2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
41 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode
->i_sb
)->s_journal
,
55 &EXT4_I(inode
)->jinode
,
59 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
62 * Test whether an inode is a fast symlink.
64 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
66 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
67 (inode
->i_sb
->s_blocksize
>> 9) : 0;
69 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
73 * The ext4 forget function must perform a revoke if we are freeing data
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
81 * If the handle isn't valid we're not journaling, but we still need to
82 * call into ext4_journal_revoke() to put the buffer head.
84 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
85 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
91 BUFFER_TRACE(bh
, "enter");
93 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95 bh
, is_metadata
, inode
->i_mode
,
96 test_opt(inode
->i_sb
, DATA_FLAGS
));
98 /* Never use the revoke function if we are doing full data
99 * journaling: there is no need to, and a V1 superblock won't
100 * support it. Otherwise, only skip the revoke on un-journaled
103 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
104 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
106 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
107 return ext4_journal_forget(handle
, bh
);
113 * data!=journal && (is_metadata || should_journal_data(inode))
115 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
116 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
118 ext4_abort(inode
->i_sb
, __func__
,
119 "error %d when attempting revoke", err
);
120 BUFFER_TRACE(bh
, "exit");
125 * Work out how many blocks we need to proceed with the next chunk of a
126 * truncate transaction.
128 static unsigned long blocks_for_truncate(struct inode
*inode
)
132 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
134 /* Give ourselves just enough room to cope with inodes in which
135 * i_blocks is corrupt: we've seen disk corruptions in the past
136 * which resulted in random data in an inode which looked enough
137 * like a regular file for ext4 to try to delete it. Things
138 * will go a bit crazy if that happens, but at least we should
139 * try not to panic the whole kernel. */
143 /* But we need to bound the transaction so we don't overflow the
145 if (needed
> EXT4_MAX_TRANS_DATA
)
146 needed
= EXT4_MAX_TRANS_DATA
;
148 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
152 * Truncate transactions can be complex and absolutely huge. So we need to
153 * be able to restart the transaction at a conventient checkpoint to make
154 * sure we don't overflow the journal.
156 * start_transaction gets us a new handle for a truncate transaction,
157 * and extend_transaction tries to extend the existing one a bit. If
158 * extend fails, we need to propagate the failure up and restart the
159 * transaction in the top-level truncate loop. --sct
161 static handle_t
*start_transaction(struct inode
*inode
)
165 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
169 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
174 * Try to extend this transaction for the purposes of truncation.
176 * Returns 0 if we managed to create more room. If we can't create more
177 * room, and the transaction must be restarted we return 1.
179 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
181 if (!ext4_handle_valid(handle
))
183 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
185 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
191 * Restart the transaction associated with *handle. This does a commit,
192 * so before we call here everything must be consistently dirtied against
195 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
201 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
202 * moment, get_block can be called only for blocks inside i_size since
203 * page cache has been already dropped and writes are blocked by
204 * i_mutex. So we can safely drop the i_data_sem here.
206 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
207 jbd_debug(2, "restarting handle %p\n", handle
);
208 up_write(&EXT4_I(inode
)->i_data_sem
);
209 ret
= ext4_journal_restart(handle
, blocks_for_truncate(inode
));
210 down_write(&EXT4_I(inode
)->i_data_sem
);
216 * Called at the last iput() if i_nlink is zero.
218 void ext4_delete_inode(struct inode
*inode
)
223 if (ext4_should_order_data(inode
))
224 ext4_begin_ordered_truncate(inode
, 0);
225 truncate_inode_pages(&inode
->i_data
, 0);
227 if (is_bad_inode(inode
))
230 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
231 if (IS_ERR(handle
)) {
232 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
234 * If we're going to skip the normal cleanup, we still need to
235 * make sure that the in-core orphan linked list is properly
238 ext4_orphan_del(NULL
, inode
);
243 ext4_handle_sync(handle
);
245 err
= ext4_mark_inode_dirty(handle
, inode
);
247 ext4_warning(inode
->i_sb
, __func__
,
248 "couldn't mark inode dirty (err %d)", err
);
252 ext4_truncate(inode
);
255 * ext4_ext_truncate() doesn't reserve any slop when it
256 * restarts journal transactions; therefore there may not be
257 * enough credits left in the handle to remove the inode from
258 * the orphan list and set the dtime field.
260 if (!ext4_handle_has_enough_credits(handle
, 3)) {
261 err
= ext4_journal_extend(handle
, 3);
263 err
= ext4_journal_restart(handle
, 3);
265 ext4_warning(inode
->i_sb
, __func__
,
266 "couldn't extend journal (err %d)", err
);
268 ext4_journal_stop(handle
);
274 * Kill off the orphan record which ext4_truncate created.
275 * AKPM: I think this can be inside the above `if'.
276 * Note that ext4_orphan_del() has to be able to cope with the
277 * deletion of a non-existent orphan - this is because we don't
278 * know if ext4_truncate() actually created an orphan record.
279 * (Well, we could do this if we need to, but heck - it works)
281 ext4_orphan_del(handle
, inode
);
282 EXT4_I(inode
)->i_dtime
= get_seconds();
285 * One subtle ordering requirement: if anything has gone wrong
286 * (transaction abort, IO errors, whatever), then we can still
287 * do these next steps (the fs will already have been marked as
288 * having errors), but we can't free the inode if the mark_dirty
291 if (ext4_mark_inode_dirty(handle
, inode
))
292 /* If that failed, just do the required in-core inode clear. */
295 ext4_free_inode(handle
, inode
);
296 ext4_journal_stop(handle
);
299 clear_inode(inode
); /* We must guarantee clearing of inode... */
305 struct buffer_head
*bh
;
308 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
310 p
->key
= *(p
->p
= v
);
315 * ext4_block_to_path - parse the block number into array of offsets
316 * @inode: inode in question (we are only interested in its superblock)
317 * @i_block: block number to be parsed
318 * @offsets: array to store the offsets in
319 * @boundary: set this non-zero if the referred-to block is likely to be
320 * followed (on disk) by an indirect block.
322 * To store the locations of file's data ext4 uses a data structure common
323 * for UNIX filesystems - tree of pointers anchored in the inode, with
324 * data blocks at leaves and indirect blocks in intermediate nodes.
325 * This function translates the block number into path in that tree -
326 * return value is the path length and @offsets[n] is the offset of
327 * pointer to (n+1)th node in the nth one. If @block is out of range
328 * (negative or too large) warning is printed and zero returned.
330 * Note: function doesn't find node addresses, so no IO is needed. All
331 * we need to know is the capacity of indirect blocks (taken from the
336 * Portability note: the last comparison (check that we fit into triple
337 * indirect block) is spelled differently, because otherwise on an
338 * architecture with 32-bit longs and 8Kb pages we might get into trouble
339 * if our filesystem had 8Kb blocks. We might use long long, but that would
340 * kill us on x86. Oh, well, at least the sign propagation does not matter -
341 * i_block would have to be negative in the very beginning, so we would not
345 static int ext4_block_to_path(struct inode
*inode
,
347 ext4_lblk_t offsets
[4], int *boundary
)
349 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
350 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
351 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
352 indirect_blocks
= ptrs
,
353 double_blocks
= (1 << (ptrs_bits
* 2));
357 if (i_block
< direct_blocks
) {
358 offsets
[n
++] = i_block
;
359 final
= direct_blocks
;
360 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
361 offsets
[n
++] = EXT4_IND_BLOCK
;
362 offsets
[n
++] = i_block
;
364 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
365 offsets
[n
++] = EXT4_DIND_BLOCK
;
366 offsets
[n
++] = i_block
>> ptrs_bits
;
367 offsets
[n
++] = i_block
& (ptrs
- 1);
369 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
370 offsets
[n
++] = EXT4_TIND_BLOCK
;
371 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
372 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
373 offsets
[n
++] = i_block
& (ptrs
- 1);
376 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
377 "block %lu > max in inode %lu",
378 i_block
+ direct_blocks
+
379 indirect_blocks
+ double_blocks
, inode
->i_ino
);
382 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
386 static int __ext4_check_blockref(const char *function
, struct inode
*inode
,
387 __le32
*p
, unsigned int max
)
392 while (bref
< p
+max
) {
393 blk
= le32_to_cpu(*bref
++);
395 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
397 ext4_error(inode
->i_sb
, function
,
398 "invalid block reference %u "
399 "in inode #%lu", blk
, inode
->i_ino
);
407 #define ext4_check_indirect_blockref(inode, bh) \
408 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
409 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
411 #define ext4_check_inode_blockref(inode) \
412 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
416 * ext4_get_branch - read the chain of indirect blocks leading to data
417 * @inode: inode in question
418 * @depth: depth of the chain (1 - direct pointer, etc.)
419 * @offsets: offsets of pointers in inode/indirect blocks
420 * @chain: place to store the result
421 * @err: here we store the error value
423 * Function fills the array of triples <key, p, bh> and returns %NULL
424 * if everything went OK or the pointer to the last filled triple
425 * (incomplete one) otherwise. Upon the return chain[i].key contains
426 * the number of (i+1)-th block in the chain (as it is stored in memory,
427 * i.e. little-endian 32-bit), chain[i].p contains the address of that
428 * number (it points into struct inode for i==0 and into the bh->b_data
429 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
430 * block for i>0 and NULL for i==0. In other words, it holds the block
431 * numbers of the chain, addresses they were taken from (and where we can
432 * verify that chain did not change) and buffer_heads hosting these
435 * Function stops when it stumbles upon zero pointer (absent block)
436 * (pointer to last triple returned, *@err == 0)
437 * or when it gets an IO error reading an indirect block
438 * (ditto, *@err == -EIO)
439 * or when it reads all @depth-1 indirect blocks successfully and finds
440 * the whole chain, all way to the data (returns %NULL, *err == 0).
442 * Need to be called with
443 * down_read(&EXT4_I(inode)->i_data_sem)
445 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
446 ext4_lblk_t
*offsets
,
447 Indirect chain
[4], int *err
)
449 struct super_block
*sb
= inode
->i_sb
;
451 struct buffer_head
*bh
;
454 /* i_data is not going away, no lock needed */
455 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
459 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
463 if (!bh_uptodate_or_lock(bh
)) {
464 if (bh_submit_read(bh
) < 0) {
468 /* validate block references */
469 if (ext4_check_indirect_blockref(inode
, bh
)) {
475 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
489 * ext4_find_near - find a place for allocation with sufficient locality
491 * @ind: descriptor of indirect block.
493 * This function returns the preferred place for block allocation.
494 * It is used when heuristic for sequential allocation fails.
496 * + if there is a block to the left of our position - allocate near it.
497 * + if pointer will live in indirect block - allocate near that block.
498 * + if pointer will live in inode - allocate in the same
501 * In the latter case we colour the starting block by the callers PID to
502 * prevent it from clashing with concurrent allocations for a different inode
503 * in the same block group. The PID is used here so that functionally related
504 * files will be close-by on-disk.
506 * Caller must make sure that @ind is valid and will stay that way.
508 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
510 struct ext4_inode_info
*ei
= EXT4_I(inode
);
511 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
513 ext4_fsblk_t bg_start
;
514 ext4_fsblk_t last_block
;
515 ext4_grpblk_t colour
;
516 ext4_group_t block_group
;
517 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
519 /* Try to find previous block */
520 for (p
= ind
->p
- 1; p
>= start
; p
--) {
522 return le32_to_cpu(*p
);
525 /* No such thing, so let's try location of indirect block */
527 return ind
->bh
->b_blocknr
;
530 * It is going to be referred to from the inode itself? OK, just put it
531 * into the same cylinder group then.
533 block_group
= ei
->i_block_group
;
534 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
535 block_group
&= ~(flex_size
-1);
536 if (S_ISREG(inode
->i_mode
))
539 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
540 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
543 * If we are doing delayed allocation, we don't need take
544 * colour into account.
546 if (test_opt(inode
->i_sb
, DELALLOC
))
549 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
550 colour
= (current
->pid
% 16) *
551 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
553 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
554 return bg_start
+ colour
;
558 * ext4_find_goal - find a preferred place for allocation.
560 * @block: block we want
561 * @partial: pointer to the last triple within a chain
563 * Normally this function find the preferred place for block allocation,
565 * Because this is only used for non-extent files, we limit the block nr
568 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
574 * XXX need to get goal block from mballoc's data structures
577 goal
= ext4_find_near(inode
, partial
);
578 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
583 * ext4_blks_to_allocate: Look up the block map and count the number
584 * of direct blocks need to be allocated for the given branch.
586 * @branch: chain of indirect blocks
587 * @k: number of blocks need for indirect blocks
588 * @blks: number of data blocks to be mapped.
589 * @blocks_to_boundary: the offset in the indirect block
591 * return the total number of blocks to be allocate, including the
592 * direct and indirect blocks.
594 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
595 int blocks_to_boundary
)
597 unsigned int count
= 0;
600 * Simple case, [t,d]Indirect block(s) has not allocated yet
601 * then it's clear blocks on that path have not allocated
604 /* right now we don't handle cross boundary allocation */
605 if (blks
< blocks_to_boundary
+ 1)
608 count
+= blocks_to_boundary
+ 1;
613 while (count
< blks
&& count
<= blocks_to_boundary
&&
614 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
621 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
622 * @indirect_blks: the number of blocks need to allocate for indirect
625 * @new_blocks: on return it will store the new block numbers for
626 * the indirect blocks(if needed) and the first direct block,
627 * @blks: on return it will store the total number of allocated
630 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
631 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
632 int indirect_blks
, int blks
,
633 ext4_fsblk_t new_blocks
[4], int *err
)
635 struct ext4_allocation_request ar
;
637 unsigned long count
= 0, blk_allocated
= 0;
639 ext4_fsblk_t current_block
= 0;
643 * Here we try to allocate the requested multiple blocks at once,
644 * on a best-effort basis.
645 * To build a branch, we should allocate blocks for
646 * the indirect blocks(if not allocated yet), and at least
647 * the first direct block of this branch. That's the
648 * minimum number of blocks need to allocate(required)
650 /* first we try to allocate the indirect blocks */
651 target
= indirect_blks
;
654 /* allocating blocks for indirect blocks and direct blocks */
655 current_block
= ext4_new_meta_blocks(handle
, inode
,
660 BUG_ON(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
);
663 /* allocate blocks for indirect blocks */
664 while (index
< indirect_blks
&& count
) {
665 new_blocks
[index
++] = current_block
++;
670 * save the new block number
671 * for the first direct block
673 new_blocks
[index
] = current_block
;
674 printk(KERN_INFO
"%s returned more blocks than "
675 "requested\n", __func__
);
681 target
= blks
- count
;
682 blk_allocated
= count
;
685 /* Now allocate data blocks */
686 memset(&ar
, 0, sizeof(ar
));
691 if (S_ISREG(inode
->i_mode
))
692 /* enable in-core preallocation only for regular files */
693 ar
.flags
= EXT4_MB_HINT_DATA
;
695 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
696 BUG_ON(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
);
698 if (*err
&& (target
== blks
)) {
700 * if the allocation failed and we didn't allocate
706 if (target
== blks
) {
708 * save the new block number
709 * for the first direct block
711 new_blocks
[index
] = current_block
;
713 blk_allocated
+= ar
.len
;
716 /* total number of blocks allocated for direct blocks */
721 for (i
= 0; i
< index
; i
++)
722 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
727 * ext4_alloc_branch - allocate and set up a chain of blocks.
729 * @indirect_blks: number of allocated indirect blocks
730 * @blks: number of allocated direct blocks
731 * @offsets: offsets (in the blocks) to store the pointers to next.
732 * @branch: place to store the chain in.
734 * This function allocates blocks, zeroes out all but the last one,
735 * links them into chain and (if we are synchronous) writes them to disk.
736 * In other words, it prepares a branch that can be spliced onto the
737 * inode. It stores the information about that chain in the branch[], in
738 * the same format as ext4_get_branch() would do. We are calling it after
739 * we had read the existing part of chain and partial points to the last
740 * triple of that (one with zero ->key). Upon the exit we have the same
741 * picture as after the successful ext4_get_block(), except that in one
742 * place chain is disconnected - *branch->p is still zero (we did not
743 * set the last link), but branch->key contains the number that should
744 * be placed into *branch->p to fill that gap.
746 * If allocation fails we free all blocks we've allocated (and forget
747 * their buffer_heads) and return the error value the from failed
748 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
749 * as described above and return 0.
