Linux 2.6.16.55
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / workqueue.c
blobb052e2c4c71053720e87606e20924cfec5f3f27c
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
32 * The per-CPU workqueue (if single thread, we always use the first
33 * possible cpu).
35 * The sequence counters are for flush_scheduled_work(). It wants to wait
36 * until until all currently-scheduled works are completed, but it doesn't
37 * want to be livelocked by new, incoming ones. So it waits until
38 * remove_sequence is >= the insert_sequence which pertained when
39 * flush_scheduled_work() was called.
41 struct cpu_workqueue_struct {
43 spinlock_t lock;
45 long remove_sequence; /* Least-recently added (next to run) */
46 long insert_sequence; /* Next to add */
48 struct list_head worklist;
49 wait_queue_head_t more_work;
50 wait_queue_head_t work_done;
52 struct workqueue_struct *wq;
53 task_t *thread;
55 int run_depth; /* Detect run_workqueue() recursion depth */
56 } ____cacheline_aligned;
59 * The externally visible workqueue abstraction is an array of
60 * per-CPU workqueues:
62 struct workqueue_struct {
63 struct cpu_workqueue_struct *cpu_wq;
64 const char *name;
65 struct list_head list; /* Empty if single thread */
68 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
69 threads to each one as cpus come/go. */
70 static DEFINE_SPINLOCK(workqueue_lock);
71 static LIST_HEAD(workqueues);
73 static int singlethread_cpu;
75 /* If it's single threaded, it isn't in the list of workqueues. */
76 static inline int is_single_threaded(struct workqueue_struct *wq)
78 return list_empty(&wq->list);
81 /* Preempt must be disabled. */
82 static void __queue_work(struct cpu_workqueue_struct *cwq,
83 struct work_struct *work)
85 unsigned long flags;
87 spin_lock_irqsave(&cwq->lock, flags);
88 work->wq_data = cwq;
89 list_add_tail(&work->entry, &cwq->worklist);
90 cwq->insert_sequence++;
91 wake_up(&cwq->more_work);
92 spin_unlock_irqrestore(&cwq->lock, flags);
96 * Queue work on a workqueue. Return non-zero if it was successfully
97 * added.
99 * We queue the work to the CPU it was submitted, but there is no
100 * guarantee that it will be processed by that CPU.
102 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
104 int ret = 0, cpu = get_cpu();
106 if (!test_and_set_bit(0, &work->pending)) {
107 if (unlikely(is_single_threaded(wq)))
108 cpu = singlethread_cpu;
109 BUG_ON(!list_empty(&work->entry));
110 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
111 ret = 1;
113 put_cpu();
114 return ret;
117 static void delayed_work_timer_fn(unsigned long __data)
119 struct work_struct *work = (struct work_struct *)__data;
120 struct workqueue_struct *wq = work->wq_data;
121 int cpu = smp_processor_id();
123 if (unlikely(is_single_threaded(wq)))
124 cpu = singlethread_cpu;
126 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
129 int fastcall queue_delayed_work(struct workqueue_struct *wq,
130 struct work_struct *work, unsigned long delay)
132 int ret = 0;
133 struct timer_list *timer = &work->timer;
135 if (!test_and_set_bit(0, &work->pending)) {
136 BUG_ON(timer_pending(timer));
137 BUG_ON(!list_empty(&work->entry));
139 /* This stores wq for the moment, for the timer_fn */
140 work->wq_data = wq;
141 timer->expires = jiffies + delay;
142 timer->data = (unsigned long)work;
143 timer->function = delayed_work_timer_fn;
144 add_timer(timer);
145 ret = 1;
147 return ret;
150 static void run_workqueue(struct cpu_workqueue_struct *cwq)
152 unsigned long flags;
155 * Keep taking off work from the queue until
156 * done.
158 spin_lock_irqsave(&cwq->lock, flags);
159 cwq->run_depth++;
160 if (cwq->run_depth > 3) {
161 /* morton gets to eat his hat */
162 printk("%s: recursion depth exceeded: %d\n",
163 __FUNCTION__, cwq->run_depth);
164 dump_stack();
166 while (!list_empty(&cwq->worklist)) {
167 struct work_struct *work = list_entry(cwq->worklist.next,
168 struct work_struct, entry);
169 void (*f) (void *) = work->func;
170 void *data = work->data;
172 list_del_init(cwq->worklist.next);
173 spin_unlock_irqrestore(&cwq->lock, flags);
175 BUG_ON(work->wq_data != cwq);
176 clear_bit(0, &work->pending);
177 f(data);
179 spin_lock_irqsave(&cwq->lock, flags);
180 cwq->remove_sequence++;
181 wake_up(&cwq->work_done);
183 cwq->run_depth--;
184 spin_unlock_irqrestore(&cwq->lock, flags);
187 static int worker_thread(void *__cwq)
189 struct cpu_workqueue_struct *cwq = __cwq;
190 DECLARE_WAITQUEUE(wait, current);
191 struct k_sigaction sa;
192 sigset_t blocked;
194 current->flags |= PF_NOFREEZE;
196 set_user_nice(current, -5);
198 /* Block and flush all signals */
199 sigfillset(&blocked);
200 sigprocmask(SIG_BLOCK, &blocked, NULL);
201 flush_signals(current);
203 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
204 sa.sa.sa_handler = SIG_IGN;
205 sa.sa.sa_flags = 0;
206 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
207 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
209 set_current_state(TASK_INTERRUPTIBLE);
210 while (!kthread_should_stop()) {
211 add_wait_queue(&cwq->more_work, &wait);
212 if (list_empty(&cwq->worklist))
213 schedule();
214 else
215 __set_current_state(TASK_RUNNING);
216 remove_wait_queue(&cwq->more_work, &wait);
218 if (!list_empty(&cwq->worklist))
219 run_workqueue(cwq);
220 set_current_state(TASK_INTERRUPTIBLE);
222 __set_current_state(TASK_RUNNING);
223 return 0;
226 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
228 if (cwq->thread == current) {
230 * Probably keventd trying to flush its own queue. So simply run
231 * it by hand rather than deadlocking.
