xhci: Clear stopped_td when Stop Endpoint command completes.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / host / xhci-ring.c
blobba551239d28b849025f74edcac3b28272288ffae
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
82 unsigned long segment_offset;
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return (le32_to_cpu(trb->link.control) & TRB_TYPE_BITMASK)
117 == TRB_TYPE(TRB_LINK);
120 static int enqueue_is_link_trb(struct xhci_ring *ring)
122 struct xhci_link_trb *link = &ring->enqueue->link;
123 return ((le32_to_cpu(link->control) & TRB_TYPE_BITMASK) ==
124 TRB_TYPE(TRB_LINK));
127 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
128 * TRB is in a new segment. This does not skip over link TRBs, and it does not
129 * effect the ring dequeue or enqueue pointers.
131 static void next_trb(struct xhci_hcd *xhci,
132 struct xhci_ring *ring,
133 struct xhci_segment **seg,
134 union xhci_trb **trb)
136 if (last_trb(xhci, ring, *seg, *trb)) {
137 *seg = (*seg)->next;
138 *trb = ((*seg)->trbs);
139 } else {
140 (*trb)++;
145 * See Cycle bit rules. SW is the consumer for the event ring only.
146 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
148 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
150 union xhci_trb *next = ++(ring->dequeue);
151 unsigned long long addr;
153 ring->deq_updates++;
154 /* Update the dequeue pointer further if that was a link TRB or we're at
155 * the end of an event ring segment (which doesn't have link TRBS)
157 while (last_trb(xhci, ring, ring->deq_seg, next)) {
158 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
159 ring->cycle_state = (ring->cycle_state ? 0 : 1);
160 if (!in_interrupt())
161 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
162 ring,
163 (unsigned int) ring->cycle_state);
165 ring->deq_seg = ring->deq_seg->next;
166 ring->dequeue = ring->deq_seg->trbs;
167 next = ring->dequeue;
169 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
170 if (ring == xhci->event_ring)
171 xhci_dbg(xhci, "Event ring deq = 0x%llx (DMA)\n", addr);
172 else if (ring == xhci->cmd_ring)
173 xhci_dbg(xhci, "Command ring deq = 0x%llx (DMA)\n", addr);
174 else
175 xhci_dbg(xhci, "Ring deq = 0x%llx (DMA)\n", addr);
179 * See Cycle bit rules. SW is the consumer for the event ring only.
180 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
182 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
183 * chain bit is set), then set the chain bit in all the following link TRBs.
184 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
185 * have their chain bit cleared (so that each Link TRB is a separate TD).
187 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
188 * set, but other sections talk about dealing with the chain bit set. This was
189 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
190 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
192 * @more_trbs_coming: Will you enqueue more TRBs before calling
193 * prepare_transfer()?
195 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
196 bool consumer, bool more_trbs_coming)
198 u32 chain;
199 union xhci_trb *next;
200 unsigned long long addr;
202 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
203 next = ++(ring->enqueue);
205 ring->enq_updates++;
206 /* Update the dequeue pointer further if that was a link TRB or we're at
207 * the end of an event ring segment (which doesn't have link TRBS)
209 while (last_trb(xhci, ring, ring->enq_seg, next)) {
210 if (!consumer) {
211 if (ring != xhci->event_ring) {
213 * If the caller doesn't plan on enqueueing more
214 * TDs before ringing the doorbell, then we
215 * don't want to give the link TRB to the
216 * hardware just yet. We'll give the link TRB
217 * back in prepare_ring() just before we enqueue
218 * the TD at the top of the ring.
220 if (!chain && !more_trbs_coming)
221 break;
223 /* If we're not dealing with 0.95 hardware,
224 * carry over the chain bit of the previous TRB
225 * (which may mean the chain bit is cleared).
227 if (!xhci_link_trb_quirk(xhci)) {
228 next->link.control &=
229 cpu_to_le32(~TRB_CHAIN);
230 next->link.control |=
231 cpu_to_le32(chain);
233 /* Give this link TRB to the hardware */
234 wmb();
235 next->link.control ^= cpu_to_le32(TRB_CYCLE);
237 /* Toggle the cycle bit after the last ring segment. */
238 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
239 ring->cycle_state = (ring->cycle_state ? 0 : 1);
240 if (!in_interrupt())
241 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
242 ring,
243 (unsigned int) ring->cycle_state);
246 ring->enq_seg = ring->enq_seg->next;
247 ring->enqueue = ring->enq_seg->trbs;
248 next = ring->enqueue;
250 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
251 if (ring == xhci->event_ring)
252 xhci_dbg(xhci, "Event ring enq = 0x%llx (DMA)\n", addr);
253 else if (ring == xhci->cmd_ring)
254 xhci_dbg(xhci, "Command ring enq = 0x%llx (DMA)\n", addr);
255 else
256 xhci_dbg(xhci, "Ring enq = 0x%llx (DMA)\n", addr);
260 * Check to see if there's room to enqueue num_trbs on the ring. See rules
261 * above.
262 * FIXME: this would be simpler and faster if we just kept track of the number
263 * of free TRBs in a ring.
265 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
266 unsigned int num_trbs)
268 int i;
269 union xhci_trb *enq = ring->enqueue;
270 struct xhci_segment *enq_seg = ring->enq_seg;
271 struct xhci_segment *cur_seg;
272 unsigned int left_on_ring;
274 /* If we are currently pointing to a link TRB, advance the
275 * enqueue pointer before checking for space */
276 while (last_trb(xhci, ring, enq_seg, enq)) {
277 enq_seg = enq_seg->next;
278 enq = enq_seg->trbs;
281 /* Check if ring is empty */
282 if (enq == ring->dequeue) {
283 /* Can't use link trbs */
284 left_on_ring = TRBS_PER_SEGMENT - 1;
285 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
286 cur_seg = cur_seg->next)
287 left_on_ring += TRBS_PER_SEGMENT - 1;
289 /* Always need one TRB free in the ring. */
290 left_on_ring -= 1;
291 if (num_trbs > left_on_ring) {
292 xhci_warn(xhci, "Not enough room on ring; "
293 "need %u TRBs, %u TRBs left\n",
294 num_trbs, left_on_ring);
295 return 0;
297 return 1;
299 /* Make sure there's an extra empty TRB available */
300 for (i = 0; i <= num_trbs; ++i) {
301 if (enq == ring->dequeue)
302 return 0;
303 enq++;
304 while (last_trb(xhci, ring, enq_seg, enq)) {
305 enq_seg = enq_seg->next;
306 enq = enq_seg->trbs;
309 return 1;
312 /* Ring the host controller doorbell after placing a command on the ring */
313 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
315 xhci_dbg(xhci, "// Ding dong!\n");
316 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
317 /* Flush PCI posted writes */
318 xhci_readl(xhci, &xhci->dba->doorbell[0]);
321 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
322 unsigned int slot_id,
323 unsigned int ep_index,
324 unsigned int stream_id)
326 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
327 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
328 unsigned int ep_state = ep->ep_state;
330 /* Don't ring the doorbell for this endpoint if there are pending
331 * cancellations because we don't want to interrupt processing.
332 * We don't want to restart any stream rings if there's a set dequeue
333 * pointer command pending because the device can choose to start any
334 * stream once the endpoint is on the HW schedule.
335 * FIXME - check all the stream rings for pending cancellations.
337 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
338 (ep_state & EP_HALTED))
339 return;
340 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
341 /* The CPU has better things to do at this point than wait for a
342 * write-posting flush. It'll get there soon enough.
346 /* Ring the doorbell for any rings with pending URBs */
347 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
348 unsigned int slot_id,
349 unsigned int ep_index)
351 unsigned int stream_id;
352 struct xhci_virt_ep *ep;
354 ep = &xhci->devs[slot_id]->eps[ep_index];
356 /* A ring has pending URBs if its TD list is not empty */
357 if (!(ep->ep_state & EP_HAS_STREAMS)) {
358 if (!(list_empty(&ep->ring->td_list)))
359 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
360 return;
363 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
364 stream_id++) {
365 struct xhci_stream_info *stream_info = ep->stream_info;
366 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
367 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
368 stream_id);
373 * Find the segment that trb is in. Start searching in start_seg.
374 * If we must move past a segment that has a link TRB with a toggle cycle state
375 * bit set, then we will toggle the value pointed at by cycle_state.
377 static struct xhci_segment *find_trb_seg(
378 struct xhci_segment *start_seg,
379 union xhci_trb *trb, int *cycle_state)
381 struct xhci_segment *cur_seg = start_seg;
382 struct xhci_generic_trb *generic_trb;
384 while (cur_seg->trbs > trb ||
385 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
386 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
387 if (le32_to_cpu(generic_trb->field[3]) & LINK_TOGGLE)
388 *cycle_state ^= 0x1;
389 cur_seg = cur_seg->next;
390 if (cur_seg == start_seg)
391 /* Looped over the entire list. Oops! */
392 return NULL;
394 return cur_seg;
398 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
399 unsigned int slot_id, unsigned int ep_index,
400 unsigned int stream_id)
402 struct xhci_virt_ep *ep;
404 ep = &xhci->devs[slot_id]->eps[ep_index];
405 /* Common case: no streams */
406 if (!(ep->ep_state & EP_HAS_STREAMS))
407 return ep->ring;
409 if (stream_id == 0) {
410 xhci_warn(xhci,
411 "WARN: Slot ID %u, ep index %u has streams, "
412 "but URB has no stream ID.\n",
413 slot_id, ep_index);
414 return NULL;
417 if (stream_id < ep->stream_info->num_streams)
418 return ep->stream_info->stream_rings[stream_id];
420 xhci_warn(xhci,
421 "WARN: Slot ID %u, ep index %u has "
422 "stream IDs 1 to %u allocated, "
423 "but stream ID %u is requested.\n",
424 slot_id, ep_index,
425 ep->stream_info->num_streams - 1,
426 stream_id);
427 return NULL;
430 /* Get the right ring for the given URB.
431 * If the endpoint supports streams, boundary check the URB's stream ID.
432 * If the endpoint doesn't support streams, return the singular endpoint ring.
434 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
435 struct urb *urb)
437 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
438 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
442 * Move the xHC's endpoint ring dequeue pointer past cur_td.
443 * Record the new state of the xHC's endpoint ring dequeue segment,
444 * dequeue pointer, and new consumer cycle state in state.
445 * Update our internal representation of the ring's dequeue pointer.
447 * We do this in three jumps:
448 * - First we update our new ring state to be the same as when the xHC stopped.
449 * - Then we traverse the ring to find the segment that contains
450 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
451 * any link TRBs with the toggle cycle bit set.
452 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
453 * if we've moved it past a link TRB with the toggle cycle bit set.
455 * Some of the uses of xhci_generic_trb are grotty, but if they're done
456 * with correct __le32 accesses they should work fine. Only users of this are
457 * in here.
459 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
460 unsigned int slot_id, unsigned int ep_index,
461 unsigned int stream_id, struct xhci_td *cur_td,
462 struct xhci_dequeue_state *state)
464 struct xhci_virt_device *dev = xhci->devs[slot_id];
465 struct xhci_ring *ep_ring;
466 struct xhci_generic_trb *trb;
467 struct xhci_ep_ctx *ep_ctx;
468 dma_addr_t addr;
470 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
471 ep_index, stream_id);
472 if (!ep_ring) {
473 xhci_warn(xhci, "WARN can't find new dequeue state "
474 "for invalid stream ID %u.\n",
475 stream_id);
476 return;
478 state->new_cycle_state = 0;
479 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
480 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
481 dev->eps[ep_index].stopped_trb,
482 &state->new_cycle_state);
483 if (!state->new_deq_seg) {
484 WARN_ON(1);
485 return;
488 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
489 xhci_dbg(xhci, "Finding endpoint context\n");
490 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
491 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
493 state->new_deq_ptr = cur_td->last_trb;
494 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
495 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
496 state->new_deq_ptr,
497 &state->new_cycle_state);
498 if (!state->new_deq_seg) {
499 WARN_ON(1);
500 return;
503 trb = &state->new_deq_ptr->generic;
504 if ((le32_to_cpu(trb->field[3]) & TRB_TYPE_BITMASK) ==
505 TRB_TYPE(TRB_LINK) && (le32_to_cpu(trb->field[3]) & LINK_TOGGLE))
506 state->new_cycle_state ^= 0x1;
507 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
510 * If there is only one segment in a ring, find_trb_seg()'s while loop
511 * will not run, and it will return before it has a chance to see if it
512 * needs to toggle the cycle bit. It can't tell if the stalled transfer
513 * ended just before the link TRB on a one-segment ring, or if the TD
514 * wrapped around the top of the ring, because it doesn't have the TD in
515 * question. Look for the one-segment case where stalled TRB's address
516 * is greater than the new dequeue pointer address.
518 if (ep_ring->first_seg == ep_ring->first_seg->next &&
519 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
520 state->new_cycle_state ^= 0x1;
521 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
523 /* Don't update the ring cycle state for the producer (us). */
524 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
525 state->new_deq_seg);
526 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
527 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
528 (unsigned long long) addr);
531 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
532 struct xhci_td *cur_td)
534 struct xhci_segment *cur_seg;
535 union xhci_trb *cur_trb;
537 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
538 true;
539 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
540 if ((le32_to_cpu(cur_trb->generic.field[3]) & TRB_TYPE_BITMASK)
541 == TRB_TYPE(TRB_LINK)) {
542 /* Unchain any chained Link TRBs, but
543 * leave the pointers intact.
