we need to retry the smp call.
684 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
685 raw_spin_unlock_irq(&ctx
->lock
);
690 * The lock prevents that this context is scheduled in so we
691 * can remove the event safely, if the call above did not
694 if (!list_empty(&event
->group_entry
))
695 list_del_event(event
, ctx
);
696 raw_spin_unlock_irq(&ctx
->lock
);
700 * Cross CPU call to disable a performance event
702 static void __perf_event_disable(void *info
)
704 struct perf_event
*event
= info
;
705 struct perf_event_context
*ctx
= event
->ctx
;
706 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
709 * If this is a per-task event, need to check whether this
710 * event's task is the current task on this cpu.
712 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
715 raw_spin_lock(&ctx
->lock
);
718 * If the event is on, turn it off.
719 * If it is in error state, leave it in error state.
721 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
722 update_context_time(ctx
);
723 update_group_times(event
);
724 if (event
== event
->group_leader
)
725 group_sched_out(event
, cpuctx
, ctx
);
727 event_sched_out(event
, cpuctx
, ctx
);
728 event
->state
= PERF_EVENT_STATE_OFF
;
731 raw_spin_unlock(&ctx
->lock
);
737 * If event->ctx is a cloned context, callers must make sure that
738 * every task struct that event->ctx->task could possibly point to
739 * remains valid. This condition is satisifed when called through
740 * perf_event_for_each_child or perf_event_for_each because they
741 * hold the top-level event's child_mutex, so any descendant that
742 * goes to exit will block in sync_child_event.
743 * When called from perf_pending_event it's OK because event->ctx
744 * is the current context on this CPU and preemption is disabled,
745 * hence we can't get into perf_event_task_sched_out for this context.
747 void perf_event_disable(struct perf_event
*event
)
749 struct perf_event_context
*ctx
= event
->ctx
;
750 struct task_struct
*task
= ctx
->task
;
754 * Disable the event on the cpu that it's on
756 smp_call_function_single(event
->cpu
, __perf_event_disable
,
762 task_oncpu_function_call(task
, __perf_event_disable
, event
);
764 raw_spin_lock_irq(&ctx
->lock
);
766 * If the event is still active, we need to retry the cross-call.
768 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
769 raw_spin_unlock_irq(&ctx
->lock
);
774 * Since we have the lock this context can't be scheduled
775 * in, so we can change the state safely.
777 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
778 update_group_times(event
);
779 event
->state
= PERF_EVENT_STATE_OFF
;
782 raw_spin_unlock_irq(&ctx
->lock
);
786 event_sched_in(struct perf_event
*event
,
787 struct perf_cpu_context
*cpuctx
,
788 struct perf_event_context
*ctx
)
790 u64 tstamp
= perf_event_time(event
);
792 if (event
->state
<= PERF_EVENT_STATE_OFF
)
795 event
->state
= PERF_EVENT_STATE_ACTIVE
;
796 event
->oncpu
= smp_processor_id();
798 * The new state must be visible before we turn it on in the hardware:
802 if (event
->pmu
->add(event
, PERF_EF_START
)) {
803 event
->state
= PERF_EVENT_STATE_INACTIVE
;
808 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
810 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
812 if (!is_software_event(event
))
813 cpuctx
->active_oncpu
++;
816 if (event
->attr
.exclusive
)
817 cpuctx
->exclusive
= 1;
823 group_sched_in(struct perf_event
*group_event
,
824 struct perf_cpu_context
*cpuctx
,
825 struct perf_event_context
*ctx
)
827 struct perf_event
*event
, *partial_group
= NULL
;
828 struct pmu
*pmu
= group_event
->pmu
;
830 bool simulate
= false;
832 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
837 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
838 pmu
->cancel_txn(pmu
);
843 * Schedule in siblings as one group (if any):
845 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
846 if (event_sched_in(event
, cpuctx
, ctx
)) {
847 partial_group
= event
;
852 if (!pmu
->commit_txn(pmu
))
857 * Groups can be scheduled in as one unit only, so undo any
858 * partial group before returning:
859 * The events up to the failed event are scheduled out normally,
860 * tstamp_stopped will be updated.
862 * The failed events and the remaining siblings need to have
863 * their timings updated as if they had gone thru event_sched_in()
864 * and event_sched_out(). This is required to get consistent timings
865 * across the group. This also takes care of the case where the group
866 * could never be scheduled by ensuring tstamp_stopped is set to mark
867 * the time the event was actually stopped, such that time delta
868 * calculation in update_event_times() is correct.
870 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
871 if (event
== partial_group
)
875 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
876 event
->tstamp_stopped
= now
;
878 event_sched_out(event
, cpuctx
, ctx
);
881 event_sched_out(group_event
, cpuctx
, ctx
);
883 pmu
->cancel_txn(pmu
);
889 * Work out whether we can put this event group on the CPU now.
891 static int group_can_go_on(struct perf_event
*event
,
892 struct perf_cpu_context
*cpuctx
,
896 * Groups consisting entirely of software events can always go on.
898 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
901 * If an exclusive group is already on, no other hardware
904 if (cpuctx
->exclusive
)
907 * If this group is exclusive and there are already
908 * events on the CPU, it can't go on.
910 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
913 * Otherwise, try to add it if all previous groups were able
919 static void add_event_to_ctx(struct perf_event
*event
,
920 struct perf_event_context
*ctx
)
922 u64 tstamp
= perf_event_time(event
);
924 list_add_event(event
, ctx
);
925 perf_group_attach(event
);
926 event
->tstamp_enabled
= tstamp
;
927 event
->tstamp_running
= tstamp
;
928 event
->tstamp_stopped
= tstamp
;
932 * Cross CPU call to install and enable a performance event
934 * Must be called with ctx->mutex held
936 static void __perf_install_in_context(void *info
)
938 struct perf_event
*event
= info
;
939 struct perf_event_context
*ctx
= event
->ctx
;
940 struct perf_event
*leader
= event
->group_leader
;
941 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
945 * If this is a task context, we need to check whether it is
946 * the current task context of this cpu. If not it has been
947 * scheduled out before the smp call arrived.
948 * Or possibly this is the right context but it isn't
949 * on this cpu because it had no events.
951 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
952 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
954 cpuctx
->task_ctx
= ctx
;
957 raw_spin_lock(&ctx
->lock
);
959 update_context_time(ctx
);
961 add_event_to_ctx(event
, ctx
);
963 if (!event_filter_match(event
))
967 * Don't put the event on if it is disabled or if
968 * it is in a group and the group isn't on.
970 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
971 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
975 * An exclusive event can't go on if there are already active
976 * hardware events, and no hardware event can go on if there
977 * is already an exclusive event on.
979 if (!group_can_go_on(event
, cpuctx
, 1))
982 err
= event_sched_in(event
, cpuctx
, ctx
);
986 * This event couldn't go on. If it is in a group
987 * then we have to pull the whole group off.
988 * If the event group is pinned then put it in error state.
991 group_sched_out(leader
, cpuctx
, ctx
);
992 if (leader
->attr
.pinned
) {
993 update_group_times(leader
);
994 leader
->state
= PERF_EVENT_STATE_ERROR
;
999 raw_spin_unlock(&ctx
->lock
);
1003 * Attach a performance event to a context
1005 * First we add the event to the list with the hardware enable bit
1006 * in event->hw_config cleared.
1008 * If the event is attached to a task which is on a CPU we use a smp
1009 * call to enable it in the task context. The task might have been
1010 * scheduled away, but we check this in the smp call again.
1012 * Must be called with ctx->mutex held.
1015 perf_install_in_context(struct perf_event_context
*ctx
,
1016 struct perf_event
*event
,
1019 struct task_struct
*task
= ctx
->task
;
1025 * Per cpu events are installed via an smp call and
1026 * the install is always successful.
1028 smp_call_function_single(cpu
, __perf_install_in_context
,
1034 task_oncpu_function_call(task
, __perf_install_in_context
,
1037 raw_spin_lock_irq(&ctx
->lock
);
1039 * we need to retry the smp call.
1041 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
1042 raw_spin_unlock_irq(&ctx
->lock
);
1047 * The lock prevents that this context is scheduled in so we
1048 * can add the event safely, if it the call above did not
1051 if (list_empty(&event
->group_entry
))
1052 add_event_to_ctx(event
, ctx
);
1053 raw_spin_unlock_irq(&ctx
->lock
);
1057 * Put a event into inactive state and update time fields.
1058 * Enabling the leader of a group effectively enables all
1059 * the group members that aren't explicitly disabled, so we
1060 * have to update their ->tstamp_enabled also.
1061 * Note: this works for group members as well as group leaders
1062 * since the non-leader members' sibling_lists will be empty.
1064 static void __perf_event_mark_enabled(struct perf_event
*event
,
1065 struct perf_event_context
*ctx
)
1067 struct perf_event
*sub
;
1068 u64 tstamp
= perf_event_time(event
);
1070 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1071 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
1072 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
1073 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
1074 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
1079 * Cross CPU call to enable a performance event
1081 static void __perf_event_enable(void *info
)
1083 struct perf_event
*event
= info
;
1084 struct perf_event_context
*ctx
= event
->ctx
;
1085 struct perf_event
*leader
= event
->group_leader
;
1086 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1090 * If this is a per-task event, need to check whether this
1091 * event's task is the current task on this cpu.
1093 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
1094 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
1096 cpuctx
->task_ctx
= ctx
;
1099 raw_spin_lock(&ctx
->lock
);
1101 update_context_time(ctx
);
1103 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1105 __perf_event_mark_enabled(event
, ctx
);
1107 if (!event_filter_match(event
))
1111 * If the event is in a group and isn't the group leader,
1112 * then don't put it on unless the group is on.
1114 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
1117 if (!group_can_go_on(event
, cpuctx
, 1)) {
1120 if (event
== leader
)
1121 err
= group_sched_in(event
, cpuctx
, ctx
);
1123 err
= event_sched_in(event
, cpuctx
, ctx
);
1128 * If this event can't go on and it's part of a
1129 * group, then the whole group has to come off.
1131 if (leader
!= event
)
1132 group_sched_out(leader
, cpuctx
, ctx
);
1133 if (leader
->attr
.pinned
) {
1134 update_group_times(leader
);
1135 leader
->state
= PERF_EVENT_STATE_ERROR
;
1140 raw_spin_unlock(&ctx
->lock
);
1146 * If event->ctx is a cloned context, callers must make sure that
1147 * every task struct that event->ctx->task could possibly point to
1148 * remains valid. This condition is satisfied when called through
1149 * perf_event_for_each_child or perf_event_for_each as described
1150 * for perf_event_disable.
1152 void perf_event_enable(struct perf_event
*event
)
1154 struct perf_event_context
*ctx
= event
->ctx
;
1155 struct task_struct
*task
= ctx
->task
;
1159 * Enable the event on the cpu that it's on
1161 smp_call_function_single(event
->cpu
, __perf_event_enable
,
1166 raw_spin_lock_irq(&ctx
->lock
);
1167 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1171 * If the event is in error state, clear that first.
1172 * That way, if we see the event in error state below, we
1173 * know that it has gone back into error state, as distinct
1174 * from the task having been scheduled away before the
1175 * cross-call arrived.
1177 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1178 event
->state
= PERF_EVENT_STATE_OFF
;
1181 raw_spin_unlock_irq(&ctx
->lock
);
1182 task_oncpu_function_call(task
, __perf_event_enable
, event
);
1184 raw_spin_lock_irq(&ctx
->lock
);
1187 * If the context is active and the event is still off,
1188 * we need to retry the cross-call.
1190 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
1194 * Since we have the lock this context can't be scheduled
1195 * in, so we can change the state safely.
1197 if (event
->state
== PERF_EVENT_STATE_OFF
)
1198 __perf_event_mark_enabled(event
, ctx
);
1201 raw_spin_unlock_irq(&ctx
->lock
);
1204 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1207 * not supported on inherited events
1209 if (event
->attr
.inherit
|| !is_sampling_event(event
))
1212 atomic_add(refresh
, &event
->event_limit
);
1213 perf_event_enable(event
);
1218 static void ctx_sched_out(struct perf_event_context
*ctx
,
1219 struct perf_cpu_context
*cpuctx
,
1220 enum event_type_t event_type
)
1222 struct perf_event
*event
;
1224 raw_spin_lock(&ctx
->lock
);
1225 perf_pmu_disable(ctx
->pmu
);
1227 if (likely(!ctx
->nr_events
))
1229 update_context_time(ctx
);
1231 if (!ctx
->nr_active
)
1234 if (event_type
& EVENT_PINNED
) {
1235 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1236 group_sched_out(event
, cpuctx
, ctx
);
1239 if (event_type
& EVENT_FLEXIBLE
) {
1240 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1241 group_sched_out(event
, cpuctx
, ctx
);
1244 perf_pmu_enable(ctx
->pmu
);
1245 raw_spin_unlock(&ctx
->lock
);
1249 * Test whether two contexts are equivalent, i.e. whether they
1250 * have both been cloned from the same version of the same context
1251 * and they both have the same number of enabled events.
1252 * If the number of enabled events is the same, then the set
1253 * of enabled events should be the same, because these are both
1254 * inherited contexts, therefore we can't access individual events
1255 * in them directly with an fd; we can only enable/disable all
1256 * events via prctl, or enable/disable all events in a family
1257 * via ioctl, which will have the same effect on both contexts.
1259 static int context_equiv(struct perf_event_context
*ctx1
,
1260 struct perf_event_context
*ctx2
)
1262 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1263 && ctx1
->parent_gen
== ctx2
->parent_gen
1264 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1267 static void __perf_event_sync_stat(struct perf_event
*event
,
1268 struct perf_event
*next_event
)
1272 if (!event
->attr
.inherit_stat
)
1276 * Update the event value, we cannot use perf_event_read()
1277 * because we're in the middle of a context switch and have IRQs
1278 * disabled, which upsets smp_call_function_single(), however
1279 * we know the event must be on the current CPU, therefore we
1280 * don't need to use it.
1282 switch (event
->state
) {
1283 case PERF_EVENT_STATE_ACTIVE
:
1284 event
->pmu
->read(event
);
1287 case PERF_EVENT_STATE_INACTIVE
:
1288 update_event_times(event
);
1296 * In order to keep per-task stats reliable we need to flip the event
1297 * values when we flip the contexts.
1299 value
= local64_read(&next_event
->count
);
1300 value
= local64_xchg(&event
->count
, value
);
1301 local64_set(&next_event
->count
, value
);
1303 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1304 swap(event
->total_time_running
, next_event
->total_time_running
);
1307 * Since we swizzled the values, update the user visible data too.
1309 perf_event_update_userpage(event
);
1310 perf_event_update_userpage(next_event
);
1313 #define list_next_entry(pos, member) \
1314 list_entry(pos->member.next, typeof(*pos), member)
1316 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1317 struct perf_event_context
*next_ctx
)
1319 struct perf_event
*event
, *next_event
;
1324 update_context_time(ctx
);
1326 event
= list_first_entry(&ctx
->event_list
,
1327 struct perf_event
, event_entry
);
1329 next_event
= list_first_entry(&next_ctx
->event_list
,
1330 struct perf_event
, event_entry
);
1332 while (&event
->event_entry
!= &ctx
->event_list
&&
1333 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1335 __perf_event_sync_stat(event
, next_event
);
1337 event
= list_next_entry(event
, event_entry
);
1338 next_event
= list_next_entry(next_event
, event_entry
);
1342 void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
1343 struct task_struct
*next
)
1345 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
1346 struct perf_event_context
*next_ctx
;
1347 struct perf_event_context
*parent
;
1348 struct perf_cpu_context
*cpuctx
;
1354 cpuctx
= __get_cpu_context(ctx
);
1355 if (!cpuctx
->task_ctx
)
1359 parent
= rcu_dereference(ctx
->parent_ctx
);
1360 next_ctx
= next
->perf_event_ctxp
[ctxn
];
1361 if (parent
&& next_ctx
&&
1362 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1364 * Looks like the two contexts are clones, so we might be
1365 * able to optimize the context switch. We lock both
1366 * contexts and check that they are clones under the
1367 * lock (including re-checking that neither has been
1368 * uncloned in the meantime). It doesn't matter which
1369 * order we take the locks because no other cpu could
1370 * be trying to lock both of these tasks.