751 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
752 ext4_lblk_t iblock
, int indirect_blks
,
753 int *blks
, ext4_fsblk_t goal
,
754 ext4_lblk_t
*offsets
, Indirect
*branch
)
756 int blocksize
= inode
->i_sb
->s_blocksize
;
759 struct buffer_head
*bh
;
761 ext4_fsblk_t new_blocks
[4];
762 ext4_fsblk_t current_block
;
764 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
765 *blks
, new_blocks
, &err
);
769 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
771 * metadata blocks and data blocks are allocated.
773 for (n
= 1; n
<= indirect_blks
; n
++) {
775 * Get buffer_head for parent block, zero it out
776 * and set the pointer to new one, then send
779 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
782 BUFFER_TRACE(bh
, "call get_create_access");
783 err
= ext4_journal_get_create_access(handle
, bh
);
785 /* Don't brelse(bh) here; it's done in
786 * ext4_journal_forget() below */
791 memset(bh
->b_data
, 0, blocksize
);
792 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
793 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
794 *branch
[n
].p
= branch
[n
].key
;
795 if (n
== indirect_blks
) {
796 current_block
= new_blocks
[n
];
798 * End of chain, update the last new metablock of
799 * the chain to point to the new allocated
800 * data blocks numbers
802 for (i
= 1; i
< num
; i
++)
803 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
805 BUFFER_TRACE(bh
, "marking uptodate");
806 set_buffer_uptodate(bh
);
809 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
810 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
817 /* Allocation failed, free what we already allocated */
818 for (i
= 1; i
<= n
; i
++) {
819 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
820 ext4_journal_forget(handle
, branch
[i
].bh
);
822 for (i
= 0; i
< indirect_blks
; i
++)
823 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
825 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
, 0);
831 * ext4_splice_branch - splice the allocated branch onto inode.
833 * @block: (logical) number of block we are adding
834 * @chain: chain of indirect blocks (with a missing link - see
836 * @where: location of missing link
837 * @num: number of indirect blocks we are adding
838 * @blks: number of direct blocks we are adding
840 * This function fills the missing link and does all housekeeping needed in
841 * inode (->i_blocks, etc.). In case of success we end up with the full
842 * chain to new block and return 0.
844 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
845 ext4_lblk_t block
, Indirect
*where
, int num
,
850 ext4_fsblk_t current_block
;
853 * If we're splicing into a [td]indirect block (as opposed to the
854 * inode) then we need to get write access to the [td]indirect block
858 BUFFER_TRACE(where
->bh
, "get_write_access");
859 err
= ext4_journal_get_write_access(handle
, where
->bh
);
865 *where
->p
= where
->key
;
868 * Update the host buffer_head or inode to point to more just allocated
869 * direct blocks blocks
871 if (num
== 0 && blks
> 1) {
872 current_block
= le32_to_cpu(where
->key
) + 1;
873 for (i
= 1; i
< blks
; i
++)
874 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
877 /* We are done with atomic stuff, now do the rest of housekeeping */
878 /* had we spliced it onto indirect block? */
881 * If we spliced it onto an indirect block, we haven't
882 * altered the inode. Note however that if it is being spliced
883 * onto an indirect block at the very end of the file (the
884 * file is growing) then we *will* alter the inode to reflect
885 * the new i_size. But that is not done here - it is done in
886 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
888 jbd_debug(5, "splicing indirect only\n");
889 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
890 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
895 * OK, we spliced it into the inode itself on a direct block.
897 ext4_mark_inode_dirty(handle
, inode
);
898 jbd_debug(5, "splicing direct\n");
903 for (i
= 1; i
<= num
; i
++) {
904 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
905 ext4_journal_forget(handle
, where
[i
].bh
);
906 ext4_free_blocks(handle
, inode
,
907 le32_to_cpu(where
[i
-1].key
), 1, 0);
909 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
, 0);
915 * The ext4_ind_get_blocks() function handles non-extents inodes
916 * (i.e., using the traditional indirect/double-indirect i_blocks
917 * scheme) for ext4_get_blocks().
919 * Allocation strategy is simple: if we have to allocate something, we will
920 * have to go the whole way to leaf. So let's do it before attaching anything
921 * to tree, set linkage between the newborn blocks, write them if sync is
922 * required, recheck the path, free and repeat if check fails, otherwise
923 * set the last missing link (that will protect us from any truncate-generated
924 * removals - all blocks on the path are immune now) and possibly force the
925 * write on the parent block.
926 * That has a nice additional property: no special recovery from the failed
927 * allocations is needed - we simply release blocks and do not touch anything
928 * reachable from inode.
930 * `handle' can be NULL if create == 0.
932 * return > 0, # of blocks mapped or allocated.
933 * return = 0, if plain lookup failed.
934 * return < 0, error case.
936 * The ext4_ind_get_blocks() function should be called with
937 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
938 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
939 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942 static int ext4_ind_get_blocks(handle_t
*handle
, struct inode
*inode
,
943 ext4_lblk_t iblock
, unsigned int maxblocks
,
944 struct buffer_head
*bh_result
,
948 ext4_lblk_t offsets
[4];
953 int blocks_to_boundary
= 0;
956 ext4_fsblk_t first_block
= 0;
958 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
959 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
960 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
961 &blocks_to_boundary
);
966 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
968 /* Simplest case - block found, no allocation needed */
970 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
971 clear_buffer_new(bh_result
);
974 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
977 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
979 if (blk
== first_block
+ count
)
987 /* Next simple case - plain lookup or failed read of indirect block */
988 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
992 * Okay, we need to do block allocation.
994 goal
= ext4_find_goal(inode
, iblock
, partial
);
996 /* the number of blocks need to allocate for [d,t]indirect blocks */
997 indirect_blks
= (chain
+ depth
) - partial
- 1;
1000 * Next look up the indirect map to count the totoal number of
1001 * direct blocks to allocate for this branch.
1003 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
1004 maxblocks
, blocks_to_boundary
);
1006 * Block out ext4_truncate while we alter the tree
1008 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
1010 offsets
+ (partial
- chain
), partial
);
1013 * The ext4_splice_branch call will free and forget any buffers
1014 * on the new chain if there is a failure, but that risks using
1015 * up transaction credits, especially for bitmaps where the
1016 * credits cannot be returned. Can we handle this somehow? We
1017 * may need to return -EAGAIN upwards in the worst case. --sct
1020 err
= ext4_splice_branch(handle
, inode
, iblock
,
1021 partial
, indirect_blks
, count
);
1025 set_buffer_new(bh_result
);
1027 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
1028 if (count
> blocks_to_boundary
)
1029 set_buffer_boundary(bh_result
);
1031 /* Clean up and exit */
1032 partial
= chain
+ depth
- 1; /* the whole chain */
1034 while (partial
> chain
) {
1035 BUFFER_TRACE(partial
->bh
, "call brelse");
1036 brelse(partial
->bh
);
1039 BUFFER_TRACE(bh_result
, "returned");
1044 qsize_t
ext4_get_reserved_space(struct inode
*inode
)
1046 unsigned long long total
;
1048 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1049 total
= EXT4_I(inode
)->i_reserved_data_blocks
+
1050 EXT4_I(inode
)->i_reserved_meta_blocks
;
1051 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate @blocks for non extent file based file
1059 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
, int blocks
)
1061 int icap
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
1062 int ind_blks
, dind_blks
, tind_blks
;
1064 /* number of new indirect blocks needed */
1065 ind_blks
= (blocks
+ icap
- 1) / icap
;
1067 dind_blks
= (ind_blks
+ icap
- 1) / icap
;
1071 return ind_blks
+ dind_blks
+ tind_blks
;
1075 * Calculate the number of metadata blocks need to reserve
1076 * to allocate given number of blocks
1078 static int ext4_calc_metadata_amount(struct inode
*inode
, int blocks
)
1083 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
1084 return ext4_ext_calc_metadata_amount(inode
, blocks
);
1086 return ext4_indirect_calc_metadata_amount(inode
, blocks
);
1089 static void ext4_da_update_reserve_space(struct inode
*inode
, int used
)
1091 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1092 int total
, mdb
, mdb_free
;
1094 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1095 /* recalculate the number of metablocks still need to be reserved */
1096 total
= EXT4_I(inode
)->i_reserved_data_blocks
- used
;
1097 mdb
= ext4_calc_metadata_amount(inode
, total
);
1099 /* figure out how many metablocks to release */
1100 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1101 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1104 /* Account for allocated meta_blocks */
1105 mdb_free
-= EXT4_I(inode
)->i_allocated_meta_blocks
;
1107 /* update fs dirty blocks counter */
1108 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, mdb_free
);
1109 EXT4_I(inode
)->i_allocated_meta_blocks
= 0;
1110 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1113 /* update per-inode reservations */
1114 BUG_ON(used
> EXT4_I(inode
)->i_reserved_data_blocks
);
1115 EXT4_I(inode
)->i_reserved_data_blocks
-= used
;
1116 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1119 * free those over-booking quota for metadata blocks
1122 vfs_dq_release_reservation_block(inode
, mdb_free
);
1125 * If we have done all the pending block allocations and if
1126 * there aren't any writers on the inode, we can discard the
1127 * inode's preallocations.
1129 if (!total
&& (atomic_read(&inode
->i_writecount
) == 0))
1130 ext4_discard_preallocations(inode
);
1133 static int check_block_validity(struct inode
*inode
, const char *msg
,
1134 sector_t logical
, sector_t phys
, int len
)
1136 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), phys
, len
)) {
1137 ext4_error(inode
->i_sb
, msg
,
1138 "inode #%lu logical block %llu mapped to %llu "
1139 "(size %d)", inode
->i_ino
,
1140 (unsigned long long) logical
,
1141 (unsigned long long) phys
, len
);
1148 * The ext4_get_blocks() function tries to look up the requested blocks,
1149 * and returns if the blocks are already mapped.
1151 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1152 * and store the allocated blocks in the result buffer head and mark it
1155 * If file type is extents based, it will call ext4_ext_get_blocks(),
1156 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1159 * On success, it returns the number of blocks being mapped or allocate.
1160 * if create==0 and the blocks are pre-allocated and uninitialized block,
1161 * the result buffer head is unmapped. If the create ==1, it will make sure
1162 * the buffer head is mapped.
1164 * It returns 0 if plain look up failed (blocks have not been allocated), in
1165 * that casem, buffer head is unmapped
1167 * It returns the error in case of allocation failure.
1169 int ext4_get_blocks(handle_t
*handle
, struct inode
*inode
, sector_t block
,
1170 unsigned int max_blocks
, struct buffer_head
*bh
,
1175 clear_buffer_mapped(bh
);
1176 clear_buffer_unwritten(bh
);
1179 * Try to see if we can get the block without requesting a new
1180 * file system block.
1182 down_read((&EXT4_I(inode
)->i_data_sem
));
1183 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1184 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1187 retval
= ext4_ind_get_blocks(handle
, inode
, block
, max_blocks
,
1190 up_read((&EXT4_I(inode
)->i_data_sem
));
1192 if (retval
> 0 && buffer_mapped(bh
)) {
1193 int ret
= check_block_validity(inode
, "file system corruption",
1194 block
, bh
->b_blocknr
, retval
);
1199 /* If it is only a block(s) look up */
1200 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1204 * Returns if the blocks have already allocated
1206 * Note that if blocks have been preallocated
1207 * ext4_ext_get_block() returns th create = 0
1208 * with buffer head unmapped.
1210 if (retval
> 0 && buffer_mapped(bh
))
1214 * When we call get_blocks without the create flag, the
1215 * BH_Unwritten flag could have gotten set if the blocks
1216 * requested were part of a uninitialized extent. We need to
1217 * clear this flag now that we are committed to convert all or
1218 * part of the uninitialized extent to be an initialized
1219 * extent. This is because we need to avoid the combination
1220 * of BH_Unwritten and BH_Mapped flags being simultaneously
1221 * set on the buffer_head.
1223 clear_buffer_unwritten(bh
);
1226 * New blocks allocate and/or writing to uninitialized extent
1227 * will possibly result in updating i_data, so we take
1228 * the write lock of i_data_sem, and call get_blocks()
1229 * with create == 1 flag.
1231 down_write((&EXT4_I(inode
)->i_data_sem
));
1234 * if the caller is from delayed allocation writeout path
1235 * we have already reserved fs blocks for allocation
1236 * let the underlying get_block() function know to
1237 * avoid double accounting
1239 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1240 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1242 * We need to check for EXT4 here because migrate
1243 * could have changed the inode type in between
1245 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1246 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1249 retval
= ext4_ind_get_blocks(handle
, inode
, block
,
1250 max_blocks
, bh
, flags
);
1252 if (retval
> 0 && buffer_new(bh
)) {
1254 * We allocated new blocks which will result in
1255 * i_data's format changing. Force the migrate
1256 * to fail by clearing migrate flags
1258 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_EXT_MIGRATE
;
1262 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1263 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1266 * Update reserved blocks/metadata blocks after successful
1267 * block allocation which had been deferred till now.
1269 if ((retval
> 0) && (flags
& EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
))
1270 ext4_da_update_reserve_space(inode
, retval
);
1272 up_write((&EXT4_I(inode
)->i_data_sem
));
1273 if (retval
> 0 && buffer_mapped(bh
)) {
1274 int ret
= check_block_validity(inode
, "file system "
1275 "corruption after allocation",
1276 block
, bh
->b_blocknr
, retval
);
1283 /* Maximum number of blocks we map for direct IO at once. */
1284 #define DIO_MAX_BLOCKS 4096
1286 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1287 struct buffer_head
*bh_result
, int create
)
1289 handle_t
*handle
= ext4_journal_current_handle();
1290 int ret
= 0, started
= 0;
1291 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1294 if (create
&& !handle
) {
1295 /* Direct IO write... */
1296 if (max_blocks
> DIO_MAX_BLOCKS
)
1297 max_blocks
= DIO_MAX_BLOCKS
;
1298 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
1299 handle
= ext4_journal_start(inode
, dio_credits
);
1300 if (IS_ERR(handle
)) {
1301 ret
= PTR_ERR(handle
);
1307 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
1308 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1310 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1314 ext4_journal_stop(handle
);
1320 * `handle' can be NULL if create is zero
1322 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1323 ext4_lblk_t block
, int create
, int *errp
)
1325 struct buffer_head dummy
;
1329 J_ASSERT(handle
!= NULL
|| create
== 0);
1332 dummy
.b_blocknr
= -1000;
1333 buffer_trace_init(&dummy
.b_history
);
1335 flags
|= EXT4_GET_BLOCKS_CREATE
;
1336 err
= ext4_get_blocks(handle
, inode
, block
, 1, &dummy
, flags
);
1338 * ext4_get_blocks() returns number of blocks mapped. 0 in
1347 if (!err
&& buffer_mapped(&dummy
)) {
1348 struct buffer_head
*bh
;
1349 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1354 if (buffer_new(&dummy
)) {
1355 J_ASSERT(create
!= 0);
1356 J_ASSERT(handle
!= NULL
);
1359 * Now that we do not always journal data, we should
1360 * keep in mind whether this should always journal the
1361 * new buffer as metadata. For now, regular file
1362 * writes use ext4_get_block instead, so it's not a
1366 BUFFER_TRACE(bh
, "call get_create_access");
1367 fatal
= ext4_journal_get_create_access(handle
, bh
);
1368 if (!fatal
&& !buffer_uptodate(bh
)) {
1369 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1370 set_buffer_uptodate(bh
);
1373 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1374 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1378 BUFFER_TRACE(bh
, "not a new buffer");
1391 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1392 ext4_lblk_t block
, int create
, int *err
)
1394 struct buffer_head
*bh
;
1396 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1399 if (buffer_uptodate(bh
))
1401 ll_rw_block(READ_META
, 1, &bh
);
1403 if (buffer_uptodate(bh
))
1410 static int walk_page_buffers(handle_t
*handle
,
1411 struct buffer_head
*head
,
1415 int (*fn
)(handle_t
*handle
,
1416 struct buffer_head
*bh
))
1418 struct buffer_head
*bh
;
1419 unsigned block_start
, block_end
;
1420 unsigned blocksize
= head
->b_size
;
1422 struct buffer_head
*next
;
1424 for (bh
= head
, block_start
= 0;
1425 ret
== 0 && (bh
!= head
|| !block_start
);
1426 block_start
= block_end
, bh
= next
) {
1427 next
= bh
->b_this_page
;
1428 block_end
= block_start
+ blocksize
;
1429 if (block_end
<= from
|| block_start
>= to
) {
1430 if (partial
&& !buffer_uptodate(bh
))
1434 err
= (*fn
)(handle
, bh
);
1442 * To preserve ordering, it is essential that the hole instantiation and
1443 * the data write be encapsulated in a single transaction. We cannot
1444 * close off a transaction and start a new one between the ext4_get_block()
1445 * and the commit_write(). So doing the jbd2_journal_start at the start of
1446 * prepare_write() is the right place.