545 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
546 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
547 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
548 "in seg %p (0x%llx dma)\n",
549 cur_trb,
550 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
551 cur_seg,
552 (unsigned long long)cur_seg->dma);
553 } else {
554 cur_trb->generic.field[0] = 0;
555 cur_trb->generic.field[1] = 0;
556 cur_trb->generic.field[2] = 0;
557 /* Preserve only the cycle bit of this TRB */
558 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
559 cur_trb->generic.field[3] |= cpu_to_le32(
560 TRB_TYPE(TRB_TR_NOOP));
561 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
562 "in seg %p (0x%llx dma)\n",
563 cur_trb,
564 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
565 cur_seg,
566 (unsigned long long)cur_seg->dma);
568 if (cur_trb == cur_td->last_trb)
569 break;
573 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
574 unsigned int ep_index, unsigned int stream_id,
575 struct xhci_segment *deq_seg,
576 union xhci_trb *deq_ptr, u32 cycle_state);
578 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
579 unsigned int slot_id, unsigned int ep_index,
580 unsigned int stream_id,
581 struct xhci_dequeue_state *deq_state)
583 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
585 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
586 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
587 deq_state->new_deq_seg,
588 (unsigned long long)deq_state->new_deq_seg->dma,
589 deq_state->new_deq_ptr,
590 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
591 deq_state->new_cycle_state);
592 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
593 deq_state->new_deq_seg,
594 deq_state->new_deq_ptr,
595 (u32) deq_state->new_cycle_state);
596 /* Stop the TD queueing code from ringing the doorbell until
597 * this command completes. The HC won't set the dequeue pointer
598 * if the ring is running, and ringing the doorbell starts the
599 * ring running.
601 ep->ep_state |= SET_DEQ_PENDING;
604 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
605 struct xhci_virt_ep *ep)
607 ep->ep_state &= ~EP_HALT_PENDING;
608 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
609 * timer is running on another CPU, we don't decrement stop_cmds_pending
610 * (since we didn't successfully stop the watchdog timer).
612 if (del_timer(&ep->stop_cmd_timer))
613 ep->stop_cmds_pending--;
616 /* Must be called with xhci->lock held in interrupt context */
617 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
618 struct xhci_td *cur_td, int status, char *adjective)
620 struct usb_hcd *hcd;
621 struct urb *urb;
622 struct urb_priv *urb_priv;
624 urb = cur_td->urb;
625 urb_priv = urb->hcpriv;
626 urb_priv->td_cnt++;
627 hcd = bus_to_hcd(urb->dev->bus);
629 /* Only giveback urb when this is the last td in urb */
630 if (urb_priv->td_cnt == urb_priv->length) {
631 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
632 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
633 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
634 if (xhci->quirks & XHCI_AMD_PLL_FIX)
635 usb_amd_quirk_pll_enable();
638 usb_hcd_unlink_urb_from_ep(hcd, urb);
639 xhci_dbg(xhci, "Giveback %s URB %p\n", adjective, urb);
641 spin_unlock(&xhci->lock);
642 usb_hcd_giveback_urb(hcd, urb, status);
643 xhci_urb_free_priv(xhci, urb_priv);
644 spin_lock(&xhci->lock);
645 xhci_dbg(xhci, "%s URB given back\n", adjective);
650 * When we get a command completion for a Stop Endpoint Command, we need to
651 * unlink any cancelled TDs from the ring. There are two ways to do that:
653 * 1. If the HW was in the middle of processing the TD that needs to be
654 * cancelled, then we must move the ring's dequeue pointer past the last TRB
655 * in the TD with a Set Dequeue Pointer Command.
656 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
657 * bit cleared) so that the HW will skip over them.
659 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
660 union xhci_trb *trb, struct xhci_event_cmd *event)
662 unsigned int slot_id;
663 unsigned int ep_index;
664 struct xhci_virt_device *virt_dev;
665 struct xhci_ring *ep_ring;
666 struct xhci_virt_ep *ep;
667 struct list_head *entry;
668 struct xhci_td *cur_td = NULL;
669 struct xhci_td *last_unlinked_td;
671 struct xhci_dequeue_state deq_state;
673 if (unlikely(TRB_TO_SUSPEND_PORT(
674 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
675 slot_id = TRB_TO_SLOT_ID(
676 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
677 virt_dev = xhci->devs[slot_id];
678 if (virt_dev)
679 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
680 event);
681 else
682 xhci_warn(xhci, "Stop endpoint command "
683 "completion for disabled slot %u\n",
684 slot_id);
685 return;
688 memset(&deq_state, 0, sizeof(deq_state));
689 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
690 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
691 ep = &xhci->devs[slot_id]->eps[ep_index];
693 if (list_empty(&ep->cancelled_td_list)) {
694 xhci_stop_watchdog_timer_in_irq(xhci, ep);
695 ep->stopped_td = NULL;
696 ep->stopped_trb = NULL;
697 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
698 return;
701 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
702 * We have the xHCI lock, so nothing can modify this list until we drop
703 * it. We're also in the event handler, so we can't get re-interrupted
704 * if another Stop Endpoint command completes
706 list_for_each(entry, &ep->cancelled_td_list) {
707 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
708 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
709 cur_td->first_trb,
710 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
711 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
712 if (!ep_ring) {
713 /* This shouldn't happen unless a driver is mucking
714 * with the stream ID after submission. This will
715 * leave the TD on the hardware ring, and the hardware
716 * will try to execute it, and may access a buffer
717 * that has already been freed. In the best case, the
718 * hardware will execute it, and the event handler will
719 * ignore the completion event for that TD, since it was
720 * removed from the td_list for that endpoint. In
721 * short, don't muck with the stream ID after
722 * submission.
724 xhci_warn(xhci, "WARN Cancelled URB %p "
725 "has invalid stream ID %u.\n",
726 cur_td->urb,
727 cur_td->urb->stream_id);
728 goto remove_finished_td;
731 * If we stopped on the TD we need to cancel, then we have to
732 * move the xHC endpoint ring dequeue pointer past this TD.
734 if (cur_td == ep->stopped_td)
735 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
736 cur_td->urb->stream_id,
737 cur_td, &deq_state);
738 else
739 td_to_noop(xhci, ep_ring, cur_td);
740 remove_finished_td:
742 * The event handler won't see a completion for this TD anymore,
743 * so remove it from the endpoint ring's TD list. Keep it in
744 * the cancelled TD list for URB completion later.
746 list_del(&cur_td->td_list);
748 last_unlinked_td = cur_td;
749 xhci_stop_watchdog_timer_in_irq(xhci, ep);
751 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
752 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
753 xhci_queue_new_dequeue_state(xhci,
754 slot_id, ep_index,
755 ep->stopped_td->urb->stream_id,
756 &deq_state);
757 xhci_ring_cmd_db(xhci);
758 } else {
759 /* Otherwise ring the doorbell(s) to restart queued transfers */
760 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
762 ep->stopped_td = NULL;
763 ep->stopped_trb = NULL;
766 * Drop the lock and complete the URBs in the cancelled TD list.
767 * New TDs to be cancelled might be added to the end of the list before
768 * we can complete all the URBs for the TDs we already unlinked.
769 * So stop when we've completed the URB for the last TD we unlinked.
771 do {
772 cur_td = list_entry(ep->cancelled_td_list.next,
773 struct xhci_td, cancelled_td_list);
774 list_del(&cur_td->cancelled_td_list);
776 /* Clean up the cancelled URB */
777 /* Doesn't matter what we pass for status, since the core will
778 * just overwrite it (because the URB has been unlinked).
780 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
782 /* Stop processing the cancelled list if the watchdog timer is
783 * running.
785 if (xhci->xhc_state & XHCI_STATE_DYING)
786 return;
787 } while (cur_td != last_unlinked_td);
789 /* Return to the event handler with xhci->lock re-acquired */
792 /* Watchdog timer function for when a stop endpoint command fails to complete.
793 * In this case, we assume the host controller is broken or dying or dead. The
794 * host may still be completing some other events, so we have to be careful to
795 * let the event ring handler and the URB dequeueing/enqueueing functions know
796 * through xhci->state.
798 * The timer may also fire if the host takes a very long time to respond to the
799 * command, and the stop endpoint command completion handler cannot delete the
800 * timer before the timer function is called. Another endpoint cancellation may
801 * sneak in before the timer function can grab the lock, and that may queue
802 * another stop endpoint command and add the timer back. So we cannot use a
803 * simple flag to say whether there is a pending stop endpoint command for a
804 * particular endpoint.
806 * Instead we use a combination of that flag and a counter for the number of
807 * pending stop endpoint commands. If the timer is the tail end of the last
808 * stop endpoint command, and the endpoint's command is still pending, we assume
809 * the host is dying.
811 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
813 struct xhci_hcd *xhci;
814 struct xhci_virt_ep *ep;
815 struct xhci_virt_ep *temp_ep;
816 struct xhci_ring *ring;
817 struct xhci_td *cur_td;
818 int ret, i, j;
820 ep = (struct xhci_virt_ep *) arg;
821 xhci = ep->xhci;
823 spin_lock(&xhci->lock);
825 ep->stop_cmds_pending--;
826 if (xhci->xhc_state & XHCI_STATE_DYING) {
827 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
828 "xHCI as DYING, exiting.\n");
829 spin_unlock(&xhci->lock);
830 return;
832 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
833 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
834 "exiting.\n");
835 spin_unlock(&xhci->lock);
836 return;
839 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
840 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
841 /* Oops, HC is dead or dying or at least not responding to the stop
842 * endpoint command.
844 xhci->xhc_state |= XHCI_STATE_DYING;
845 /* Disable interrupts from the host controller and start halting it */
846 xhci_quiesce(xhci);
847 spin_unlock(&xhci->lock);
849 ret = xhci_halt(xhci);
851 spin_lock(&xhci->lock);
852 if (ret < 0) {
853 /* This is bad; the host is not responding to commands and it's
854 * not allowing itself to be halted. At least interrupts are
855 * disabled. If we call usb_hc_died(), it will attempt to
856 * disconnect all device drivers under this host. Those
857 * disconnect() methods will wait for all URBs to be unlinked,
858 * so we must complete them.
860 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
861 xhci_warn(xhci, "Completing active URBs anyway.\n");
862 /* We could turn all TDs on the rings to no-ops. This won't
863 * help if the host has cached part of the ring, and is slow if
864 * we want to preserve the cycle bit. Skip it and hope the host
865 * doesn't touch the memory.
868 for (i = 0; i < MAX_HC_SLOTS; i++) {
869 if (!xhci->devs[i])
870 continue;
871 for (j = 0; j < 31; j++) {
872 temp_ep = &xhci->devs[i]->eps[j];
873 ring = temp_ep->ring;
874 if (!ring)
875 continue;
876 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
877 "ep index %u\n", i, j);
878 while (!list_empty(&ring->td_list)) {
879 cur_td = list_first_entry(&ring->td_list,
880 struct xhci_td,
881 td_list);
882 list_del(&cur_td->td_list);
883 if (!list_empty(&cur_td->cancelled_td_list))
884 list_del(&cur_td->cancelled_td_list);
885 xhci_giveback_urb_in_irq(xhci, cur_td,
886 -ESHUTDOWN, "killed");
888 while (!list_empty(&temp_ep->cancelled_td_list)) {
889 cur_td = list_first_entry(
890 &temp_ep->cancelled_td_list,
891 struct xhci_td,
892 cancelled_td_list);
893 list_del(&cur_td->cancelled_td_list);
894 xhci_giveback_urb_in_irq(xhci, cur_td,
895 -ESHUTDOWN, "killed");
899 spin_unlock(&xhci->lock);
900 xhci_dbg(xhci, "Calling usb_hc_died()\n");
901 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
902 xhci_dbg(xhci, "xHCI host controller is dead.\n");
906 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
907 * we need to clear the set deq pending flag in the endpoint ring state, so that
908 * the TD queueing code can ring the doorbell again. We also need to ring the
909 * endpoint doorbell to restart the ring, but only if there aren't more
910 * cancellations pending.