1372 raw_spin_lock(&ctx
->lock
);
1373 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1374 if (context_equiv(ctx
, next_ctx
)) {
1376 * XXX do we need a memory barrier of sorts
1377 * wrt to rcu_dereference() of perf_event_ctxp
1379 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
1380 next
->perf_event_ctxp
[ctxn
] = ctx
;
1382 next_ctx
->task
= task
;
1385 perf_event_sync_stat(ctx
, next_ctx
);
1387 raw_spin_unlock(&next_ctx
->lock
);
1388 raw_spin_unlock(&ctx
->lock
);
1393 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
1394 cpuctx
->task_ctx
= NULL
;
1398 #define for_each_task_context_nr(ctxn) \
1399 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1402 * Called from scheduler to remove the events of the current task,
1403 * with interrupts disabled.
1405 * We stop each event and update the event value in event->count.
1407 * This does not protect us against NMI, but disable()
1408 * sets the disabled bit in the control field of event _before_
1409 * accessing the event control register. If a NMI hits, then it will
1410 * not restart the event.
1412 void __perf_event_task_sched_out(struct task_struct
*task
,
1413 struct task_struct
*next
)
1417 for_each_task_context_nr(ctxn
)
1418 perf_event_context_sched_out(task
, ctxn
, next
);
1421 static void task_ctx_sched_out(struct perf_event_context
*ctx
,
1422 enum event_type_t event_type
)
1424 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1426 if (!cpuctx
->task_ctx
)
1429 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1432 ctx_sched_out(ctx
, cpuctx
, event_type
);
1433 cpuctx
->task_ctx
= NULL
;
1437 * Called with IRQs disabled
1439 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
1440 enum event_type_t event_type
)
1442 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
1446 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
1447 struct perf_cpu_context
*cpuctx
)
1449 struct perf_event
*event
;
1451 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1452 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1454 if (!event_filter_match(event
))
1457 if (group_can_go_on(event
, cpuctx
, 1))
1458 group_sched_in(event
, cpuctx
, ctx
);
1461 * If this pinned group hasn't been scheduled,
1462 * put it in error state.
1464 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1465 update_group_times(event
);
1466 event
->state
= PERF_EVENT_STATE_ERROR
;
1472 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
1473 struct perf_cpu_context
*cpuctx
)
1475 struct perf_event
*event
;
1478 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1479 /* Ignore events in OFF or ERROR state */
1480 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1483 * Listen to the 'cpu' scheduling filter constraint
1486 if (!event_filter_match(event
))
1489 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
1490 if (group_sched_in(event
, cpuctx
, ctx
))
1497 ctx_sched_in(struct perf_event_context
*ctx
,
1498 struct perf_cpu_context
*cpuctx
,
1499 enum event_type_t event_type
)
1501 raw_spin_lock(&ctx
->lock
);
1503 if (likely(!ctx
->nr_events
))
1506 ctx
->timestamp
= perf_clock();
1509 * First go through the list and put on any pinned groups
1510 * in order to give them the best chance of going on.
1512 if (event_type
& EVENT_PINNED
)
1513 ctx_pinned_sched_in(ctx
, cpuctx
);
1515 /* Then walk through the lower prio flexible groups */
1516 if (event_type
& EVENT_FLEXIBLE
)
1517 ctx_flexible_sched_in(ctx
, cpuctx
);
1520 raw_spin_unlock(&ctx
->lock
);
1523 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
1524 enum event_type_t event_type
)
1526 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1528 ctx_sched_in(ctx
, cpuctx
, event_type
);
1531 static void task_ctx_sched_in(struct perf_event_context
*ctx
,
1532 enum event_type_t event_type
)
1534 struct perf_cpu_context
*cpuctx
;
1536 cpuctx
= __get_cpu_context(ctx
);
1537 if (cpuctx
->task_ctx
== ctx
)
1540 ctx_sched_in(ctx
, cpuctx
, event_type
);
1541 cpuctx
->task_ctx
= ctx
;
1544 void perf_event_context_sched_in(struct perf_event_context
*ctx
)
1546 struct perf_cpu_context
*cpuctx
;
1548 cpuctx
= __get_cpu_context(ctx
);
1549 if (cpuctx
->task_ctx
== ctx
)
1552 perf_pmu_disable(ctx
->pmu
);
1554 * We want to keep the following priority order:
1555 * cpu pinned (that don't need to move), task pinned,
1556 * cpu flexible, task flexible.
1558 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1560 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
);
1561 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1562 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
);
1564 cpuctx
->task_ctx
= ctx
;
1567 * Since these rotations are per-cpu, we need to ensure the
1568 * cpu-context we got scheduled on is actually rotating.
1570 perf_pmu_rotate_start(ctx
->pmu
);
1571 perf_pmu_enable(ctx
->pmu
);
1575 * Called from scheduler to add the events of the current task
1576 * with interrupts disabled.
1578 * We restore the event value and then enable it.
1580 * This does not protect us against NMI, but enable()
1581 * sets the enabled bit in the control field of event _before_
1582 * accessing the event control register. If a NMI hits, then it will
1583 * keep the event running.
1585 void __perf_event_task_sched_in(struct task_struct
*task
)
1587 struct perf_event_context
*ctx
;
1590 for_each_task_context_nr(ctxn
) {
1591 ctx
= task
->perf_event_ctxp
[ctxn
];
1595 perf_event_context_sched_in(ctx
);
1599 #define MAX_INTERRUPTS (~0ULL)
1601 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1603 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1605 u64 frequency
= event
->attr
.sample_freq
;
1606 u64 sec
= NSEC_PER_SEC
;
1607 u64 divisor
, dividend
;
1609 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
1611 count_fls
= fls64(count
);
1612 nsec_fls
= fls64(nsec
);
1613 frequency_fls
= fls64(frequency
);
1617 * We got @count in @nsec, with a target of sample_freq HZ
1618 * the target period becomes:
1621 * period = -------------------
1622 * @nsec * sample_freq
1627 * Reduce accuracy by one bit such that @a and @b converge
1628 * to a similar magnitude.
1630 #define REDUCE_FLS(a, b) \
1632 if (a##_fls > b##_fls) { \
1642 * Reduce accuracy until either term fits in a u64, then proceed with
1643 * the other, so that finally we can do a u64/u64 division.
1645 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
1646 REDUCE_FLS(nsec
, frequency
);
1647 REDUCE_FLS(sec
, count
);
1650 if (count_fls
+ sec_fls
> 64) {
1651 divisor
= nsec
* frequency
;
1653 while (count_fls
+ sec_fls
> 64) {
1654 REDUCE_FLS(count
, sec
);
1658 dividend
= count
* sec
;
1660 dividend
= count
* sec
;
1662 while (nsec_fls
+ frequency_fls
> 64) {
1663 REDUCE_FLS(nsec
, frequency
);
1667 divisor
= nsec
* frequency
;
1673 return div64_u64(dividend
, divisor
);
1676 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1678 struct hw_perf_event
*hwc
= &event
->hw
;
1679 s64 period
, sample_period
;
1682 period
= perf_calculate_period(event
, nsec
, count
);
1684 delta
= (s64
)(period
- hwc
->sample_period
);
1685 delta
= (delta
+ 7) / 8; /* low pass filter */
1687 sample_period
= hwc
->sample_period
+ delta
;
1692 hwc
->sample_period
= sample_period
;
1694 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
1695 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
1696 local64_set(&hwc
->period_left
, 0);
1697 event
->pmu
->start(event
, PERF_EF_RELOAD
);
1701 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
, u64 period
)
1703 struct perf_event
*event
;
1704 struct hw_perf_event
*hwc
;
1705 u64 interrupts
, now
;
1708 raw_spin_lock(&ctx
->lock
);
1709 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1710 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1713 if (!event_filter_match(event
))
1718 interrupts
= hwc
->interrupts
;
1719 hwc
->interrupts
= 0;
1722 * unthrottle events on the tick
1724 if (interrupts
== MAX_INTERRUPTS
) {
1725 perf_log_throttle(event
, 1);
1726 event
->pmu
->start(event
, 0);
1729 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1732 event
->pmu
->read(event
);
1733 now
= local64_read(&event
->count
);
1734 delta
= now
- hwc
->freq_count_stamp
;
1735 hwc
->freq_count_stamp
= now
;
1738 perf_adjust_period(event
, period
, delta
);
1740 raw_spin_unlock(&ctx
->lock
);
1744 * Round-robin a context's events:
1746 static void rotate_ctx(struct perf_event_context
*ctx
)
1748 raw_spin_lock(&ctx
->lock
);
1751 * Rotate the first entry last of non-pinned groups. Rotation might be
1752 * disabled by the inheritance code.
1754 if (!ctx
->rotate_disable
)
1755 list_rotate_left(&ctx
->flexible_groups
);
1757 raw_spin_unlock(&ctx
->lock
);
1761 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1762 * because they're strictly cpu affine and rotate_start is called with IRQs
1763 * disabled, while rotate_context is called from IRQ context.
1765 static void perf_rotate_context(struct perf_cpu_context
*cpuctx
)
1767 u64 interval
= (u64
)cpuctx
->jiffies_interval
* TICK_NSEC
;
1768 struct perf_event_context
*ctx
= NULL
;
1769 int rotate
= 0, remove
= 1;
1771 if (cpuctx
->ctx
.nr_events
) {
1773 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
1777 ctx
= cpuctx
->task_ctx
;
1778 if (ctx
&& ctx
->nr_events
) {
1780 if (ctx
->nr_events
!= ctx
->nr_active
)
1784 perf_pmu_disable(cpuctx
->ctx
.pmu
);
1785 perf_ctx_adjust_freq(&cpuctx
->ctx
, interval
);
1787 perf_ctx_adjust_freq(ctx
, interval
);
1792 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1794 task_ctx_sched_out(ctx
, EVENT_FLEXIBLE
);
1796 rotate_ctx(&cpuctx
->ctx
);
1800 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1802 task_ctx_sched_in(ctx
, EVENT_FLEXIBLE
);
1806 list_del_init(&cpuctx
->rotation_list
);
1808 perf_pmu_enable(cpuctx
->ctx
.pmu
);
1811 void perf_event_task_tick(void)
1813 struct list_head
*head
= &__get_cpu_var(rotation_list
);
1814 struct perf_cpu_context
*cpuctx
, *tmp
;
1816 WARN_ON(!irqs_disabled());
1818 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
1819 if (cpuctx
->jiffies_interval
== 1 ||
1820 !(jiffies
% cpuctx
->jiffies_interval
))
1821 perf_rotate_context(cpuctx
);
1825 static int event_enable_on_exec(struct perf_event
*event
,
1826 struct perf_event_context
*ctx
)
1828 if (!event
->attr
.enable_on_exec
)
1831 event
->attr
.enable_on_exec
= 0;
1832 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1835 __perf_event_mark_enabled(event
, ctx
);
1841 * Enable all of a task's events that have been marked enable-on-exec.
1842 * This expects task == current.
1844 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
1846 struct perf_event
*event
;
1847 unsigned long flags
;
1851 local_irq_save(flags
);
1852 if (!ctx
|| !ctx
->nr_events
)
1855 task_ctx_sched_out(ctx
, EVENT_ALL
);
1857 raw_spin_lock(&ctx
->lock
);
1859 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1860 ret
= event_enable_on_exec(event
, ctx
);
1865 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1866 ret
= event_enable_on_exec(event
, ctx
);
1872 * Unclone this context if we enabled any event.
1877 raw_spin_unlock(&ctx
->lock
);
1879 perf_event_context_sched_in(ctx
);
1881 local_irq_restore(flags
);
1885 * Cross CPU call to read the hardware event
1887 static void __perf_event_read(void *info
)
1889 struct perf_event
*event
= info
;
1890 struct perf_event_context
*ctx
= event
->ctx
;
1891 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1894 * If this is a task context, we need to check whether it is
1895 * the current task context of this cpu. If not it has been
1896 * scheduled out before the smp call arrived. In that case
1897 * event->count would have been updated to a recent sample
1898 * when the event was scheduled out.
1900 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1903 raw_spin_lock(&ctx
->lock
);
1904 update_context_time(ctx
);
1905 update_event_times(event
);
1906 raw_spin_unlock(&ctx
->lock
);
1908 event
->pmu
->read(event
);
1911 static inline u64
perf_event_count(struct perf_event
*event
)
1913 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
1916 static u64
perf_event_read(struct perf_event
*event
)
1919 * If event is enabled and currently active on a CPU, update the
1920 * value in the event structure:
1922 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1923 smp_call_function_single(event
->oncpu
,
1924 __perf_event_read
, event
, 1);
1925 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1926 struct perf_event_context
*ctx
= event
->ctx
;
1927 unsigned long flags
;
1929 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1931 * may read while context is not active
1932 * (e.g., thread is blocked), in that case
1933 * we cannot update context time
1936 update_context_time(ctx
);
1937 update_event_times(event
);
1938 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1941 return perf_event_count(event
);
1948 struct callchain_cpus_entries
{
1949 struct rcu_head rcu_head
;
1950 struct perf_callchain_entry
*cpu_entries
[0];
1953 static DEFINE_PER_CPU(int, callchain_recursion
[PERF_NR_CONTEXTS
]);
1954 static atomic_t nr_callchain_events
;
1955 static DEFINE_MUTEX(callchain_mutex
);
1956 struct callchain_cpus_entries
*callchain_cpus_entries
;
1959 __weak
void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
1960 struct pt_regs
*regs
)
1964 __weak
void perf_callchain_user(struct perf_callchain_entry
*entry
,
1965 struct pt_regs
*regs
)
1969 static void release_callchain_buffers_rcu(struct rcu_head
*head
)
1971 struct callchain_cpus_entries
*entries
;
1974 entries
= container_of(head
, struct callchain_cpus_entries
, rcu_head
);
1976 for_each_possible_cpu(cpu
)
1977 kfree(entries
->cpu_entries
[cpu
]);
1982 static void release_callchain_buffers(void)
1984 struct callchain_cpus_entries
*entries
;
1986 entries
= callchain_cpus_entries
;
1987 rcu_assign_pointer(callchain_cpus_entries
, NULL
);
1988 call_rcu(&entries
->rcu_head
, release_callchain_buffers_rcu
);
1991 static int alloc_callchain_buffers(void)
1995 struct callchain_cpus_entries
*entries
;
1998 * We can't use the percpu allocation API for data that can be
1999 * accessed from NMI. Use a temporary manual per cpu allocation
2000 * until that gets sorted out.
2002 size
= sizeof(*entries
) + sizeof(struct perf_callchain_entry
*) *
2003 num_possible_cpus();
2005 entries
= kzalloc(size
, GFP_KERNEL
);
2009 size
= sizeof(struct perf_callchain_entry
) * PERF_NR_CONTEXTS
;
2011 for_each_possible_cpu(cpu
) {
2012 entries
->cpu_entries
[cpu
] = kmalloc_node(size
, GFP_KERNEL
,
2014 if (!entries
->cpu_entries
[cpu
])
2018 rcu_assign_pointer(callchain_cpus_entries
, entries
);
2023 for_each_possible_cpu(cpu
)
2024 kfree(entries
->cpu_entries
[cpu
]);
2030 static int get_callchain_buffers(void)
2035 mutex_lock(&callchain_mutex
);
2037 count
= atomic_inc_return(&nr_callchain_events
);
2038 if (WARN_ON_ONCE(count
< 1)) {
2044 /* If the allocation failed, give up */
2045 if (!callchain_cpus_entries
)
2050 err
= alloc_callchain_buffers();
2052 release_callchain_buffers();
2054 mutex_unlock(&callchain_mutex
);
2059 static void put_callchain_buffers(void)
2061 if (atomic_dec_and_mutex_lock(&nr_callchain_events
, &callchain_mutex
)) {
2062 release_callchain_buffers();
2063 mutex_unlock(&callchain_mutex
);
2067 static int get_recursion_context(int *recursion
)
2075 else if (in_softirq())
2080 if (recursion
[rctx
])
2089 static inline void put_recursion_context(int *recursion
, int rctx
)
2095 static struct perf_callchain_entry
*get_callchain_entry(int *rctx
)
2098 struct callchain_cpus_entries
*entries
;
2100 *rctx
= get_recursion_context(__get_cpu_var(callchain_recursion
));
2104 entries
= rcu_dereference(callchain_cpus_entries
);
2108 cpu
= smp_processor_id();
2110 return &entries
->cpu_entries
[cpu
][*rctx
];
2114 put_callchain_entry(int rctx
)
2116 put_recursion_context(__get_cpu_var(callchain_recursion
), rctx
);
2119 static struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2122 struct perf_callchain_entry
*entry
;
2125 entry
= get_callchain_entry(&rctx
);
2134 if (!user_mode(regs
)) {
2135 perf_callchain_store(entry
, PERF_CONTEXT_KERNEL
);
2136 perf_callchain_kernel(entry
, regs
);
2138 regs
= task_pt_regs(current
);
2144 perf_callchain_store(entry
, PERF_CONTEXT_USER
);
2145 perf_callchain_user(entry
, regs
);
2149 put_callchain_entry(rctx
);
2155 * Initialize the perf_event context in a task_struct:
2157 static void __perf_event_init_context(struct perf_event_context
*ctx
)
2159 raw_spin_lock_init(&ctx
->lock
);
2160 mutex_init(&ctx
->mutex
);
2161 INIT_LIST_HEAD(&ctx
->pinned_groups
);
2162 INIT_LIST_HEAD(&ctx
->flexible_groups
);
2163 INIT_LIST_HEAD(&ctx
->event_list
);
2164 atomic_set(&ctx
->refcount
, 1);
2167 static struct perf_event_context
*
2168 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
2170 struct perf_event_context
*ctx
;
2172 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
2176 __perf_event_init_context(ctx
);
2179 get_task_struct(task
);
2186 static struct task_struct
*
2187 find_lively_task_by_vpid(pid_t vpid
)
2189 struct task_struct
*task
;
2196 task
= find_task_by_vpid(vpid
);
2198 get_task_struct(task
);
2202 return ERR_PTR(-ESRCH
);
2204 /* Reuse ptrace permission checks for now. */
2206 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
2211 put_task_struct(task
);
2212 return ERR_PTR(err
);
2216 static struct perf_event_context
*
2217 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
2219 struct perf_event_context
*ctx
;
2220 struct perf_cpu_context
*cpuctx
;
2221 unsigned long flags
;
2225 /* Must be root to operate on a CPU event: */
2226 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2227 return ERR_PTR(-EACCES
);
2230 * We could be clever and allow to attach a event to an
2231 * offline CPU and activate it when the CPU comes up, but
2234 if (!cpu_online(cpu
))
2235 return ERR_PTR(-ENODEV
);
2237 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
2245 ctxn
= pmu
->task_ctx_nr
;
2250 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
2253 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2257 ctx
= alloc_perf_context(pmu
, task
);
2265 mutex_lock(&task
->perf_event_mutex
);
2267 * If it has already passed perf_event_exit_task().