1448 * Also, this function can nest inside ext4_writepage() ->
1449 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1450 * has generated enough buffer credits to do the whole page. So we won't
1451 * block on the journal in that case, which is good, because the caller may
1454 * By accident, ext4 can be reentered when a transaction is open via
1455 * quota file writes. If we were to commit the transaction while thus
1456 * reentered, there can be a deadlock - we would be holding a quota
1457 * lock, and the commit would never complete if another thread had a
1458 * transaction open and was blocking on the quota lock - a ranking
1461 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1462 * will _not_ run commit under these circumstances because handle->h_ref
1463 * is elevated. We'll still have enough credits for the tiny quotafile
1466 static int do_journal_get_write_access(handle_t
*handle
,
1467 struct buffer_head
*bh
)
1469 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1471 return ext4_journal_get_write_access(handle
, bh
);
1474 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1475 loff_t pos
, unsigned len
, unsigned flags
,
1476 struct page
**pagep
, void **fsdata
)
1478 struct inode
*inode
= mapping
->host
;
1479 int ret
, needed_blocks
;
1486 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1488 * Reserve one block more for addition to orphan list in case
1489 * we allocate blocks but write fails for some reason
1491 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1492 index
= pos
>> PAGE_CACHE_SHIFT
;
1493 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1497 handle
= ext4_journal_start(inode
, needed_blocks
);
1498 if (IS_ERR(handle
)) {
1499 ret
= PTR_ERR(handle
);
1503 /* We cannot recurse into the filesystem as the transaction is already
1505 flags
|= AOP_FLAG_NOFS
;
1507 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1509 ext4_journal_stop(handle
);
1515 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1518 if (!ret
&& ext4_should_journal_data(inode
)) {
1519 ret
= walk_page_buffers(handle
, page_buffers(page
),
1520 from
, to
, NULL
, do_journal_get_write_access
);
1525 page_cache_release(page
);
1527 * block_write_begin may have instantiated a few blocks
1528 * outside i_size. Trim these off again. Don't need
1529 * i_size_read because we hold i_mutex.
1531 * Add inode to orphan list in case we crash before
1534 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1535 ext4_orphan_add(handle
, inode
);
1537 ext4_journal_stop(handle
);
1538 if (pos
+ len
> inode
->i_size
) {
1539 ext4_truncate(inode
);
1541 * If truncate failed early the inode might
1542 * still be on the orphan list; we need to
1543 * make sure the inode is removed from the
1544 * orphan list in that case.
1547 ext4_orphan_del(NULL
, inode
);
1551 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1557 /* For write_end() in data=journal mode */
1558 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1560 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1562 set_buffer_uptodate(bh
);
1563 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1566 static int ext4_generic_write_end(struct file
*file
,
1567 struct address_space
*mapping
,
1568 loff_t pos
, unsigned len
, unsigned copied
,
1569 struct page
*page
, void *fsdata
)
1571 int i_size_changed
= 0;
1572 struct inode
*inode
= mapping
->host
;
1573 handle_t
*handle
= ext4_journal_current_handle();
1575 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1578 * No need to use i_size_read() here, the i_size
1579 * cannot change under us because we hold i_mutex.
1581 * But it's important to update i_size while still holding page lock:
1582 * page writeout could otherwise come in and zero beyond i_size.
1584 if (pos
+ copied
> inode
->i_size
) {
1585 i_size_write(inode
, pos
+ copied
);
1589 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1590 /* We need to mark inode dirty even if
1591 * new_i_size is less that inode->i_size
1592 * bu greater than i_disksize.(hint delalloc)
1594 ext4_update_i_disksize(inode
, (pos
+ copied
));
1598 page_cache_release(page
);
1601 * Don't mark the inode dirty under page lock. First, it unnecessarily
1602 * makes the holding time of page lock longer. Second, it forces lock
1603 * ordering of page lock and transaction start for journaling
1607 ext4_mark_inode_dirty(handle
, inode
);
1613 * We need to pick up the new inode size which generic_commit_write gave us
1614 * `file' can be NULL - eg, when called from page_symlink().
1616 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1617 * buffers are managed internally.
1619 static int ext4_ordered_write_end(struct file
*file
,
1620 struct address_space
*mapping
,
1621 loff_t pos
, unsigned len
, unsigned copied
,
1622 struct page
*page
, void *fsdata
)
1624 handle_t
*handle
= ext4_journal_current_handle();
1625 struct inode
*inode
= mapping
->host
;
1628 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1629 ret
= ext4_jbd2_file_inode(handle
, inode
);
1632 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1635 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1636 /* if we have allocated more blocks and copied
1637 * less. We will have blocks allocated outside
1638 * inode->i_size. So truncate them
1640 ext4_orphan_add(handle
, inode
);
1644 ret2
= ext4_journal_stop(handle
);
1648 if (pos
+ len
> inode
->i_size
) {
1649 ext4_truncate(inode
);
1651 * If truncate failed early the inode might still be
1652 * on the orphan list; we need to make sure the inode
1653 * is removed from the orphan list in that case.
1656 ext4_orphan_del(NULL
, inode
);
1660 return ret
? ret
: copied
;
1663 static int ext4_writeback_write_end(struct file
*file
,
1664 struct address_space
*mapping
,
1665 loff_t pos
, unsigned len
, unsigned copied
,
1666 struct page
*page
, void *fsdata
)
1668 handle_t
*handle
= ext4_journal_current_handle();
1669 struct inode
*inode
= mapping
->host
;
1672 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1673 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1676 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1677 /* if we have allocated more blocks and copied
1678 * less. We will have blocks allocated outside
1679 * inode->i_size. So truncate them
1681 ext4_orphan_add(handle
, inode
);
1686 ret2
= ext4_journal_stop(handle
);
1690 if (pos
+ len
> inode
->i_size
) {
1691 ext4_truncate(inode
);
1693 * If truncate failed early the inode might still be
1694 * on the orphan list; we need to make sure the inode
1695 * is removed from the orphan list in that case.
1698 ext4_orphan_del(NULL
, inode
);
1701 return ret
? ret
: copied
;
1704 static int ext4_journalled_write_end(struct file
*file
,
1705 struct address_space
*mapping
,
1706 loff_t pos
, unsigned len
, unsigned copied
,
1707 struct page
*page
, void *fsdata
)
1709 handle_t
*handle
= ext4_journal_current_handle();
1710 struct inode
*inode
= mapping
->host
;
1716 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1717 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1721 if (!PageUptodate(page
))
1723 page_zero_new_buffers(page
, from
+copied
, to
);
1726 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1727 to
, &partial
, write_end_fn
);
1729 SetPageUptodate(page
);
1730 new_i_size
= pos
+ copied
;
1731 if (new_i_size
> inode
->i_size
)
1732 i_size_write(inode
, pos
+copied
);
1733 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1734 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1735 ext4_update_i_disksize(inode
, new_i_size
);
1736 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1742 page_cache_release(page
);
1743 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1744 /* if we have allocated more blocks and copied
1745 * less. We will have blocks allocated outside
1746 * inode->i_size. So truncate them
1748 ext4_orphan_add(handle
, inode
);
1750 ret2
= ext4_journal_stop(handle
);
1753 if (pos
+ len
> inode
->i_size
) {
1754 ext4_truncate(inode
);
1756 * If truncate failed early the inode might still be
1757 * on the orphan list; we need to make sure the inode
1758 * is removed from the orphan list in that case.
1761 ext4_orphan_del(NULL
, inode
);
1764 return ret
? ret
: copied
;
1767 static int ext4_da_reserve_space(struct inode
*inode
, int nrblocks
)
1770 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1771 unsigned long md_needed
, mdblocks
, total
= 0;
1774 * recalculate the amount of metadata blocks to reserve
1775 * in order to allocate nrblocks
1776 * worse case is one extent per block
1779 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1780 total
= EXT4_I(inode
)->i_reserved_data_blocks
+ nrblocks
;
1781 mdblocks
= ext4_calc_metadata_amount(inode
, total
);
1782 BUG_ON(mdblocks
< EXT4_I(inode
)->i_reserved_meta_blocks
);
1784 md_needed
= mdblocks
- EXT4_I(inode
)->i_reserved_meta_blocks
;
1785 total
= md_needed
+ nrblocks
;
1788 * Make quota reservation here to prevent quota overflow
1789 * later. Real quota accounting is done at pages writeout
1792 if (vfs_dq_reserve_block(inode
, total
)) {
1793 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1797 if (ext4_claim_free_blocks(sbi
, total
)) {
1798 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1799 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1803 vfs_dq_release_reservation_block(inode
, total
);
1806 EXT4_I(inode
)->i_reserved_data_blocks
+= nrblocks
;
1807 EXT4_I(inode
)->i_reserved_meta_blocks
= mdblocks
;
1809 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1810 return 0; /* success */
1813 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1815 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1816 int total
, mdb
, mdb_free
, release
;
1819 return; /* Nothing to release, exit */
1821 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1823 if (!EXT4_I(inode
)->i_reserved_data_blocks
) {
1825 * if there is no reserved blocks, but we try to free some
1826 * then the counter is messed up somewhere.
1827 * but since this function is called from invalidate
1828 * page, it's harmless to return without any action
1830 printk(KERN_INFO
"ext4 delalloc try to release %d reserved "
1831 "blocks for inode %lu, but there is no reserved "
1832 "data blocks\n", to_free
, inode
->i_ino
);
1833 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1837 /* recalculate the number of metablocks still need to be reserved */
1838 total
= EXT4_I(inode
)->i_reserved_data_blocks
- to_free
;
1839 mdb
= ext4_calc_metadata_amount(inode
, total
);
1841 /* figure out how many metablocks to release */
1842 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1843 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1845 release
= to_free
+ mdb_free
;
1847 /* update fs dirty blocks counter for truncate case */
1848 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, release
);
1850 /* update per-inode reservations */
1851 BUG_ON(to_free
> EXT4_I(inode
)->i_reserved_data_blocks
);
1852 EXT4_I(inode
)->i_reserved_data_blocks
-= to_free
;
1854 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1855 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1856 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1858 vfs_dq_release_reservation_block(inode
, release
);
1861 static void ext4_da_page_release_reservation(struct page
*page
,
1862 unsigned long offset
)
1865 struct buffer_head
*head
, *bh
;
1866 unsigned int curr_off
= 0;
1868 head
= page_buffers(page
);
1871 unsigned int next_off
= curr_off
+ bh
->b_size
;
1873 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1875 clear_buffer_delay(bh
);
1877 curr_off
= next_off
;
1878 } while ((bh
= bh
->b_this_page
) != head
);
1879 ext4_da_release_space(page
->mapping
->host
, to_release
);
1883 * Delayed allocation stuff
1887 * mpage_da_submit_io - walks through extent of pages and try to write
1888 * them with writepage() call back
1890 * @mpd->inode: inode
1891 * @mpd->first_page: first page of the extent
1892 * @mpd->next_page: page after the last page of the extent
1894 * By the time mpage_da_submit_io() is called we expect all blocks
1895 * to be allocated. this may be wrong if allocation failed.
1897 * As pages are already locked by write_cache_pages(), we can't use it
1899 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
1902 struct pagevec pvec
;
1903 unsigned long index
, end
;
1904 int ret
= 0, err
, nr_pages
, i
;
1905 struct inode
*inode
= mpd
->inode
;
1906 struct address_space
*mapping
= inode
->i_mapping
;
1908 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1910 * We need to start from the first_page to the next_page - 1
1911 * to make sure we also write the mapped dirty buffer_heads.
1912 * If we look at mpd->b_blocknr we would only be looking
1913 * at the currently mapped buffer_heads.
1915 index
= mpd
->first_page
;
1916 end
= mpd
->next_page
- 1;
1918 pagevec_init(&pvec
, 0);
1919 while (index
<= end
) {
1920 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1923 for (i
= 0; i
< nr_pages
; i
++) {
1924 struct page
*page
= pvec
.pages
[i
];
1926 index
= page
->index
;
1931 BUG_ON(!PageLocked(page
));
1932 BUG_ON(PageWriteback(page
));
1934 pages_skipped
= mpd
->wbc
->pages_skipped
;
1935 err
= mapping
->a_ops
->writepage(page
, mpd
->wbc
);
1936 if (!err
&& (pages_skipped
== mpd
->wbc
->pages_skipped
))
1938 * have successfully written the page
1939 * without skipping the same
1941 mpd
->pages_written
++;
1943 * In error case, we have to continue because
1944 * remaining pages are still locked
1945 * XXX: unlock and re-dirty them?
1950 pagevec_release(&pvec
);
1956 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1958 * @mpd->inode - inode to walk through
1959 * @exbh->b_blocknr - first block on a disk
1960 * @exbh->b_size - amount of space in bytes
1961 * @logical - first logical block to start assignment with
1963 * the function goes through all passed space and put actual disk
1964 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1966 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
1967 struct buffer_head
*exbh
)
1969 struct inode
*inode
= mpd
->inode
;
1970 struct address_space
*mapping
= inode
->i_mapping
;
1971 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
1972 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
1973 struct buffer_head
*head
, *bh
;
1975 struct pagevec pvec
;
1978 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1979 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1980 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1982 pagevec_init(&pvec
, 0);
1984 while (index
<= end
) {
1985 /* XXX: optimize tail */
1986 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1989 for (i
= 0; i
< nr_pages
; i
++) {
1990 struct page
*page
= pvec
.pages
[i
];
1992 index
= page
->index
;
1997 BUG_ON(!PageLocked(page
));
1998 BUG_ON(PageWriteback(page
));
1999 BUG_ON(!page_has_buffers(page
));
2001 bh
= page_buffers(page
);
2004 /* skip blocks out of the range */
2006 if (cur_logical
>= logical
)
2009 } while ((bh
= bh
->b_this_page
) != head
);
2012 if (cur_logical
>= logical
+ blocks
)
2015 if (buffer_delay(bh
) ||
2016 buffer_unwritten(bh
)) {
2018 BUG_ON(bh
->b_bdev
!= inode
->i_sb
->s_bdev
);
2020 if (buffer_delay(bh
)) {
2021 clear_buffer_delay(bh
);
2022 bh
->b_blocknr
= pblock
;
2025 * unwritten already should have
2026 * blocknr assigned. Verify that
2028 clear_buffer_unwritten(bh
);
2029 BUG_ON(bh
->b_blocknr
!= pblock
);
2032 } else if (buffer_mapped(bh
))
2033 BUG_ON(bh
->b_blocknr
!= pblock
);
2037 } while ((bh
= bh
->b_this_page
) != head
);
2039 pagevec_release(&pvec
);
2045 * __unmap_underlying_blocks - just a helper function to unmap
2046 * set of blocks described by @bh
2048 static inline void __unmap_underlying_blocks(struct inode
*inode
,
2049 struct buffer_head
*bh
)
2051 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2054 blocks
= bh
->b_size
>> inode
->i_blkbits
;
2055 for (i
= 0; i
< blocks
; i
++)
2056 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
2059 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2060 sector_t logical
, long blk_cnt
)
2064 struct pagevec pvec
;
2065 struct inode
*inode
= mpd
->inode
;
2066 struct address_space
*mapping
= inode
->i_mapping
;
2068 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2069 end
= (logical
+ blk_cnt
- 1) >>
2070 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2071 while (index
<= end
) {
2072 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2075 for (i
= 0; i
< nr_pages
; i
++) {
2076 struct page
*page
= pvec
.pages
[i
];
2077 index
= page
->index
;
2082 BUG_ON(!PageLocked(page
));
2083 BUG_ON(PageWriteback(page
));
2084 block_invalidatepage(page
, 0);
2085 ClearPageUptodate(page
);
2092 static void ext4_print_free_blocks(struct inode
*inode
)
2094 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2095 printk(KERN_EMERG
"Total free blocks count %lld\n",
2096 ext4_count_free_blocks(inode
->i_sb
));
2097 printk(KERN_EMERG
"Free/Dirty block details\n");
2098 printk(KERN_EMERG
"free_blocks=%lld\n",
2099 (long long)percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2100 printk(KERN_EMERG
"dirty_blocks=%lld\n",
2101 (long long)percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2102 printk(KERN_EMERG
"Block reservation details\n");
2103 printk(KERN_EMERG
"i_reserved_data_blocks=%u\n",
2104 EXT4_I(inode
)->i_reserved_data_blocks
);
2105 printk(KERN_EMERG
"i_reserved_meta_blocks=%u\n",
2106 EXT4_I(inode
)->i_reserved_meta_blocks
);
2111 * mpage_da_map_blocks - go through given space
2113 * @mpd - bh describing space
2115 * The function skips space we know is already mapped to disk blocks.