912 static void handle_set_deq_completion(struct xhci_hcd *xhci,
913 struct xhci_event_cmd *event,
914 union xhci_trb *trb)
916 unsigned int slot_id;
917 unsigned int ep_index;
918 unsigned int stream_id;
919 struct xhci_ring *ep_ring;
920 struct xhci_virt_device *dev;
921 struct xhci_ep_ctx *ep_ctx;
922 struct xhci_slot_ctx *slot_ctx;
924 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
925 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
926 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
927 dev = xhci->devs[slot_id];
929 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
930 if (!ep_ring) {
931 xhci_warn(xhci, "WARN Set TR deq ptr command for "
932 "freed stream ID %u\n",
933 stream_id);
934 /* XXX: Harmless??? */
935 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
936 return;
939 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
940 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
942 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
943 unsigned int ep_state;
944 unsigned int slot_state;
946 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
947 case COMP_TRB_ERR:
948 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
949 "of stream ID configuration\n");
950 break;
951 case COMP_CTX_STATE:
952 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
953 "to incorrect slot or ep state.\n");
954 ep_state = le32_to_cpu(ep_ctx->ep_info);
955 ep_state &= EP_STATE_MASK;
956 slot_state = le32_to_cpu(slot_ctx->dev_state);
957 slot_state = GET_SLOT_STATE(slot_state);
958 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
959 slot_state, ep_state);
960 break;
961 case COMP_EBADSLT:
962 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
963 "slot %u was not enabled.\n", slot_id);
964 break;
965 default:
966 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
967 "completion code of %u.\n",
968 GET_COMP_CODE(le32_to_cpu(event->status)));
969 break;
971 /* OK what do we do now? The endpoint state is hosed, and we
972 * should never get to this point if the synchronization between
973 * queueing, and endpoint state are correct. This might happen
974 * if the device gets disconnected after we've finished
975 * cancelling URBs, which might not be an error...
977 } else {
978 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
979 le64_to_cpu(ep_ctx->deq));
980 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
981 dev->eps[ep_index].queued_deq_ptr) ==
982 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
983 /* Update the ring's dequeue segment and dequeue pointer
984 * to reflect the new position.
986 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
987 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
988 } else {
989 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
990 "Ptr command & xHCI internal state.\n");
991 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
992 dev->eps[ep_index].queued_deq_seg,
993 dev->eps[ep_index].queued_deq_ptr);
997 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
998 dev->eps[ep_index].queued_deq_seg = NULL;
999 dev->eps[ep_index].queued_deq_ptr = NULL;
1000 /* Restart any rings with pending URBs */
1001 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1004 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1005 struct xhci_event_cmd *event,
1006 union xhci_trb *trb)
1008 int slot_id;
1009 unsigned int ep_index;
1011 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1012 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1013 /* This command will only fail if the endpoint wasn't halted,
1014 * but we don't care.
1016 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1017 (unsigned int) GET_COMP_CODE(le32_to_cpu(event->status)));
1019 /* HW with the reset endpoint quirk needs to have a configure endpoint
1020 * command complete before the endpoint can be used. Queue that here
1021 * because the HW can't handle two commands being queued in a row.
1023 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1024 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1025 xhci_queue_configure_endpoint(xhci,
1026 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1027 false);
1028 xhci_ring_cmd_db(xhci);
1029 } else {
1030 /* Clear our internal halted state and restart the ring(s) */
1031 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1032 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1036 /* Check to see if a command in the device's command queue matches this one.
1037 * Signal the completion or free the command, and return 1. Return 0 if the
1038 * completed command isn't at the head of the command list.
1040 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1041 struct xhci_virt_device *virt_dev,
1042 struct xhci_event_cmd *event)
1044 struct xhci_command *command;
1046 if (list_empty(&virt_dev->cmd_list))
1047 return 0;
1049 command = list_entry(virt_dev->cmd_list.next,
1050 struct xhci_command, cmd_list);
1051 if (xhci->cmd_ring->dequeue != command->command_trb)
1052 return 0;
1054 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1055 list_del(&command->cmd_list);
1056 if (command->completion)
1057 complete(command->completion);
1058 else
1059 xhci_free_command(xhci, command);
1060 return 1;
1063 static void handle_cmd_completion(struct xhci_hcd *xhci,
1064 struct xhci_event_cmd *event)
1066 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1067 u64 cmd_dma;
1068 dma_addr_t cmd_dequeue_dma;
1069 struct xhci_input_control_ctx *ctrl_ctx;
1070 struct xhci_virt_device *virt_dev;
1071 unsigned int ep_index;
1072 struct xhci_ring *ep_ring;
1073 unsigned int ep_state;
1075 cmd_dma = le64_to_cpu(event->cmd_trb);
1076 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1077 xhci->cmd_ring->dequeue);
1078 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1079 if (cmd_dequeue_dma == 0) {
1080 xhci->error_bitmask |= 1 << 4;
1081 return;
1083 /* Does the DMA address match our internal dequeue pointer address? */
1084 if (cmd_dma != (u64) cmd_dequeue_dma) {
1085 xhci->error_bitmask |= 1 << 5;
1086 return;
1088 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1089 & TRB_TYPE_BITMASK) {
1090 case TRB_TYPE(TRB_ENABLE_SLOT):
1091 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1092 xhci->slot_id = slot_id;
1093 else
1094 xhci->slot_id = 0;
1095 complete(&xhci->addr_dev);
1096 break;
1097 case TRB_TYPE(TRB_DISABLE_SLOT):
1098 if (xhci->devs[slot_id])
1099 xhci_free_virt_device(xhci, slot_id);
1100 break;
1101 case TRB_TYPE(TRB_CONFIG_EP):
1102 virt_dev = xhci->devs[slot_id];
1103 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1104 break;
1106 * Configure endpoint commands can come from the USB core
1107 * configuration or alt setting changes, or because the HW
1108 * needed an extra configure endpoint command after a reset
1109 * endpoint command or streams were being configured.
1110 * If the command was for a halted endpoint, the xHCI driver
1111 * is not waiting on the configure endpoint command.
1113 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1114 virt_dev->in_ctx);
1115 /* Input ctx add_flags are the endpoint index plus one */
1116 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1117 /* A usb_set_interface() call directly after clearing a halted
1118 * condition may race on this quirky hardware. Not worth
1119 * worrying about, since this is prototype hardware. Not sure
1120 * if this will work for streams, but streams support was
1121 * untested on this prototype.
1123 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1124 ep_index != (unsigned int) -1 &&
1125 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1126 le32_to_cpu(ctrl_ctx->drop_flags)) {
1127 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1128 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1129 if (!(ep_state & EP_HALTED))
1130 goto bandwidth_change;
1131 xhci_dbg(xhci, "Completed config ep cmd - "
1132 "last ep index = %d, state = %d\n",
1133 ep_index, ep_state);
1134 /* Clear internal halted state and restart ring(s) */
1135 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1136 ~EP_HALTED;
1137 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1138 break;
1140 bandwidth_change:
1141 xhci_dbg(xhci, "Completed config ep cmd\n");
1142 xhci->devs[slot_id]->cmd_status =
1143 GET_COMP_CODE(le32_to_cpu(event->status));
1144 complete(&xhci->devs[slot_id]->cmd_completion);
1145 break;
1146 case TRB_TYPE(TRB_EVAL_CONTEXT):
1147 virt_dev = xhci->devs[slot_id];
1148 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1149 break;
1150 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1151 complete(&xhci->devs[slot_id]->cmd_completion);
1152 break;
1153 case TRB_TYPE(TRB_ADDR_DEV):
1154 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1155 complete(&xhci->addr_dev);
1156 break;
1157 case TRB_TYPE(TRB_STOP_RING):
1158 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1159 break;
1160 case TRB_TYPE(TRB_SET_DEQ):
1161 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1162 break;
1163 case TRB_TYPE(TRB_CMD_NOOP):
1164 break;
1165 case TRB_TYPE(TRB_RESET_EP):
1166 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1167 break;
1168 case TRB_TYPE(TRB_RESET_DEV):
1169 xhci_dbg(xhci, "Completed reset device command.\n");
1170 slot_id = TRB_TO_SLOT_ID(
1171 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1172 virt_dev = xhci->devs[slot_id];
1173 if (virt_dev)
1174 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1175 else
1176 xhci_warn(xhci, "Reset device command completion "
1177 "for disabled slot %u\n", slot_id);
1178 break;
1179 case TRB_TYPE(TRB_NEC_GET_FW):
1180 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1181 xhci->error_bitmask |= 1 << 6;
1182 break;
1184 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1185 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1186 NEC_FW_MINOR(le32_to_cpu(event->status)));
1187 break;
1188 default:
1189 /* Skip over unknown commands on the event ring */
1190 xhci->error_bitmask |= 1 << 6;
1191 break;
1193 inc_deq(xhci, xhci->cmd_ring, false);
1196 static void handle_vendor_event(struct xhci_hcd *xhci,
1197 union xhci_trb *event)
1199 u32 trb_type;
1201 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1202 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1203 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1204 handle_cmd_completion(xhci, &event->event_cmd);
1207 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1208 * port registers -- USB 3.0 and USB 2.0).
1210 * Returns a zero-based port number, which is suitable for indexing into each of
1211 * the split roothubs' port arrays and bus state arrays.
1213 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1214 struct xhci_hcd *xhci, u32 port_id)
1216 unsigned int i;
1217 unsigned int num_similar_speed_ports = 0;
1219 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1220 * and usb2_ports are 0-based indexes. Count the number of similar
1221 * speed ports, up to 1 port before this port.
1223 for (i = 0; i < (port_id - 1); i++) {
1224 u8 port_speed = xhci->port_array[i];
1227 * Skip ports that don't have known speeds, or have duplicate
1228 * Extended Capabilities port speed entries.
1230 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1231 continue;
1234 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1235 * 1.1 ports are under the USB 2.0 hub. If the port speed
1236 * matches the device speed, it's a similar speed port.
1238 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1239 num_similar_speed_ports++;
1241 return num_similar_speed_ports;
1244 static void handle_port_status(struct xhci_hcd *xhci,
1245 union xhci_trb *event)
1247 struct usb_hcd *hcd;
1248 u32 port_id;
1249 u32 temp, temp1;
1250 int max_ports;
1251 int slot_id;
1252 unsigned int faked_port_index;
1253 u8 major_revision;
1254 struct xhci_bus_state *bus_state;
1255 __le32 __iomem **port_array;
1256 bool bogus_port_status = false;
1258 /* Port status change events always have a successful completion code */
1259 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1260 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1261 xhci->error_bitmask |= 1 << 8;
1263 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1264 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1266 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1267 if ((port_id <= 0) || (port_id > max_ports)) {
1268 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1269 bogus_port_status = true;
1270 goto cleanup;
1273 /* Figure out which usb_hcd this port is attached to:
1274 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1276 major_revision = xhci->port_array[port_id - 1];
1277 if (major_revision == 0) {
1278 xhci_warn(xhci, "Event for port %u not in "
1279 "Extended Capabilities, ignoring.\n",
1280 port_id);
1281 bogus_port_status = true;
1282 goto cleanup;
1284 if (major_revision == DUPLICATE_ENTRY) {
1285 xhci_warn(xhci, "Event for port %u duplicated in"
1286 "Extended Capabilities, ignoring.\n",
1287 port_id);
1288 bogus_port_status = true;
1289 goto cleanup;
1293 * Hardware port IDs reported by a Port Status Change Event include USB
1294 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1295 * resume event, but we first need to translate the hardware port ID
1296 * into the index into the ports on the correct split roothub, and the
1297 * correct bus_state structure.
1299 /* Find the right roothub. */
1300 hcd = xhci_to_hcd(xhci);
1301 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1302 hcd = xhci->shared_hcd;
1303 bus_state = &xhci->bus_state[hcd_index(hcd)];
1304 if (hcd->speed == HCD_USB3)
1305 port_array = xhci->usb3_ports;
1306 else
1307 port_array = xhci->usb2_ports;
1308 /* Find the faked port hub number */
1309 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1310 port_id);
1312 temp = xhci_readl(xhci, port_array[faked_port_index]);
1313 if (hcd->state == HC_STATE_SUSPENDED) {
1314 xhci_dbg(xhci, "resume root hub\n");
1315 usb_hcd_resume_root_hub(hcd);
1318 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1319 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1321 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1322 if (!(temp1 & CMD_RUN)) {
1323 xhci_warn(xhci, "xHC is not running.\n");
1324 goto cleanup;
1327 if (DEV_SUPERSPEED(temp)) {
1328 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1329 temp = xhci_port_state_to_neutral(temp);
1330 temp &= ~PORT_PLS_MASK;
1331 temp |= PORT_LINK_STROBE | XDEV_U0;
1332 xhci_writel(xhci, temp, port_array[faked_port_index]);
1333 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1334 faked_port_index);
1335 if (!slot_id) {
1336 xhci_dbg(xhci, "slot_id is zero\n");
1337 goto cleanup;
1339 xhci_ring_device(xhci, slot_id);
1340 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1341 /* Clear PORT_PLC */
1342 temp = xhci_readl(xhci, port_array[faked_port_index]);
1343 temp = xhci_port_state_to_neutral(temp);
1344 temp |= PORT_PLC;
1345 xhci_writel(xhci, temp, port_array[faked_port_index]);
1346 } else {
1347 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1348 bus_state->resume_done[faked_port_index] = jiffies +
1349 msecs_to_jiffies(20);
1350 mod_timer(&hcd->rh_timer,
1351 bus_state->resume_done[faked_port_index]);
1352 /* Do the rest in GetPortStatus */
1356 cleanup:
1357 /* Update event ring dequeue pointer before dropping the lock */
1358 inc_deq(xhci, xhci->event_ring, true);
1360 /* Don't make the USB core poll the roothub if we got a bad port status
1361 * change event. Besides, at that point we can't tell which roothub
1362 * (USB 2.0 or USB 3.0) to kick.