2268 * we must see PF_EXITING, it takes this mutex too.
2270 if (task
->flags
& PF_EXITING
)
2272 else if (task
->perf_event_ctxp
[ctxn
])
2275 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
2276 mutex_unlock(&task
->perf_event_mutex
);
2278 if (unlikely(err
)) {
2279 put_task_struct(task
);
2291 return ERR_PTR(err
);
2294 static void perf_event_free_filter(struct perf_event
*event
);
2296 static void free_event_rcu(struct rcu_head
*head
)
2298 struct perf_event
*event
;
2300 event
= container_of(head
, struct perf_event
, rcu_head
);
2302 put_pid_ns(event
->ns
);
2303 perf_event_free_filter(event
);
2307 static void perf_buffer_put(struct perf_buffer
*buffer
);
2309 static void free_event(struct perf_event
*event
)
2311 irq_work_sync(&event
->pending
);
2313 if (!event
->parent
) {
2314 if (event
->attach_state
& PERF_ATTACH_TASK
)
2315 jump_label_dec(&perf_task_events
);
2316 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
2317 atomic_dec(&nr_mmap_events
);
2318 if (event
->attr
.comm
)
2319 atomic_dec(&nr_comm_events
);
2320 if (event
->attr
.task
)
2321 atomic_dec(&nr_task_events
);
2322 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
2323 put_callchain_buffers();
2326 if (event
->buffer
) {
2327 perf_buffer_put(event
->buffer
);
2328 event
->buffer
= NULL
;
2332 event
->destroy(event
);
2335 put_ctx(event
->ctx
);
2337 call_rcu(&event
->rcu_head
, free_event_rcu
);
2340 int perf_event_release_kernel(struct perf_event
*event
)
2342 struct perf_event_context
*ctx
= event
->ctx
;
2345 * Remove from the PMU, can't get re-enabled since we got
2346 * here because the last ref went.
2348 perf_event_disable(event
);
2350 WARN_ON_ONCE(ctx
->parent_ctx
);
2352 * There are two ways this annotation is useful:
2354 * 1) there is a lock recursion from perf_event_exit_task
2355 * see the comment there.
2357 * 2) there is a lock-inversion with mmap_sem through
2358 * perf_event_read_group(), which takes faults while
2359 * holding ctx->mutex, however this is called after
2360 * the last filedesc died, so there is no possibility
2361 * to trigger the AB-BA case.
2363 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
2364 raw_spin_lock_irq(&ctx
->lock
);
2365 perf_group_detach(event
);
2366 list_del_event(event
, ctx
);
2367 raw_spin_unlock_irq(&ctx
->lock
);
2368 mutex_unlock(&ctx
->mutex
);
2374 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
2377 * Called when the last reference to the file is gone.
2379 static int perf_release(struct inode
*inode
, struct file
*file
)
2381 struct perf_event
*event
= file
->private_data
;
2382 struct task_struct
*owner
;
2384 file
->private_data
= NULL
;
2387 owner
= ACCESS_ONCE(event
->owner
);
2389 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2390 * !owner it means the list deletion is complete and we can indeed
2391 * free this event, otherwise we need to serialize on
2392 * owner->perf_event_mutex.
2394 smp_read_barrier_depends();
2397 * Since delayed_put_task_struct() also drops the last
2398 * task reference we can safely take a new reference
2399 * while holding the rcu_read_lock().
2401 get_task_struct(owner
);
2406 mutex_lock(&owner
->perf_event_mutex
);
2408 * We have to re-check the event->owner field, if it is cleared
2409 * we raced with perf_event_exit_task(), acquiring the mutex
2410 * ensured they're done, and we can proceed with freeing the
2414 list_del_init(&event
->owner_entry
);
2415 mutex_unlock(&owner
->perf_event_mutex
);
2416 put_task_struct(owner
);
2419 return perf_event_release_kernel(event
);
2422 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
2424 struct perf_event
*child
;
2430 mutex_lock(&event
->child_mutex
);
2431 total
+= perf_event_read(event
);
2432 *enabled
+= event
->total_time_enabled
+
2433 atomic64_read(&event
->child_total_time_enabled
);
2434 *running
+= event
->total_time_running
+
2435 atomic64_read(&event
->child_total_time_running
);
2437 list_for_each_entry(child
, &event
->child_list
, child_list
) {
2438 total
+= perf_event_read(child
);
2439 *enabled
+= child
->total_time_enabled
;
2440 *running
+= child
->total_time_running
;
2442 mutex_unlock(&event
->child_mutex
);
2446 EXPORT_SYMBOL_GPL(perf_event_read_value
);
2448 static int perf_event_read_group(struct perf_event
*event
,
2449 u64 read_format
, char __user
*buf
)
2451 struct perf_event
*leader
= event
->group_leader
, *sub
;
2452 int n
= 0, size
= 0, ret
= -EFAULT
;
2453 struct perf_event_context
*ctx
= leader
->ctx
;
2455 u64 count
, enabled
, running
;
2457 mutex_lock(&ctx
->mutex
);
2458 count
= perf_event_read_value(leader
, &enabled
, &running
);
2460 values
[n
++] = 1 + leader
->nr_siblings
;
2461 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2462 values
[n
++] = enabled
;
2463 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2464 values
[n
++] = running
;
2465 values
[n
++] = count
;
2466 if (read_format
& PERF_FORMAT_ID
)
2467 values
[n
++] = primary_event_id(leader
);
2469 size
= n
* sizeof(u64
);
2471 if (copy_to_user(buf
, values
, size
))
2476 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2479 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
2480 if (read_format
& PERF_FORMAT_ID
)
2481 values
[n
++] = primary_event_id(sub
);
2483 size
= n
* sizeof(u64
);
2485 if (copy_to_user(buf
+ ret
, values
, size
)) {
2493 mutex_unlock(&ctx
->mutex
);
2498 static int perf_event_read_one(struct perf_event
*event
,
2499 u64 read_format
, char __user
*buf
)
2501 u64 enabled
, running
;
2505 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
2506 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2507 values
[n
++] = enabled
;
2508 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2509 values
[n
++] = running
;
2510 if (read_format
& PERF_FORMAT_ID
)
2511 values
[n
++] = primary_event_id(event
);
2513 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
2516 return n
* sizeof(u64
);
2520 * Read the performance event - simple non blocking version for now
2523 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
2525 u64 read_format
= event
->attr
.read_format
;
2529 * Return end-of-file for a read on a event that is in
2530 * error state (i.e. because it was pinned but it couldn't be
2531 * scheduled on to the CPU at some point).
2533 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2536 if (count
< event
->read_size
)
2539 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2540 if (read_format
& PERF_FORMAT_GROUP
)
2541 ret
= perf_event_read_group(event
, read_format
, buf
);
2543 ret
= perf_event_read_one(event
, read_format
, buf
);
2549 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
2551 struct perf_event
*event
= file
->private_data
;
2553 return perf_read_hw(event
, buf
, count
);
2556 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
2558 struct perf_event
*event
= file
->private_data
;
2559 struct perf_buffer
*buffer
;
2560 unsigned int events
= POLL_HUP
;
2563 buffer
= rcu_dereference(event
->buffer
);
2565 events
= atomic_xchg(&buffer
->poll
, 0);
2568 poll_wait(file
, &event
->waitq
, wait
);
2573 static void perf_event_reset(struct perf_event
*event
)
2575 (void)perf_event_read(event
);
2576 local64_set(&event
->count
, 0);
2577 perf_event_update_userpage(event
);
2581 * Holding the top-level event's child_mutex means that any
2582 * descendant process that has inherited this event will block
2583 * in sync_child_event if it goes to exit, thus satisfying the
2584 * task existence requirements of perf_event_enable/disable.
2586 static void perf_event_for_each_child(struct perf_event
*event
,
2587 void (*func
)(struct perf_event
*))
2589 struct perf_event
*child
;
2591 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2592 mutex_lock(&event
->child_mutex
);
2594 list_for_each_entry(child
, &event
->child_list
, child_list
)
2596 mutex_unlock(&event
->child_mutex
);
2599 static void perf_event_for_each(struct perf_event
*event
,
2600 void (*func
)(struct perf_event
*))
2602 struct perf_event_context
*ctx
= event
->ctx
;
2603 struct perf_event
*sibling
;
2605 WARN_ON_ONCE(ctx
->parent_ctx
);
2606 mutex_lock(&ctx
->mutex
);
2607 event
= event
->group_leader
;
2609 perf_event_for_each_child(event
, func
);
2611 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
2612 perf_event_for_each_child(event
, func
);
2613 mutex_unlock(&ctx
->mutex
);
2616 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
2618 struct perf_event_context
*ctx
= event
->ctx
;
2622 if (!is_sampling_event(event
))
2625 if (copy_from_user(&value
, arg
, sizeof(value
)))
2631 raw_spin_lock_irq(&ctx
->lock
);
2632 if (event
->attr
.freq
) {
2633 if (value
> sysctl_perf_event_sample_rate
) {
2638 event
->attr
.sample_freq
= value
;
2640 event
->attr
.sample_period
= value
;
2641 event
->hw
.sample_period
= value
;
2644 raw_spin_unlock_irq(&ctx
->lock
);
2649 static const struct file_operations perf_fops
;
2651 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
2655 file
= fget_light(fd
, fput_needed
);
2657 return ERR_PTR(-EBADF
);
2659 if (file
->f_op
!= &perf_fops
) {
2660 fput_light(file
, *fput_needed
);
2662 return ERR_PTR(-EBADF
);
2665 return file
->private_data
;
2668 static int perf_event_set_output(struct perf_event
*event
,
2669 struct perf_event
*output_event
);
2670 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2672 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2674 struct perf_event
*event
= file
->private_data
;
2675 void (*func
)(struct perf_event
*);
2679 case PERF_EVENT_IOC_ENABLE
:
2680 func
= perf_event_enable
;
2682 case PERF_EVENT_IOC_DISABLE
:
2683 func
= perf_event_disable
;
2685 case PERF_EVENT_IOC_RESET
:
2686 func
= perf_event_reset
;
2689 case PERF_EVENT_IOC_REFRESH
:
2690 return perf_event_refresh(event
, arg
);
2692 case PERF_EVENT_IOC_PERIOD
:
2693 return perf_event_period(event
, (u64 __user
*)arg
);
2695 case PERF_EVENT_IOC_SET_OUTPUT
:
2697 struct perf_event
*output_event
= NULL
;
2698 int fput_needed
= 0;
2702 output_event
= perf_fget_light(arg
, &fput_needed
);
2703 if (IS_ERR(output_event
))
2704 return PTR_ERR(output_event
);
2707 ret
= perf_event_set_output(event
, output_event
);
2709 fput_light(output_event
->filp
, fput_needed
);
2714 case PERF_EVENT_IOC_SET_FILTER
:
2715 return perf_event_set_filter(event
, (void __user
*)arg
);
2721 if (flags
& PERF_IOC_FLAG_GROUP
)
2722 perf_event_for_each(event
, func
);
2724 perf_event_for_each_child(event
, func
);
2729 int perf_event_task_enable(void)
2731 struct perf_event
*event
;
2733 mutex_lock(¤t
->perf_event_mutex
);
2734 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2735 perf_event_for_each_child(event
, perf_event_enable
);
2736 mutex_unlock(¤t
->perf_event_mutex
);
2741 int perf_event_task_disable(void)
2743 struct perf_event
*event
;
2745 mutex_lock(¤t
->perf_event_mutex
);
2746 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2747 perf_event_for_each_child(event
, perf_event_disable
);
2748 mutex_unlock(¤t
->perf_event_mutex
);
2753 #ifndef PERF_EVENT_INDEX_OFFSET
2754 # define PERF_EVENT_INDEX_OFFSET 0
2757 static int perf_event_index(struct perf_event
*event
)
2759 if (event
->hw
.state
& PERF_HES_STOPPED
)
2762 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2765 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2769 * Callers need to ensure there can be no nesting of this function, otherwise
2770 * the seqlock logic goes bad. We can not serialize this because the arch
2771 * code calls this from NMI context.
2773 void perf_event_update_userpage(struct perf_event
*event
)
2775 struct perf_event_mmap_page
*userpg
;
2776 struct perf_buffer
*buffer
;
2779 buffer
= rcu_dereference(event
->buffer
);
2783 userpg
= buffer
->user_page
;
2786 * Disable preemption so as to not let the corresponding user-space
2787 * spin too long if we get preempted.
2792 userpg
->index
= perf_event_index(event
);
2793 userpg
->offset
= perf_event_count(event
);
2794 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2795 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
2797 userpg
->time_enabled
= event
->total_time_enabled
+
2798 atomic64_read(&event
->child_total_time_enabled
);
2800 userpg
->time_running
= event
->total_time_running
+
2801 atomic64_read(&event
->child_total_time_running
);
2810 static unsigned long perf_data_size(struct perf_buffer
*buffer
);
2813 perf_buffer_init(struct perf_buffer
*buffer
, long watermark
, int flags
)
2815 long max_size
= perf_data_size(buffer
);
2818 buffer
->watermark
= min(max_size
, watermark
);
2820 if (!buffer
->watermark
)
2821 buffer
->watermark
= max_size
/ 2;
2823 if (flags
& PERF_BUFFER_WRITABLE
)
2824 buffer
->writable
= 1;
2826 atomic_set(&buffer
->refcount
, 1);
2829 #ifndef CONFIG_PERF_USE_VMALLOC
2832 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2835 static struct page
*
2836 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
2838 if (pgoff
> buffer
->nr_pages
)
2842 return virt_to_page(buffer
->user_page
);
2844 return virt_to_page(buffer
->data_pages
[pgoff
- 1]);
2847 static void *perf_mmap_alloc_page(int cpu
)
2852 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
2853 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
2857 return page_address(page
);
2860 static struct perf_buffer
*
2861 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
2863 struct perf_buffer
*buffer
;
2867 size
= sizeof(struct perf_buffer
);
2868 size
+= nr_pages
* sizeof(void *);
2870 buffer
= kzalloc(size
, GFP_KERNEL
);
2874 buffer
->user_page
= perf_mmap_alloc_page(cpu
);
2875 if (!buffer
->user_page
)
2876 goto fail_user_page
;
2878 for (i
= 0; i
< nr_pages
; i
++) {
2879 buffer
->data_pages
[i
] = perf_mmap_alloc_page(cpu
);
2880 if (!buffer
->data_pages
[i
])
2881 goto fail_data_pages
;
2884 buffer
->nr_pages
= nr_pages
;
2886 perf_buffer_init(buffer
, watermark
, flags
);
2891 for (i
--; i
>= 0; i
--)
2892 free_page((unsigned long)buffer
->data_pages
[i
]);
2894 free_page((unsigned long)buffer
->user_page
);
2903 static void perf_mmap_free_page(unsigned long addr
)
2905 struct page
*page
= virt_to_page((void *)addr
);
2907 page
->mapping
= NULL
;
2911 static void perf_buffer_free(struct perf_buffer
*buffer
)
2915 perf_mmap_free_page((unsigned long)buffer
->user_page
);
2916 for (i
= 0; i
< buffer
->nr_pages
; i
++)
2917 perf_mmap_free_page((unsigned long)buffer
->data_pages
[i
]);
2921 static inline int page_order(struct perf_buffer
*buffer
)
2929 * Back perf_mmap() with vmalloc memory.