2118 static int mpage_da_map_blocks(struct mpage_da_data
*mpd
)
2120 int err
, blks
, get_blocks_flags
;
2121 struct buffer_head
new;
2122 sector_t next
= mpd
->b_blocknr
;
2123 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2124 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2125 handle_t
*handle
= NULL
;
2128 * We consider only non-mapped and non-allocated blocks
2130 if ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2131 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2132 !(mpd
->b_state
& (1 << BH_Unwritten
)))
2136 * If we didn't accumulate anything to write simply return
2141 handle
= ext4_journal_current_handle();
2145 * Call ext4_get_blocks() to allocate any delayed allocation
2146 * blocks, or to convert an uninitialized extent to be
2147 * initialized (in the case where we have written into
2148 * one or more preallocated blocks).
2150 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2151 * indicate that we are on the delayed allocation path. This
2152 * affects functions in many different parts of the allocation
2153 * call path. This flag exists primarily because we don't
2154 * want to change *many* call functions, so ext4_get_blocks()
2155 * will set the magic i_delalloc_reserved_flag once the
2156 * inode's allocation semaphore is taken.
2158 * If the blocks in questions were delalloc blocks, set
2159 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2160 * variables are updated after the blocks have been allocated.
2163 get_blocks_flags
= (EXT4_GET_BLOCKS_CREATE
|
2164 EXT4_GET_BLOCKS_DELALLOC_RESERVE
);
2165 if (mpd
->b_state
& (1 << BH_Delay
))
2166 get_blocks_flags
|= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
;
2167 blks
= ext4_get_blocks(handle
, mpd
->inode
, next
, max_blocks
,
2168 &new, get_blocks_flags
);
2172 * If get block returns with error we simply
2173 * return. Later writepage will redirty the page and
2174 * writepages will find the dirty page again
2179 if (err
== -ENOSPC
&&
2180 ext4_count_free_blocks(mpd
->inode
->i_sb
)) {
2186 * get block failure will cause us to loop in
2187 * writepages, because a_ops->writepage won't be able
2188 * to make progress. The page will be redirtied by
2189 * writepage and writepages will again try to write
2192 printk(KERN_EMERG
"%s block allocation failed for inode %lu "
2193 "at logical offset %llu with max blocks "
2194 "%zd with error %d\n",
2195 __func__
, mpd
->inode
->i_ino
,
2196 (unsigned long long)next
,
2197 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2198 printk(KERN_EMERG
"This should not happen.!! "
2199 "Data will be lost\n");
2200 if (err
== -ENOSPC
) {
2201 ext4_print_free_blocks(mpd
->inode
);
2203 /* invalidate all the pages */
2204 ext4_da_block_invalidatepages(mpd
, next
,
2205 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2210 new.b_size
= (blks
<< mpd
->inode
->i_blkbits
);
2212 if (buffer_new(&new))
2213 __unmap_underlying_blocks(mpd
->inode
, &new);
2216 * If blocks are delayed marked, we need to
2217 * put actual blocknr and drop delayed bit
2219 if ((mpd
->b_state
& (1 << BH_Delay
)) ||
2220 (mpd
->b_state
& (1 << BH_Unwritten
)))
2221 mpage_put_bnr_to_bhs(mpd
, next
, &new);
2223 if (ext4_should_order_data(mpd
->inode
)) {
2224 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2230 * Update on-disk size along with block allocation.
2232 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2233 if (disksize
> i_size_read(mpd
->inode
))
2234 disksize
= i_size_read(mpd
->inode
);
2235 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2236 ext4_update_i_disksize(mpd
->inode
, disksize
);
2237 return ext4_mark_inode_dirty(handle
, mpd
->inode
);
2243 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2244 (1 << BH_Delay) | (1 << BH_Unwritten))
2247 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2249 * @mpd->lbh - extent of blocks
2250 * @logical - logical number of the block in the file
2251 * @bh - bh of the block (used to access block's state)
2253 * the function is used to collect contig. blocks in same state
2255 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2256 sector_t logical
, size_t b_size
,
2257 unsigned long b_state
)
2260 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2262 /* check if thereserved journal credits might overflow */
2263 if (!(EXT4_I(mpd
->inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
2264 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2266 * With non-extent format we are limited by the journal
2267 * credit available. Total credit needed to insert
2268 * nrblocks contiguous blocks is dependent on the
2269 * nrblocks. So limit nrblocks.
2272 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2273 EXT4_MAX_TRANS_DATA
) {
2275 * Adding the new buffer_head would make it cross the
2276 * allowed limit for which we have journal credit
2277 * reserved. So limit the new bh->b_size
2279 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2280 mpd
->inode
->i_blkbits
;
2281 /* we will do mpage_da_submit_io in the next loop */
2285 * First block in the extent
2287 if (mpd
->b_size
== 0) {
2288 mpd
->b_blocknr
= logical
;
2289 mpd
->b_size
= b_size
;
2290 mpd
->b_state
= b_state
& BH_FLAGS
;
2294 next
= mpd
->b_blocknr
+ nrblocks
;
2296 * Can we merge the block to our big extent?
2298 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2299 mpd
->b_size
+= b_size
;
2305 * We couldn't merge the block to our extent, so we
2306 * need to flush current extent and start new one
2308 if (mpage_da_map_blocks(mpd
) == 0)
2309 mpage_da_submit_io(mpd
);
2314 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2316 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2320 * __mpage_da_writepage - finds extent of pages and blocks
2322 * @page: page to consider
2323 * @wbc: not used, we just follow rules
2326 * The function finds extents of pages and scan them for all blocks.
2328 static int __mpage_da_writepage(struct page
*page
,
2329 struct writeback_control
*wbc
, void *data
)
2331 struct mpage_da_data
*mpd
= data
;
2332 struct inode
*inode
= mpd
->inode
;
2333 struct buffer_head
*bh
, *head
;
2338 * Rest of the page in the page_vec
2339 * redirty then and skip then. We will
2340 * try to to write them again after
2341 * starting a new transaction
2343 redirty_page_for_writepage(wbc
, page
);
2345 return MPAGE_DA_EXTENT_TAIL
;
2348 * Can we merge this page to current extent?
2350 if (mpd
->next_page
!= page
->index
) {
2352 * Nope, we can't. So, we map non-allocated blocks
2353 * and start IO on them using writepage()
2355 if (mpd
->next_page
!= mpd
->first_page
) {
2356 if (mpage_da_map_blocks(mpd
) == 0)
2357 mpage_da_submit_io(mpd
);
2359 * skip rest of the page in the page_vec
2362 redirty_page_for_writepage(wbc
, page
);
2364 return MPAGE_DA_EXTENT_TAIL
;
2368 * Start next extent of pages ...
2370 mpd
->first_page
= page
->index
;
2380 mpd
->next_page
= page
->index
+ 1;
2381 logical
= (sector_t
) page
->index
<<
2382 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2384 if (!page_has_buffers(page
)) {
2385 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2386 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2388 return MPAGE_DA_EXTENT_TAIL
;
2391 * Page with regular buffer heads, just add all dirty ones
2393 head
= page_buffers(page
);
2396 BUG_ON(buffer_locked(bh
));
2398 * We need to try to allocate
2399 * unmapped blocks in the same page.
2400 * Otherwise we won't make progress
2401 * with the page in ext4_writepage
2403 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2404 mpage_add_bh_to_extent(mpd
, logical
,
2408 return MPAGE_DA_EXTENT_TAIL
;
2409 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2411 * mapped dirty buffer. We need to update
2412 * the b_state because we look at
2413 * b_state in mpage_da_map_blocks. We don't
2414 * update b_size because if we find an
2415 * unmapped buffer_head later we need to
2416 * use the b_state flag of that buffer_head.
2418 if (mpd
->b_size
== 0)
2419 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2422 } while ((bh
= bh
->b_this_page
) != head
);
2429 * This is a special get_blocks_t callback which is used by
2430 * ext4_da_write_begin(). It will either return mapped block or
2431 * reserve space for a single block.
2433 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2434 * We also have b_blocknr = -1 and b_bdev initialized properly
2436 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2437 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2438 * initialized properly.
2440 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2441 struct buffer_head
*bh_result
, int create
)
2444 sector_t invalid_block
= ~((sector_t
) 0xffff);
2446 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2449 BUG_ON(create
== 0);
2450 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2453 * first, we need to know whether the block is allocated already
2454 * preallocated blocks are unmapped but should treated
2455 * the same as allocated blocks.
2457 ret
= ext4_get_blocks(NULL
, inode
, iblock
, 1, bh_result
, 0);
2458 if ((ret
== 0) && !buffer_delay(bh_result
)) {
2459 /* the block isn't (pre)allocated yet, let's reserve space */
2461 * XXX: __block_prepare_write() unmaps passed block,
2464 ret
= ext4_da_reserve_space(inode
, 1);
2466 /* not enough space to reserve */
2469 map_bh(bh_result
, inode
->i_sb
, invalid_block
);
2470 set_buffer_new(bh_result
);
2471 set_buffer_delay(bh_result
);
2472 } else if (ret
> 0) {
2473 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2474 if (buffer_unwritten(bh_result
)) {
2475 /* A delayed write to unwritten bh should
2476 * be marked new and mapped. Mapped ensures
2477 * that we don't do get_block multiple times
2478 * when we write to the same offset and new
2479 * ensures that we do proper zero out for
2482 set_buffer_new(bh_result
);
2483 set_buffer_mapped(bh_result
);
2492 * This function is used as a standard get_block_t calback function
2493 * when there is no desire to allocate any blocks. It is used as a
2494 * callback function for block_prepare_write(), nobh_writepage(), and
2495 * block_write_full_page(). These functions should only try to map a
2496 * single block at a time.
2498 * Since this function doesn't do block allocations even if the caller
2499 * requests it by passing in create=1, it is critically important that
2500 * any caller checks to make sure that any buffer heads are returned
2501 * by this function are either all already mapped or marked for
2502 * delayed allocation before calling nobh_writepage() or
2503 * block_write_full_page(). Otherwise, b_blocknr could be left
2504 * unitialized, and the page write functions will be taken by
2507 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2508 struct buffer_head
*bh_result
, int create
)
2511 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
2513 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2516 * we don't want to do block allocation in writepage
2517 * so call get_block_wrap with create = 0
2519 ret
= ext4_get_blocks(NULL
, inode
, iblock
, max_blocks
, bh_result
, 0);
2521 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2527 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2533 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2539 static int __ext4_journalled_writepage(struct page
*page
,
2540 struct writeback_control
*wbc
,
2543 struct address_space
*mapping
= page
->mapping
;
2544 struct inode
*inode
= mapping
->host
;
2545 struct buffer_head
*page_bufs
;
2546 handle_t
*handle
= NULL
;
2550 page_bufs
= page_buffers(page
);
2552 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2553 /* As soon as we unlock the page, it can go away, but we have
2554 * references to buffers so we are safe */
2557 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2558 if (IS_ERR(handle
)) {
2559 ret
= PTR_ERR(handle
);
2563 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2564 do_journal_get_write_access
);
2566 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2570 err
= ext4_journal_stop(handle
);
2574 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2575 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
2581 * Note that we don't need to start a transaction unless we're journaling data
2582 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2583 * need to file the inode to the transaction's list in ordered mode because if
2584 * we are writing back data added by write(), the inode is already there and if
2585 * we are writing back data modified via mmap(), noone guarantees in which
2586 * transaction the data will hit the disk. In case we are journaling data, we
2587 * cannot start transaction directly because transaction start ranks above page
2588 * lock so we have to do some magic.
2590 * This function can get called via...
2591 * - ext4_da_writepages after taking page lock (have journal handle)
2592 * - journal_submit_inode_data_buffers (no journal handle)
2593 * - shrink_page_list via pdflush (no journal handle)
2594 * - grab_page_cache when doing write_begin (have journal handle)
2596 * We don't do any block allocation in this function. If we have page with
2597 * multiple blocks we need to write those buffer_heads that are mapped. This
2598 * is important for mmaped based write. So if we do with blocksize 1K
2599 * truncate(f, 1024);
2600 * a = mmap(f, 0, 4096);
2602 * truncate(f, 4096);
2603 * we have in the page first buffer_head mapped via page_mkwrite call back
2604 * but other bufer_heads would be unmapped but dirty(dirty done via the
2605 * do_wp_page). So writepage should write the first block. If we modify
2606 * the mmap area beyond 1024 we will again get a page_fault and the
2607 * page_mkwrite callback will do the block allocation and mark the
2608 * buffer_heads mapped.
2610 * We redirty the page if we have any buffer_heads that is either delay or
2611 * unwritten in the page.
2613 * We can get recursively called as show below.
2615 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2618 * But since we don't do any block allocation we should not deadlock.
2619 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2621 static int ext4_writepage(struct page
*page
,
2622 struct writeback_control
*wbc
)
2627 struct buffer_head
*page_bufs
;
2628 struct inode
*inode
= page
->mapping
->host
;
2630 trace_ext4_writepage(inode
, page
);
2631 size
= i_size_read(inode
);
2632 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2633 len
= size
& ~PAGE_CACHE_MASK
;
2635 len
= PAGE_CACHE_SIZE
;
2637 if (page_has_buffers(page
)) {
2638 page_bufs
= page_buffers(page
);
2639 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2640 ext4_bh_delay_or_unwritten
)) {
2642 * We don't want to do block allocation
2643 * So redirty the page and return
2644 * We may reach here when we do a journal commit
2645 * via journal_submit_inode_data_buffers.
2646 * If we don't have mapping block we just ignore
2647 * them. We can also reach here via shrink_page_list
2649 redirty_page_for_writepage(wbc
, page
);
2655 * The test for page_has_buffers() is subtle:
2656 * We know the page is dirty but it lost buffers. That means
2657 * that at some moment in time after write_begin()/write_end()
2658 * has been called all buffers have been clean and thus they
2659 * must have been written at least once. So they are all
2660 * mapped and we can happily proceed with mapping them
2661 * and writing the page.
2663 * Try to initialize the buffer_heads and check whether
2664 * all are mapped and non delay. We don't want to
2665 * do block allocation here.
2667 ret
= block_prepare_write(page
, 0, len
,
2668 noalloc_get_block_write
);
2670 page_bufs
= page_buffers(page
);
2671 /* check whether all are mapped and non delay */
2672 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2673 ext4_bh_delay_or_unwritten
)) {
2674 redirty_page_for_writepage(wbc
, page
);
2680 * We can't do block allocation here
2681 * so just redity the page and unlock
2684 redirty_page_for_writepage(wbc
, page
);
2688 /* now mark the buffer_heads as dirty and uptodate */
2689 block_commit_write(page
, 0, len
);
2692 if (PageChecked(page
) && ext4_should_journal_data(inode
)) {
2694 * It's mmapped pagecache. Add buffers and journal it. There
2695 * doesn't seem much point in redirtying the page here.
2697 ClearPageChecked(page
);
2698 return __ext4_journalled_writepage(page
, wbc
, len
);
2701 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2702 ret
= nobh_writepage(page
, noalloc_get_block_write
, wbc
);
2704 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2711 * This is called via ext4_da_writepages() to
2712 * calulate the total number of credits to reserve to fit
2713 * a single extent allocation into a single transaction,
2714 * ext4_da_writpeages() will loop calling this before
2715 * the block allocation.
2718 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2720 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2723 * With non-extent format the journal credit needed to
2724 * insert nrblocks contiguous block is dependent on
2725 * number of contiguous block. So we will limit
2726 * number of contiguous block to a sane value
2728 if (!(inode
->i_flags
& EXT4_EXTENTS_FL
) &&
2729 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2730 max_blocks
= EXT4_MAX_TRANS_DATA
;
2732 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2735 static int ext4_da_writepages(struct address_space
*mapping
,
2736 struct writeback_control
*wbc
)
2739 int range_whole
= 0;
2740 handle_t
*handle
= NULL
;
2741 struct mpage_da_data mpd
;
2742 struct inode
*inode
= mapping
->host
;
2743 int no_nrwrite_index_update
;
2744 int pages_written
= 0;
2746 int range_cyclic
, cycled
= 1, io_done
= 0;
2747 int needed_blocks
, ret
= 0, nr_to_writebump
= 0;
2748 loff_t range_start
= wbc
->range_start
;
2749 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2751 trace_ext4_da_writepages(inode
, wbc
);
2754 * No pages to write? This is mainly a kludge to avoid starting
2755 * a transaction for special inodes like journal inode on last iput()
2756 * because that could violate lock ordering on umount
2758 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2762 * If the filesystem has aborted, it is read-only, so return
2763 * right away instead of dumping stack traces later on that
2764 * will obscure the real source of the problem. We test
2765 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2766 * the latter could be true if the filesystem is mounted
2767 * read-only, and in that case, ext4_da_writepages should
2768 * *never* be called, so if that ever happens, we would want
2771 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2775 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2776 * This make sure small files blocks are allocated in
2777 * single attempt. This ensure that small files
2778 * get less fragmented.