1364 if (bogus_port_status)
1365 return;
1367 spin_unlock(&xhci->lock);
1368 /* Pass this up to the core */
1369 usb_hcd_poll_rh_status(hcd);
1370 spin_lock(&xhci->lock);
1374 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1375 * at end_trb, which may be in another segment. If the suspect DMA address is a
1376 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1377 * returns 0.
1379 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1380 union xhci_trb *start_trb,
1381 union xhci_trb *end_trb,
1382 dma_addr_t suspect_dma)
1384 dma_addr_t start_dma;
1385 dma_addr_t end_seg_dma;
1386 dma_addr_t end_trb_dma;
1387 struct xhci_segment *cur_seg;
1389 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1390 cur_seg = start_seg;
1392 do {
1393 if (start_dma == 0)
1394 return NULL;
1395 /* We may get an event for a Link TRB in the middle of a TD */
1396 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1397 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1398 /* If the end TRB isn't in this segment, this is set to 0 */
1399 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1401 if (end_trb_dma > 0) {
1402 /* The end TRB is in this segment, so suspect should be here */
1403 if (start_dma <= end_trb_dma) {
1404 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1405 return cur_seg;
1406 } else {
1407 /* Case for one segment with
1408 * a TD wrapped around to the top
1410 if ((suspect_dma >= start_dma &&
1411 suspect_dma <= end_seg_dma) ||
1412 (suspect_dma >= cur_seg->dma &&
1413 suspect_dma <= end_trb_dma))
1414 return cur_seg;
1416 return NULL;
1417 } else {
1418 /* Might still be somewhere in this segment */
1419 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1420 return cur_seg;
1422 cur_seg = cur_seg->next;
1423 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1424 } while (cur_seg != start_seg);
1426 return NULL;
1429 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1430 unsigned int slot_id, unsigned int ep_index,
1431 unsigned int stream_id,
1432 struct xhci_td *td, union xhci_trb *event_trb)
1434 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1435 ep->ep_state |= EP_HALTED;
1436 ep->stopped_td = td;
1437 ep->stopped_trb = event_trb;
1438 ep->stopped_stream = stream_id;
1440 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1441 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1443 ep->stopped_td = NULL;
1444 ep->stopped_trb = NULL;
1445 ep->stopped_stream = 0;
1447 xhci_ring_cmd_db(xhci);
1450 /* Check if an error has halted the endpoint ring. The class driver will
1451 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1452 * However, a babble and other errors also halt the endpoint ring, and the class
1453 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1454 * Ring Dequeue Pointer command manually.
1456 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1457 struct xhci_ep_ctx *ep_ctx,
1458 unsigned int trb_comp_code)
1460 /* TRB completion codes that may require a manual halt cleanup */
1461 if (trb_comp_code == COMP_TX_ERR ||
1462 trb_comp_code == COMP_BABBLE ||
1463 trb_comp_code == COMP_SPLIT_ERR)
1464 /* The 0.96 spec says a babbling control endpoint
1465 * is not halted. The 0.96 spec says it is. Some HW
1466 * claims to be 0.95 compliant, but it halts the control
1467 * endpoint anyway. Check if a babble halted the
1468 * endpoint.
1470 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == EP_STATE_HALTED)
1471 return 1;
1473 return 0;
1476 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1478 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1479 /* Vendor defined "informational" completion code,
1480 * treat as not-an-error.
1482 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1483 trb_comp_code);
1484 xhci_dbg(xhci, "Treating code as success.\n");
1485 return 1;
1487 return 0;
1491 * Finish the td processing, remove the td from td list;
1492 * Return 1 if the urb can be given back.
1494 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1495 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1496 struct xhci_virt_ep *ep, int *status, bool skip)
1498 struct xhci_virt_device *xdev;
1499 struct xhci_ring *ep_ring;
1500 unsigned int slot_id;
1501 int ep_index;
1502 struct urb *urb = NULL;
1503 struct xhci_ep_ctx *ep_ctx;
1504 int ret = 0;
1505 struct urb_priv *urb_priv;
1506 u32 trb_comp_code;
1508 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1509 xdev = xhci->devs[slot_id];
1510 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1511 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1512 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1513 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1515 if (skip)
1516 goto td_cleanup;
1518 if (trb_comp_code == COMP_STOP_INVAL ||
1519 trb_comp_code == COMP_STOP) {
1520 /* The Endpoint Stop Command completion will take care of any
1521 * stopped TDs. A stopped TD may be restarted, so don't update
1522 * the ring dequeue pointer or take this TD off any lists yet.
1524 ep->stopped_td = td;
1525 ep->stopped_trb = event_trb;
1526 return 0;
1527 } else {
1528 if (trb_comp_code == COMP_STALL) {
1529 /* The transfer is completed from the driver's
1530 * perspective, but we need to issue a set dequeue
1531 * command for this stalled endpoint to move the dequeue
1532 * pointer past the TD. We can't do that here because
1533 * the halt condition must be cleared first. Let the
1534 * USB class driver clear the stall later.
1536 ep->stopped_td = td;
1537 ep->stopped_trb = event_trb;
1538 ep->stopped_stream = ep_ring->stream_id;
1539 } else if (xhci_requires_manual_halt_cleanup(xhci,
1540 ep_ctx, trb_comp_code)) {
1541 /* Other types of errors halt the endpoint, but the
1542 * class driver doesn't call usb_reset_endpoint() unless
1543 * the error is -EPIPE. Clear the halted status in the
1544 * xHCI hardware manually.
1546 xhci_cleanup_halted_endpoint(xhci,
1547 slot_id, ep_index, ep_ring->stream_id,
1548 td, event_trb);
1549 } else {
1550 /* Update ring dequeue pointer */
1551 while (ep_ring->dequeue != td->last_trb)
1552 inc_deq(xhci, ep_ring, false);
1553 inc_deq(xhci, ep_ring, false);
1556 td_cleanup:
1557 /* Clean up the endpoint's TD list */
1558 urb = td->urb;
1559 urb_priv = urb->hcpriv;
1561 /* Do one last check of the actual transfer length.
1562 * If the host controller said we transferred more data than
1563 * the buffer length, urb->actual_length will be a very big
1564 * number (since it's unsigned). Play it safe and say we didn't
1565 * transfer anything.
1567 if (urb->actual_length > urb->transfer_buffer_length) {
1568 xhci_warn(xhci, "URB transfer length is wrong, "
1569 "xHC issue? req. len = %u, "
1570 "act. len = %u\n",
1571 urb->transfer_buffer_length,
1572 urb->actual_length);
1573 urb->actual_length = 0;
1574 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1575 *status = -EREMOTEIO;
1576 else
1577 *status = 0;
1579 list_del(&td->td_list);
1580 /* Was this TD slated to be cancelled but completed anyway? */
1581 if (!list_empty(&td->cancelled_td_list))
1582 list_del(&td->cancelled_td_list);
1584 urb_priv->td_cnt++;
1585 /* Giveback the urb when all the tds are completed */
1586 if (urb_priv->td_cnt == urb_priv->length) {
1587 ret = 1;
1588 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1589 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1590 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1591 == 0) {
1592 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1593 usb_amd_quirk_pll_enable();
1599 return ret;
1603 * Process control tds, update urb status and actual_length.
1605 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1606 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1607 struct xhci_virt_ep *ep, int *status)
1609 struct xhci_virt_device *xdev;
1610 struct xhci_ring *ep_ring;
1611 unsigned int slot_id;
1612 int ep_index;
1613 struct xhci_ep_ctx *ep_ctx;
1614 u32 trb_comp_code;
1616 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1617 xdev = xhci->devs[slot_id];
1618 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1619 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1620 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1621 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1623 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1624 switch (trb_comp_code) {
1625 case COMP_SUCCESS:
1626 if (event_trb == ep_ring->dequeue) {
1627 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1628 "without IOC set??\n");
1629 *status = -ESHUTDOWN;
1630 } else if (event_trb != td->last_trb) {
1631 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1632 "without IOC set??\n");
1633 *status = -ESHUTDOWN;
1634 } else {
1635 xhci_dbg(xhci, "Successful control transfer!\n");
1636 *status = 0;
1638 break;
1639 case COMP_SHORT_TX:
1640 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1641 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1642 *status = -EREMOTEIO;
1643 else
1644 *status = 0;
1645 break;
1646 case COMP_STOP_INVAL:
1647 case COMP_STOP:
1648 return finish_td(xhci, td, event_trb, event, ep, status, false);
1649 default:
1650 if (!xhci_requires_manual_halt_cleanup(xhci,
1651 ep_ctx, trb_comp_code))
1652 break;
1653 xhci_dbg(xhci, "TRB error code %u, "
1654 "halted endpoint index = %u\n",
1655 trb_comp_code, ep_index);
1656 /* else fall through */
1657 case COMP_STALL:
1658 /* Did we transfer part of the data (middle) phase? */
1659 if (event_trb != ep_ring->dequeue &&
1660 event_trb != td->last_trb)
1661 td->urb->actual_length =
1662 td->urb->transfer_buffer_length
1663 - TRB_LEN(le32_to_cpu(event->transfer_len));
1664 else
1665 td->urb->actual_length = 0;
1667 xhci_cleanup_halted_endpoint(xhci,
1668 slot_id, ep_index, 0, td, event_trb);
1669 return finish_td(xhci, td, event_trb, event, ep, status, true);
1672 * Did we transfer any data, despite the errors that might have
1673 * happened? I.e. did we get past the setup stage?
1675 if (event_trb != ep_ring->dequeue) {
1676 /* The event was for the status stage */
1677 if (event_trb == td->last_trb) {
1678 if (td->urb->actual_length != 0) {
1679 /* Don't overwrite a previously set error code
1681 if ((*status == -EINPROGRESS || *status == 0) &&
1682 (td->urb->transfer_flags
1683 & URB_SHORT_NOT_OK))
1684 /* Did we already see a short data
1685 * stage? */
1686 *status = -EREMOTEIO;
1687 } else {
1688 td->urb->actual_length =
1689 td->urb->transfer_buffer_length;
1691 } else {
1692 /* Maybe the event was for the data stage? */
1693 td->urb->actual_length =
1694 td->urb->transfer_buffer_length -
1695 TRB_LEN(le32_to_cpu(event->transfer_len));
1696 xhci_dbg(xhci, "Waiting for status "
1697 "stage event\n");
1698 return 0;
1702 return finish_td(xhci, td, event_trb, event, ep, status, false);
1706 * Process isochronous tds, update urb packet status and actual_length.
1708 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1709 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1710 struct xhci_virt_ep *ep, int *status)
1712 struct xhci_ring *ep_ring;
1713 struct urb_priv *urb_priv;
1714 int idx;
1715 int len = 0;
1716 union xhci_trb *cur_trb;
1717 struct xhci_segment *cur_seg;
1718 struct usb_iso_packet_descriptor *frame;
1719 u32 trb_comp_code;
1720 bool skip_td = false;
1722 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1723 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1724 urb_priv = td->urb->hcpriv;
1725 idx = urb_priv->td_cnt;
1726 frame = &td->urb->iso_frame_desc[idx];
1728 /* handle completion code */
1729 switch (trb_comp_code) {
1730 case COMP_SUCCESS:
1731 frame->status = 0;
1732 xhci_dbg(xhci, "Successful isoc transfer!\n");
1733 break;
1734 case COMP_SHORT_TX:
1735 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1736 -EREMOTEIO : 0;
1737 break;
1738 case COMP_BW_OVER:
1739 frame->status = -ECOMM;
1740 skip_td = true;
1741 break;
1742 case COMP_BUFF_OVER:
1743 case COMP_BABBLE:
1744 frame->status = -EOVERFLOW;
1745 skip_td = true;
1746 break;
1747 case COMP_STALL:
1748 frame->status = -EPROTO;
1749 skip_td = true;
1750 break;
1751 case COMP_STOP:
1752 case COMP_STOP_INVAL:
1753 break;
1754 default:
1755 frame->status = -1;
1756 break;
1759 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1760 frame->actual_length = frame->length;
1761 td->urb->actual_length += frame->length;
1762 } else {
1763 for (cur_trb = ep_ring->dequeue,
1764 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1765 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1766 if ((le32_to_cpu(cur_trb->generic.field[3]) &
1767 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) &&
1768 (le32_to_cpu(cur_trb->generic.field[3]) &
1769 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK))
1770 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1772 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1773 TRB_LEN(le32_to_cpu(event->transfer_len));
1775 if (trb_comp_code != COMP_STOP_INVAL) {
1776 frame->actual_length = len;
1777 td->urb->actual_length += len;
1781 if ((idx == urb_priv->length - 1) && *status == -EINPROGRESS)
1782 *status = 0;
1784 return finish_td(xhci, td, event_trb, event, ep, status, false);
1787 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1788 struct xhci_transfer_event *event,
1789 struct xhci_virt_ep *ep, int *status)
1791 struct xhci_ring *ep_ring;
1792 struct urb_priv *urb_priv;
1793 struct usb_iso_packet_descriptor *frame;
1794 int idx;
1796 ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer);
1797 urb_priv = td->urb->hcpriv;
1798 idx = urb_priv->td_cnt;
1799 frame = &td->urb->iso_frame_desc[idx];
1801 /* The transfer is partly done */
1802 *status = -EXDEV;
1803 frame->status = -EXDEV;
1805 /* calc actual length */
1806 frame->actual_length = 0;
1808 /* Update ring dequeue pointer */
1809 while (ep_ring->dequeue != td->last_trb)
1810 inc_deq(xhci, ep_ring, false);
1811 inc_deq(xhci, ep_ring, false);
1813 return finish_td(xhci, td, NULL, event, ep, status, true);
1817 * Process bulk and interrupt tds, update urb status and actual_length.