2931 * Required for architectures that have d-cache aliasing issues.
2934 static inline int page_order(struct perf_buffer
*buffer
)
2936 return buffer
->page_order
;
2939 static struct page
*
2940 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
2942 if (pgoff
> (1UL << page_order(buffer
)))
2945 return vmalloc_to_page((void *)buffer
->user_page
+ pgoff
* PAGE_SIZE
);
2948 static void perf_mmap_unmark_page(void *addr
)
2950 struct page
*page
= vmalloc_to_page(addr
);
2952 page
->mapping
= NULL
;
2955 static void perf_buffer_free_work(struct work_struct
*work
)
2957 struct perf_buffer
*buffer
;
2961 buffer
= container_of(work
, struct perf_buffer
, work
);
2962 nr
= 1 << page_order(buffer
);
2964 base
= buffer
->user_page
;
2965 for (i
= 0; i
< nr
+ 1; i
++)
2966 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2972 static void perf_buffer_free(struct perf_buffer
*buffer
)
2974 schedule_work(&buffer
->work
);
2977 static struct perf_buffer
*
2978 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
2980 struct perf_buffer
*buffer
;
2984 size
= sizeof(struct perf_buffer
);
2985 size
+= sizeof(void *);
2987 buffer
= kzalloc(size
, GFP_KERNEL
);
2991 INIT_WORK(&buffer
->work
, perf_buffer_free_work
);
2993 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2997 buffer
->user_page
= all_buf
;
2998 buffer
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2999 buffer
->page_order
= ilog2(nr_pages
);
3000 buffer
->nr_pages
= 1;
3002 perf_buffer_init(buffer
, watermark
, flags
);
3015 static unsigned long perf_data_size(struct perf_buffer
*buffer
)
3017 return buffer
->nr_pages
<< (PAGE_SHIFT
+ page_order(buffer
));
3020 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3022 struct perf_event
*event
= vma
->vm_file
->private_data
;
3023 struct perf_buffer
*buffer
;
3024 int ret
= VM_FAULT_SIGBUS
;
3026 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
3027 if (vmf
->pgoff
== 0)
3033 buffer
= rcu_dereference(event
->buffer
);
3037 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
3040 vmf
->page
= perf_mmap_to_page(buffer
, vmf
->pgoff
);
3044 get_page(vmf
->page
);
3045 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
3046 vmf
->page
->index
= vmf
->pgoff
;
3055 static void perf_buffer_free_rcu(struct rcu_head
*rcu_head
)
3057 struct perf_buffer
*buffer
;
3059 buffer
= container_of(rcu_head
, struct perf_buffer
, rcu_head
);
3060 perf_buffer_free(buffer
);
3063 static struct perf_buffer
*perf_buffer_get(struct perf_event
*event
)
3065 struct perf_buffer
*buffer
;
3068 buffer
= rcu_dereference(event
->buffer
);
3070 if (!atomic_inc_not_zero(&buffer
->refcount
))
3078 static void perf_buffer_put(struct perf_buffer
*buffer
)
3080 if (!atomic_dec_and_test(&buffer
->refcount
))
3083 call_rcu(&buffer
->rcu_head
, perf_buffer_free_rcu
);
3086 static void perf_mmap_open(struct vm_area_struct
*vma
)
3088 struct perf_event
*event
= vma
->vm_file
->private_data
;
3090 atomic_inc(&event
->mmap_count
);
3093 static void perf_mmap_close(struct vm_area_struct
*vma
)
3095 struct perf_event
*event
= vma
->vm_file
->private_data
;
3097 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
3098 unsigned long size
= perf_data_size(event
->buffer
);
3099 struct user_struct
*user
= event
->mmap_user
;
3100 struct perf_buffer
*buffer
= event
->buffer
;
3102 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
3103 vma
->vm_mm
->locked_vm
-= event
->mmap_locked
;
3104 rcu_assign_pointer(event
->buffer
, NULL
);
3105 mutex_unlock(&event
->mmap_mutex
);
3107 perf_buffer_put(buffer
);
3112 static const struct vm_operations_struct perf_mmap_vmops
= {
3113 .open
= perf_mmap_open
,
3114 .close
= perf_mmap_close
,
3115 .fault
= perf_mmap_fault
,
3116 .page_mkwrite
= perf_mmap_fault
,
3119 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3121 struct perf_event
*event
= file
->private_data
;
3122 unsigned long user_locked
, user_lock_limit
;
3123 struct user_struct
*user
= current_user();
3124 unsigned long locked
, lock_limit
;
3125 struct perf_buffer
*buffer
;
3126 unsigned long vma_size
;
3127 unsigned long nr_pages
;
3128 long user_extra
, extra
;
3129 int ret
= 0, flags
= 0;
3132 * Don't allow mmap() of inherited per-task counters. This would
3133 * create a performance issue due to all children writing to the
3136 if (event
->cpu
== -1 && event
->attr
.inherit
)
3139 if (!(vma
->vm_flags
& VM_SHARED
))
3142 vma_size
= vma
->vm_end
- vma
->vm_start
;
3143 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
3146 * If we have buffer pages ensure they're a power-of-two number, so we
3147 * can do bitmasks instead of modulo.
3149 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
3152 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
3155 if (vma
->vm_pgoff
!= 0)
3158 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3159 mutex_lock(&event
->mmap_mutex
);
3160 if (event
->buffer
) {
3161 if (event
->buffer
->nr_pages
== nr_pages
)
3162 atomic_inc(&event
->buffer
->refcount
);
3168 user_extra
= nr_pages
+ 1;
3169 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
3172 * Increase the limit linearly with more CPUs:
3174 user_lock_limit
*= num_online_cpus();
3176 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
3179 if (user_locked
> user_lock_limit
)
3180 extra
= user_locked
- user_lock_limit
;
3182 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
3183 lock_limit
>>= PAGE_SHIFT
;
3184 locked
= vma
->vm_mm
->locked_vm
+ extra
;
3186 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
3187 !capable(CAP_IPC_LOCK
)) {
3192 WARN_ON(event
->buffer
);
3194 if (vma
->vm_flags
& VM_WRITE
)
3195 flags
|= PERF_BUFFER_WRITABLE
;
3197 buffer
= perf_buffer_alloc(nr_pages
, event
->attr
.wakeup_watermark
,
3203 rcu_assign_pointer(event
->buffer
, buffer
);
3205 atomic_long_add(user_extra
, &user
->locked_vm
);
3206 event
->mmap_locked
= extra
;
3207 event
->mmap_user
= get_current_user();
3208 vma
->vm_mm
->locked_vm
+= event
->mmap_locked
;
3212 atomic_inc(&event
->mmap_count
);
3213 mutex_unlock(&event
->mmap_mutex
);
3215 vma
->vm_flags
|= VM_RESERVED
;
3216 vma
->vm_ops
= &perf_mmap_vmops
;
3221 static int perf_fasync(int fd
, struct file
*filp
, int on
)
3223 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
3224 struct perf_event
*event
= filp
->private_data
;
3227 mutex_lock(&inode
->i_mutex
);
3228 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
3229 mutex_unlock(&inode
->i_mutex
);
3237 static const struct file_operations perf_fops
= {
3238 .llseek
= no_llseek
,
3239 .release
= perf_release
,
3242 .unlocked_ioctl
= perf_ioctl
,
3243 .compat_ioctl
= perf_ioctl
,
3245 .fasync
= perf_fasync
,
3251 * If there's data, ensure we set the poll() state and publish everything
3252 * to user-space before waking everybody up.
3255 void perf_event_wakeup(struct perf_event
*event
)
3257 wake_up_all(&event
->waitq
);
3259 if (event
->pending_kill
) {
3260 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
3261 event
->pending_kill
= 0;
3265 static void perf_pending_event(struct irq_work
*entry
)
3267 struct perf_event
*event
= container_of(entry
,
3268 struct perf_event
, pending
);
3270 if (event
->pending_disable
) {
3271 event
->pending_disable
= 0;
3272 __perf_event_disable(event
);
3275 if (event
->pending_wakeup
) {
3276 event
->pending_wakeup
= 0;
3277 perf_event_wakeup(event
);
3282 * We assume there is only KVM supporting the callbacks.
3283 * Later on, we might change it to a list if there is
3284 * another virtualization implementation supporting the callbacks.
3286 struct perf_guest_info_callbacks
*perf_guest_cbs
;
3288 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3290 perf_guest_cbs
= cbs
;
3293 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
3295 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3297 perf_guest_cbs
= NULL
;
3300 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
3305 static bool perf_output_space(struct perf_buffer
*buffer
, unsigned long tail
,
3306 unsigned long offset
, unsigned long head
)
3310 if (!buffer
->writable
)
3313 mask
= perf_data_size(buffer
) - 1;
3315 offset
= (offset
- tail
) & mask
;
3316 head
= (head
- tail
) & mask
;
3318 if ((int)(head
- offset
) < 0)
3324 static void perf_output_wakeup(struct perf_output_handle
*handle
)
3326 atomic_set(&handle
->buffer
->poll
, POLL_IN
);
3329 handle
->event
->pending_wakeup
= 1;
3330 irq_work_queue(&handle
->event
->pending
);
3332 perf_event_wakeup(handle
->event
);
3336 * We need to ensure a later event_id doesn't publish a head when a former
3337 * event isn't done writing. However since we need to deal with NMIs we
3338 * cannot fully serialize things.
3340 * We only publish the head (and generate a wakeup) when the outer-most
3343 static void perf_output_get_handle(struct perf_output_handle
*handle
)
3345 struct perf_buffer
*buffer
= handle
->buffer
;
3348 local_inc(&buffer
->nest
);
3349 handle
->wakeup
= local_read(&buffer
->wakeup
);
3352 static void perf_output_put_handle(struct perf_output_handle
*handle
)
3354 struct perf_buffer
*buffer
= handle
->buffer
;
3358 head
= local_read(&buffer
->head
);
3361 * IRQ/NMI can happen here, which means we can miss a head update.
3364 if (!local_dec_and_test(&buffer
->nest
))
3368 * Publish the known good head. Rely on the full barrier implied
3369 * by atomic_dec_and_test() order the buffer->head read and this
3372 buffer
->user_page
->data_head
= head
;
3375 * Now check if we missed an update, rely on the (compiler)
3376 * barrier in atomic_dec_and_test() to re-read buffer->head.
3378 if (unlikely(head
!= local_read(&buffer
->head
))) {
3379 local_inc(&buffer
->nest
);
3383 if (handle
->wakeup
!= local_read(&buffer
->wakeup
))
3384 perf_output_wakeup(handle
);
3390 __always_inline
void perf_output_copy(struct perf_output_handle
*handle
,
3391 const void *buf
, unsigned int len
)
3394 unsigned long size
= min_t(unsigned long, handle
->size
, len
);
3396 memcpy(handle
->addr
, buf
, size
);
3399 handle
->addr
+= size
;
3401 handle
->size
-= size
;
3402 if (!handle
->size
) {
3403 struct perf_buffer
*buffer
= handle
->buffer
;
3406 handle
->page
&= buffer
->nr_pages
- 1;
3407 handle
->addr
= buffer
->data_pages
[handle
->page
];
3408 handle
->size
= PAGE_SIZE
<< page_order(buffer
);
3413 static void __perf_event_header__init_id(struct perf_event_header
*header
,
3414 struct perf_sample_data
*data
,
3415 struct perf_event
*event
)
3417 u64 sample_type
= event
->attr
.sample_type
;
3419 data
->type
= sample_type
;
3420 header
->size
+= event
->id_header_size
;
3422 if (sample_type
& PERF_SAMPLE_TID
) {
3423 /* namespace issues */
3424 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3425 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3428 if (sample_type
& PERF_SAMPLE_TIME
)
3429 data
->time
= perf_clock();
3431 if (sample_type
& PERF_SAMPLE_ID
)
3432 data
->id
= primary_event_id(event
);
3434 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3435 data
->stream_id
= event
->id
;
3437 if (sample_type
& PERF_SAMPLE_CPU
) {
3438 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3439 data
->cpu_entry
.reserved
= 0;
3443 static void perf_event_header__init_id(struct perf_event_header
*header
,
3444 struct perf_sample_data
*data
,
3445 struct perf_event
*event
)
3447 if (event
->attr
.sample_id_all
)
3448 __perf_event_header__init_id(header
, data
, event
);
3451 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
3452 struct perf_sample_data
*data
)
3454 u64 sample_type
= data
->type
;
3456 if (sample_type
& PERF_SAMPLE_TID
)
3457 perf_output_put(handle
, data
->tid_entry
);
3459 if (sample_type
& PERF_SAMPLE_TIME
)
3460 perf_output_put(handle
, data
->time
);
3462 if (sample_type
& PERF_SAMPLE_ID
)
3463 perf_output_put(handle
, data
->id
);
3465 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3466 perf_output_put(handle
, data
->stream_id
);
3468 if (sample_type
& PERF_SAMPLE_CPU
)
3469 perf_output_put(handle
, data
->cpu_entry
);
3472 static void perf_event__output_id_sample(struct perf_event
*event
,
3473 struct perf_output_handle
*handle
,
3474 struct perf_sample_data
*sample
)
3476 if (event
->attr
.sample_id_all
)
3477 __perf_event__output_id_sample(handle
, sample
);
3480 int perf_output_begin(struct perf_output_handle
*handle
,
3481 struct perf_event
*event
, unsigned int size
,
3482 int nmi
, int sample
)
3484 struct perf_buffer
*buffer
;
3485 unsigned long tail
, offset
, head
;
3487 struct perf_sample_data sample_data
;
3489 struct perf_event_header header
;
3496 * For inherited events we send all the output towards the parent.