2780 if (wbc
->nr_to_write
< sbi
->s_mb_stream_request
) {
2781 nr_to_writebump
= sbi
->s_mb_stream_request
- wbc
->nr_to_write
;
2782 wbc
->nr_to_write
= sbi
->s_mb_stream_request
;
2784 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2787 range_cyclic
= wbc
->range_cyclic
;
2788 if (wbc
->range_cyclic
) {
2789 index
= mapping
->writeback_index
;
2792 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2793 wbc
->range_end
= LLONG_MAX
;
2794 wbc
->range_cyclic
= 0;
2796 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2799 mpd
.inode
= mapping
->host
;
2802 * we don't want write_cache_pages to update
2803 * nr_to_write and writeback_index
2805 no_nrwrite_index_update
= wbc
->no_nrwrite_index_update
;
2806 wbc
->no_nrwrite_index_update
= 1;
2807 pages_skipped
= wbc
->pages_skipped
;
2810 while (!ret
&& wbc
->nr_to_write
> 0) {
2813 * we insert one extent at a time. So we need
2814 * credit needed for single extent allocation.
2815 * journalled mode is currently not supported
2818 BUG_ON(ext4_should_journal_data(inode
));
2819 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2821 /* start a new transaction*/
2822 handle
= ext4_journal_start(inode
, needed_blocks
);
2823 if (IS_ERR(handle
)) {
2824 ret
= PTR_ERR(handle
);
2825 printk(KERN_CRIT
"%s: jbd2_start: "
2826 "%ld pages, ino %lu; err %d\n", __func__
,
2827 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2829 goto out_writepages
;
2833 * Now call __mpage_da_writepage to find the next
2834 * contiguous region of logical blocks that need
2835 * blocks to be allocated by ext4. We don't actually
2836 * submit the blocks for I/O here, even though
2837 * write_cache_pages thinks it will, and will set the
2838 * pages as clean for write before calling
2839 * __mpage_da_writepage().
2847 mpd
.pages_written
= 0;
2849 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
,
2852 * If we have a contigous extent of pages and we
2853 * haven't done the I/O yet, map the blocks and submit
2856 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2857 if (mpage_da_map_blocks(&mpd
) == 0)
2858 mpage_da_submit_io(&mpd
);
2860 ret
= MPAGE_DA_EXTENT_TAIL
;
2862 trace_ext4_da_write_pages(inode
, &mpd
);
2863 wbc
->nr_to_write
-= mpd
.pages_written
;
2865 ext4_journal_stop(handle
);
2867 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2868 /* commit the transaction which would
2869 * free blocks released in the transaction
2872 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2873 wbc
->pages_skipped
= pages_skipped
;
2875 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2877 * got one extent now try with
2880 pages_written
+= mpd
.pages_written
;
2881 wbc
->pages_skipped
= pages_skipped
;
2884 } else if (wbc
->nr_to_write
)
2886 * There is no more writeout needed
2887 * or we requested for a noblocking writeout
2888 * and we found the device congested
2892 if (!io_done
&& !cycled
) {
2895 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2896 wbc
->range_end
= mapping
->writeback_index
- 1;
2899 if (pages_skipped
!= wbc
->pages_skipped
)
2900 printk(KERN_EMERG
"This should not happen leaving %s "
2901 "with nr_to_write = %ld ret = %d\n",
2902 __func__
, wbc
->nr_to_write
, ret
);
2905 index
+= pages_written
;
2906 wbc
->range_cyclic
= range_cyclic
;
2907 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2909 * set the writeback_index so that range_cyclic
2910 * mode will write it back later
2912 mapping
->writeback_index
= index
;
2915 if (!no_nrwrite_index_update
)
2916 wbc
->no_nrwrite_index_update
= 0;
2917 wbc
->nr_to_write
-= nr_to_writebump
;
2918 wbc
->range_start
= range_start
;
2919 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2923 #define FALL_BACK_TO_NONDELALLOC 1
2924 static int ext4_nonda_switch(struct super_block
*sb
)
2926 s64 free_blocks
, dirty_blocks
;
2927 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2930 * switch to non delalloc mode if we are running low
2931 * on free block. The free block accounting via percpu
2932 * counters can get slightly wrong with percpu_counter_batch getting
2933 * accumulated on each CPU without updating global counters
2934 * Delalloc need an accurate free block accounting. So switch
2935 * to non delalloc when we are near to error range.
2937 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
2938 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
2939 if (2 * free_blocks
< 3 * dirty_blocks
||
2940 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
2942 * free block count is less that 150% of dirty blocks
2943 * or free blocks is less that watermark
2950 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2951 loff_t pos
, unsigned len
, unsigned flags
,
2952 struct page
**pagep
, void **fsdata
)
2954 int ret
, retries
= 0;
2958 struct inode
*inode
= mapping
->host
;
2961 index
= pos
>> PAGE_CACHE_SHIFT
;
2962 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2965 if (ext4_nonda_switch(inode
->i_sb
)) {
2966 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2967 return ext4_write_begin(file
, mapping
, pos
,
2968 len
, flags
, pagep
, fsdata
);
2970 *fsdata
= (void *)0;
2971 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2974 * With delayed allocation, we don't log the i_disksize update
2975 * if there is delayed block allocation. But we still need
2976 * to journalling the i_disksize update if writes to the end
2977 * of file which has an already mapped buffer.
2979 handle
= ext4_journal_start(inode
, 1);
2980 if (IS_ERR(handle
)) {
2981 ret
= PTR_ERR(handle
);
2984 /* We cannot recurse into the filesystem as the transaction is already
2986 flags
|= AOP_FLAG_NOFS
;
2988 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2990 ext4_journal_stop(handle
);
2996 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
2997 ext4_da_get_block_prep
);
3000 ext4_journal_stop(handle
);
3001 page_cache_release(page
);
3003 * block_write_begin may have instantiated a few blocks
3004 * outside i_size. Trim these off again. Don't need
3005 * i_size_read because we hold i_mutex.
3007 if (pos
+ len
> inode
->i_size
)
3008 ext4_truncate(inode
);
3011 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3018 * Check if we should update i_disksize
3019 * when write to the end of file but not require block allocation
3021 static int ext4_da_should_update_i_disksize(struct page
*page
,
3022 unsigned long offset
)
3024 struct buffer_head
*bh
;
3025 struct inode
*inode
= page
->mapping
->host
;
3029 bh
= page_buffers(page
);
3030 idx
= offset
>> inode
->i_blkbits
;
3032 for (i
= 0; i
< idx
; i
++)
3033 bh
= bh
->b_this_page
;
3035 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3040 static int ext4_da_write_end(struct file
*file
,
3041 struct address_space
*mapping
,
3042 loff_t pos
, unsigned len
, unsigned copied
,
3043 struct page
*page
, void *fsdata
)
3045 struct inode
*inode
= mapping
->host
;
3047 handle_t
*handle
= ext4_journal_current_handle();
3049 unsigned long start
, end
;
3050 int write_mode
= (int)(unsigned long)fsdata
;
3052 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3053 if (ext4_should_order_data(inode
)) {
3054 return ext4_ordered_write_end(file
, mapping
, pos
,
3055 len
, copied
, page
, fsdata
);
3056 } else if (ext4_should_writeback_data(inode
)) {
3057 return ext4_writeback_write_end(file
, mapping
, pos
,
3058 len
, copied
, page
, fsdata
);
3064 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3065 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3066 end
= start
+ copied
- 1;
3069 * generic_write_end() will run mark_inode_dirty() if i_size
3070 * changes. So let's piggyback the i_disksize mark_inode_dirty
3074 new_i_size
= pos
+ copied
;
3075 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3076 if (ext4_da_should_update_i_disksize(page
, end
)) {
3077 down_write(&EXT4_I(inode
)->i_data_sem
);
3078 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3080 * Updating i_disksize when extending file
3081 * without needing block allocation
3083 if (ext4_should_order_data(inode
))
3084 ret
= ext4_jbd2_file_inode(handle
,
3087 EXT4_I(inode
)->i_disksize
= new_i_size
;
3089 up_write(&EXT4_I(inode
)->i_data_sem
);
3090 /* We need to mark inode dirty even if
3091 * new_i_size is less that inode->i_size
3092 * bu greater than i_disksize.(hint delalloc)
3094 ext4_mark_inode_dirty(handle
, inode
);
3097 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3102 ret2
= ext4_journal_stop(handle
);
3106 return ret
? ret
: copied
;
3109 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3112 * Drop reserved blocks
3114 BUG_ON(!PageLocked(page
));
3115 if (!page_has_buffers(page
))
3118 ext4_da_page_release_reservation(page
, offset
);
3121 ext4_invalidatepage(page
, offset
);
3127 * Force all delayed allocation blocks to be allocated for a given inode.
3129 int ext4_alloc_da_blocks(struct inode
*inode
)
3131 trace_ext4_alloc_da_blocks(inode
);
3133 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3134 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3138 * We do something simple for now. The filemap_flush() will
3139 * also start triggering a write of the data blocks, which is
3140 * not strictly speaking necessary (and for users of
3141 * laptop_mode, not even desirable). However, to do otherwise
3142 * would require replicating code paths in:
3144 * ext4_da_writepages() ->
3145 * write_cache_pages() ---> (via passed in callback function)
3146 * __mpage_da_writepage() -->
3147 * mpage_add_bh_to_extent()
3148 * mpage_da_map_blocks()
3150 * The problem is that write_cache_pages(), located in
3151 * mm/page-writeback.c, marks pages clean in preparation for
3152 * doing I/O, which is not desirable if we're not planning on
3155 * We could call write_cache_pages(), and then redirty all of
3156 * the pages by calling redirty_page_for_writeback() but that
3157 * would be ugly in the extreme. So instead we would need to
3158 * replicate parts of the code in the above functions,
3159 * simplifying them becuase we wouldn't actually intend to
3160 * write out the pages, but rather only collect contiguous
3161 * logical block extents, call the multi-block allocator, and
3162 * then update the buffer heads with the block allocations.
3164 * For now, though, we'll cheat by calling filemap_flush(),
3165 * which will map the blocks, and start the I/O, but not
3166 * actually wait for the I/O to complete.
3168 return filemap_flush(inode
->i_mapping
);
3172 * bmap() is special. It gets used by applications such as lilo and by
3173 * the swapper to find the on-disk block of a specific piece of data.
3175 * Naturally, this is dangerous if the block concerned is still in the
3176 * journal. If somebody makes a swapfile on an ext4 data-journaling
3177 * filesystem and enables swap, then they may get a nasty shock when the
3178 * data getting swapped to that swapfile suddenly gets overwritten by
3179 * the original zero's written out previously to the journal and
3180 * awaiting writeback in the kernel's buffer cache.
3182 * So, if we see any bmap calls here on a modified, data-journaled file,
3183 * take extra steps to flush any blocks which might be in the cache.
3185 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3187 struct inode
*inode
= mapping
->host
;
3191 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3192 test_opt(inode
->i_sb
, DELALLOC
)) {
3194 * With delalloc we want to sync the file
3195 * so that we can make sure we allocate
3198 filemap_write_and_wait(mapping
);
3201 if (EXT4_JOURNAL(inode
) && EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
3203 * This is a REALLY heavyweight approach, but the use of
3204 * bmap on dirty files is expected to be extremely rare:
3205 * only if we run lilo or swapon on a freshly made file
3206 * do we expect this to happen.
3208 * (bmap requires CAP_SYS_RAWIO so this does not
3209 * represent an unprivileged user DOS attack --- we'd be
3210 * in trouble if mortal users could trigger this path at
3213 * NB. EXT4_STATE_JDATA is not set on files other than
3214 * regular files. If somebody wants to bmap a directory
3215 * or symlink and gets confused because the buffer
3216 * hasn't yet been flushed to disk, they deserve
3217 * everything they get.
3220 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
3221 journal
= EXT4_JOURNAL(inode
);
3222 jbd2_journal_lock_updates(journal
);
3223 err
= jbd2_journal_flush(journal
);
3224 jbd2_journal_unlock_updates(journal
);
3230 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3233 static int ext4_readpage(struct file
*file
, struct page
*page
)
3235 return mpage_readpage(page
, ext4_get_block
);
3239 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3240 struct list_head
*pages
, unsigned nr_pages
)
3242 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3245 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3247 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3250 * If it's a full truncate we just forget about the pending dirtying
3253 ClearPageChecked(page
);
3256 jbd2_journal_invalidatepage(journal
, page
, offset
);
3258 block_invalidatepage(page
, offset
);
3261 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3263 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3265 WARN_ON(PageChecked(page
));
3266 if (!page_has_buffers(page
))
3269 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3271 return try_to_free_buffers(page
);
3275 * If the O_DIRECT write will extend the file then add this inode to the
3276 * orphan list. So recovery will truncate it back to the original size
3277 * if the machine crashes during the write.
3279 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3280 * crashes then stale disk data _may_ be exposed inside the file. But current
3281 * VFS code falls back into buffered path in that case so we are safe.
3283 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3284 const struct iovec
*iov
, loff_t offset
,
3285 unsigned long nr_segs
)
3287 struct file
*file
= iocb
->ki_filp
;
3288 struct inode
*inode
= file
->f_mapping
->host
;
3289 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3293 size_t count
= iov_length(iov
, nr_segs
);
3296 loff_t final_size
= offset
+ count
;
3298 if (final_size
> inode
->i_size
) {
3299 /* Credits for sb + inode write */
3300 handle
= ext4_journal_start(inode
, 2);
3301 if (IS_ERR(handle
)) {
3302 ret
= PTR_ERR(handle
);
3305 ret
= ext4_orphan_add(handle
, inode
);
3307 ext4_journal_stop(handle
);
3311 ei
->i_disksize
= inode
->i_size
;
3312 ext4_journal_stop(handle
);
3316 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
3318 ext4_get_block
, NULL
);
3323 /* Credits for sb + inode write */
3324 handle
= ext4_journal_start(inode
, 2);
3325 if (IS_ERR(handle
)) {
3326 /* This is really bad luck. We've written the data
3327 * but cannot extend i_size. Bail out and pretend
3328 * the write failed... */
3329 ret
= PTR_ERR(handle
);
3333 ext4_orphan_del(handle
, inode
);
3335 loff_t end
= offset
+ ret
;
3336 if (end
> inode
->i_size
) {
3337 ei
->i_disksize
= end
;
3338 i_size_write(inode
, end
);
3340 * We're going to return a positive `ret'
3341 * here due to non-zero-length I/O, so there's
3342 * no way of reporting error returns from
3343 * ext4_mark_inode_dirty() to userspace. So
3346 ext4_mark_inode_dirty(handle
, inode
);
3349 err
= ext4_journal_stop(handle
);
3358 * Pages can be marked dirty completely asynchronously from ext4's journalling
3359 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3360 * much here because ->set_page_dirty is called under VFS locks. The page is
3361 * not necessarily locked.
3363 * We cannot just dirty the page and leave attached buffers clean, because the
3364 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3365 * or jbddirty because all the journalling code will explode.
3367 * So what we do is to mark the page "pending dirty" and next time writepage
3368 * is called, propagate that into the buffers appropriately.