1819 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1820 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1821 struct xhci_virt_ep *ep, int *status)
1823 struct xhci_ring *ep_ring;
1824 union xhci_trb *cur_trb;
1825 struct xhci_segment *cur_seg;
1826 u32 trb_comp_code;
1828 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1829 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1831 switch (trb_comp_code) {
1832 case COMP_SUCCESS:
1833 /* Double check that the HW transferred everything. */
1834 if (event_trb != td->last_trb) {
1835 xhci_warn(xhci, "WARN Successful completion "
1836 "on short TX\n");
1837 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1838 *status = -EREMOTEIO;
1839 else
1840 *status = 0;
1841 } else {
1842 if (usb_endpoint_xfer_bulk(&td->urb->ep->desc))
1843 xhci_dbg(xhci, "Successful bulk "
1844 "transfer!\n");
1845 else
1846 xhci_dbg(xhci, "Successful interrupt "
1847 "transfer!\n");
1848 *status = 0;
1850 break;
1851 case COMP_SHORT_TX:
1852 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1853 *status = -EREMOTEIO;
1854 else
1855 *status = 0;
1856 break;
1857 default:
1858 /* Others already handled above */
1859 break;
1861 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1862 "%d bytes untransferred\n",
1863 td->urb->ep->desc.bEndpointAddress,
1864 td->urb->transfer_buffer_length,
1865 TRB_LEN(le32_to_cpu(event->transfer_len)));
1866 /* Fast path - was this the last TRB in the TD for this URB? */
1867 if (event_trb == td->last_trb) {
1868 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1869 td->urb->actual_length =
1870 td->urb->transfer_buffer_length -
1871 TRB_LEN(le32_to_cpu(event->transfer_len));
1872 if (td->urb->transfer_buffer_length <
1873 td->urb->actual_length) {
1874 xhci_warn(xhci, "HC gave bad length "
1875 "of %d bytes left\n",
1876 TRB_LEN(le32_to_cpu(event->transfer_len)));
1877 td->urb->actual_length = 0;
1878 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1879 *status = -EREMOTEIO;
1880 else
1881 *status = 0;
1883 /* Don't overwrite a previously set error code */
1884 if (*status == -EINPROGRESS) {
1885 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1886 *status = -EREMOTEIO;
1887 else
1888 *status = 0;
1890 } else {
1891 td->urb->actual_length =
1892 td->urb->transfer_buffer_length;
1893 /* Ignore a short packet completion if the
1894 * untransferred length was zero.
1896 if (*status == -EREMOTEIO)
1897 *status = 0;
1899 } else {
1900 /* Slow path - walk the list, starting from the dequeue
1901 * pointer, to get the actual length transferred.
1903 td->urb->actual_length = 0;
1904 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1905 cur_trb != event_trb;
1906 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1907 if ((le32_to_cpu(cur_trb->generic.field[3]) &
1908 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) &&
1909 (le32_to_cpu(cur_trb->generic.field[3]) &
1910 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK))
1911 td->urb->actual_length +=
1912 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1914 /* If the ring didn't stop on a Link or No-op TRB, add
1915 * in the actual bytes transferred from the Normal TRB
1917 if (trb_comp_code != COMP_STOP_INVAL)
1918 td->urb->actual_length +=
1919 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1920 TRB_LEN(le32_to_cpu(event->transfer_len));
1923 return finish_td(xhci, td, event_trb, event, ep, status, false);
1927 * If this function returns an error condition, it means it got a Transfer
1928 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1929 * At this point, the host controller is probably hosed and should be reset.
1931 static int handle_tx_event(struct xhci_hcd *xhci,
1932 struct xhci_transfer_event *event)
1934 struct xhci_virt_device *xdev;
1935 struct xhci_virt_ep *ep;
1936 struct xhci_ring *ep_ring;
1937 unsigned int slot_id;
1938 int ep_index;
1939 struct xhci_td *td = NULL;
1940 dma_addr_t event_dma;
1941 struct xhci_segment *event_seg;
1942 union xhci_trb *event_trb;
1943 struct urb *urb = NULL;
1944 int status = -EINPROGRESS;
1945 struct urb_priv *urb_priv;
1946 struct xhci_ep_ctx *ep_ctx;
1947 u32 trb_comp_code;
1948 int ret = 0;
1950 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1951 xdev = xhci->devs[slot_id];
1952 if (!xdev) {
1953 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1954 return -ENODEV;
1957 /* Endpoint ID is 1 based, our index is zero based */
1958 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1959 xhci_dbg(xhci, "%s - ep index = %d\n", __func__, ep_index);
1960 ep = &xdev->eps[ep_index];
1961 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1962 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1963 if (!ep_ring ||
1964 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1965 EP_STATE_DISABLED) {
1966 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1967 "or incorrect stream ring\n");
1968 return -ENODEV;
1971 event_dma = le64_to_cpu(event->buffer);
1972 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1973 /* Look for common error cases */
1974 switch (trb_comp_code) {
1975 /* Skip codes that require special handling depending on
1976 * transfer type
1978 case COMP_SUCCESS:
1979 case COMP_SHORT_TX:
1980 break;
1981 case COMP_STOP:
1982 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1983 break;
1984 case COMP_STOP_INVAL:
1985 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1986 break;
1987 case COMP_STALL:
1988 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1989 ep->ep_state |= EP_HALTED;
1990 status = -EPIPE;
1991 break;
1992 case COMP_TRB_ERR:
1993 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1994 status = -EILSEQ;
1995 break;
1996 case COMP_SPLIT_ERR:
1997 case COMP_TX_ERR:
1998 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1999 status = -EPROTO;
2000 break;
2001 case COMP_BABBLE:
2002 xhci_warn(xhci, "WARN: babble error on endpoint\n");
2003 status = -EOVERFLOW;
2004 break;
2005 case COMP_DB_ERR:
2006 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2007 status = -ENOSR;
2008 break;
2009 case COMP_BW_OVER:
2010 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2011 break;
2012 case COMP_BUFF_OVER:
2013 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2014 break;
2015 case COMP_UNDERRUN:
2017 * When the Isoch ring is empty, the xHC will generate
2018 * a Ring Overrun Event for IN Isoch endpoint or Ring
2019 * Underrun Event for OUT Isoch endpoint.
2021 xhci_dbg(xhci, "underrun event on endpoint\n");
2022 if (!list_empty(&ep_ring->td_list))
2023 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2024 "still with TDs queued?\n",
2025 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2026 ep_index);
2027 goto cleanup;
2028 case COMP_OVERRUN:
2029 xhci_dbg(xhci, "overrun event on endpoint\n");
2030 if (!list_empty(&ep_ring->td_list))
2031 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2032 "still with TDs queued?\n",
2033 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2034 ep_index);
2035 goto cleanup;
2036 case COMP_MISSED_INT:
2038 * When encounter missed service error, one or more isoc tds
2039 * may be missed by xHC.
2040 * Set skip flag of the ep_ring; Complete the missed tds as
2041 * short transfer when process the ep_ring next time.
2043 ep->skip = true;
2044 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2045 goto cleanup;
2046 default:
2047 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2048 status = 0;
2049 break;
2051 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2052 "busted\n");
2053 goto cleanup;
2056 do {
2057 /* This TRB should be in the TD at the head of this ring's
2058 * TD list.
2060 if (list_empty(&ep_ring->td_list)) {
2061 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2062 "with no TDs queued?\n",
2063 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2064 ep_index);
2065 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2066 (unsigned int) (le32_to_cpu(event->flags)
2067 & TRB_TYPE_BITMASK)>>10);
2068 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2069 if (ep->skip) {
2070 ep->skip = false;
2071 xhci_dbg(xhci, "td_list is empty while skip "
2072 "flag set. Clear skip flag.\n");
2074 ret = 0;
2075 goto cleanup;
2078 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2080 /* Is this a TRB in the currently executing TD? */
2081 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2082 td->last_trb, event_dma);
2083 if (!event_seg) {
2084 if (!ep->skip ||
2085 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2086 /* HC is busted, give up! */
2087 xhci_err(xhci,
2088 "ERROR Transfer event TRB DMA ptr not "
2089 "part of current TD\n");
2090 return -ESHUTDOWN;
2093 ret = skip_isoc_td(xhci, td, event, ep, &status);
2094 goto cleanup;
2097 if (ep->skip) {
2098 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2099 ep->skip = false;
2102 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2103 sizeof(*event_trb)];
2105 * No-op TRB should not trigger interrupts.
2106 * If event_trb is a no-op TRB, it means the
2107 * corresponding TD has been cancelled. Just ignore
2108 * the TD.
2110 if ((le32_to_cpu(event_trb->generic.field[3])
2111 & TRB_TYPE_BITMASK)
2112 == TRB_TYPE(TRB_TR_NOOP)) {
2113 xhci_dbg(xhci,
2114 "event_trb is a no-op TRB. Skip it\n");
2115 goto cleanup;
2118 /* Now update the urb's actual_length and give back to
2119 * the core
2121 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2122 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2123 &status);
2124 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2125 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2126 &status);
2127 else
2128 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2129 ep, &status);
2131 cleanup:
2133 * Do not update event ring dequeue pointer if ep->skip is set.
2134 * Will roll back to continue process missed tds.
2136 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2137 inc_deq(xhci, xhci->event_ring, true);
2140 if (ret) {
2141 urb = td->urb;
2142 urb_priv = urb->hcpriv;
2143 /* Leave the TD around for the reset endpoint function
2144 * to use(but only if it's not a control endpoint,
2145 * since we already queued the Set TR dequeue pointer
2146 * command for stalled control endpoints).
2148 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2149 (trb_comp_code != COMP_STALL &&
2150 trb_comp_code != COMP_BABBLE))
2151 xhci_urb_free_priv(xhci, urb_priv);
2153 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2154 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2155 "status = %d\n",
2156 urb, urb->actual_length, status);
2157 spin_unlock(&xhci->lock);
2158 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2159 spin_lock(&xhci->lock);
2163 * If ep->skip is set, it means there are missed tds on the
2164 * endpoint ring need to take care of.
2165 * Process them as short transfer until reach the td pointed by
2166 * the event.
2168 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2170 return 0;
2174 * This function handles all OS-owned events on the event ring. It may drop
2175 * xhci->lock between event processing (e.g. to pass up port status changes).
2176 * Returns >0 for "possibly more events to process" (caller should call again),
2177 * otherwise 0 if done. In future, <0 returns should indicate error code.
2179 static int xhci_handle_event(struct xhci_hcd *xhci)
2181 union xhci_trb *event;
2182 int update_ptrs = 1;
2183 int ret;
2185 xhci_dbg(xhci, "In %s\n", __func__);
2186 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2187 xhci->error_bitmask |= 1 << 1;
2188 return 0;
2191 event = xhci->event_ring->dequeue;
2192 /* Does the HC or OS own the TRB? */
2193 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2194 xhci->event_ring->cycle_state) {
2195 xhci->error_bitmask |= 1 << 2;
2196 return 0;
2198 xhci_dbg(xhci, "%s - OS owns TRB\n", __func__);
2201 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2202 * speculative reads of the event's flags/data below.
2204 rmb();
2205 /* FIXME: Handle more event types. */
2206 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2207 case TRB_TYPE(TRB_COMPLETION):
2208 xhci_dbg(xhci, "%s - calling handle_cmd_completion\n", __func__);
2209 handle_cmd_completion(xhci, &event->event_cmd);
2210 xhci_dbg(xhci, "%s - returned from handle_cmd_completion\n", __func__);
2211 break;
2212 case TRB_TYPE(TRB_PORT_STATUS):
2213 xhci_dbg(xhci, "%s - calling handle_port_status\n", __func__);
2214 handle_port_status(xhci, event);
2215 xhci_dbg(xhci, "%s - returned from handle_port_status\n", __func__);
2216 update_ptrs = 0;
2217 break;
2218 case TRB_TYPE(TRB_TRANSFER):
2219 xhci_dbg(xhci, "%s - calling handle_tx_event\n", __func__);
2220 ret = handle_tx_event(xhci, &event->trans_event);
2221 xhci_dbg(xhci, "%s - returned from handle_tx_event\n", __func__);
2222 if (ret < 0)
2223 xhci->error_bitmask |= 1 << 9;
2224 else
2225 update_ptrs = 0;
2226 break;
2227 default:
2228 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2229 TRB_TYPE(48))
2230 handle_vendor_event(xhci, event);
2231 else
2232 xhci->error_bitmask |= 1 << 3;
2234 /* Any of the above functions may drop and re-acquire the lock, so check
2235 * to make sure a watchdog timer didn't mark the host as non-responsive.