3499 event
= event
->parent
;
3501 buffer
= rcu_dereference(event
->buffer
);
3505 handle
->buffer
= buffer
;
3506 handle
->event
= event
;
3508 handle
->sample
= sample
;
3510 if (!buffer
->nr_pages
)
3513 have_lost
= local_read(&buffer
->lost
);
3515 lost_event
.header
.size
= sizeof(lost_event
);
3516 perf_event_header__init_id(&lost_event
.header
, &sample_data
,
3518 size
+= lost_event
.header
.size
;
3521 perf_output_get_handle(handle
);
3525 * Userspace could choose to issue a mb() before updating the
3526 * tail pointer. So that all reads will be completed before the
3529 tail
= ACCESS_ONCE(buffer
->user_page
->data_tail
);
3531 offset
= head
= local_read(&buffer
->head
);
3533 if (unlikely(!perf_output_space(buffer
, tail
, offset
, head
)))
3535 } while (local_cmpxchg(&buffer
->head
, offset
, head
) != offset
);
3537 if (head
- local_read(&buffer
->wakeup
) > buffer
->watermark
)
3538 local_add(buffer
->watermark
, &buffer
->wakeup
);
3540 handle
->page
= offset
>> (PAGE_SHIFT
+ page_order(buffer
));
3541 handle
->page
&= buffer
->nr_pages
- 1;
3542 handle
->size
= offset
& ((PAGE_SIZE
<< page_order(buffer
)) - 1);
3543 handle
->addr
= buffer
->data_pages
[handle
->page
];
3544 handle
->addr
+= handle
->size
;
3545 handle
->size
= (PAGE_SIZE
<< page_order(buffer
)) - handle
->size
;
3548 lost_event
.header
.type
= PERF_RECORD_LOST
;
3549 lost_event
.header
.misc
= 0;
3550 lost_event
.id
= event
->id
;
3551 lost_event
.lost
= local_xchg(&buffer
->lost
, 0);
3553 perf_output_put(handle
, lost_event
);
3554 perf_event__output_id_sample(event
, handle
, &sample_data
);
3560 local_inc(&buffer
->lost
);
3561 perf_output_put_handle(handle
);
3568 void perf_output_end(struct perf_output_handle
*handle
)
3570 struct perf_event
*event
= handle
->event
;
3571 struct perf_buffer
*buffer
= handle
->buffer
;
3573 int wakeup_events
= event
->attr
.wakeup_events
;
3575 if (handle
->sample
&& wakeup_events
) {
3576 int events
= local_inc_return(&buffer
->events
);
3577 if (events
>= wakeup_events
) {
3578 local_sub(wakeup_events
, &buffer
->events
);
3579 local_inc(&buffer
->wakeup
);
3583 perf_output_put_handle(handle
);
3587 static void perf_output_read_one(struct perf_output_handle
*handle
,
3588 struct perf_event
*event
,
3589 u64 enabled
, u64 running
)
3591 u64 read_format
= event
->attr
.read_format
;
3595 values
[n
++] = perf_event_count(event
);
3596 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3597 values
[n
++] = enabled
+
3598 atomic64_read(&event
->child_total_time_enabled
);
3600 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3601 values
[n
++] = running
+
3602 atomic64_read(&event
->child_total_time_running
);
3604 if (read_format
& PERF_FORMAT_ID
)
3605 values
[n
++] = primary_event_id(event
);
3607 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3611 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3613 static void perf_output_read_group(struct perf_output_handle
*handle
,
3614 struct perf_event
*event
,
3615 u64 enabled
, u64 running
)
3617 struct perf_event
*leader
= event
->group_leader
, *sub
;
3618 u64 read_format
= event
->attr
.read_format
;
3622 values
[n
++] = 1 + leader
->nr_siblings
;
3624 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3625 values
[n
++] = enabled
;
3627 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3628 values
[n
++] = running
;
3630 if (leader
!= event
)
3631 leader
->pmu
->read(leader
);
3633 values
[n
++] = perf_event_count(leader
);
3634 if (read_format
& PERF_FORMAT_ID
)
3635 values
[n
++] = primary_event_id(leader
);
3637 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3639 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3643 sub
->pmu
->read(sub
);
3645 values
[n
++] = perf_event_count(sub
);
3646 if (read_format
& PERF_FORMAT_ID
)
3647 values
[n
++] = primary_event_id(sub
);
3649 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3653 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3654 PERF_FORMAT_TOTAL_TIME_RUNNING)
3656 static void perf_output_read(struct perf_output_handle
*handle
,
3657 struct perf_event
*event
)
3659 u64 enabled
= 0, running
= 0, now
, ctx_time
;
3660 u64 read_format
= event
->attr
.read_format
;
3663 * compute total_time_enabled, total_time_running
3664 * based on snapshot values taken when the event
3665 * was last scheduled in.
3667 * we cannot simply called update_context_time()
3668 * because of locking issue as we are called in
3671 if (read_format
& PERF_FORMAT_TOTAL_TIMES
) {
3673 ctx_time
= event
->shadow_ctx_time
+ now
;
3674 enabled
= ctx_time
- event
->tstamp_enabled
;
3675 running
= ctx_time
- event
->tstamp_running
;
3678 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3679 perf_output_read_group(handle
, event
, enabled
, running
);
3681 perf_output_read_one(handle
, event
, enabled
, running
);
3684 void perf_output_sample(struct perf_output_handle
*handle
,
3685 struct perf_event_header
*header
,
3686 struct perf_sample_data
*data
,
3687 struct perf_event
*event
)
3689 u64 sample_type
= data
->type
;
3691 perf_output_put(handle
, *header
);
3693 if (sample_type
& PERF_SAMPLE_IP
)
3694 perf_output_put(handle
, data
->ip
);
3696 if (sample_type
& PERF_SAMPLE_TID
)
3697 perf_output_put(handle
, data
->tid_entry
);
3699 if (sample_type
& PERF_SAMPLE_TIME
)
3700 perf_output_put(handle
, data
->time
);
3702 if (sample_type
& PERF_SAMPLE_ADDR
)
3703 perf_output_put(handle
, data
->addr
);
3705 if (sample_type
& PERF_SAMPLE_ID
)
3706 perf_output_put(handle
, data
->id
);
3708 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3709 perf_output_put(handle
, data
->stream_id
);
3711 if (sample_type
& PERF_SAMPLE_CPU
)
3712 perf_output_put(handle
, data
->cpu_entry
);
3714 if (sample_type
& PERF_SAMPLE_PERIOD
)
3715 perf_output_put(handle
, data
->period
);
3717 if (sample_type
& PERF_SAMPLE_READ
)
3718 perf_output_read(handle
, event
);
3720 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3721 if (data
->callchain
) {
3724 if (data
->callchain
)
3725 size
+= data
->callchain
->nr
;
3727 size
*= sizeof(u64
);
3729 perf_output_copy(handle
, data
->callchain
, size
);
3732 perf_output_put(handle
, nr
);
3736 if (sample_type
& PERF_SAMPLE_RAW
) {
3738 perf_output_put(handle
, data
->raw
->size
);
3739 perf_output_copy(handle
, data
->raw
->data
,
3746 .size
= sizeof(u32
),
3749 perf_output_put(handle
, raw
);
3754 void perf_prepare_sample(struct perf_event_header
*header
,
3755 struct perf_sample_data
*data
,
3756 struct perf_event
*event
,
3757 struct pt_regs
*regs
)
3759 u64 sample_type
= event
->attr
.sample_type
;
3761 header
->type
= PERF_RECORD_SAMPLE
;
3762 header
->size
= sizeof(*header
) + event
->header_size
;
3765 header
->misc
|= perf_misc_flags(regs
);
3767 __perf_event_header__init_id(header
, data
, event
);
3769 if (sample_type
& PERF_SAMPLE_IP
)
3770 data
->ip
= perf_instruction_pointer(regs
);
3772 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3775 data
->callchain
= perf_callchain(regs
);
3777 if (data
->callchain
)
3778 size
+= data
->callchain
->nr
;
3780 header
->size
+= size
* sizeof(u64
);
3783 if (sample_type
& PERF_SAMPLE_RAW
) {
3784 int size
= sizeof(u32
);
3787 size
+= data
->raw
->size
;
3789 size
+= sizeof(u32
);
3791 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3792 header
->size
+= size
;
3796 static void perf_event_output(struct perf_event
*event
, int nmi
,
3797 struct perf_sample_data
*data
,
3798 struct pt_regs
*regs
)
3800 struct perf_output_handle handle
;
3801 struct perf_event_header header
;
3803 /* protect the callchain buffers */
3806 perf_prepare_sample(&header
, data
, event
, regs
);
3808 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3811 perf_output_sample(&handle
, &header
, data
, event
);
3813 perf_output_end(&handle
);
3823 struct perf_read_event
{
3824 struct perf_event_header header
;
3831 perf_event_read_event(struct perf_event
*event
,
3832 struct task_struct
*task
)
3834 struct perf_output_handle handle
;
3835 struct perf_sample_data sample
;
3836 struct perf_read_event read_event
= {
3838 .type
= PERF_RECORD_READ
,
3840 .size
= sizeof(read_event
) + event
->read_size
,
3842 .pid
= perf_event_pid(event
, task
),
3843 .tid
= perf_event_tid(event
, task
),
3847 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
3848 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3852 perf_output_put(&handle
, read_event
);
3853 perf_output_read(&handle
, event
);
3854 perf_event__output_id_sample(event
, &handle
, &sample
);
3856 perf_output_end(&handle
);
3860 * task tracking -- fork/exit
3862 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3865 struct perf_task_event
{
3866 struct task_struct
*task
;
3867 struct perf_event_context
*task_ctx
;
3870 struct perf_event_header header
;
3880 static void perf_event_task_output(struct perf_event
*event
,
3881 struct perf_task_event
*task_event
)
3883 struct perf_output_handle handle
;
3884 struct perf_sample_data sample
;
3885 struct task_struct
*task
= task_event
->task
;
3886 int ret
, size
= task_event
->event_id
.header
.size
;
3888 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
3890 ret
= perf_output_begin(&handle
, event
,
3891 task_event
->event_id
.header
.size
, 0, 0);
3895 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3896 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3898 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3899 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3901 perf_output_put(&handle
, task_event
->event_id
);
3903 perf_event__output_id_sample(event
, &handle
, &sample
);
3905 perf_output_end(&handle
);
3907 task_event
->event_id
.header
.size
= size
;
3910 static int perf_event_task_match(struct perf_event
*event
)
3912 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3915 if (!event_filter_match(event
))
3918 if (event
->attr
.comm
|| event
->attr
.mmap
||
3919 event
->attr
.mmap_data
|| event
->attr
.task
)
3925 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3926 struct perf_task_event
*task_event
)
3928 struct perf_event
*event
;
3930 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3931 if (perf_event_task_match(event
))
3932 perf_event_task_output(event
, task_event
);
3936 static void perf_event_task_event(struct perf_task_event
*task_event
)
3938 struct perf_cpu_context
*cpuctx
;
3939 struct perf_event_context
*ctx
;
3944 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
3945 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
3946 if (cpuctx
->active_pmu
!= pmu
)
3948 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3950 ctx
= task_event
->task_ctx
;
3952 ctxn
= pmu
->task_ctx_nr
;
3955 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
3958 perf_event_task_ctx(ctx
, task_event
);
3960 put_cpu_ptr(pmu
->pmu_cpu_context
);
3965 static void perf_event_task(struct task_struct
*task
,
3966 struct perf_event_context
*task_ctx
,
3969 struct perf_task_event task_event
;
3971 if (!atomic_read(&nr_comm_events
) &&
3972 !atomic_read(&nr_mmap_events
) &&
3973 !atomic_read(&nr_task_events
))
3976 task_event
= (struct perf_task_event
){
3978 .task_ctx
= task_ctx
,
3981 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3983 .size
= sizeof(task_event
.event_id
),
3989 .time
= perf_clock(),
3993 perf_event_task_event(&task_event
);
3996 void perf_event_fork(struct task_struct
*task
)
3998 perf_event_task(task
, NULL
, 1);
4005 struct perf_comm_event
{
4006 struct task_struct
*task
;
4011 struct perf_event_header header
;
4018 static void perf_event_comm_output(struct perf_event
*event
,
4019 struct perf_comm_event
*comm_event
)
4021 struct perf_output_handle handle
;
4022 struct perf_sample_data sample
;
4023 int size
= comm_event
->event_id
.header
.size
;
4026 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
4027 ret
= perf_output_begin(&handle
, event
,
4028 comm_event
->event_id
.header
.size
, 0, 0);
4033 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
4034 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
4036 perf_output_put(&handle
, comm_event
->event_id
);
4037 perf_output_copy(&handle
, comm_event
->comm
,
4038 comm_event
->comm_size
);
4040 perf_event__output_id_sample(event
, &handle
, &sample
);
4042 perf_output_end(&handle
);
4044 comm_event
->event_id
.header
.size
= size
;
4047 static int perf_event_comm_match(struct perf_event
*event
)
4049 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4052 if (!event_filter_match(event
))
4055 if (event
->attr
.comm
)
4061 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
4062 struct perf_comm_event
*comm_event
)
4064 struct perf_event
*event
;
4066 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4067 if (perf_event_comm_match(event
))
4068 perf_event_comm_output(event
, comm_event
);
4072 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
4074 struct perf_cpu_context
*cpuctx
;
4075 struct perf_event_context
*ctx
;
4076 char comm
[TASK_COMM_LEN
];
4081 memset(comm
, 0, sizeof(comm
));
4082 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
4083 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
4085 comm_event
->comm
= comm
;
4086 comm_event
->comm_size
= size
;
4088 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
4090 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4091 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4092 if (cpuctx
->active_pmu
!= pmu
)
4094 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
4096 ctxn
= pmu
->task_ctx_nr
;
4100 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4102 perf_event_comm_ctx(ctx
, comm_event
);
4104 put_cpu_ptr(pmu
->pmu_cpu_context
);
4109 void perf_event_comm(struct task_struct
*task
)
4111 struct perf_comm_event comm_event
;
4112 struct perf_event_context
*ctx
;
4115 for_each_task_context_nr(ctxn
) {
4116 ctx
= task
->perf_event_ctxp
[ctxn
];
4120 perf_event_enable_on_exec(ctx
);
4123 if (!atomic_read(&nr_comm_events
))
4126 comm_event
= (struct perf_comm_event
){
4132 .type
= PERF_RECORD_COMM
,
4141 perf_event_comm_event(&comm_event
);
4148 struct perf_mmap_event
{
4149 struct vm_area_struct
*vma
;
4151 const char *file_name
;
4155 struct perf_event_header header
;
4165 static void perf_event_mmap_output(struct perf_event
*event
,
4166 struct perf_mmap_event
*mmap_event
)
4168 struct perf_output_handle handle
;
4169 struct perf_sample_data sample
;
4170 int size
= mmap_event
->event_id
.header
.size
;
4173 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
4174 ret
= perf_output_begin(&handle
, event
,
4175 mmap_event
->event_id
.header
.size
, 0, 0);
4179 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
4180 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
4182 perf_output_put(&handle
, mmap_event
->event_id
);
4183 perf_output_copy(&handle
, mmap_event
->file_name
,
4184 mmap_event
->file_size
);
4186 perf_event__output_id_sample(event
, &handle
, &sample
);
4188 perf_output_end(&handle
);
4190 mmap_event
->event_id
.header
.size
= size
;
4193 static int perf_event_mmap_match(struct perf_event
*event
,
4194 struct perf_mmap_event
*mmap_event
,
4197 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4200 if (!event_filter_match(event
))
4203 if ((!executable
&& event
->attr
.mmap_data
) ||
4204 (executable
&& event
->attr
.mmap
))
4210 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
4211 struct perf_mmap_event
*mmap_event
,
4214 struct perf_event
*event
;
4216 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4217 if (perf_event_mmap_match(event
, mmap_event
, executable
))
4218 perf_event_mmap_output(event
, mmap_event
);
4222 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
4224 struct perf_cpu_context
*cpuctx
;
4225 struct perf_event_context
*ctx
;
4226 struct vm_area_struct
*vma
= mmap_event
->vma
;
4227 struct file
*file
= vma
->vm_file
;
4235 memset(tmp
, 0, sizeof(tmp
));
4239 * d_path works from the end of the buffer backwards, so we
4240 * need to add enough zero bytes after the string to handle
4241 * the 64bit alignment we do later.
4243 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
4245 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
4248 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
4250 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
4254 if (arch_vma_name(mmap_event
->vma
)) {
4255 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
4261 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
4263 } else if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
4264 vma
->vm_end
>= vma
->vm_mm
->brk
) {
4265 name
= strncpy(tmp
, "[heap]", sizeof(tmp
));
4267 } else if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
4268 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
4269 name
= strncpy(tmp
, "[stack]", sizeof(tmp
));
4273 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
4278 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
4280 mmap_event
->file_name
= name
;
4281 mmap_event
->file_size
= size
;
4283 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
4286 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4287 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4288 if (cpuctx
->active_pmu
!= pmu
)
4290 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
,
4291 vma
->vm_flags
& VM_EXEC
);
4293 ctxn
= pmu
->task_ctx_nr
;
4297 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4299 perf_event_mmap_ctx(ctx
, mmap_event
,
4300 vma
->vm_flags
& VM_EXEC
);
4303 put_cpu_ptr(pmu
->pmu_cpu_context
);
4310 void perf_event_mmap(struct vm_area_struct
*vma
)
4312 struct perf_mmap_event mmap_event
;
4314 if (!atomic_read(&nr_mmap_events
))
4317 mmap_event
= (struct perf_mmap_event
){
4323 .type
= PERF_RECORD_MMAP
,
4324 .misc
= PERF_RECORD_MISC_USER
,
4329 .start
= vma
->vm_start
,
4330 .len
= vma
->vm_end
- vma
->vm_start
,
4331 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
4335 perf_event_mmap_event(&mmap_event
);
4339 * IRQ throttle logging
4342 static void perf_log_throttle(struct perf_event
*event
, int enable
)
4344 struct perf_output_handle handle
;
4345 struct perf_sample_data sample
;
4349 struct perf_event_header header
;
4353 } throttle_event
= {
4355 .type
= PERF_RECORD_THROTTLE
,
4357 .size
= sizeof(throttle_event
),
4359 .time
= perf_clock(),
4360 .id
= primary_event_id(event
),
4361 .stream_id
= event
->id
,
4365 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
4367 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
4369 ret
= perf_output_begin(&handle
, event
,
4370 throttle_event
.header
.size
, 1, 0);
4374 perf_output_put(&handle
, throttle_event
);
4375 perf_event__output_id_sample(event
, &handle
, &sample
);
4376 perf_output_end(&handle
);
4380 * Generic event overflow handling, sampling.