3370 static int ext4_journalled_set_page_dirty(struct page
*page
)
3372 SetPageChecked(page
);
3373 return __set_page_dirty_nobuffers(page
);
3376 static const struct address_space_operations ext4_ordered_aops
= {
3377 .readpage
= ext4_readpage
,
3378 .readpages
= ext4_readpages
,
3379 .writepage
= ext4_writepage
,
3380 .sync_page
= block_sync_page
,
3381 .write_begin
= ext4_write_begin
,
3382 .write_end
= ext4_ordered_write_end
,
3384 .invalidatepage
= ext4_invalidatepage
,
3385 .releasepage
= ext4_releasepage
,
3386 .direct_IO
= ext4_direct_IO
,
3387 .migratepage
= buffer_migrate_page
,
3388 .is_partially_uptodate
= block_is_partially_uptodate
,
3391 static const struct address_space_operations ext4_writeback_aops
= {
3392 .readpage
= ext4_readpage
,
3393 .readpages
= ext4_readpages
,
3394 .writepage
= ext4_writepage
,
3395 .sync_page
= block_sync_page
,
3396 .write_begin
= ext4_write_begin
,
3397 .write_end
= ext4_writeback_write_end
,
3399 .invalidatepage
= ext4_invalidatepage
,
3400 .releasepage
= ext4_releasepage
,
3401 .direct_IO
= ext4_direct_IO
,
3402 .migratepage
= buffer_migrate_page
,
3403 .is_partially_uptodate
= block_is_partially_uptodate
,
3406 static const struct address_space_operations ext4_journalled_aops
= {
3407 .readpage
= ext4_readpage
,
3408 .readpages
= ext4_readpages
,
3409 .writepage
= ext4_writepage
,
3410 .sync_page
= block_sync_page
,
3411 .write_begin
= ext4_write_begin
,
3412 .write_end
= ext4_journalled_write_end
,
3413 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3415 .invalidatepage
= ext4_invalidatepage
,
3416 .releasepage
= ext4_releasepage
,
3417 .is_partially_uptodate
= block_is_partially_uptodate
,
3420 static const struct address_space_operations ext4_da_aops
= {
3421 .readpage
= ext4_readpage
,
3422 .readpages
= ext4_readpages
,
3423 .writepage
= ext4_writepage
,
3424 .writepages
= ext4_da_writepages
,
3425 .sync_page
= block_sync_page
,
3426 .write_begin
= ext4_da_write_begin
,
3427 .write_end
= ext4_da_write_end
,
3429 .invalidatepage
= ext4_da_invalidatepage
,
3430 .releasepage
= ext4_releasepage
,
3431 .direct_IO
= ext4_direct_IO
,
3432 .migratepage
= buffer_migrate_page
,
3433 .is_partially_uptodate
= block_is_partially_uptodate
,
3436 void ext4_set_aops(struct inode
*inode
)
3438 if (ext4_should_order_data(inode
) &&
3439 test_opt(inode
->i_sb
, DELALLOC
))
3440 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3441 else if (ext4_should_order_data(inode
))
3442 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3443 else if (ext4_should_writeback_data(inode
) &&
3444 test_opt(inode
->i_sb
, DELALLOC
))
3445 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3446 else if (ext4_should_writeback_data(inode
))
3447 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3449 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3453 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3454 * up to the end of the block which corresponds to `from'.
3455 * This required during truncate. We need to physically zero the tail end
3456 * of that block so it doesn't yield old data if the file is later grown.
3458 int ext4_block_truncate_page(handle_t
*handle
,
3459 struct address_space
*mapping
, loff_t from
)
3461 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3462 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3463 unsigned blocksize
, length
, pos
;
3465 struct inode
*inode
= mapping
->host
;
3466 struct buffer_head
*bh
;
3470 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3471 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3475 blocksize
= inode
->i_sb
->s_blocksize
;
3476 length
= blocksize
- (offset
& (blocksize
- 1));
3477 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3480 * For "nobh" option, we can only work if we don't need to
3481 * read-in the page - otherwise we create buffers to do the IO.
3483 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
3484 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
3485 zero_user(page
, offset
, length
);
3486 set_page_dirty(page
);
3490 if (!page_has_buffers(page
))
3491 create_empty_buffers(page
, blocksize
, 0);
3493 /* Find the buffer that contains "offset" */
3494 bh
= page_buffers(page
);
3496 while (offset
>= pos
) {
3497 bh
= bh
->b_this_page
;
3503 if (buffer_freed(bh
)) {
3504 BUFFER_TRACE(bh
, "freed: skip");
3508 if (!buffer_mapped(bh
)) {
3509 BUFFER_TRACE(bh
, "unmapped");
3510 ext4_get_block(inode
, iblock
, bh
, 0);
3511 /* unmapped? It's a hole - nothing to do */
3512 if (!buffer_mapped(bh
)) {
3513 BUFFER_TRACE(bh
, "still unmapped");
3518 /* Ok, it's mapped. Make sure it's up-to-date */
3519 if (PageUptodate(page
))
3520 set_buffer_uptodate(bh
);
3522 if (!buffer_uptodate(bh
)) {
3524 ll_rw_block(READ
, 1, &bh
);
3526 /* Uhhuh. Read error. Complain and punt. */
3527 if (!buffer_uptodate(bh
))
3531 if (ext4_should_journal_data(inode
)) {
3532 BUFFER_TRACE(bh
, "get write access");
3533 err
= ext4_journal_get_write_access(handle
, bh
);
3538 zero_user(page
, offset
, length
);
3540 BUFFER_TRACE(bh
, "zeroed end of block");
3543 if (ext4_should_journal_data(inode
)) {
3544 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3546 if (ext4_should_order_data(inode
))
3547 err
= ext4_jbd2_file_inode(handle
, inode
);
3548 mark_buffer_dirty(bh
);
3553 page_cache_release(page
);
3558 * Probably it should be a library function... search for first non-zero word
3559 * or memcmp with zero_page, whatever is better for particular architecture.
3562 static inline int all_zeroes(__le32
*p
, __le32
*q
)
3571 * ext4_find_shared - find the indirect blocks for partial truncation.
3572 * @inode: inode in question
3573 * @depth: depth of the affected branch
3574 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3575 * @chain: place to store the pointers to partial indirect blocks
3576 * @top: place to the (detached) top of branch
3578 * This is a helper function used by ext4_truncate().
3580 * When we do truncate() we may have to clean the ends of several
3581 * indirect blocks but leave the blocks themselves alive. Block is
3582 * partially truncated if some data below the new i_size is refered
3583 * from it (and it is on the path to the first completely truncated
3584 * data block, indeed). We have to free the top of that path along
3585 * with everything to the right of the path. Since no allocation
3586 * past the truncation point is possible until ext4_truncate()
3587 * finishes, we may safely do the latter, but top of branch may
3588 * require special attention - pageout below the truncation point
3589 * might try to populate it.
3591 * We atomically detach the top of branch from the tree, store the
3592 * block number of its root in *@top, pointers to buffer_heads of
3593 * partially truncated blocks - in @chain[].bh and pointers to
3594 * their last elements that should not be removed - in
3595 * @chain[].p. Return value is the pointer to last filled element
3598 * The work left to caller to do the actual freeing of subtrees:
3599 * a) free the subtree starting from *@top
3600 * b) free the subtrees whose roots are stored in
3601 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3602 * c) free the subtrees growing from the inode past the @chain[0].
3603 * (no partially truncated stuff there). */
3605 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
3606 ext4_lblk_t offsets
[4], Indirect chain
[4],
3609 Indirect
*partial
, *p
;
3613 /* Make k index the deepest non-null offest + 1 */
3614 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
3616 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
3617 /* Writer: pointers */
3619 partial
= chain
+ k
-1;
3621 * If the branch acquired continuation since we've looked at it -
3622 * fine, it should all survive and (new) top doesn't belong to us.
3624 if (!partial
->key
&& *partial
->p
)
3627 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
3630 * OK, we've found the last block that must survive. The rest of our
3631 * branch should be detached before unlocking. However, if that rest
3632 * of branch is all ours and does not grow immediately from the inode
3633 * it's easier to cheat and just decrement partial->p.
3635 if (p
== chain
+ k
- 1 && p
> chain
) {
3639 /* Nope, don't do this in ext4. Must leave the tree intact */
3646 while (partial
> p
) {
3647 brelse(partial
->bh
);
3655 * Zero a number of block pointers in either an inode or an indirect block.
3656 * If we restart the transaction we must again get write access to the
3657 * indirect block for further modification.
3659 * We release `count' blocks on disk, but (last - first) may be greater
3660 * than `count' because there can be holes in there.
3662 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
3663 struct buffer_head
*bh
,
3664 ext4_fsblk_t block_to_free
,
3665 unsigned long count
, __le32
*first
,
3669 if (try_to_extend_transaction(handle
, inode
)) {
3671 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
3672 ext4_handle_dirty_metadata(handle
, inode
, bh
);
3674 ext4_mark_inode_dirty(handle
, inode
);
3675 ext4_truncate_restart_trans(handle
, inode
,
3676 blocks_for_truncate(inode
));
3678 BUFFER_TRACE(bh
, "retaking write access");
3679 ext4_journal_get_write_access(handle
, bh
);
3684 * Any buffers which are on the journal will be in memory. We
3685 * find them on the hash table so jbd2_journal_revoke() will
3686 * run jbd2_journal_forget() on them. We've already detached
3687 * each block from the file, so bforget() in
3688 * jbd2_journal_forget() should be safe.
3690 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3692 for (p
= first
; p
< last
; p
++) {
3693 u32 nr
= le32_to_cpu(*p
);
3695 struct buffer_head
*tbh
;
3698 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
3699 ext4_forget(handle
, 0, inode
, tbh
, nr
);
3703 ext4_free_blocks(handle
, inode
, block_to_free
, count
, 0);
3707 * ext4_free_data - free a list of data blocks
3708 * @handle: handle for this transaction
3709 * @inode: inode we are dealing with
3710 * @this_bh: indirect buffer_head which contains *@first and *@last
3711 * @first: array of block numbers
3712 * @last: points immediately past the end of array
3714 * We are freeing all blocks refered from that array (numbers are stored as
3715 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3717 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3718 * blocks are contiguous then releasing them at one time will only affect one
3719 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3720 * actually use a lot of journal space.
3722 * @this_bh will be %NULL if @first and @last point into the inode's direct
3725 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
3726 struct buffer_head
*this_bh
,
3727 __le32
*first
, __le32
*last
)
3729 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
3730 unsigned long count
= 0; /* Number of blocks in the run */
3731 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
3734 ext4_fsblk_t nr
; /* Current block # */
3735 __le32
*p
; /* Pointer into inode/ind
3736 for current block */
3739 if (this_bh
) { /* For indirect block */
3740 BUFFER_TRACE(this_bh
, "get_write_access");
3741 err
= ext4_journal_get_write_access(handle
, this_bh
);
3742 /* Important: if we can't update the indirect pointers
3743 * to the blocks, we can't free them. */
3748 for (p
= first
; p
< last
; p
++) {
3749 nr
= le32_to_cpu(*p
);
3751 /* accumulate blocks to free if they're contiguous */
3754 block_to_free_p
= p
;
3756 } else if (nr
== block_to_free
+ count
) {
3759 ext4_clear_blocks(handle
, inode
, this_bh
,
3761 count
, block_to_free_p
, p
);
3763 block_to_free_p
= p
;
3770 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
3771 count
, block_to_free_p
, p
);
3774 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
3777 * The buffer head should have an attached journal head at this
3778 * point. However, if the data is corrupted and an indirect
3779 * block pointed to itself, it would have been detached when
3780 * the block was cleared. Check for this instead of OOPSing.
3782 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
3783 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
3785 ext4_error(inode
->i_sb
, __func__
,
3786 "circular indirect block detected, "
3787 "inode=%lu, block=%llu",
3789 (unsigned long long) this_bh
->b_blocknr
);
3794 * ext4_free_branches - free an array of branches
3795 * @handle: JBD handle for this transaction
3796 * @inode: inode we are dealing with
3797 * @parent_bh: the buffer_head which contains *@first and *@last
3798 * @first: array of block numbers
3799 * @last: pointer immediately past the end of array
3800 * @depth: depth of the branches to free
3802 * We are freeing all blocks refered from these branches (numbers are
3803 * stored as little-endian 32-bit) and updating @inode->i_blocks
3806 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
3807 struct buffer_head
*parent_bh
,
3808 __le32
*first
, __le32
*last
, int depth
)
3813 if (ext4_handle_is_aborted(handle
))
3817 struct buffer_head
*bh
;
3818 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
3820 while (--p
>= first
) {
3821 nr
= le32_to_cpu(*p
);
3823 continue; /* A hole */
3825 /* Go read the buffer for the next level down */
3826 bh
= sb_bread(inode
->i_sb
, nr
);
3829 * A read failure? Report error and clear slot
3833 ext4_error(inode
->i_sb
, "ext4_free_branches",
3834 "Read failure, inode=%lu, block=%llu",
3839 /* This zaps the entire block. Bottom up. */
3840 BUFFER_TRACE(bh
, "free child branches");
3841 ext4_free_branches(handle
, inode
, bh
,
3842 (__le32
*) bh
->b_data
,
3843 (__le32
*) bh
->b_data
+ addr_per_block
,
3847 * We've probably journalled the indirect block several
3848 * times during the truncate. But it's no longer
3849 * needed and we now drop it from the transaction via
3850 * jbd2_journal_revoke().
3852 * That's easy if it's exclusively part of this
3853 * transaction. But if it's part of the committing
3854 * transaction then jbd2_journal_forget() will simply
3855 * brelse() it. That means that if the underlying
3856 * block is reallocated in ext4_get_block(),
3857 * unmap_underlying_metadata() will find this block
3858 * and will try to get rid of it. damn, damn.
3860 * If this block has already been committed to the
3861 * journal, a revoke record will be written. And
3862 * revoke records must be emitted *before* clearing
3863 * this block's bit in the bitmaps.
3865 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
3868 * Everything below this this pointer has been
3869 * released. Now let this top-of-subtree go.
3871 * We want the freeing of this indirect block to be
3872 * atomic in the journal with the updating of the
3873 * bitmap block which owns it. So make some room in
3876 * We zero the parent pointer *after* freeing its
3877 * pointee in the bitmaps, so if extend_transaction()
3878 * for some reason fails to put the bitmap changes and
3879 * the release into the same transaction, recovery
3880 * will merely complain about releasing a free block,
3881 * rather than leaking blocks.
3883 if (ext4_handle_is_aborted(handle
))
3885 if (try_to_extend_transaction(handle
, inode
)) {
3886 ext4_mark_inode_dirty(handle
, inode
);
3887 ext4_truncate_restart_trans(handle
, inode
,
3888 blocks_for_truncate(inode
));
3891 ext4_free_blocks(handle
, inode
, nr
, 1, 1);
3895 * The block which we have just freed is
3896 * pointed to by an indirect block: journal it
3898 BUFFER_TRACE(parent_bh
, "get_write_access");
3899 if (!ext4_journal_get_write_access(handle
,
3902 BUFFER_TRACE(parent_bh
,
3903 "call ext4_handle_dirty_metadata");
3904 ext4_handle_dirty_metadata(handle
,
3911 /* We have reached the bottom of the tree. */
3912 BUFFER_TRACE(parent_bh
, "free data blocks");
3913 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
3917 int ext4_can_truncate(struct inode
*inode
)
3919 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
3921 if (S_ISREG(inode
->i_mode
))
3923 if (S_ISDIR(inode
->i_mode
))
3925 if (S_ISLNK(inode
->i_mode
))
3926 return !ext4_inode_is_fast_symlink(inode
);
3933 * We block out ext4_get_block() block instantiations across the entire
3934 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3935 * simultaneously on behalf of the same inode.
3937 * As we work through the truncate and commmit bits of it to the journal there
3938 * is one core, guiding principle: the file's tree must always be consistent on
3939 * disk. We must be able to restart the truncate after a crash.
3941 * The file's tree may be transiently inconsistent in memory (although it
3942 * probably isn't), but whenever we close off and commit a journal transaction,
3943 * the contents of (the filesystem + the journal) must be consistent and
3944 * restartable. It's pretty simple, really: bottom up, right to left (although
3945 * left-to-right works OK too).
3947 * Note that at recovery time, journal replay occurs *before* the restart of
3948 * truncate against the orphan inode list.
3950 * The committed inode has the new, desired i_size (which is the same as
3951 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3952 * that this inode's truncate did not complete and it will again call
3953 * ext4_truncate() to have another go. So there will be instantiated blocks
3954 * to the right of the truncation point in a crashed ext4 filesystem. But
3955 * that's fine - as long as they are linked from the inode, the post-crash
3956 * ext4_truncate() run will find them and release them.
3958 void ext4_truncate(struct inode
*inode
)
3961 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3962 __le32
*i_data
= ei
->i_data
;
3963 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
3964 struct address_space
*mapping
= inode
->i_mapping
;
3965 ext4_lblk_t offsets
[4];
3970 ext4_lblk_t last_block
;
3971 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3973 if (!ext4_can_truncate(inode
))
3976 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3977 ei
->i_state
|= EXT4_STATE_DA_ALLOC_CLOSE
;
3979 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
3980 ext4_ext_truncate(inode
);
3984 handle
= start_transaction(inode
);
3986 return; /* AKPM: return what? */
3988 last_block
= (inode
->i_size
+ blocksize
-1)
3989 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
3991 if (inode
->i_size
& (blocksize
- 1))
3992 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
3995 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
3997 goto out_stop
; /* error */
4000 * OK. This truncate is going to happen. We add the inode to the
4001 * orphan list, so that if this truncate spans multiple transactions,
4002 * and we crash, we will resume the truncate when the filesystem
4003 * recovers. It also marks the inode dirty, to catch the new size.