2237 if (xhci->xhc_state & XHCI_STATE_DYING) {
2238 xhci_dbg(xhci, "xHCI host dying, returning from "
2239 "event handler.\n");
2240 return 0;
2243 if (update_ptrs)
2244 /* Update SW event ring dequeue pointer */
2245 inc_deq(xhci, xhci->event_ring, true);
2247 /* Are there more items on the event ring? Caller will call us again to
2248 * check.
2250 return 1;
2254 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2255 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2256 * indicators of an event TRB error, but we check the status *first* to be safe.
2258 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2260 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2261 u32 status;
2262 union xhci_trb *trb;
2263 u64 temp_64;
2264 union xhci_trb *event_ring_deq;
2265 dma_addr_t deq;
2267 spin_lock(&xhci->lock);
2268 trb = xhci->event_ring->dequeue;
2269 /* Check if the xHC generated the interrupt, or the irq is shared */
2270 status = xhci_readl(xhci, &xhci->op_regs->status);
2271 if (status == 0xffffffff)
2272 goto hw_died;
2274 if (!(status & STS_EINT)) {
2275 spin_unlock(&xhci->lock);
2276 return IRQ_NONE;
2278 xhci_dbg(xhci, "op reg status = %08x\n", status);
2279 xhci_dbg(xhci, "Event ring dequeue ptr:\n");
2280 xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
2281 (unsigned long long)
2282 xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
2283 lower_32_bits(le64_to_cpu(trb->link.segment_ptr)),
2284 upper_32_bits(le64_to_cpu(trb->link.segment_ptr)),
2285 (unsigned int) le32_to_cpu(trb->link.intr_target),
2286 (unsigned int) le32_to_cpu(trb->link.control));
2288 if (status & STS_FATAL) {
2289 xhci_warn(xhci, "WARNING: Host System Error\n");
2290 xhci_halt(xhci);
2291 hw_died:
2292 spin_unlock(&xhci->lock);
2293 return -ESHUTDOWN;
2297 * Clear the op reg interrupt status first,
2298 * so we can receive interrupts from other MSI-X interrupters.
2299 * Write 1 to clear the interrupt status.
2301 status |= STS_EINT;
2302 xhci_writel(xhci, status, &xhci->op_regs->status);
2303 /* FIXME when MSI-X is supported and there are multiple vectors */
2304 /* Clear the MSI-X event interrupt status */
2306 if (hcd->irq != -1) {
2307 u32 irq_pending;
2308 /* Acknowledge the PCI interrupt */
2309 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2310 irq_pending |= 0x3;
2311 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2314 if (xhci->xhc_state & XHCI_STATE_DYING) {
2315 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2316 "Shouldn't IRQs be disabled?\n");
2317 /* Clear the event handler busy flag (RW1C);
2318 * the event ring should be empty.
2320 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2321 xhci_write_64(xhci, temp_64 | ERST_EHB,
2322 &xhci->ir_set->erst_dequeue);
2323 spin_unlock(&xhci->lock);
2325 return IRQ_HANDLED;
2328 event_ring_deq = xhci->event_ring->dequeue;
2329 /* FIXME this should be a delayed service routine
2330 * that clears the EHB.
2332 while (xhci_handle_event(xhci) > 0) {}
2334 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2335 /* If necessary, update the HW's version of the event ring deq ptr. */
2336 if (event_ring_deq != xhci->event_ring->dequeue) {
2337 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2338 xhci->event_ring->dequeue);
2339 if (deq == 0)
2340 xhci_warn(xhci, "WARN something wrong with SW event "
2341 "ring dequeue ptr.\n");
2342 /* Update HC event ring dequeue pointer */
2343 temp_64 &= ERST_PTR_MASK;
2344 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2347 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2348 temp_64 |= ERST_EHB;
2349 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2351 spin_unlock(&xhci->lock);
2353 return IRQ_HANDLED;
2356 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2358 irqreturn_t ret;
2359 struct xhci_hcd *xhci;
2361 xhci = hcd_to_xhci(hcd);
2362 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2363 if (xhci->shared_hcd)
2364 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2366 ret = xhci_irq(hcd);
2368 return ret;
2371 /**** Endpoint Ring Operations ****/
2374 * Generic function for queueing a TRB on a ring.
2375 * The caller must have checked to make sure there's room on the ring.
2377 * @more_trbs_coming: Will you enqueue more TRBs before calling
2378 * prepare_transfer()?
2380 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2381 bool consumer, bool more_trbs_coming,
2382 u32 field1, u32 field2, u32 field3, u32 field4)
2384 struct xhci_generic_trb *trb;
2386 trb = &ring->enqueue->generic;
2387 trb->field[0] = cpu_to_le32(field1);
2388 trb->field[1] = cpu_to_le32(field2);
2389 trb->field[2] = cpu_to_le32(field3);
2390 trb->field[3] = cpu_to_le32(field4);
2391 inc_enq(xhci, ring, consumer, more_trbs_coming);
2395 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2396 * FIXME allocate segments if the ring is full.
2398 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2399 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2401 /* Make sure the endpoint has been added to xHC schedule */
2402 xhci_dbg(xhci, "Endpoint state = 0x%x\n", ep_state);
2403 switch (ep_state) {
2404 case EP_STATE_DISABLED:
2406 * USB core changed config/interfaces without notifying us,
2407 * or hardware is reporting the wrong state.
2409 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2410 return -ENOENT;
2411 case EP_STATE_ERROR:
2412 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2413 /* FIXME event handling code for error needs to clear it */
2414 /* XXX not sure if this should be -ENOENT or not */
2415 return -EINVAL;
2416 case EP_STATE_HALTED:
2417 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2418 case EP_STATE_STOPPED:
2419 case EP_STATE_RUNNING:
2420 break;
2421 default:
2422 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2424 * FIXME issue Configure Endpoint command to try to get the HC
2425 * back into a known state.
2427 return -EINVAL;
2429 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2430 /* FIXME allocate more room */
2431 xhci_err(xhci, "ERROR no room on ep ring\n");
2432 return -ENOMEM;
2435 if (enqueue_is_link_trb(ep_ring)) {
2436 struct xhci_ring *ring = ep_ring;
2437 union xhci_trb *next;
2439 xhci_dbg(xhci, "prepare_ring: pointing to link trb\n");
2440 next = ring->enqueue;
2442 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2443 /* If we're not dealing with 0.95 hardware,
2444 * clear the chain bit.
2446 if (!xhci_link_trb_quirk(xhci))
2447 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2448 else
2449 next->link.control |= cpu_to_le32(TRB_CHAIN);
2451 wmb();
2452 next->link.control ^= cpu_to_le32((u32) TRB_CYCLE);
2454 /* Toggle the cycle bit after the last ring segment. */
2455 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2456 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2457 if (!in_interrupt()) {
2458 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2459 "state for ring %p = %i\n",
2460 ring, (unsigned int)ring->cycle_state);
2463 ring->enq_seg = ring->enq_seg->next;
2464 ring->enqueue = ring->enq_seg->trbs;
2465 next = ring->enqueue;
2469 return 0;
2472 static int prepare_transfer(struct xhci_hcd *xhci,
2473 struct xhci_virt_device *xdev,
2474 unsigned int ep_index,
2475 unsigned int stream_id,
2476 unsigned int num_trbs,
2477 struct urb *urb,
2478 unsigned int td_index,
2479 gfp_t mem_flags)
2481 int ret;
2482 struct urb_priv *urb_priv;
2483 struct xhci_td *td;
2484 struct xhci_ring *ep_ring;
2485 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2487 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2488 if (!ep_ring) {
2489 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2490 stream_id);
2491 return -EINVAL;
2494 ret = prepare_ring(xhci, ep_ring,
2495 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2496 num_trbs, mem_flags);
2497 if (ret)
2498 return ret;
2500 urb_priv = urb->hcpriv;
2501 td = urb_priv->td[td_index];
2503 INIT_LIST_HEAD(&td->td_list);
2504 INIT_LIST_HEAD(&td->cancelled_td_list);
2506 if (td_index == 0) {
2507 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2508 if (unlikely(ret)) {
2509 xhci_urb_free_priv(xhci, urb_priv);
2510 urb->hcpriv = NULL;
2511 return ret;
2515 td->urb = urb;
2516 /* Add this TD to the tail of the endpoint ring's TD list */
2517 list_add_tail(&td->td_list, &ep_ring->td_list);
2518 td->start_seg = ep_ring->enq_seg;
2519 td->first_trb = ep_ring->enqueue;
2521 urb_priv->td[td_index] = td;
2523 return 0;
2526 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2528 int num_sgs, num_trbs, running_total, temp, i;
2529 struct scatterlist *sg;
2531 sg = NULL;
2532 num_sgs = urb->num_sgs;
2533 temp = urb->transfer_buffer_length;
2535 xhci_dbg(xhci, "count sg list trbs: \n");
2536 num_trbs = 0;
2537 for_each_sg(urb->sg, sg, num_sgs, i) {
2538 unsigned int previous_total_trbs = num_trbs;
2539 unsigned int len = sg_dma_len(sg);
2541 /* Scatter gather list entries may cross 64KB boundaries */
2542 running_total = TRB_MAX_BUFF_SIZE -
2543 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2544 running_total &= TRB_MAX_BUFF_SIZE - 1;
2545 if (running_total != 0)
2546 num_trbs++;
2548 /* How many more 64KB chunks to transfer, how many more TRBs? */
2549 while (running_total < sg_dma_len(sg) && running_total < temp) {
2550 num_trbs++;
2551 running_total += TRB_MAX_BUFF_SIZE;
2553 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2554 i, (unsigned long long)sg_dma_address(sg),
2555 len, len, num_trbs - previous_total_trbs);
2557 len = min_t(int, len, temp);
2558 temp -= len;
2559 if (temp == 0)
2560 break;
2562 xhci_dbg(xhci, "\n");
2563 if (!in_interrupt())
2564 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2565 "num_trbs = %d\n",
2566 urb->ep->desc.bEndpointAddress,
2567 urb->transfer_buffer_length,
2568 num_trbs);
2569 return num_trbs;
2572 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2574 if (num_trbs != 0)
2575 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2576 "TRBs, %d left\n", __func__,
2577 urb->ep->desc.bEndpointAddress, num_trbs);
2578 if (running_total != urb->transfer_buffer_length)
2579 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2580 "queued %#x (%d), asked for %#x (%d)\n",
2581 __func__,
2582 urb->ep->desc.bEndpointAddress,
2583 running_total, running_total,
2584 urb->transfer_buffer_length,
2585 urb->transfer_buffer_length);
2588 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2589 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2590 struct xhci_generic_trb *start_trb)
2593 * Pass all the TRBs to the hardware at once and make sure this write
2594 * isn't reordered.
2596 wmb();
2597 if (start_cycle)
2598 start_trb->field[3] |= cpu_to_le32(start_cycle);
2599 else
2600 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2601 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2605 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2606 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2607 * (comprised of sg list entries) can take several service intervals to
2608 * transmit.
2610 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2611 struct urb *urb, int slot_id, unsigned int ep_index)
2613 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2614 xhci->devs[slot_id]->out_ctx, ep_index);
2615 int xhci_interval;
2616 int ep_interval;
2618 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2619 ep_interval = urb->interval;
2620 /* Convert to microframes */
2621 if (urb->dev->speed == USB_SPEED_LOW ||
2622 urb->dev->speed == USB_SPEED_FULL)
2623 ep_interval *= 8;
2624 /* FIXME change this to a warning and a suggestion to use the new API
2625 * to set the polling interval (once the API is added).
2627 if (xhci_interval != ep_interval) {
2628 if (printk_ratelimit())
2629 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2630 " (%d microframe%s) than xHCI "
2631 "(%d microframe%s)\n",
2632 ep_interval,
2633 ep_interval == 1 ? "" : "s",
2634 xhci_interval,
2635 xhci_interval == 1 ? "" : "s");
2636 urb->interval = xhci_interval;
2637 /* Convert back to frames for LS/FS devices */
2638 if (urb->dev->speed == USB_SPEED_LOW ||
2639 urb->dev->speed == USB_SPEED_FULL)
2640 urb->interval /= 8;
2642 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2646 * The TD size is the number of bytes remaining in the TD (including this TRB),
2647 * right shifted by 10.
2648 * It must fit in bits 21:17, so it can't be bigger than 31.
2650 static u32 xhci_td_remainder(unsigned int remainder)
2652 u32 max = (1 << (21 - 17 + 1)) - 1;
2654 if ((remainder >> 10) >= max)
2655 return max << 17;
2656 else
2657 return (remainder >> 10) << 17;
2661 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2662 * the TD (*not* including this TRB).
2664 * Total TD packet count = total_packet_count =
2665 * roundup(TD size in bytes / wMaxPacketSize)
2667 * Packets transferred up to and including this TRB = packets_transferred =
2668 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2670 * TD size = total_packet_count - packets_transferred
2672 * It must fit in bits 21:17, so it can't be bigger than 31.
2675 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2676 unsigned int total_packet_count, struct urb *urb)
2678 int packets_transferred;
2680 /* All the TRB queueing functions don't count the current TRB in
2681 * running_total.