4383 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
4384 int throttle
, struct perf_sample_data
*data
,
4385 struct pt_regs
*regs
)
4387 int events
= atomic_read(&event
->event_limit
);
4388 struct hw_perf_event
*hwc
= &event
->hw
;
4392 * Non-sampling counters might still use the PMI to fold short
4393 * hardware counters, ignore those.
4395 if (unlikely(!is_sampling_event(event
)))
4401 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
4403 if (HZ
* hwc
->interrupts
>
4404 (u64
)sysctl_perf_event_sample_rate
) {
4405 hwc
->interrupts
= MAX_INTERRUPTS
;
4406 perf_log_throttle(event
, 0);
4411 * Keep re-disabling events even though on the previous
4412 * pass we disabled it - just in case we raced with a
4413 * sched-in and the event got enabled again:
4419 if (event
->attr
.freq
) {
4420 u64 now
= perf_clock();
4421 s64 delta
= now
- hwc
->freq_time_stamp
;
4423 hwc
->freq_time_stamp
= now
;
4425 if (delta
> 0 && delta
< 2*TICK_NSEC
)
4426 perf_adjust_period(event
, delta
, hwc
->last_period
);
4430 * XXX event_limit might not quite work as expected on inherited
4434 event
->pending_kill
= POLL_IN
;
4435 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
4437 event
->pending_kill
= POLL_HUP
;
4439 event
->pending_disable
= 1;
4440 irq_work_queue(&event
->pending
);
4442 perf_event_disable(event
);
4445 if (event
->overflow_handler
)
4446 event
->overflow_handler(event
, nmi
, data
, regs
);
4448 perf_event_output(event
, nmi
, data
, regs
);
4453 int perf_event_overflow(struct perf_event
*event
, int nmi
,
4454 struct perf_sample_data
*data
,
4455 struct pt_regs
*regs
)
4457 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
4461 * Generic software event infrastructure
4464 struct swevent_htable
{
4465 struct swevent_hlist
*swevent_hlist
;
4466 struct mutex hlist_mutex
;
4469 /* Recursion avoidance in each contexts */
4470 int recursion
[PERF_NR_CONTEXTS
];
4473 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
4476 * We directly increment event->count and keep a second value in
4477 * event->hw.period_left to count intervals. This period event
4478 * is kept in the range [-sample_period, 0] so that we can use the
4482 static u64
perf_swevent_set_period(struct perf_event
*event
)
4484 struct hw_perf_event
*hwc
= &event
->hw
;
4485 u64 period
= hwc
->last_period
;
4489 hwc
->last_period
= hwc
->sample_period
;
4492 old
= val
= local64_read(&hwc
->period_left
);
4496 nr
= div64_u64(period
+ val
, period
);
4497 offset
= nr
* period
;
4499 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
4505 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
4506 int nmi
, struct perf_sample_data
*data
,
4507 struct pt_regs
*regs
)
4509 struct hw_perf_event
*hwc
= &event
->hw
;
4512 data
->period
= event
->hw
.last_period
;
4514 overflow
= perf_swevent_set_period(event
);
4516 if (hwc
->interrupts
== MAX_INTERRUPTS
)
4519 for (; overflow
; overflow
--) {
4520 if (__perf_event_overflow(event
, nmi
, throttle
,
4523 * We inhibit the overflow from happening when
4524 * hwc->interrupts == MAX_INTERRUPTS.
4532 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
4533 int nmi
, struct perf_sample_data
*data
,
4534 struct pt_regs
*regs
)
4536 struct hw_perf_event
*hwc
= &event
->hw
;
4538 local64_add(nr
, &event
->count
);
4543 if (!is_sampling_event(event
))
4546 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
4547 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
4549 if (local64_add_negative(nr
, &hwc
->period_left
))
4552 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
4555 static int perf_exclude_event(struct perf_event
*event
,
4556 struct pt_regs
*regs
)
4558 if (event
->hw
.state
& PERF_HES_STOPPED
)
4562 if (event
->attr
.exclude_user
&& user_mode(regs
))
4565 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4572 static int perf_swevent_match(struct perf_event
*event
,
4573 enum perf_type_id type
,
4575 struct perf_sample_data
*data
,
4576 struct pt_regs
*regs
)
4578 if (event
->attr
.type
!= type
)
4581 if (event
->attr
.config
!= event_id
)
4584 if (perf_exclude_event(event
, regs
))
4590 static inline u64
swevent_hash(u64 type
, u32 event_id
)
4592 u64 val
= event_id
| (type
<< 32);
4594 return hash_64(val
, SWEVENT_HLIST_BITS
);
4597 static inline struct hlist_head
*
4598 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
4600 u64 hash
= swevent_hash(type
, event_id
);
4602 return &hlist
->heads
[hash
];
4605 /* For the read side: events when they trigger */
4606 static inline struct hlist_head
*
4607 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
4609 struct swevent_hlist
*hlist
;
4611 hlist
= rcu_dereference(swhash
->swevent_hlist
);
4615 return __find_swevent_head(hlist
, type
, event_id
);
4618 /* For the event head insertion and removal in the hlist */
4619 static inline struct hlist_head
*
4620 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
4622 struct swevent_hlist
*hlist
;
4623 u32 event_id
= event
->attr
.config
;
4624 u64 type
= event
->attr
.type
;
4627 * Event scheduling is always serialized against hlist allocation
4628 * and release. Which makes the protected version suitable here.
4629 * The context lock guarantees that.
4631 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
4632 lockdep_is_held(&event
->ctx
->lock
));
4636 return __find_swevent_head(hlist
, type
, event_id
);
4639 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4641 struct perf_sample_data
*data
,
4642 struct pt_regs
*regs
)
4644 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4645 struct perf_event
*event
;
4646 struct hlist_node
*node
;
4647 struct hlist_head
*head
;
4650 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
4654 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4655 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4656 perf_swevent_event(event
, nr
, nmi
, data
, regs
);
4662 int perf_swevent_get_recursion_context(void)
4664 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4666 return get_recursion_context(swhash
->recursion
);
4668 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4670 inline void perf_swevent_put_recursion_context(int rctx
)
4672 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4674 put_recursion_context(swhash
->recursion
, rctx
);
4677 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
4678 struct pt_regs
*regs
, u64 addr
)
4680 struct perf_sample_data data
;
4683 preempt_disable_notrace();
4684 rctx
= perf_swevent_get_recursion_context();
4688 perf_sample_data_init(&data
, addr
);
4690 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
4692 perf_swevent_put_recursion_context(rctx
);
4693 preempt_enable_notrace();
4696 static void perf_swevent_read(struct perf_event
*event
)
4700 static int perf_swevent_add(struct perf_event
*event
, int flags
)
4702 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4703 struct hw_perf_event
*hwc
= &event
->hw
;
4704 struct hlist_head
*head
;
4706 if (is_sampling_event(event
)) {
4707 hwc
->last_period
= hwc
->sample_period
;
4708 perf_swevent_set_period(event
);
4711 hwc
->state
= !(flags
& PERF_EF_START
);
4713 head
= find_swevent_head(swhash
, event
);
4714 if (WARN_ON_ONCE(!head
))
4717 hlist_add_head_rcu(&event
->hlist_entry
, head
);
4722 static void perf_swevent_del(struct perf_event
*event
, int flags
)
4724 hlist_del_rcu(&event
->hlist_entry
);
4727 static void perf_swevent_start(struct perf_event
*event
, int flags
)
4729 event
->hw
.state
= 0;
4732 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
4734 event
->hw
.state
= PERF_HES_STOPPED
;
4737 /* Deref the hlist from the update side */
4738 static inline struct swevent_hlist
*
4739 swevent_hlist_deref(struct swevent_htable
*swhash
)
4741 return rcu_dereference_protected(swhash
->swevent_hlist
,
4742 lockdep_is_held(&swhash
->hlist_mutex
));
4745 static void swevent_hlist_release_rcu(struct rcu_head
*rcu_head
)
4747 struct swevent_hlist
*hlist
;
4749 hlist
= container_of(rcu_head
, struct swevent_hlist
, rcu_head
);
4753 static void swevent_hlist_release(struct swevent_htable
*swhash
)
4755 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
4760 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
4761 call_rcu(&hlist
->rcu_head
, swevent_hlist_release_rcu
);
4764 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
4766 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4768 mutex_lock(&swhash
->hlist_mutex
);
4770 if (!--swhash
->hlist_refcount
)
4771 swevent_hlist_release(swhash
);
4773 mutex_unlock(&swhash
->hlist_mutex
);
4776 static void swevent_hlist_put(struct perf_event
*event
)
4780 if (event
->cpu
!= -1) {
4781 swevent_hlist_put_cpu(event
, event
->cpu
);
4785 for_each_possible_cpu(cpu
)
4786 swevent_hlist_put_cpu(event
, cpu
);
4789 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
4791 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4794 mutex_lock(&swhash
->hlist_mutex
);
4796 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
4797 struct swevent_hlist
*hlist
;
4799 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
4804 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
4806 swhash
->hlist_refcount
++;
4808 mutex_unlock(&swhash
->hlist_mutex
);
4813 static int swevent_hlist_get(struct perf_event
*event
)
4816 int cpu
, failed_cpu
;
4818 if (event
->cpu
!= -1)
4819 return swevent_hlist_get_cpu(event
, event
->cpu
);
4822 for_each_possible_cpu(cpu
) {
4823 err
= swevent_hlist_get_cpu(event
, cpu
);
4833 for_each_possible_cpu(cpu
) {
4834 if (cpu
== failed_cpu
)
4836 swevent_hlist_put_cpu(event
, cpu
);
4843 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4845 static void sw_perf_event_destroy(struct perf_event
*event
)
4847 u64 event_id
= event
->attr
.config
;
4849 WARN_ON(event
->parent
);
4851 jump_label_dec(&perf_swevent_enabled
[event_id
]);
4852 swevent_hlist_put(event
);
4855 static int perf_swevent_init(struct perf_event
*event
)
4857 int event_id
= event
->attr
.config
;
4859 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
4863 case PERF_COUNT_SW_CPU_CLOCK
:
4864 case PERF_COUNT_SW_TASK_CLOCK
:
4871 if (event_id
>= PERF_COUNT_SW_MAX
)
4874 if (!event
->parent
) {
4877 err
= swevent_hlist_get(event
);
4881 jump_label_inc(&perf_swevent_enabled
[event_id
]);
4882 event
->destroy
= sw_perf_event_destroy
;
4888 static struct pmu perf_swevent
= {
4889 .task_ctx_nr
= perf_sw_context
,
4891 .event_init
= perf_swevent_init
,
4892 .add
= perf_swevent_add
,
4893 .del
= perf_swevent_del
,
4894 .start
= perf_swevent_start
,
4895 .stop
= perf_swevent_stop
,
4896 .read
= perf_swevent_read
,
4899 #ifdef CONFIG_EVENT_TRACING
4901 static int perf_tp_filter_match(struct perf_event
*event
,
4902 struct perf_sample_data
*data
)
4904 void *record
= data
->raw
->data
;
4906 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4911 static int perf_tp_event_match(struct perf_event
*event
,
4912 struct perf_sample_data
*data
,
4913 struct pt_regs
*regs
)
4916 * All tracepoints are from kernel-space.
4918 if (event
->attr
.exclude_kernel
)
4921 if (!perf_tp_filter_match(event
, data
))
4927 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
4928 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
)
4930 struct perf_sample_data data
;
4931 struct perf_event
*event
;
4932 struct hlist_node
*node
;
4934 struct perf_raw_record raw
= {
4939 perf_sample_data_init(&data
, addr
);
4942 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4943 if (perf_tp_event_match(event
, &data
, regs
))
4944 perf_swevent_event(event
, count
, 1, &data
, regs
);
4947 perf_swevent_put_recursion_context(rctx
);
4949 EXPORT_SYMBOL_GPL(perf_tp_event
);
4951 static void tp_perf_event_destroy(struct perf_event
*event
)
4953 perf_trace_destroy(event
);
4956 static int perf_tp_event_init(struct perf_event
*event
)
4960 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4963 err
= perf_trace_init(event
);
4967 event
->destroy
= tp_perf_event_destroy
;
4972 static struct pmu perf_tracepoint
= {
4973 .task_ctx_nr
= perf_sw_context
,
4975 .event_init
= perf_tp_event_init
,
4976 .add
= perf_trace_add
,
4977 .del
= perf_trace_del
,
4978 .start
= perf_swevent_start
,
4979 .stop
= perf_swevent_stop
,
4980 .read
= perf_swevent_read
,
4983 static inline void perf_tp_register(void)
4985 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
4988 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4993 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4996 filter_str
= strndup_user(arg
, PAGE_SIZE
);
4997 if (IS_ERR(filter_str
))
4998 return PTR_ERR(filter_str
);
5000 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
5006 static void perf_event_free_filter(struct perf_event
*event
)
5008 ftrace_profile_free_filter(event
);
5013 static inline void perf_tp_register(void)
5017 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5022 static void perf_event_free_filter(struct perf_event
*event
)
5026 #endif /* CONFIG_EVENT_TRACING */
5028 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5029 void perf_bp_event(struct perf_event
*bp
, void *data
)
5031 struct perf_sample_data sample
;
5032 struct pt_regs
*regs
= data
;
5034 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
5036 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
5037 perf_swevent_event(bp
, 1, 1, &sample
, regs
);
5042 * hrtimer based swevent callback
5045 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
5047 enum hrtimer_restart ret
= HRTIMER_RESTART
;
5048 struct perf_sample_data data
;
5049 struct pt_regs
*regs
;
5050 struct perf_event
*event
;
5053 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
5054 event
->pmu
->read(event
);
5056 perf_sample_data_init(&data
, 0);
5057 data
.period
= event
->hw
.last_period
;
5058 regs
= get_irq_regs();
5060 if (regs
&& !perf_exclude_event(event
, regs
)) {
5061 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
5062 if (perf_event_overflow(event
, 0, &data
, regs
))
5063 ret
= HRTIMER_NORESTART
;
5066 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
5067 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
5072 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
5074 struct hw_perf_event
*hwc
= &event
->hw
;
5077 if (!is_sampling_event(event
))
5080 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5081 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
5083 period
= local64_read(&hwc
->period_left
);
5088 local64_set(&hwc
->period_left
, 0);
5090 period
= max_t(u64
, 10000, hwc
->sample_period
);
5092 __hrtimer_start_range_ns(&hwc
->hrtimer
,
5093 ns_to_ktime(period
), 0,
5094 HRTIMER_MODE_REL_PINNED
, 0);
5097 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
5099 struct hw_perf_event
*hwc
= &event
->hw
;
5101 if (is_sampling_event(event
)) {
5102 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
5103 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
5105 hrtimer_cancel(&hwc
->hrtimer
);
5110 * Software event: cpu wall time clock
5113 static void cpu_clock_event_update(struct perf_event
*event
)
5118 now
= local_clock();
5119 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5120 local64_add(now
- prev
, &event
->count
);
5123 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
5125 local64_set(&event
->hw
.prev_count
, local_clock());
5126 perf_swevent_start_hrtimer(event
);
5129 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
5131 perf_swevent_cancel_hrtimer(event
);
5132 cpu_clock_event_update(event
);
5135 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
5137 if (flags
& PERF_EF_START
)
5138 cpu_clock_event_start(event
, flags
);
5143 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
5145 cpu_clock_event_stop(event
, flags
);
5148 static void cpu_clock_event_read(struct perf_event
*event
)
5150 cpu_clock_event_update(event
);
5153 static int cpu_clock_event_init(struct perf_event
*event
)
5155 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5158 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
5164 static struct pmu perf_cpu_clock
= {
5165 .task_ctx_nr
= perf_sw_context
,
5167 .event_init
= cpu_clock_event_init
,
5168 .add
= cpu_clock_event_add
,
5169 .del
= cpu_clock_event_del
,
5170 .start
= cpu_clock_event_start
,
5171 .stop
= cpu_clock_event_stop
,
5172 .read
= cpu_clock_event_read
,
5176 * Software event: task time clock
5179 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
5184 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5186 local64_add(delta
, &event
->count
);
5189 static void task_clock_event_start(struct perf_event
*event
, int flags
)
5191 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
5192 perf_swevent_start_hrtimer(event
);
5195 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
5197 perf_swevent_cancel_hrtimer(event
);
5198 task_clock_event_update(event
, event
->ctx
->time
);
5201 static int task_clock_event_add(struct perf_event
*event
, int flags
)
5203 if (flags
& PERF_EF_START
)
5204 task_clock_event_start(event
, flags
);
5209 static void task_clock_event_del(struct perf_event
*event
, int flags
)
5211 task_clock_event_stop(event
, PERF_EF_UPDATE
);
5214 static void task_clock_event_read(struct perf_event
*event
)
5219 update_context_time(event
->ctx
);
5220 time
= event
->ctx
->time
;
5222 u64 now
= perf_clock();
5223 u64 delta
= now
- event
->ctx
->timestamp
;
5224 time
= event
->ctx
->time
+ delta
;
5227 task_clock_event_update(event
, time
);
5230 static int task_clock_event_init(struct perf_event
*event
)
5232 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5235 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
5241 static struct pmu perf_task_clock
= {
5242 .task_ctx_nr
= perf_sw_context
,
5244 .event_init
= task_clock_event_init
,
5245 .add
= task_clock_event_add
,
5246 .del
= task_clock_event_del
,
5247 .start
= task_clock_event_start
,
5248 .stop
= task_clock_event_stop
,
5249 .read
= task_clock_event_read
,
5252 static void perf_pmu_nop_void(struct pmu
*pmu
)
5256 static int perf_pmu_nop_int(struct pmu
*pmu
)
5261 static void perf_pmu_start_txn(struct pmu
*pmu
)
5263 perf_pmu_disable(pmu
);
5266 static int perf_pmu_commit_txn(struct pmu
*pmu
)
5268 perf_pmu_enable(pmu
);
5272 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
5274 perf_pmu_enable(pmu
);
5278 * Ensures all contexts with the same task_ctx_nr have the same
5279 * pmu_cpu_context too.