4005 * Implication: the file must always be in a sane, consistent
4006 * truncatable state while each transaction commits.
4008 if (ext4_orphan_add(handle
, inode
))
4012 * From here we block out all ext4_get_block() callers who want to
4013 * modify the block allocation tree.
4015 down_write(&ei
->i_data_sem
);
4017 ext4_discard_preallocations(inode
);
4020 * The orphan list entry will now protect us from any crash which
4021 * occurs before the truncate completes, so it is now safe to propagate
4022 * the new, shorter inode size (held for now in i_size) into the
4023 * on-disk inode. We do this via i_disksize, which is the value which
4024 * ext4 *really* writes onto the disk inode.
4026 ei
->i_disksize
= inode
->i_size
;
4028 if (n
== 1) { /* direct blocks */
4029 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4030 i_data
+ EXT4_NDIR_BLOCKS
);
4034 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4035 /* Kill the top of shared branch (not detached) */
4037 if (partial
== chain
) {
4038 /* Shared branch grows from the inode */
4039 ext4_free_branches(handle
, inode
, NULL
,
4040 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4043 * We mark the inode dirty prior to restart,
4044 * and prior to stop. No need for it here.
4047 /* Shared branch grows from an indirect block */
4048 BUFFER_TRACE(partial
->bh
, "get_write_access");
4049 ext4_free_branches(handle
, inode
, partial
->bh
,
4051 partial
->p
+1, (chain
+n
-1) - partial
);
4054 /* Clear the ends of indirect blocks on the shared branch */
4055 while (partial
> chain
) {
4056 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4057 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4058 (chain
+n
-1) - partial
);
4059 BUFFER_TRACE(partial
->bh
, "call brelse");
4060 brelse(partial
->bh
);
4064 /* Kill the remaining (whole) subtrees */
4065 switch (offsets
[0]) {
4067 nr
= i_data
[EXT4_IND_BLOCK
];
4069 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4070 i_data
[EXT4_IND_BLOCK
] = 0;
4072 case EXT4_IND_BLOCK
:
4073 nr
= i_data
[EXT4_DIND_BLOCK
];
4075 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4076 i_data
[EXT4_DIND_BLOCK
] = 0;
4078 case EXT4_DIND_BLOCK
:
4079 nr
= i_data
[EXT4_TIND_BLOCK
];
4081 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4082 i_data
[EXT4_TIND_BLOCK
] = 0;
4084 case EXT4_TIND_BLOCK
:
4088 up_write(&ei
->i_data_sem
);
4089 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4090 ext4_mark_inode_dirty(handle
, inode
);
4093 * In a multi-transaction truncate, we only make the final transaction
4097 ext4_handle_sync(handle
);
4100 * If this was a simple ftruncate(), and the file will remain alive
4101 * then we need to clear up the orphan record which we created above.
4102 * However, if this was a real unlink then we were called by
4103 * ext4_delete_inode(), and we allow that function to clean up the
4104 * orphan info for us.
4107 ext4_orphan_del(handle
, inode
);
4109 ext4_journal_stop(handle
);
4113 * ext4_get_inode_loc returns with an extra refcount against the inode's
4114 * underlying buffer_head on success. If 'in_mem' is true, we have all
4115 * data in memory that is needed to recreate the on-disk version of this
4118 static int __ext4_get_inode_loc(struct inode
*inode
,
4119 struct ext4_iloc
*iloc
, int in_mem
)
4121 struct ext4_group_desc
*gdp
;
4122 struct buffer_head
*bh
;
4123 struct super_block
*sb
= inode
->i_sb
;
4125 int inodes_per_block
, inode_offset
;
4128 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4131 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4132 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4137 * Figure out the offset within the block group inode table
4139 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4140 inode_offset
= ((inode
->i_ino
- 1) %
4141 EXT4_INODES_PER_GROUP(sb
));
4142 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4143 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4145 bh
= sb_getblk(sb
, block
);
4147 ext4_error(sb
, "ext4_get_inode_loc", "unable to read "
4148 "inode block - inode=%lu, block=%llu",
4149 inode
->i_ino
, block
);
4152 if (!buffer_uptodate(bh
)) {
4156 * If the buffer has the write error flag, we have failed
4157 * to write out another inode in the same block. In this
4158 * case, we don't have to read the block because we may
4159 * read the old inode data successfully.
4161 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4162 set_buffer_uptodate(bh
);
4164 if (buffer_uptodate(bh
)) {
4165 /* someone brought it uptodate while we waited */
4171 * If we have all information of the inode in memory and this
4172 * is the only valid inode in the block, we need not read the
4176 struct buffer_head
*bitmap_bh
;
4179 start
= inode_offset
& ~(inodes_per_block
- 1);
4181 /* Is the inode bitmap in cache? */
4182 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4187 * If the inode bitmap isn't in cache then the
4188 * optimisation may end up performing two reads instead
4189 * of one, so skip it.
4191 if (!buffer_uptodate(bitmap_bh
)) {
4195 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4196 if (i
== inode_offset
)
4198 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4202 if (i
== start
+ inodes_per_block
) {
4203 /* all other inodes are free, so skip I/O */
4204 memset(bh
->b_data
, 0, bh
->b_size
);
4205 set_buffer_uptodate(bh
);
4213 * If we need to do any I/O, try to pre-readahead extra
4214 * blocks from the inode table.
4216 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4217 ext4_fsblk_t b
, end
, table
;
4220 table
= ext4_inode_table(sb
, gdp
);
4221 /* s_inode_readahead_blks is always a power of 2 */
4222 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4225 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4226 num
= EXT4_INODES_PER_GROUP(sb
);
4227 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4228 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4229 num
-= ext4_itable_unused_count(sb
, gdp
);
4230 table
+= num
/ inodes_per_block
;
4234 sb_breadahead(sb
, b
++);
4238 * There are other valid inodes in the buffer, this inode
4239 * has in-inode xattrs, or we don't have this inode in memory.
4240 * Read the block from disk.
4243 bh
->b_end_io
= end_buffer_read_sync
;
4244 submit_bh(READ_META
, bh
);
4246 if (!buffer_uptodate(bh
)) {
4247 ext4_error(sb
, __func__
,
4248 "unable to read inode block - inode=%lu, "
4249 "block=%llu", inode
->i_ino
, block
);
4259 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4261 /* We have all inode data except xattrs in memory here. */
4262 return __ext4_get_inode_loc(inode
, iloc
,
4263 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
4266 void ext4_set_inode_flags(struct inode
*inode
)
4268 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4270 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4271 if (flags
& EXT4_SYNC_FL
)
4272 inode
->i_flags
|= S_SYNC
;
4273 if (flags
& EXT4_APPEND_FL
)
4274 inode
->i_flags
|= S_APPEND
;
4275 if (flags
& EXT4_IMMUTABLE_FL
)
4276 inode
->i_flags
|= S_IMMUTABLE
;
4277 if (flags
& EXT4_NOATIME_FL
)
4278 inode
->i_flags
|= S_NOATIME
;
4279 if (flags
& EXT4_DIRSYNC_FL
)
4280 inode
->i_flags
|= S_DIRSYNC
;
4283 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4284 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4286 unsigned int flags
= ei
->vfs_inode
.i_flags
;
4288 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4289 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
4291 ei
->i_flags
|= EXT4_SYNC_FL
;
4292 if (flags
& S_APPEND
)
4293 ei
->i_flags
|= EXT4_APPEND_FL
;
4294 if (flags
& S_IMMUTABLE
)
4295 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
4296 if (flags
& S_NOATIME
)
4297 ei
->i_flags
|= EXT4_NOATIME_FL
;
4298 if (flags
& S_DIRSYNC
)
4299 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
4302 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4303 struct ext4_inode_info
*ei
)
4306 struct inode
*inode
= &(ei
->vfs_inode
);
4307 struct super_block
*sb
= inode
->i_sb
;
4309 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4310 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4311 /* we are using combined 48 bit field */
4312 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4313 le32_to_cpu(raw_inode
->i_blocks_lo
);
4314 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
4315 /* i_blocks represent file system block size */
4316 return i_blocks
<< (inode
->i_blkbits
- 9);
4321 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4325 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4327 struct ext4_iloc iloc
;
4328 struct ext4_inode
*raw_inode
;
4329 struct ext4_inode_info
*ei
;
4330 struct buffer_head
*bh
;
4331 struct inode
*inode
;
4335 inode
= iget_locked(sb
, ino
);
4337 return ERR_PTR(-ENOMEM
);
4338 if (!(inode
->i_state
& I_NEW
))
4343 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4347 raw_inode
= ext4_raw_inode(&iloc
);
4348 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4349 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4350 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4351 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4352 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4353 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4355 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4358 ei
->i_dir_start_lookup
= 0;
4359 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4360 /* We now have enough fields to check if the inode was active or not.
4361 * This is needed because nfsd might try to access dead inodes
4362 * the test is that same one that e2fsck uses
4363 * NeilBrown 1999oct15
4365 if (inode
->i_nlink
== 0) {
4366 if (inode
->i_mode
== 0 ||
4367 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4368 /* this inode is deleted */
4373 /* The only unlinked inodes we let through here have
4374 * valid i_mode and are being read by the orphan
4375 * recovery code: that's fine, we're about to complete
4376 * the process of deleting those. */
4378 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4379 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4380 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4381 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4383 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4384 inode
->i_size
= ext4_isize(raw_inode
);
4385 ei
->i_disksize
= inode
->i_size
;
4386 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4387 ei
->i_block_group
= iloc
.block_group
;
4388 ei
->i_last_alloc_group
= ~0;
4390 * NOTE! The in-memory inode i_data array is in little-endian order
4391 * even on big-endian machines: we do NOT byteswap the block numbers!
4393 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4394 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4395 INIT_LIST_HEAD(&ei
->i_orphan
);
4397 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4398 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4399 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4400 EXT4_INODE_SIZE(inode
->i_sb
)) {
4405 if (ei
->i_extra_isize
== 0) {
4406 /* The extra space is currently unused. Use it. */
4407 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4408 EXT4_GOOD_OLD_INODE_SIZE
;
4410 __le32
*magic
= (void *)raw_inode
+
4411 EXT4_GOOD_OLD_INODE_SIZE
+
4413 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4414 ei
->i_state
|= EXT4_STATE_XATTR
;
4417 ei
->i_extra_isize
= 0;
4419 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4420 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4421 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4422 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4424 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4425 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4426 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4428 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4432 if (ei
->i_file_acl
&&
4434 (le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
) +
4435 EXT4_SB(sb
)->s_gdb_count
)) ||
4436 (ei
->i_file_acl
>= ext4_blocks_count(EXT4_SB(sb
)->s_es
)))) {
4437 ext4_error(sb
, __func__
,
4438 "bad extended attribute block %llu in inode #%lu",
4439 ei
->i_file_acl
, inode
->i_ino
);
4442 } else if (ei
->i_flags
& EXT4_EXTENTS_FL
) {
4443 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4444 (S_ISLNK(inode
->i_mode
) &&
4445 !ext4_inode_is_fast_symlink(inode
)))
4446 /* Validate extent which is part of inode */
4447 ret
= ext4_ext_check_inode(inode
);
4448 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4449 (S_ISLNK(inode
->i_mode
) &&
4450 !ext4_inode_is_fast_symlink(inode
))) {
4451 /* Validate block references which are part of inode */
4452 ret
= ext4_check_inode_blockref(inode
);
4459 if (S_ISREG(inode
->i_mode
)) {
4460 inode
->i_op
= &ext4_file_inode_operations
;
4461 inode
->i_fop
= &ext4_file_operations
;
4462 ext4_set_aops(inode
);
4463 } else if (S_ISDIR(inode
->i_mode
)) {
4464 inode
->i_op
= &ext4_dir_inode_operations
;
4465 inode
->i_fop
= &ext4_dir_operations
;
4466 } else if (S_ISLNK(inode
->i_mode
)) {
4467 if (ext4_inode_is_fast_symlink(inode
)) {
4468 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4469 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4470 sizeof(ei
->i_data
) - 1);
4472 inode
->i_op
= &ext4_symlink_inode_operations
;
4473 ext4_set_aops(inode
);
4475 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4476 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4477 inode
->i_op
= &ext4_special_inode_operations
;
4478 if (raw_inode
->i_block
[0])
4479 init_special_inode(inode
, inode
->i_mode
,
4480 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4482 init_special_inode(inode
, inode
->i_mode
,
4483 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4487 ext4_error(inode
->i_sb
, __func__
,
4488 "bogus i_mode (%o) for inode=%lu",
4489 inode
->i_mode
, inode
->i_ino
);
4493 ext4_set_inode_flags(inode
);
4494 unlock_new_inode(inode
);
4499 return ERR_PTR(ret
);
4502 static int ext4_inode_blocks_set(handle_t
*handle
,
4503 struct ext4_inode
*raw_inode
,
4504 struct ext4_inode_info
*ei
)
4506 struct inode
*inode
= &(ei
->vfs_inode
);
4507 u64 i_blocks
= inode
->i_blocks
;
4508 struct super_block
*sb
= inode
->i_sb
;
4510 if (i_blocks
<= ~0U) {
4512 * i_blocks can be represnted in a 32 bit variable
4513 * as multiple of 512 bytes
4515 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4516 raw_inode
->i_blocks_high
= 0;
4517 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4520 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4523 if (i_blocks
<= 0xffffffffffffULL
) {
4525 * i_blocks can be represented in a 48 bit variable
4526 * as multiple of 512 bytes
4528 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4529 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4530 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4532 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
4533 /* i_block is stored in file system block size */
4534 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4535 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4536 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4542 * Post the struct inode info into an on-disk inode location in the
4543 * buffer-cache. This gobbles the caller's reference to the
4544 * buffer_head in the inode location struct.
4546 * The caller must have write access to iloc->bh.
4548 static int ext4_do_update_inode(handle_t
*handle
,
4549 struct inode
*inode
,
4550 struct ext4_iloc
*iloc
,
4553 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4554 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4555 struct buffer_head
*bh
= iloc
->bh
;
4556 int err
= 0, rc
, block
;
4558 /* For fields not not tracking in the in-memory inode,
4559 * initialise them to zero for new inodes. */
4560 if (ei
->i_state
& EXT4_STATE_NEW
)
4561 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4563 ext4_get_inode_flags(ei
);
4564 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4565 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4566 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
4567 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
4569 * Fix up interoperability with old kernels. Otherwise, old inodes get
4570 * re-used with the upper 16 bits of the uid/gid intact
4573 raw_inode
->i_uid_high
=
4574 cpu_to_le16(high_16_bits(inode
->i_uid
));
4575 raw_inode
->i_gid_high
=
4576 cpu_to_le16(high_16_bits(inode
->i_gid
));
4578 raw_inode
->i_uid_high
= 0;
4579 raw_inode
->i_gid_high
= 0;
4582 raw_inode
->i_uid_low
=
4583 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
4584 raw_inode
->i_gid_low
=
4585 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
4586 raw_inode
->i_uid_high
= 0;
4587 raw_inode
->i_gid_high
= 0;
4589 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4591 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4592 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4593 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4594 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4596 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4598 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4599 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
4600 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
4601 cpu_to_le32(EXT4_OS_HURD
))
4602 raw_inode
->i_file_acl_high
=
4603 cpu_to_le16(ei
->i_file_acl
>> 32);
4604 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4605 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4606 if (ei
->i_disksize
> 0x7fffffffULL
) {
4607 struct super_block
*sb
= inode
->i_sb
;
4608 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4609 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4610 EXT4_SB(sb
)->s_es
->s_rev_level
==
4611 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4612 /* If this is the first large file
4613 * created, add a flag to the superblock.