2683 packets_transferred = (running_total + trb_buff_len) /
2684 le16_to_cpu(urb->ep->desc.wMaxPacketSize);
2686 return xhci_td_remainder(total_packet_count - packets_transferred);
2689 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2690 struct urb *urb, int slot_id, unsigned int ep_index)
2692 struct xhci_ring *ep_ring;
2693 unsigned int num_trbs;
2694 struct urb_priv *urb_priv;
2695 struct xhci_td *td;
2696 struct scatterlist *sg;
2697 int num_sgs;
2698 int trb_buff_len, this_sg_len, running_total;
2699 unsigned int total_packet_count;
2700 bool first_trb;
2701 u64 addr;
2702 bool more_trbs_coming;
2704 struct xhci_generic_trb *start_trb;
2705 int start_cycle;
2707 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2708 if (!ep_ring)
2709 return -EINVAL;
2711 num_trbs = count_sg_trbs_needed(xhci, urb);
2712 num_sgs = urb->num_sgs;
2713 total_packet_count = roundup(urb->transfer_buffer_length,
2714 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2716 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2717 ep_index, urb->stream_id,
2718 num_trbs, urb, 0, mem_flags);
2719 if (trb_buff_len < 0)
2720 return trb_buff_len;
2722 urb_priv = urb->hcpriv;
2723 td = urb_priv->td[0];
2726 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2727 * until we've finished creating all the other TRBs. The ring's cycle
2728 * state may change as we enqueue the other TRBs, so save it too.
2730 start_trb = &ep_ring->enqueue->generic;
2731 start_cycle = ep_ring->cycle_state;
2733 running_total = 0;
2735 * How much data is in the first TRB?
2737 * There are three forces at work for TRB buffer pointers and lengths:
2738 * 1. We don't want to walk off the end of this sg-list entry buffer.
2739 * 2. The transfer length that the driver requested may be smaller than
2740 * the amount of memory allocated for this scatter-gather list.
2741 * 3. TRBs buffers can't cross 64KB boundaries.
2743 sg = urb->sg;
2744 addr = (u64) sg_dma_address(sg);
2745 this_sg_len = sg_dma_len(sg);
2746 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2747 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2748 if (trb_buff_len > urb->transfer_buffer_length)
2749 trb_buff_len = urb->transfer_buffer_length;
2750 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2751 trb_buff_len);
2753 first_trb = true;
2754 /* Queue the first TRB, even if it's zero-length */
2755 do {
2756 u32 field = 0;
2757 u32 length_field = 0;
2758 u32 remainder = 0;
2760 /* Don't change the cycle bit of the first TRB until later */
2761 if (first_trb) {
2762 first_trb = false;
2763 if (start_cycle == 0)
2764 field |= 0x1;
2765 } else
2766 field |= ep_ring->cycle_state;
2768 /* Chain all the TRBs together; clear the chain bit in the last
2769 * TRB to indicate it's the last TRB in the chain.
2771 if (num_trbs > 1) {
2772 field |= TRB_CHAIN;
2773 } else {
2774 /* FIXME - add check for ZERO_PACKET flag before this */
2775 td->last_trb = ep_ring->enqueue;
2776 field |= TRB_IOC;
2779 /* Only set interrupt on short packet for IN endpoints */
2780 if (usb_urb_dir_in(urb))
2781 field |= TRB_ISP;
2783 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2784 "64KB boundary at %#x, end dma = %#x\n",
2785 (unsigned int) addr, trb_buff_len, trb_buff_len,
2786 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2787 (unsigned int) addr + trb_buff_len);
2788 if (TRB_MAX_BUFF_SIZE -
2789 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2790 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2791 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2792 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2793 (unsigned int) addr + trb_buff_len);
2796 /* Set the TRB length, TD size, and interrupter fields. */
2797 if (xhci->hci_version < 0x100) {
2798 remainder = xhci_td_remainder(
2799 urb->transfer_buffer_length -
2800 running_total);
2801 } else {
2802 remainder = xhci_v1_0_td_remainder(running_total,
2803 trb_buff_len, total_packet_count, urb);
2805 length_field = TRB_LEN(trb_buff_len) |
2806 remainder |
2807 TRB_INTR_TARGET(0);
2809 if (num_trbs > 1)
2810 more_trbs_coming = true;
2811 else
2812 more_trbs_coming = false;
2813 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2814 lower_32_bits(addr),
2815 upper_32_bits(addr),
2816 length_field,
2817 field | TRB_TYPE(TRB_NORMAL));
2818 --num_trbs;
2819 running_total += trb_buff_len;
2821 /* Calculate length for next transfer --
2822 * Are we done queueing all the TRBs for this sg entry?
2824 this_sg_len -= trb_buff_len;
2825 if (this_sg_len == 0) {
2826 --num_sgs;
2827 if (num_sgs == 0)
2828 break;
2829 sg = sg_next(sg);
2830 addr = (u64) sg_dma_address(sg);
2831 this_sg_len = sg_dma_len(sg);
2832 } else {
2833 addr += trb_buff_len;
2836 trb_buff_len = TRB_MAX_BUFF_SIZE -
2837 (addr & (TRB_MAX_BUFF_SIZE - 1));
2838 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2839 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2840 trb_buff_len =
2841 urb->transfer_buffer_length - running_total;
2842 } while (running_total < urb->transfer_buffer_length);
2844 check_trb_math(urb, num_trbs, running_total);
2845 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2846 start_cycle, start_trb);
2847 return 0;
2850 /* This is very similar to what ehci-q.c qtd_fill() does */
2851 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2852 struct urb *urb, int slot_id, unsigned int ep_index)
2854 struct xhci_ring *ep_ring;
2855 struct urb_priv *urb_priv;
2856 struct xhci_td *td;
2857 int num_trbs;
2858 struct xhci_generic_trb *start_trb;
2859 bool first_trb;
2860 bool more_trbs_coming;
2861 int start_cycle;
2862 u32 field, length_field;
2864 int running_total, trb_buff_len, ret;
2865 unsigned int total_packet_count;
2866 u64 addr;
2868 if (urb->num_sgs)
2869 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2871 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2872 if (!ep_ring)
2873 return -EINVAL;
2875 num_trbs = 0;
2876 /* How much data is (potentially) left before the 64KB boundary? */
2877 running_total = TRB_MAX_BUFF_SIZE -
2878 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2879 running_total &= TRB_MAX_BUFF_SIZE - 1;
2881 /* If there's some data on this 64KB chunk, or we have to send a
2882 * zero-length transfer, we need at least one TRB
2884 if (running_total != 0 || urb->transfer_buffer_length == 0)
2885 num_trbs++;
2886 /* How many more 64KB chunks to transfer, how many more TRBs? */
2887 while (running_total < urb->transfer_buffer_length) {
2888 num_trbs++;
2889 running_total += TRB_MAX_BUFF_SIZE;
2891 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2893 if (!in_interrupt())
2894 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2895 "addr = %#llx, num_trbs = %d\n",
2896 urb->ep->desc.bEndpointAddress,
2897 urb->transfer_buffer_length,
2898 urb->transfer_buffer_length,
2899 (unsigned long long)urb->transfer_dma,
2900 num_trbs);
2902 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2903 ep_index, urb->stream_id,
2904 num_trbs, urb, 0, mem_flags);
2905 if (ret < 0)
2906 return ret;
2908 urb_priv = urb->hcpriv;
2909 td = urb_priv->td[0];
2912 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2913 * until we've finished creating all the other TRBs. The ring's cycle
2914 * state may change as we enqueue the other TRBs, so save it too.
2916 start_trb = &ep_ring->enqueue->generic;
2917 start_cycle = ep_ring->cycle_state;
2919 running_total = 0;
2920 total_packet_count = roundup(urb->transfer_buffer_length,
2921 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2922 /* How much data is in the first TRB? */
2923 addr = (u64) urb->transfer_dma;
2924 trb_buff_len = TRB_MAX_BUFF_SIZE -
2925 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2926 if (trb_buff_len > urb->transfer_buffer_length)
2927 trb_buff_len = urb->transfer_buffer_length;
2929 first_trb = true;
2931 /* Queue the first TRB, even if it's zero-length */
2932 do {
2933 u32 remainder = 0;
2934 field = 0;
2936 /* Don't change the cycle bit of the first TRB until later */
2937 if (first_trb) {
2938 first_trb = false;
2939 if (start_cycle == 0)
2940 field |= 0x1;
2941 } else
2942 field |= ep_ring->cycle_state;
2944 /* Chain all the TRBs together; clear the chain bit in the last
2945 * TRB to indicate it's the last TRB in the chain.
2947 if (num_trbs > 1) {
2948 field |= TRB_CHAIN;
2949 } else {
2950 /* FIXME - add check for ZERO_PACKET flag before this */
2951 td->last_trb = ep_ring->enqueue;
2952 field |= TRB_IOC;
2955 /* Only set interrupt on short packet for IN endpoints */
2956 if (usb_urb_dir_in(urb))
2957 field |= TRB_ISP;
2959 /* Set the TRB length, TD size, and interrupter fields. */
2960 if (xhci->hci_version < 0x100) {
2961 remainder = xhci_td_remainder(
2962 urb->transfer_buffer_length -
2963 running_total);
2964 } else {
2965 remainder = xhci_v1_0_td_remainder(running_total,
2966 trb_buff_len, total_packet_count, urb);
2968 length_field = TRB_LEN(trb_buff_len) |
2969 remainder |
2970 TRB_INTR_TARGET(0);
2972 if (num_trbs > 1)
2973 more_trbs_coming = true;
2974 else
2975 more_trbs_coming = false;
2976 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2977 lower_32_bits(addr),
2978 upper_32_bits(addr),
2979 length_field,
2980 field | TRB_TYPE(TRB_NORMAL));
2981 --num_trbs;
2982 running_total += trb_buff_len;
2984 /* Calculate length for next transfer */
2985 addr += trb_buff_len;
2986 trb_buff_len = urb->transfer_buffer_length - running_total;
2987 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
2988 trb_buff_len = TRB_MAX_BUFF_SIZE;
2989 } while (running_total < urb->transfer_buffer_length);
2991 check_trb_math(urb, num_trbs, running_total);
2992 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2993 start_cycle, start_trb);
2994 return 0;
2997 /* Caller must have locked xhci->lock */
2998 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2999 struct urb *urb, int slot_id, unsigned int ep_index)
3001 struct xhci_ring *ep_ring;
3002 int num_trbs;
3003 int ret;
3004 struct usb_ctrlrequest *setup;
3005 struct xhci_generic_trb *start_trb;
3006 int start_cycle;
3007 u32 field, length_field;
3008 struct urb_priv *urb_priv;
3009 struct xhci_td *td;
3011 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3012 if (!ep_ring)
3013 return -EINVAL;
3016 * Need to copy setup packet into setup TRB, so we can't use the setup
3017 * DMA address.
3019 if (!urb->setup_packet)
3020 return -EINVAL;
3022 if (!in_interrupt())
3023 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3024 slot_id, ep_index);
3025 /* 1 TRB for setup, 1 for status */
3026 num_trbs = 2;
3028 * Don't need to check if we need additional event data and normal TRBs,
3029 * since data in control transfers will never get bigger than 16MB
3030 * XXX: can we get a buffer that crosses 64KB boundaries?
3032 if (urb->transfer_buffer_length > 0)
3033 num_trbs++;
3034 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3035 ep_index, urb->stream_id,
3036 num_trbs, urb, 0, mem_flags);
3037 if (ret < 0)
3038 return ret;
3040 urb_priv = urb->hcpriv;
3041 td = urb_priv->td[0];
3044 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3045 * until we've finished creating all the other TRBs. The ring's cycle
3046 * state may change as we enqueue the other TRBs, so save it too.
3048 start_trb = &ep_ring->enqueue->generic;
3049 start_cycle = ep_ring->cycle_state;
3051 /* Queue setup TRB - see section 6.4.1.2.1 */
3052 /* FIXME better way to translate setup_packet into two u32 fields? */
3053 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3054 field = 0;
3055 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3056 if (start_cycle == 0)
3057 field |= 0x1;
3059 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3060 if (xhci->hci_version == 0x100) {
3061 if (urb->transfer_buffer_length > 0) {
3062 if (setup->bRequestType & USB_DIR_IN)
3063 field |= TRB_TX_TYPE(TRB_DATA_IN);
3064 else
3065 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3069 queue_trb(xhci, ep_ring, false, true,
3070 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3071 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3072 TRB_LEN(8) | TRB_INTR_TARGET(0),
3073 /* Immediate data in pointer */
3074 field);
3076 /* If there's data, queue data TRBs */
3077 /* Only set interrupt on short packet for IN endpoints */
3078 if (usb_urb_dir_in(urb))
3079 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3080 else
3081 field = TRB_TYPE(TRB_DATA);
3083 length_field = TRB_LEN(urb->transfer_buffer_length) |
3084 xhci_td_remainder(urb->transfer_buffer_length) |
3085 TRB_INTR_TARGET(0);
3086 if (urb->transfer_buffer_length > 0) {
3087 if (setup->bRequestType & USB_DIR_IN)
3088 field |= TRB_DIR_IN;
3089 queue_trb(xhci, ep_ring, false, true,
3090 lower_32_bits(urb->transfer_dma),
3091 upper_32_bits(urb->transfer_dma),
3092 length_field,
3093 field | ep_ring->cycle_state);
3096 /* Save the DMA address of the last TRB in the TD */
3097 td->last_trb = ep_ring->enqueue;
3099 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3100 /* If the device sent data, the status stage is an OUT transfer */
3101 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3102 field = 0;
3103 else
3104 field = TRB_DIR_IN;
3105 queue_trb(xhci, ep_ring, false, false,
3108 TRB_INTR_TARGET(0),
3109 /* Event on completion */
3110 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3112 giveback_first_trb(xhci, slot_id, ep_index, 0,
3113 start_cycle, start_trb);
3114 return 0;
3117 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3118 struct urb *urb, int i)
3120 int num_trbs = 0;
3121 u64 addr, td_len, running_total;
3123 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3124 td_len = urb->iso_frame_desc[i].length;
3126 running_total = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3127 running_total &= TRB_MAX_BUFF_SIZE - 1;
3128 if (running_total != 0)
3129 num_trbs++;
3131 while (running_total < td_len) {
3132 num_trbs++;
3133 running_total += TRB_MAX_BUFF_SIZE;
3136 return num_trbs;
3140 * The transfer burst count field of the isochronous TRB defines the number of
3141 * bursts that are required to move all packets in this TD. Only SuperSpeed
3142 * devices can burst up to bMaxBurst number of packets per service interval.