5281 static void *find_pmu_context(int ctxn
)
5288 list_for_each_entry(pmu
, &pmus
, entry
) {
5289 if (pmu
->task_ctx_nr
== ctxn
)
5290 return pmu
->pmu_cpu_context
;
5296 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
5300 for_each_possible_cpu(cpu
) {
5301 struct perf_cpu_context
*cpuctx
;
5303 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5305 if (cpuctx
->active_pmu
== old_pmu
)
5306 cpuctx
->active_pmu
= pmu
;
5310 static void free_pmu_context(struct pmu
*pmu
)
5314 mutex_lock(&pmus_lock
);
5316 * Like a real lame refcount.
5318 list_for_each_entry(i
, &pmus
, entry
) {
5319 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
5320 update_pmu_context(i
, pmu
);
5325 free_percpu(pmu
->pmu_cpu_context
);
5327 mutex_unlock(&pmus_lock
);
5329 static struct idr pmu_idr
;
5332 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
5334 struct pmu
*pmu
= dev_get_drvdata(dev
);
5336 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
5339 static struct device_attribute pmu_dev_attrs
[] = {
5344 static int pmu_bus_running
;
5345 static struct bus_type pmu_bus
= {
5346 .name
= "event_source",
5347 .dev_attrs
= pmu_dev_attrs
,
5350 static void pmu_dev_release(struct device
*dev
)
5355 static int pmu_dev_alloc(struct pmu
*pmu
)
5359 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
5363 device_initialize(pmu
->dev
);
5364 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
5368 dev_set_drvdata(pmu
->dev
, pmu
);
5369 pmu
->dev
->bus
= &pmu_bus
;
5370 pmu
->dev
->release
= pmu_dev_release
;
5371 ret
= device_add(pmu
->dev
);
5379 put_device(pmu
->dev
);
5383 static struct lock_class_key cpuctx_mutex
;
5385 int perf_pmu_register(struct pmu
*pmu
, char *name
, int type
)
5389 mutex_lock(&pmus_lock
);
5391 pmu
->pmu_disable_count
= alloc_percpu(int);
5392 if (!pmu
->pmu_disable_count
)
5401 int err
= idr_pre_get(&pmu_idr
, GFP_KERNEL
);
5405 err
= idr_get_new_above(&pmu_idr
, pmu
, PERF_TYPE_MAX
, &type
);
5413 if (pmu_bus_running
) {
5414 ret
= pmu_dev_alloc(pmu
);
5420 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
5421 if (pmu
->pmu_cpu_context
)
5422 goto got_cpu_context
;
5424 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
5425 if (!pmu
->pmu_cpu_context
)
5428 for_each_possible_cpu(cpu
) {
5429 struct perf_cpu_context
*cpuctx
;
5431 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5432 __perf_event_init_context(&cpuctx
->ctx
);
5433 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
5434 cpuctx
->ctx
.type
= cpu_context
;
5435 cpuctx
->ctx
.pmu
= pmu
;
5436 cpuctx
->jiffies_interval
= 1;
5437 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
5438 cpuctx
->active_pmu
= pmu
;
5442 if (!pmu
->start_txn
) {
5443 if (pmu
->pmu_enable
) {
5445 * If we have pmu_enable/pmu_disable calls, install
5446 * transaction stubs that use that to try and batch
5447 * hardware accesses.
5449 pmu
->start_txn
= perf_pmu_start_txn
;
5450 pmu
->commit_txn
= perf_pmu_commit_txn
;
5451 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
5453 pmu
->start_txn
= perf_pmu_nop_void
;
5454 pmu
->commit_txn
= perf_pmu_nop_int
;
5455 pmu
->cancel_txn
= perf_pmu_nop_void
;
5459 if (!pmu
->pmu_enable
) {
5460 pmu
->pmu_enable
= perf_pmu_nop_void
;
5461 pmu
->pmu_disable
= perf_pmu_nop_void
;
5464 list_add_rcu(&pmu
->entry
, &pmus
);
5467 mutex_unlock(&pmus_lock
);
5472 device_del(pmu
->dev
);
5473 put_device(pmu
->dev
);
5476 if (pmu
->type
>= PERF_TYPE_MAX
)
5477 idr_remove(&pmu_idr
, pmu
->type
);
5480 free_percpu(pmu
->pmu_disable_count
);
5484 void perf_pmu_unregister(struct pmu
*pmu
)
5486 mutex_lock(&pmus_lock
);
5487 list_del_rcu(&pmu
->entry
);
5488 mutex_unlock(&pmus_lock
);
5491 * We dereference the pmu list under both SRCU and regular RCU, so
5492 * synchronize against both of those.
5494 synchronize_srcu(&pmus_srcu
);
5497 free_percpu(pmu
->pmu_disable_count
);
5498 if (pmu
->type
>= PERF_TYPE_MAX
)
5499 idr_remove(&pmu_idr
, pmu
->type
);
5500 device_del(pmu
->dev
);
5501 put_device(pmu
->dev
);
5502 free_pmu_context(pmu
);
5505 struct pmu
*perf_init_event(struct perf_event
*event
)
5507 struct pmu
*pmu
= NULL
;
5510 idx
= srcu_read_lock(&pmus_srcu
);
5513 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
5518 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5519 int ret
= pmu
->event_init(event
);
5523 if (ret
!= -ENOENT
) {
5528 pmu
= ERR_PTR(-ENOENT
);
5530 srcu_read_unlock(&pmus_srcu
, idx
);
5536 * Allocate and initialize a event structure
5538 static struct perf_event
*
5539 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
5540 struct task_struct
*task
,
5541 struct perf_event
*group_leader
,
5542 struct perf_event
*parent_event
,
5543 perf_overflow_handler_t overflow_handler
)
5546 struct perf_event
*event
;
5547 struct hw_perf_event
*hwc
;
5550 if ((unsigned)cpu
>= nr_cpu_ids
) {
5551 if (!task
|| cpu
!= -1)
5552 return ERR_PTR(-EINVAL
);
5555 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5557 return ERR_PTR(-ENOMEM
);
5560 * Single events are their own group leaders, with an
5561 * empty sibling list:
5564 group_leader
= event
;
5566 mutex_init(&event
->child_mutex
);
5567 INIT_LIST_HEAD(&event
->child_list
);
5569 INIT_LIST_HEAD(&event
->group_entry
);
5570 INIT_LIST_HEAD(&event
->event_entry
);
5571 INIT_LIST_HEAD(&event
->sibling_list
);
5572 init_waitqueue_head(&event
->waitq
);
5573 init_irq_work(&event
->pending
, perf_pending_event
);
5575 mutex_init(&event
->mmap_mutex
);
5578 event
->attr
= *attr
;
5579 event
->group_leader
= group_leader
;
5583 event
->parent
= parent_event
;
5585 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
5586 event
->id
= atomic64_inc_return(&perf_event_id
);
5588 event
->state
= PERF_EVENT_STATE_INACTIVE
;
5591 event
->attach_state
= PERF_ATTACH_TASK
;
5592 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5594 * hw_breakpoint is a bit difficult here..
5596 if (attr
->type
== PERF_TYPE_BREAKPOINT
)
5597 event
->hw
.bp_target
= task
;
5601 if (!overflow_handler
&& parent_event
)
5602 overflow_handler
= parent_event
->overflow_handler
;
5604 event
->overflow_handler
= overflow_handler
;
5607 event
->state
= PERF_EVENT_STATE_OFF
;
5612 hwc
->sample_period
= attr
->sample_period
;
5613 if (attr
->freq
&& attr
->sample_freq
)
5614 hwc
->sample_period
= 1;
5615 hwc
->last_period
= hwc
->sample_period
;
5617 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5620 * we currently do not support PERF_FORMAT_GROUP on inherited events
5622 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
5625 pmu
= perf_init_event(event
);
5631 else if (IS_ERR(pmu
))
5636 put_pid_ns(event
->ns
);
5638 return ERR_PTR(err
);
5643 if (!event
->parent
) {
5644 if (event
->attach_state
& PERF_ATTACH_TASK
)
5645 jump_label_inc(&perf_task_events
);
5646 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
5647 atomic_inc(&nr_mmap_events
);
5648 if (event
->attr
.comm
)
5649 atomic_inc(&nr_comm_events
);
5650 if (event
->attr
.task
)
5651 atomic_inc(&nr_task_events
);
5652 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5653 err
= get_callchain_buffers();
5656 return ERR_PTR(err
);
5664 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5665 struct perf_event_attr
*attr
)
5670 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
5674 * zero the full structure, so that a short copy will be nice.
5676 memset(attr
, 0, sizeof(*attr
));
5678 ret
= get_user(size
, &uattr
->size
);
5682 if (size
> PAGE_SIZE
) /* silly large */
5685 if (!size
) /* abi compat */
5686 size
= PERF_ATTR_SIZE_VER0
;
5688 if (size
< PERF_ATTR_SIZE_VER0
)
5692 * If we're handed a bigger struct than we know of,
5693 * ensure all the unknown bits are 0 - i.e. new
5694 * user-space does not rely on any kernel feature
5695 * extensions we dont know about yet.
5697 if (size
> sizeof(*attr
)) {
5698 unsigned char __user
*addr
;
5699 unsigned char __user
*end
;
5702 addr
= (void __user
*)uattr
+ sizeof(*attr
);
5703 end
= (void __user
*)uattr
+ size
;
5705 for (; addr
< end
; addr
++) {
5706 ret
= get_user(val
, addr
);
5712 size
= sizeof(*attr
);
5715 ret
= copy_from_user(attr
, uattr
, size
);
5720 * If the type exists, the corresponding creation will verify
5723 if (attr
->type
>= PERF_TYPE_MAX
)
5726 if (attr
->__reserved_1
)
5729 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
5732 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
5739 put_user(sizeof(*attr
), &uattr
->size
);
5745 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
5747 struct perf_buffer
*buffer
= NULL
, *old_buffer
= NULL
;
5753 /* don't allow circular references */
5754 if (event
== output_event
)
5758 * Don't allow cross-cpu buffers
5760 if (output_event
->cpu
!= event
->cpu
)
5764 * If its not a per-cpu buffer, it must be the same task.
5766 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
5770 mutex_lock(&event
->mmap_mutex
);
5771 /* Can't redirect output if we've got an active mmap() */
5772 if (atomic_read(&event
->mmap_count
))
5776 /* get the buffer we want to redirect to */
5777 buffer
= perf_buffer_get(output_event
);
5782 old_buffer
= event
->buffer
;
5783 rcu_assign_pointer(event
->buffer
, buffer
);
5786 mutex_unlock(&event
->mmap_mutex
);
5789 perf_buffer_put(old_buffer
);
5795 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5797 * @attr_uptr: event_id type attributes for monitoring/sampling
5800 * @group_fd: group leader event fd
5802 SYSCALL_DEFINE5(perf_event_open
,
5803 struct perf_event_attr __user
*, attr_uptr
,
5804 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
5806 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
5807 struct perf_event
*event
, *sibling
;
5808 struct perf_event_attr attr
;
5809 struct perf_event_context
*ctx
;
5810 struct file
*event_file
= NULL
;
5811 struct file
*group_file
= NULL
;
5812 struct task_struct
*task
= NULL
;
5816 int fput_needed
= 0;
5819 /* for future expandability... */
5820 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
5823 err
= perf_copy_attr(attr_uptr
, &attr
);
5827 if (!attr
.exclude_kernel
) {
5828 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
5833 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
5837 event_fd
= get_unused_fd_flags(O_RDWR
);
5841 if (group_fd
!= -1) {
5842 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
5843 if (IS_ERR(group_leader
)) {
5844 err
= PTR_ERR(group_leader
);
5847 group_file
= group_leader
->filp
;
5848 if (flags
& PERF_FLAG_FD_OUTPUT
)
5849 output_event
= group_leader
;
5850 if (flags
& PERF_FLAG_FD_NO_GROUP
)
5851 group_leader
= NULL
;
5855 task
= find_lively_task_by_vpid(pid
);
5857 err
= PTR_ERR(task
);
5862 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
, NULL
);
5863 if (IS_ERR(event
)) {
5864 err
= PTR_ERR(event
);
5869 * Special case software events and allow them to be part of
5870 * any hardware group.
5875 (is_software_event(event
) != is_software_event(group_leader
))) {
5876 if (is_software_event(event
)) {
5878 * If event and group_leader are not both a software
5879 * event, and event is, then group leader is not.
5881 * Allow the addition of software events to !software
5882 * groups, this is safe because software events never
5885 pmu
= group_leader
->pmu
;
5886 } else if (is_software_event(group_leader
) &&
5887 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
5889 * In case the group is a pure software group, and we
5890 * try to add a hardware event, move the whole group to
5891 * the hardware context.
5898 * Get the target context (task or percpu):
5900 ctx
= find_get_context(pmu
, task
, cpu
);
5907 * Look up the group leader (we will attach this event to it):
5913 * Do not allow a recursive hierarchy (this new sibling
5914 * becoming part of another group-sibling):
5916 if (group_leader
->group_leader
!= group_leader
)
5919 * Do not allow to attach to a group in a different
5920 * task or CPU context:
5923 if (group_leader
->ctx
->type
!= ctx
->type
)
5926 if (group_leader
->ctx
!= ctx
)
5931 * Only a group leader can be exclusive or pinned
5933 if (attr
.exclusive
|| attr
.pinned
)
5938 err
= perf_event_set_output(event
, output_event
);
5943 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
5944 if (IS_ERR(event_file
)) {
5945 err
= PTR_ERR(event_file
);
5950 struct perf_event_context
*gctx
= group_leader
->ctx
;
5952 mutex_lock(&gctx
->mutex
);
5953 perf_event_remove_from_context(group_leader
);
5954 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
5956 perf_event_remove_from_context(sibling
);
5959 mutex_unlock(&gctx
->mutex
);
5963 event
->filp
= event_file
;
5964 WARN_ON_ONCE(ctx
->parent_ctx
);
5965 mutex_lock(&ctx
->mutex
);
5968 perf_install_in_context(ctx
, group_leader
, cpu
);
5970 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
5972 perf_install_in_context(ctx
, sibling
, cpu
);
5977 perf_install_in_context(ctx
, event
, cpu
);
5979 mutex_unlock(&ctx
->mutex
);
5981 event
->owner
= current
;
5983 mutex_lock(¤t
->perf_event_mutex
);
5984 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
5985 mutex_unlock(¤t
->perf_event_mutex
);
5988 * Precalculate sample_data sizes
5990 perf_event__header_size(event
);
5991 perf_event__id_header_size(event
);
5994 * Drop the reference on the group_event after placing the
5995 * new event on the sibling_list. This ensures destruction
5996 * of the group leader will find the pointer to itself in
5997 * perf_group_detach().