4615 err
= ext4_journal_get_write_access(handle
,
4616 EXT4_SB(sb
)->s_sbh
);
4619 ext4_update_dynamic_rev(sb
);
4620 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4621 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4623 ext4_handle_sync(handle
);
4624 err
= ext4_handle_dirty_metadata(handle
, inode
,
4625 EXT4_SB(sb
)->s_sbh
);
4628 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4629 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4630 if (old_valid_dev(inode
->i_rdev
)) {
4631 raw_inode
->i_block
[0] =
4632 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4633 raw_inode
->i_block
[1] = 0;
4635 raw_inode
->i_block
[0] = 0;
4636 raw_inode
->i_block
[1] =
4637 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4638 raw_inode
->i_block
[2] = 0;
4641 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4642 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4644 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4645 if (ei
->i_extra_isize
) {
4646 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4647 raw_inode
->i_version_hi
=
4648 cpu_to_le32(inode
->i_version
>> 32);
4649 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4653 * If we're not using a journal and we were called from
4654 * ext4_write_inode() to sync the inode (making do_sync true),
4655 * we can just use sync_dirty_buffer() directly to do our dirty
4656 * work. Testing s_journal here is a bit redundant but it's
4657 * worth it to avoid potential future trouble.
4659 if (EXT4_SB(inode
->i_sb
)->s_journal
== NULL
&& do_sync
) {
4660 BUFFER_TRACE(bh
, "call sync_dirty_buffer");
4661 sync_dirty_buffer(bh
);
4663 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4664 rc
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4668 ei
->i_state
&= ~EXT4_STATE_NEW
;
4672 ext4_std_error(inode
->i_sb
, err
);
4677 * ext4_write_inode()
4679 * We are called from a few places:
4681 * - Within generic_file_write() for O_SYNC files.
4682 * Here, there will be no transaction running. We wait for any running
4683 * trasnaction to commit.
4685 * - Within sys_sync(), kupdate and such.
4686 * We wait on commit, if tol to.
4688 * - Within prune_icache() (PF_MEMALLOC == true)
4689 * Here we simply return. We can't afford to block kswapd on the
4692 * In all cases it is actually safe for us to return without doing anything,
4693 * because the inode has been copied into a raw inode buffer in
4694 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4697 * Note that we are absolutely dependent upon all inode dirtiers doing the
4698 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4699 * which we are interested.
4701 * It would be a bug for them to not do this. The code:
4703 * mark_inode_dirty(inode)
4705 * inode->i_size = expr;
4707 * is in error because a kswapd-driven write_inode() could occur while
4708 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4709 * will no longer be on the superblock's dirty inode list.
4711 int ext4_write_inode(struct inode
*inode
, int wait
)
4715 if (current
->flags
& PF_MEMALLOC
)
4718 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4719 if (ext4_journal_current_handle()) {
4720 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4728 err
= ext4_force_commit(inode
->i_sb
);
4730 struct ext4_iloc iloc
;
4732 err
= ext4_get_inode_loc(inode
, &iloc
);
4735 err
= ext4_do_update_inode(EXT4_NOJOURNAL_HANDLE
,
4736 inode
, &iloc
, wait
);
4744 * Called from notify_change.
4746 * We want to trap VFS attempts to truncate the file as soon as
4747 * possible. In particular, we want to make sure that when the VFS
4748 * shrinks i_size, we put the inode on the orphan list and modify
4749 * i_disksize immediately, so that during the subsequent flushing of
4750 * dirty pages and freeing of disk blocks, we can guarantee that any
4751 * commit will leave the blocks being flushed in an unused state on
4752 * disk. (On recovery, the inode will get truncated and the blocks will
4753 * be freed, so we have a strong guarantee that no future commit will
4754 * leave these blocks visible to the user.)
4756 * Another thing we have to assure is that if we are in ordered mode
4757 * and inode is still attached to the committing transaction, we must
4758 * we start writeout of all the dirty pages which are being truncated.
4759 * This way we are sure that all the data written in the previous
4760 * transaction are already on disk (truncate waits for pages under
4763 * Called with inode->i_mutex down.
4765 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4767 struct inode
*inode
= dentry
->d_inode
;
4769 const unsigned int ia_valid
= attr
->ia_valid
;
4771 error
= inode_change_ok(inode
, attr
);
4775 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
4776 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
4779 /* (user+group)*(old+new) structure, inode write (sb,
4780 * inode block, ? - but truncate inode update has it) */
4781 handle
= ext4_journal_start(inode
, 2*(EXT4_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
4782 EXT4_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
4783 if (IS_ERR(handle
)) {
4784 error
= PTR_ERR(handle
);
4787 error
= vfs_dq_transfer(inode
, attr
) ? -EDQUOT
: 0;
4789 ext4_journal_stop(handle
);
4792 /* Update corresponding info in inode so that everything is in
4793 * one transaction */
4794 if (attr
->ia_valid
& ATTR_UID
)
4795 inode
->i_uid
= attr
->ia_uid
;
4796 if (attr
->ia_valid
& ATTR_GID
)
4797 inode
->i_gid
= attr
->ia_gid
;
4798 error
= ext4_mark_inode_dirty(handle
, inode
);
4799 ext4_journal_stop(handle
);
4802 if (attr
->ia_valid
& ATTR_SIZE
) {
4803 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
4804 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4806 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
4813 if (S_ISREG(inode
->i_mode
) &&
4814 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
4817 handle
= ext4_journal_start(inode
, 3);
4818 if (IS_ERR(handle
)) {
4819 error
= PTR_ERR(handle
);
4823 error
= ext4_orphan_add(handle
, inode
);
4824 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4825 rc
= ext4_mark_inode_dirty(handle
, inode
);
4828 ext4_journal_stop(handle
);
4830 if (ext4_should_order_data(inode
)) {
4831 error
= ext4_begin_ordered_truncate(inode
,
4834 /* Do as much error cleanup as possible */
4835 handle
= ext4_journal_start(inode
, 3);
4836 if (IS_ERR(handle
)) {
4837 ext4_orphan_del(NULL
, inode
);
4840 ext4_orphan_del(handle
, inode
);
4841 ext4_journal_stop(handle
);
4847 rc
= inode_setattr(inode
, attr
);
4849 /* If inode_setattr's call to ext4_truncate failed to get a
4850 * transaction handle at all, we need to clean up the in-core
4851 * orphan list manually. */
4853 ext4_orphan_del(NULL
, inode
);
4855 if (!rc
&& (ia_valid
& ATTR_MODE
))
4856 rc
= ext4_acl_chmod(inode
);
4859 ext4_std_error(inode
->i_sb
, error
);
4865 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4868 struct inode
*inode
;
4869 unsigned long delalloc_blocks
;
4871 inode
= dentry
->d_inode
;
4872 generic_fillattr(inode
, stat
);
4875 * We can't update i_blocks if the block allocation is delayed
4876 * otherwise in the case of system crash before the real block
4877 * allocation is done, we will have i_blocks inconsistent with
4878 * on-disk file blocks.
4879 * We always keep i_blocks updated together with real
4880 * allocation. But to not confuse with user, stat
4881 * will return the blocks that include the delayed allocation
4882 * blocks for this file.
4884 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
4885 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
4886 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
4888 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
4892 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
4897 /* if nrblocks are contiguous */
4900 * With N contiguous data blocks, it need at most
4901 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4902 * 2 dindirect blocks
4905 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4906 return indirects
+ 3;
4909 * if nrblocks are not contiguous, worse case, each block touch
4910 * a indirect block, and each indirect block touch a double indirect
4911 * block, plus a triple indirect block
4913 indirects
= nrblocks
* 2 + 1;
4917 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4919 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
4920 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
4921 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
4925 * Account for index blocks, block groups bitmaps and block group
4926 * descriptor blocks if modify datablocks and index blocks
4927 * worse case, the indexs blocks spread over different block groups
4929 * If datablocks are discontiguous, they are possible to spread over
4930 * different block groups too. If they are contiugous, with flexbg,
4931 * they could still across block group boundary.
4933 * Also account for superblock, inode, quota and xattr blocks
4935 int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4937 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4943 * How many index blocks need to touch to modify nrblocks?
4944 * The "Chunk" flag indicating whether the nrblocks is
4945 * physically contiguous on disk
4947 * For Direct IO and fallocate, they calls get_block to allocate
4948 * one single extent at a time, so they could set the "Chunk" flag
4950 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4955 * Now let's see how many group bitmaps and group descriptors need
4965 if (groups
> ngroups
)
4967 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4968 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4970 /* bitmaps and block group descriptor blocks */
4971 ret
+= groups
+ gdpblocks
;
4973 /* Blocks for super block, inode, quota and xattr blocks */
4974 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4980 * Calulate the total number of credits to reserve to fit
4981 * the modification of a single pages into a single transaction,
4982 * which may include multiple chunks of block allocations.
4984 * This could be called via ext4_write_begin()
4986 * We need to consider the worse case, when
4987 * one new block per extent.
4989 int ext4_writepage_trans_blocks(struct inode
*inode
)
4991 int bpp
= ext4_journal_blocks_per_page(inode
);
4994 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4996 /* Account for data blocks for journalled mode */
4997 if (ext4_should_journal_data(inode
))
5003 * Calculate the journal credits for a chunk of data modification.
5005 * This is called from DIO, fallocate or whoever calling
5006 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5008 * journal buffers for data blocks are not included here, as DIO
5009 * and fallocate do no need to journal data buffers.
5011 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5013 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5017 * The caller must have previously called ext4_reserve_inode_write().
5018 * Give this, we know that the caller already has write access to iloc->bh.
5020 int ext4_mark_iloc_dirty(handle_t
*handle
,
5021 struct inode
*inode
, struct ext4_iloc
*iloc
)
5025 if (test_opt(inode
->i_sb
, I_VERSION
))
5026 inode_inc_iversion(inode
);
5028 /* the do_update_inode consumes one bh->b_count */
5031 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5032 err
= ext4_do_update_inode(handle
, inode
, iloc
, 0);
5038 * On success, We end up with an outstanding reference count against
5039 * iloc->bh. This _must_ be cleaned up later.
5043 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5044 struct ext4_iloc
*iloc
)
5048 err
= ext4_get_inode_loc(inode
, iloc
);
5050 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5051 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5057 ext4_std_error(inode
->i_sb
, err
);
5062 * Expand an inode by new_extra_isize bytes.
5063 * Returns 0 on success or negative error number on failure.
5065 static int ext4_expand_extra_isize(struct inode
*inode
,
5066 unsigned int new_extra_isize
,
5067 struct ext4_iloc iloc
,
5070 struct ext4_inode
*raw_inode
;
5071 struct ext4_xattr_ibody_header
*header
;
5072 struct ext4_xattr_entry
*entry
;
5074 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5077 raw_inode
= ext4_raw_inode(&iloc
);
5079 header
= IHDR(inode
, raw_inode
);
5080 entry
= IFIRST(header
);
5082 /* No extended attributes present */
5083 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
5084 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5085 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5087 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5091 /* try to expand with EAs present */
5092 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5097 * What we do here is to mark the in-core inode as clean with respect to inode
5098 * dirtiness (it may still be data-dirty).
5099 * This means that the in-core inode may be reaped by prune_icache
5100 * without having to perform any I/O. This is a very good thing,
5101 * because *any* task may call prune_icache - even ones which
5102 * have a transaction open against a different journal.
5104 * Is this cheating? Not really. Sure, we haven't written the
5105 * inode out, but prune_icache isn't a user-visible syncing function.
5106 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5107 * we start and wait on commits.
5109 * Is this efficient/effective? Well, we're being nice to the system
5110 * by cleaning up our inodes proactively so they can be reaped
5111 * without I/O. But we are potentially leaving up to five seconds'
5112 * worth of inodes floating about which prune_icache wants us to
5113 * write out. One way to fix that would be to get prune_icache()
5114 * to do a write_super() to free up some memory. It has the desired
5117 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5119 struct ext4_iloc iloc
;
5120 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5121 static unsigned int mnt_count
;
5125 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5126 if (ext4_handle_valid(handle
) &&
5127 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5128 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
5130 * We need extra buffer credits since we may write into EA block
5131 * with this same handle. If journal_extend fails, then it will
5132 * only result in a minor loss of functionality for that inode.
5133 * If this is felt to be critical, then e2fsck should be run to
5134 * force a large enough s_min_extra_isize.
5136 if ((jbd2_journal_extend(handle
,
5137 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5138 ret
= ext4_expand_extra_isize(inode
,
5139 sbi
->s_want_extra_isize
,
5142 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
5144 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5145 ext4_warning(inode
->i_sb
, __func__
,
5146 "Unable to expand inode %lu. Delete"
5147 " some EAs or run e2fsck.",
5150 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5156 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5161 * ext4_dirty_inode() is called from __mark_inode_dirty()
5163 * We're really interested in the case where a file is being extended.
5164 * i_size has been changed by generic_commit_write() and we thus need
5165 * to include the updated inode in the current transaction.
5167 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5168 * are allocated to the file.
5170 * If the inode is marked synchronous, we don't honour that here - doing
5171 * so would cause a commit on atime updates, which we don't bother doing.
5172 * We handle synchronous inodes at the highest possible level.
5174 void ext4_dirty_inode(struct inode
*inode
)
5176 handle_t
*current_handle
= ext4_journal_current_handle();
5179 if (!ext4_handle_valid(current_handle
)) {
5180 ext4_mark_inode_dirty(current_handle
, inode
);
5184 handle
= ext4_journal_start(inode
, 2);
5187 if (current_handle
&&
5188 current_handle
->h_transaction
!= handle
->h_transaction
) {
5189 /* This task has a transaction open against a different fs */
5190 printk(KERN_EMERG
"%s: transactions do not match!\n",
5193 jbd_debug(5, "marking dirty. outer handle=%p\n",
5195 ext4_mark_inode_dirty(handle
, inode
);
5197 ext4_journal_stop(handle
);
5204 * Bind an inode's backing buffer_head into this transaction, to prevent
5205 * it from being flushed to disk early. Unlike
5206 * ext4_reserve_inode_write, this leaves behind no bh reference and
5207 * returns no iloc structure, so the caller needs to repeat the iloc
5208 * lookup to mark the inode dirty later.
5210 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5212 struct ext4_iloc iloc
;
5216 err
= ext4_get_inode_loc(inode
, &iloc
);
5218 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5219 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5221 err
= ext4_handle_dirty_metadata(handle
,
5227 ext4_std_error(inode
->i_sb
, err
);
5232 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5239 * We have to be very careful here: changing a data block's
5240 * journaling status dynamically is dangerous. If we write a
5241 * data block to the journal, change the status and then delete
5242 * that block, we risk forgetting to revoke the old log record
5243 * from the journal and so a subsequent replay can corrupt data.
5244 * So, first we make sure that the journal is empty and that
5245 * nobody is changing anything.
5248 journal
= EXT4_JOURNAL(inode
);
5251 if (is_journal_aborted(journal
))
5254 jbd2_journal_lock_updates(journal
);
5255 jbd2_journal_flush(journal
);
5258 * OK, there are no updates running now, and all cached data is
5259 * synced to disk. We are now in a completely consistent state
5260 * which doesn't have anything in the journal, and we know that
5261 * no filesystem updates are running, so it is safe to modify
5262 * the inode's in-core data-journaling state flag now.
5266 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
5268 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
5269 ext4_set_aops(inode
);
5271 jbd2_journal_unlock_updates(journal
);
5273 /* Finally we can mark the inode as dirty. */
5275 handle
= ext4_journal_start(inode
, 1);
5277 return PTR_ERR(handle
);
5279 err
= ext4_mark_inode_dirty(handle
, inode
);
5280 ext4_handle_sync(handle
);
5281 ext4_journal_stop(handle
);
5282 ext4_std_error(inode
->i_sb
, err
);
5287 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5289 return !buffer_mapped(bh
);
5292 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5294 struct page
*page
= vmf
->page
;
5299 struct file
*file
= vma
->vm_file
;
5300 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5301 struct address_space
*mapping
= inode
->i_mapping
;
5304 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5305 * get i_mutex because we are already holding mmap_sem.
5307 down_read(&inode
->i_alloc_sem
);
5308 size
= i_size_read(inode
);
5309 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5310 || !PageUptodate(page
)) {
5311 /* page got truncated from under us? */
5315 if (PageMappedToDisk(page
))
5318 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5319 len
= size
& ~PAGE_CACHE_MASK
;
5321 len
= PAGE_CACHE_SIZE
;
5325 * return if we have all the buffers mapped. This avoid
5326 * the need to call write_begin/write_end which does a
5327 * journal_start/journal_stop which can block and take
5330 if (page_has_buffers(page
)) {
5331 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5332 ext4_bh_unmapped
)) {
5339 * OK, we need to fill the hole... Do write_begin write_end
5340 * to do block allocation/reservation.We are not holding
5341 * inode.i__mutex here. That allow * parallel write_begin,
5342 * write_end call. lock_page prevent this from happening
5343 * on the same page though
5345 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5346 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5349 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5350 len
, len
, page
, fsdata
);
5356 ret
= VM_FAULT_SIGBUS
;
5357 up_read(&inode
->i_alloc_sem
);