3143 * This field is zero based, meaning a value of zero in the field means one
3144 * burst. Basically, for everything but SuperSpeed devices, this field will be
3145 * zero. Only xHCI 1.0 host controllers support this field.
3147 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3148 struct usb_device *udev,
3149 struct urb *urb, unsigned int total_packet_count)
3151 unsigned int max_burst;
3153 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3154 return 0;
3156 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3157 return roundup(total_packet_count, max_burst + 1) - 1;
3161 * Returns the number of packets in the last "burst" of packets. This field is
3162 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3163 * the last burst packet count is equal to the total number of packets in the
3164 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3165 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3166 * contain 1 to (bMaxBurst + 1) packets.
3168 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3169 struct usb_device *udev,
3170 struct urb *urb, unsigned int total_packet_count)
3172 unsigned int max_burst;
3173 unsigned int residue;
3175 if (xhci->hci_version < 0x100)
3176 return 0;
3178 switch (udev->speed) {
3179 case USB_SPEED_SUPER:
3180 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3181 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3182 residue = total_packet_count % (max_burst + 1);
3183 /* If residue is zero, the last burst contains (max_burst + 1)
3184 * number of packets, but the TLBPC field is zero-based.
3186 if (residue == 0)
3187 return max_burst;
3188 return residue - 1;
3189 default:
3190 if (total_packet_count == 0)
3191 return 0;
3192 return total_packet_count - 1;
3196 /* This is for isoc transfer */
3197 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3198 struct urb *urb, int slot_id, unsigned int ep_index)
3200 struct xhci_ring *ep_ring;
3201 struct urb_priv *urb_priv;
3202 struct xhci_td *td;
3203 int num_tds, trbs_per_td;
3204 struct xhci_generic_trb *start_trb;
3205 bool first_trb;
3206 int start_cycle;
3207 u32 field, length_field;
3208 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3209 u64 start_addr, addr;
3210 int i, j;
3211 bool more_trbs_coming;
3213 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3215 num_tds = urb->number_of_packets;
3216 if (num_tds < 1) {
3217 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3218 return -EINVAL;
3221 if (!in_interrupt())
3222 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3223 " addr = %#llx, num_tds = %d\n",
3224 urb->ep->desc.bEndpointAddress,
3225 urb->transfer_buffer_length,
3226 urb->transfer_buffer_length,
3227 (unsigned long long)urb->transfer_dma,
3228 num_tds);
3230 start_addr = (u64) urb->transfer_dma;
3231 start_trb = &ep_ring->enqueue->generic;
3232 start_cycle = ep_ring->cycle_state;
3234 /* Queue the first TRB, even if it's zero-length */
3235 for (i = 0; i < num_tds; i++) {
3236 unsigned int total_packet_count;
3237 unsigned int burst_count;
3238 unsigned int residue;
3240 first_trb = true;
3241 running_total = 0;
3242 addr = start_addr + urb->iso_frame_desc[i].offset;
3243 td_len = urb->iso_frame_desc[i].length;
3244 td_remain_len = td_len;
3245 /* FIXME: Ignoring zero-length packets, can those happen? */
3246 total_packet_count = roundup(td_len,
3247 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
3248 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3249 total_packet_count);
3250 residue = xhci_get_last_burst_packet_count(xhci,
3251 urb->dev, urb, total_packet_count);
3253 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3255 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3256 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3257 if (ret < 0)
3258 return ret;
3260 urb_priv = urb->hcpriv;
3261 td = urb_priv->td[i];
3263 for (j = 0; j < trbs_per_td; j++) {
3264 u32 remainder = 0;
3265 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3267 if (first_trb) {
3268 /* Queue the isoc TRB */
3269 field |= TRB_TYPE(TRB_ISOC);
3270 /* Assume URB_ISO_ASAP is set */
3271 field |= TRB_SIA;
3272 if (i == 0) {
3273 if (start_cycle == 0)
3274 field |= 0x1;
3275 } else
3276 field |= ep_ring->cycle_state;
3277 first_trb = false;
3278 } else {
3279 /* Queue other normal TRBs */
3280 field |= TRB_TYPE(TRB_NORMAL);
3281 field |= ep_ring->cycle_state;
3284 /* Only set interrupt on short packet for IN EPs */
3285 if (usb_urb_dir_in(urb))
3286 field |= TRB_ISP;
3288 /* Chain all the TRBs together; clear the chain bit in
3289 * the last TRB to indicate it's the last TRB in the
3290 * chain.
3292 if (j < trbs_per_td - 1) {
3293 field |= TRB_CHAIN;
3294 more_trbs_coming = true;
3295 } else {
3296 td->last_trb = ep_ring->enqueue;
3297 field |= TRB_IOC;
3298 if (xhci->hci_version == 0x100) {
3299 /* Set BEI bit except for the last td */
3300 if (i < num_tds - 1)
3301 field |= TRB_BEI;
3303 more_trbs_coming = false;
3306 /* Calculate TRB length */
3307 trb_buff_len = TRB_MAX_BUFF_SIZE -
3308 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3309 if (trb_buff_len > td_remain_len)
3310 trb_buff_len = td_remain_len;
3312 /* Set the TRB length, TD size, & interrupter fields. */
3313 if (xhci->hci_version < 0x100) {
3314 remainder = xhci_td_remainder(
3315 td_len - running_total);
3316 } else {
3317 remainder = xhci_v1_0_td_remainder(
3318 running_total, trb_buff_len,
3319 total_packet_count, urb);
3321 length_field = TRB_LEN(trb_buff_len) |
3322 remainder |
3323 TRB_INTR_TARGET(0);
3325 queue_trb(xhci, ep_ring, false, more_trbs_coming,
3326 lower_32_bits(addr),
3327 upper_32_bits(addr),
3328 length_field,
3329 field);
3330 running_total += trb_buff_len;
3332 addr += trb_buff_len;
3333 td_remain_len -= trb_buff_len;
3336 /* Check TD length */
3337 if (running_total != td_len) {
3338 xhci_err(xhci, "ISOC TD length unmatch\n");
3339 return -EINVAL;
3343 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3344 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3345 usb_amd_quirk_pll_disable();
3347 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3349 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3350 start_cycle, start_trb);
3351 return 0;
3355 * Check transfer ring to guarantee there is enough room for the urb.
3356 * Update ISO URB start_frame and interval.
3357 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3358 * update the urb->start_frame by now.
3359 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3361 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3362 struct urb *urb, int slot_id, unsigned int ep_index)
3364 struct xhci_virt_device *xdev;
3365 struct xhci_ring *ep_ring;
3366 struct xhci_ep_ctx *ep_ctx;
3367 int start_frame;
3368 int xhci_interval;
3369 int ep_interval;
3370 int num_tds, num_trbs, i;
3371 int ret;
3373 xdev = xhci->devs[slot_id];
3374 ep_ring = xdev->eps[ep_index].ring;
3375 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3377 num_trbs = 0;
3378 num_tds = urb->number_of_packets;
3379 for (i = 0; i < num_tds; i++)
3380 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3382 /* Check the ring to guarantee there is enough room for the whole urb.
3383 * Do not insert any td of the urb to the ring if the check failed.
3385 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3386 num_trbs, mem_flags);
3387 if (ret)
3388 return ret;
3390 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3391 start_frame &= 0x3fff;
3393 urb->start_frame = start_frame;
3394 if (urb->dev->speed == USB_SPEED_LOW ||
3395 urb->dev->speed == USB_SPEED_FULL)
3396 urb->start_frame >>= 3;
3398 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3399 ep_interval = urb->interval;
3400 /* Convert to microframes */
3401 if (urb->dev->speed == USB_SPEED_LOW ||
3402 urb->dev->speed == USB_SPEED_FULL)
3403 ep_interval *= 8;
3404 /* FIXME change this to a warning and a suggestion to use the new API
3405 * to set the polling interval (once the API is added).
3407 if (xhci_interval != ep_interval) {
3408 if (printk_ratelimit())
3409 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3410 " (%d microframe%s) than xHCI "
3411 "(%d microframe%s)\n",
3412 ep_interval,
3413 ep_interval == 1 ? "" : "s",
3414 xhci_interval,
3415 xhci_interval == 1 ? "" : "s");
3416 urb->interval = xhci_interval;
3417 /* Convert back to frames for LS/FS devices */
3418 if (urb->dev->speed == USB_SPEED_LOW ||
3419 urb->dev->speed == USB_SPEED_FULL)
3420 urb->interval /= 8;
3422 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3425 /**** Command Ring Operations ****/
3427 /* Generic function for queueing a command TRB on the command ring.
3428 * Check to make sure there's room on the command ring for one command TRB.
3429 * Also check that there's room reserved for commands that must not fail.
3430 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3431 * then only check for the number of reserved spots.
3432 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3433 * because the command event handler may want to resubmit a failed command.
3435 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3436 u32 field3, u32 field4, bool command_must_succeed)
3438 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3439 int ret;
3441 if (!command_must_succeed)
3442 reserved_trbs++;
3444 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3445 reserved_trbs, GFP_ATOMIC);
3446 if (ret < 0) {
3447 xhci_err(xhci, "ERR: No room for command on command ring\n");
3448 if (command_must_succeed)
3449 xhci_err(xhci, "ERR: Reserved TRB counting for "
3450 "unfailable commands failed.\n");
3451 return ret;
3453 queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3,
3454 field4 | xhci->cmd_ring->cycle_state);
3455 return 0;
3458 /* Queue a slot enable or disable request on the command ring */
3459 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3461 return queue_command(xhci, 0, 0, 0,
3462 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3465 /* Queue an address device command TRB */
3466 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3467 u32 slot_id)
3469 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3470 upper_32_bits(in_ctx_ptr), 0,
3471 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3472 false);
3475 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3476 u32 field1, u32 field2, u32 field3, u32 field4)
3478 return queue_command(xhci, field1, field2, field3, field4, false);
3481 /* Queue a reset device command TRB */
3482 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3484 return queue_command(xhci, 0, 0, 0,
3485 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3486 false);
3489 /* Queue a configure endpoint command TRB */
3490 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3491 u32 slot_id, bool command_must_succeed)
3493 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3494 upper_32_bits(in_ctx_ptr), 0,
3495 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3496 command_must_succeed);
3499 /* Queue an evaluate context command TRB */
3500 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3501 u32 slot_id)
3503 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3504 upper_32_bits(in_ctx_ptr), 0,
3505 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3506 false);
3510 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3511 * activity on an endpoint that is about to be suspended.
3513 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3514 unsigned int ep_index, int suspend)
3516 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3517 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3518 u32 type = TRB_TYPE(TRB_STOP_RING);
3519 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3521 return queue_command(xhci, 0, 0, 0,
3522 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3525 /* Set Transfer Ring Dequeue Pointer command.
3526 * This should not be used for endpoints that have streams enabled.
3528 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3529 unsigned int ep_index, unsigned int stream_id,
3530 struct xhci_segment *deq_seg,
3531 union xhci_trb *deq_ptr, u32 cycle_state)
3533 dma_addr_t addr;
3534 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3535 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3536 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3537 u32 type = TRB_TYPE(TRB_SET_DEQ);
3538 struct xhci_virt_ep *ep;
3540 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3541 if (addr == 0) {
3542 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3543 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3544 deq_seg, deq_ptr);
3545 return 0;
3547 ep = &xhci->devs[slot_id]->eps[ep_index];
3548 if ((ep->ep_state & SET_DEQ_PENDING)) {
3549 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3550 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3551 return 0;
3553 ep->queued_deq_seg = deq_seg;
3554 ep->queued_deq_ptr = deq_ptr;
3555 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3556 upper_32_bits(addr), trb_stream_id,
3557 trb_slot_id | trb_ep_index | type, false);
3560 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3561 unsigned int ep_index)
3563 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3564 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3565 u32 type = TRB_TYPE(TRB_RESET_EP);
3567 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3568 false);