5999 fput_light(group_file
, fput_needed
);
6000 fd_install(event_fd
, event_file
);
6009 put_task_struct(task
);
6011 fput_light(group_file
, fput_needed
);
6013 put_unused_fd(event_fd
);
6018 * perf_event_create_kernel_counter
6020 * @attr: attributes of the counter to create
6021 * @cpu: cpu in which the counter is bound
6022 * @task: task to profile (NULL for percpu)
6025 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
6026 struct task_struct
*task
,
6027 perf_overflow_handler_t overflow_handler
)
6029 struct perf_event_context
*ctx
;
6030 struct perf_event
*event
;
6034 * Get the target context (task or percpu):
6037 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
, overflow_handler
);
6038 if (IS_ERR(event
)) {
6039 err
= PTR_ERR(event
);
6043 ctx
= find_get_context(event
->pmu
, task
, cpu
);
6050 WARN_ON_ONCE(ctx
->parent_ctx
);
6051 mutex_lock(&ctx
->mutex
);
6052 perf_install_in_context(ctx
, event
, cpu
);
6054 mutex_unlock(&ctx
->mutex
);
6061 return ERR_PTR(err
);
6063 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
6065 static void sync_child_event(struct perf_event
*child_event
,
6066 struct task_struct
*child
)
6068 struct perf_event
*parent_event
= child_event
->parent
;
6071 if (child_event
->attr
.inherit_stat
)
6072 perf_event_read_event(child_event
, child
);
6074 child_val
= perf_event_count(child_event
);
6077 * Add back the child's count to the parent's count:
6079 atomic64_add(child_val
, &parent_event
->child_count
);
6080 atomic64_add(child_event
->total_time_enabled
,
6081 &parent_event
->child_total_time_enabled
);
6082 atomic64_add(child_event
->total_time_running
,
6083 &parent_event
->child_total_time_running
);
6086 * Remove this event from the parent's list
6088 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6089 mutex_lock(&parent_event
->child_mutex
);
6090 list_del_init(&child_event
->child_list
);
6091 mutex_unlock(&parent_event
->child_mutex
);
6094 * Release the parent event, if this was the last
6097 fput(parent_event
->filp
);
6101 __perf_event_exit_task(struct perf_event
*child_event
,
6102 struct perf_event_context
*child_ctx
,
6103 struct task_struct
*child
)
6105 struct perf_event
*parent_event
;
6107 perf_event_remove_from_context(child_event
);
6109 parent_event
= child_event
->parent
;
6111 * It can happen that parent exits first, and has events
6112 * that are still around due to the child reference. These
6113 * events need to be zapped - but otherwise linger.
6116 sync_child_event(child_event
, child
);
6117 free_event(child_event
);
6121 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
6123 struct perf_event
*child_event
, *tmp
;
6124 struct perf_event_context
*child_ctx
;
6125 unsigned long flags
;
6127 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
6128 perf_event_task(child
, NULL
, 0);
6132 local_irq_save(flags
);
6134 * We can't reschedule here because interrupts are disabled,
6135 * and either child is current or it is a task that can't be
6136 * scheduled, so we are now safe from rescheduling changing
6139 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
6140 task_ctx_sched_out(child_ctx
, EVENT_ALL
);
6143 * Take the context lock here so that if find_get_context is
6144 * reading child->perf_event_ctxp, we wait until it has
6145 * incremented the context's refcount before we do put_ctx below.
6147 raw_spin_lock(&child_ctx
->lock
);
6148 child
->perf_event_ctxp
[ctxn
] = NULL
;
6150 * If this context is a clone; unclone it so it can't get
6151 * swapped to another process while we're removing all
6152 * the events from it.
6154 unclone_ctx(child_ctx
);
6155 update_context_time(child_ctx
);
6156 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6159 * Report the task dead after unscheduling the events so that we
6160 * won't get any samples after PERF_RECORD_EXIT. We can however still
6161 * get a few PERF_RECORD_READ events.
6163 perf_event_task(child
, child_ctx
, 0);
6166 * We can recurse on the same lock type through:
6168 * __perf_event_exit_task()
6169 * sync_child_event()
6170 * fput(parent_event->filp)
6172 * mutex_lock(&ctx->mutex)
6174 * But since its the parent context it won't be the same instance.
6176 mutex_lock(&child_ctx
->mutex
);
6179 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
6181 __perf_event_exit_task(child_event
, child_ctx
, child
);
6183 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
6185 __perf_event_exit_task(child_event
, child_ctx
, child
);
6188 * If the last event was a group event, it will have appended all
6189 * its siblings to the list, but we obtained 'tmp' before that which
6190 * will still point to the list head terminating the iteration.
6192 if (!list_empty(&child_ctx
->pinned_groups
) ||
6193 !list_empty(&child_ctx
->flexible_groups
))
6196 mutex_unlock(&child_ctx
->mutex
);
6202 * When a child task exits, feed back event values to parent events.
6204 void perf_event_exit_task(struct task_struct
*child
)
6206 struct perf_event
*event
, *tmp
;
6209 mutex_lock(&child
->perf_event_mutex
);
6210 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
6212 list_del_init(&event
->owner_entry
);
6215 * Ensure the list deletion is visible before we clear
6216 * the owner, closes a race against perf_release() where
6217 * we need to serialize on the owner->perf_event_mutex.
6220 event
->owner
= NULL
;
6222 mutex_unlock(&child
->perf_event_mutex
);
6224 for_each_task_context_nr(ctxn
)
6225 perf_event_exit_task_context(child
, ctxn
);
6228 static void perf_free_event(struct perf_event
*event
,
6229 struct perf_event_context
*ctx
)
6231 struct perf_event
*parent
= event
->parent
;
6233 if (WARN_ON_ONCE(!parent
))
6236 mutex_lock(&parent
->child_mutex
);
6237 list_del_init(&event
->child_list
);
6238 mutex_unlock(&parent
->child_mutex
);
6242 perf_group_detach(event
);
6243 list_del_event(event
, ctx
);
6248 * free an unexposed, unused context as created by inheritance by
6249 * perf_event_init_task below, used by fork() in case of fail.
6251 void perf_event_free_task(struct task_struct
*task
)
6253 struct perf_event_context
*ctx
;
6254 struct perf_event
*event
, *tmp
;
6257 for_each_task_context_nr(ctxn
) {
6258 ctx
= task
->perf_event_ctxp
[ctxn
];
6262 mutex_lock(&ctx
->mutex
);
6264 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
6266 perf_free_event(event
, ctx
);
6268 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
6270 perf_free_event(event
, ctx
);
6272 if (!list_empty(&ctx
->pinned_groups
) ||
6273 !list_empty(&ctx
->flexible_groups
))
6276 mutex_unlock(&ctx
->mutex
);
6282 void perf_event_delayed_put(struct task_struct
*task
)
6286 for_each_task_context_nr(ctxn
)
6287 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
6291 * inherit a event from parent task to child task:
6293 static struct perf_event
*
6294 inherit_event(struct perf_event
*parent_event
,
6295 struct task_struct
*parent
,
6296 struct perf_event_context
*parent_ctx
,
6297 struct task_struct
*child
,
6298 struct perf_event
*group_leader
,
6299 struct perf_event_context
*child_ctx
)
6301 struct perf_event
*child_event
;
6302 unsigned long flags
;
6305 * Instead of creating recursive hierarchies of events,
6306 * we link inherited events back to the original parent,
6307 * which has a filp for sure, which we use as the reference
6310 if (parent_event
->parent
)
6311 parent_event
= parent_event
->parent
;
6313 child_event
= perf_event_alloc(&parent_event
->attr
,
6316 group_leader
, parent_event
,
6318 if (IS_ERR(child_event
))
6323 * Make the child state follow the state of the parent event,
6324 * not its attr.disabled bit. We hold the parent's mutex,
6325 * so we won't race with perf_event_{en, dis}able_family.
6327 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
6328 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
6330 child_event
->state
= PERF_EVENT_STATE_OFF
;
6332 if (parent_event
->attr
.freq
) {
6333 u64 sample_period
= parent_event
->hw
.sample_period
;
6334 struct hw_perf_event
*hwc
= &child_event
->hw
;
6336 hwc
->sample_period
= sample_period
;
6337 hwc
->last_period
= sample_period
;
6339 local64_set(&hwc
->period_left
, sample_period
);
6342 child_event
->ctx
= child_ctx
;
6343 child_event
->overflow_handler
= parent_event
->overflow_handler
;
6346 * Precalculate sample_data sizes
6348 perf_event__header_size(child_event
);
6349 perf_event__id_header_size(child_event
);
6352 * Link it up in the child's context:
6354 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
6355 add_event_to_ctx(child_event
, child_ctx
);
6356 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6359 * Get a reference to the parent filp - we will fput it
6360 * when the child event exits. This is safe to do because
6361 * we are in the parent and we know that the filp still
6362 * exists and has a nonzero count:
6364 atomic_long_inc(&parent_event
->filp
->f_count
);
6367 * Link this into the parent event's child list
6369 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6370 mutex_lock(&parent_event
->child_mutex
);
6371 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
6372 mutex_unlock(&parent_event
->child_mutex
);
6377 static int inherit_group(struct perf_event
*parent_event
,
6378 struct task_struct
*parent
,
6379 struct perf_event_context
*parent_ctx
,
6380 struct task_struct
*child
,
6381 struct perf_event_context
*child_ctx
)
6383 struct perf_event
*leader
;
6384 struct perf_event
*sub
;
6385 struct perf_event
*child_ctr
;
6387 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
6388 child
, NULL
, child_ctx
);
6390 return PTR_ERR(leader
);
6391 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
6392 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
6393 child
, leader
, child_ctx
);
6394 if (IS_ERR(child_ctr
))
6395 return PTR_ERR(child_ctr
);
6401 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
6402 struct perf_event_context
*parent_ctx
,
6403 struct task_struct
*child
, int ctxn
,
6407 struct perf_event_context
*child_ctx
;
6409 if (!event
->attr
.inherit
) {
6414 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6417 * This is executed from the parent task context, so
6418 * inherit events that have been marked for cloning.
6419 * First allocate and initialize a context for the
6423 child_ctx
= alloc_perf_context(event
->pmu
, child
);
6427 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
6430 ret
= inherit_group(event
, parent
, parent_ctx
,
6440 * Initialize the perf_event context in task_struct
6442 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
6444 struct perf_event_context
*child_ctx
, *parent_ctx
;
6445 struct perf_event_context
*cloned_ctx
;
6446 struct perf_event
*event
;
6447 struct task_struct
*parent
= current
;
6448 int inherited_all
= 1;
6449 unsigned long flags
;
6452 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
6456 * If the parent's context is a clone, pin it so it won't get
6459 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
6462 * No need to check if parent_ctx != NULL here; since we saw
6463 * it non-NULL earlier, the only reason for it to become NULL
6464 * is if we exit, and since we're currently in the middle of
6465 * a fork we can't be exiting at the same time.
6469 * Lock the parent list. No need to lock the child - not PID
6470 * hashed yet and not running, so nobody can access it.
6472 mutex_lock(&parent_ctx
->mutex
);
6475 * We dont have to disable NMIs - we are only looking at
6476 * the list, not manipulating it:
6478 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
6479 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6480 child
, ctxn
, &inherited_all
);
6486 * We can't hold ctx->lock when iterating the ->flexible_group list due
6487 * to allocations, but we need to prevent rotation because
6488 * rotate_ctx() will change the list from interrupt context.
6490 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6491 parent_ctx
->rotate_disable
= 1;
6492 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6494 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
6495 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6496 child
, ctxn
, &inherited_all
);
6501 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6502 parent_ctx
->rotate_disable
= 0;
6504 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6506 if (child_ctx
&& inherited_all
) {
6508 * Mark the child context as a clone of the parent
6509 * context, or of whatever the parent is a clone of.
6511 * Note that if the parent is a clone, the holding of
6512 * parent_ctx->lock avoids it from being uncloned.
6514 cloned_ctx
= parent_ctx
->parent_ctx
;
6516 child_ctx
->parent_ctx
= cloned_ctx
;
6517 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
6519 child_ctx
->parent_ctx
= parent_ctx
;
6520 child_ctx
->parent_gen
= parent_ctx
->generation
;
6522 get_ctx(child_ctx
->parent_ctx
);
6525 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6526 mutex_unlock(&parent_ctx
->mutex
);
6528 perf_unpin_context(parent_ctx
);
6534 * Initialize the perf_event context in task_struct
6536 int perf_event_init_task(struct task_struct
*child
)
6540 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
6541 mutex_init(&child
->perf_event_mutex
);
6542 INIT_LIST_HEAD(&child
->perf_event_list
);
6544 for_each_task_context_nr(ctxn
) {
6545 ret
= perf_event_init_context(child
, ctxn
);
6553 static void __init
perf_event_init_all_cpus(void)
6555 struct swevent_htable
*swhash
;
6558 for_each_possible_cpu(cpu
) {
6559 swhash
= &per_cpu(swevent_htable
, cpu
);
6560 mutex_init(&swhash
->hlist_mutex
);
6561 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
6565 static void __cpuinit
perf_event_init_cpu(int cpu
)
6567 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6569 mutex_lock(&swhash
->hlist_mutex
);
6570 if (swhash
->hlist_refcount
> 0) {
6571 struct swevent_hlist
*hlist
;
6573 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
6575 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6577 mutex_unlock(&swhash
->hlist_mutex
);
6580 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6581 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
6583 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6585 WARN_ON(!irqs_disabled());
6587 list_del_init(&cpuctx
->rotation_list
);
6590 static void __perf_event_exit_context(void *__info
)
6592 struct perf_event_context
*ctx
= __info
;
6593 struct perf_event
*event
, *tmp
;
6595 perf_pmu_rotate_stop(ctx
->pmu
);
6597 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
6598 __perf_event_remove_from_context(event
);
6599 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
6600 __perf_event_remove_from_context(event
);
6603 static void perf_event_exit_cpu_context(int cpu
)
6605 struct perf_event_context
*ctx
;
6609 idx
= srcu_read_lock(&pmus_srcu
);
6610 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6611 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
6613 mutex_lock(&ctx
->mutex
);
6614 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
6615 mutex_unlock(&ctx
->mutex
);
6617 srcu_read_unlock(&pmus_srcu
, idx
);
6620 static void perf_event_exit_cpu(int cpu
)
6622 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6624 mutex_lock(&swhash
->hlist_mutex
);
6625 swevent_hlist_release(swhash
);
6626 mutex_unlock(&swhash
->hlist_mutex
);
6628 perf_event_exit_cpu_context(cpu
);
6631 static inline void perf_event_exit_cpu(int cpu
) { }
6635 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
6639 for_each_online_cpu(cpu
)
6640 perf_event_exit_cpu(cpu
);
6646 * Run the perf reboot notifier at the very last possible moment so that
6647 * the generic watchdog code runs as long as possible.
6649 static struct notifier_block perf_reboot_notifier
= {
6650 .notifier_call
= perf_reboot
,
6651 .priority
= INT_MIN
,
6654 static int __cpuinit
6655 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
6657 unsigned int cpu
= (long)hcpu
;
6659 switch (action
& ~CPU_TASKS_FROZEN
) {
6661 case CPU_UP_PREPARE
:
6662 case CPU_DOWN_FAILED
:
6663 perf_event_init_cpu(cpu
);
6666 case CPU_UP_CANCELED
:
6667 case CPU_DOWN_PREPARE
:
6668 perf_event_exit_cpu(cpu
);
6678 void __init
perf_event_init(void)
6684 perf_event_init_all_cpus();
6685 init_srcu_struct(&pmus_srcu
);
6686 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
6687 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
6688 perf_pmu_register(&perf_task_clock
, NULL
, -1);
6690 perf_cpu_notifier(perf_cpu_notify
);
6691 register_reboot_notifier(&perf_reboot_notifier
);
6693 ret
= init_hw_breakpoint();
6694 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
6697 static int __init
perf_event_sysfs_init(void)
6702 mutex_lock(&pmus_lock
);
6704 ret
= bus_register(&pmu_bus
);
6708 list_for_each_entry(pmu
, &pmus
, entry
) {
6709 if (!pmu
->name
|| pmu
->type
< 0)
6712 ret
= pmu_dev_alloc(pmu
);
6713 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
6715 pmu_bus_running
= 1;
6719 mutex_unlock(&pmus_lock
);
6723 device_initcall(perf_event_sysfs_init
);