233 run_workqueue(cwq);
234 } else {
235 DEFINE_WAIT(wait);
236 long sequence_needed;
238 spin_lock_irq(&cwq->lock);
239 sequence_needed = cwq->insert_sequence;
241 while (sequence_needed - cwq->remove_sequence > 0) {
242 prepare_to_wait(&cwq->work_done, &wait,
243 TASK_UNINTERRUPTIBLE);
244 spin_unlock_irq(&cwq->lock);
245 schedule();
246 spin_lock_irq(&cwq->lock);
248 finish_wait(&cwq->work_done, &wait);
249 spin_unlock_irq(&cwq->lock);
254 * flush_workqueue - ensure that any scheduled work has run to completion.
256 * Forces execution of the workqueue and blocks until its completion.
257 * This is typically used in driver shutdown handlers.
259 * This function will sample each workqueue's current insert_sequence number and
260 * will sleep until the head sequence is greater than or equal to that. This
261 * means that we sleep until all works which were queued on entry have been
262 * handled, but we are not livelocked by new incoming ones.
264 * This function used to run the workqueues itself. Now we just wait for the
265 * helper threads to do it.
267 void fastcall flush_workqueue(struct workqueue_struct *wq)
269 might_sleep();
271 if (is_single_threaded(wq)) {
272 /* Always use first cpu's area. */
273 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
274 } else {
275 int cpu;
277 lock_cpu_hotplug();
278 for_each_online_cpu(cpu)
279 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
280 unlock_cpu_hotplug();
284 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
285 int cpu)
287 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
288 struct task_struct *p;
290 spin_lock_init(&cwq->lock);
291 cwq->wq = wq;
292 cwq->thread = NULL;
293 cwq->insert_sequence = 0;
294 cwq->remove_sequence = 0;
295 INIT_LIST_HEAD(&cwq->worklist);
296 init_waitqueue_head(&cwq->more_work);
297 init_waitqueue_head(&cwq->work_done);
299 if (is_single_threaded(wq))
300 p = kthread_create(worker_thread, cwq, "%s", wq->name);
301 else
302 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
303 if (IS_ERR(p))
304 return NULL;
305 cwq->thread = p;
306 return p;
309 struct workqueue_struct *__create_workqueue(const char *name,
310 int singlethread)
312 int cpu, destroy = 0;
313 struct workqueue_struct *wq;
314 struct task_struct *p;
316 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
317 if (!wq)
318 return NULL;
320 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
321 if (!wq->cpu_wq) {
322 kfree(wq);
323 return NULL;
326 wq->name = name;
327 /* We don't need the distraction of CPUs appearing and vanishing. */
328 lock_cpu_hotplug();
329 if (singlethread) {
330 INIT_LIST_HEAD(&wq->list);
331 p = create_workqueue_thread(wq, singlethread_cpu);
332 if (!p)
333 destroy = 1;
334 else
335 wake_up_process(p);
336 } else {
337 spin_lock(&workqueue_lock);
338 list_add(&wq->list, &workqueues);
339 spin_unlock(&workqueue_lock);
340 for_each_online_cpu(cpu) {
341 p = create_workqueue_thread(wq, cpu);
342 if (p) {
343 kthread_bind(p, cpu);
344 wake_up_process(p);
345 } else
346 destroy = 1;
349 unlock_cpu_hotplug();
352 * Was there any error during startup? If yes then clean up:
354 if (destroy) {
355 destroy_workqueue(wq);
356 wq = NULL;
358 return wq;
361 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
363 struct cpu_workqueue_struct *cwq;
364 unsigned long flags;
365 struct task_struct *p;
367 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
368 spin_lock_irqsave(&cwq->lock, flags);
369 p = cwq->thread;
370 cwq->thread = NULL;
371 spin_unlock_irqrestore(&cwq->lock, flags);
372 if (p)
373 kthread_stop(p);
376 void destroy_workqueue(struct workqueue_struct *wq)
378 int cpu;
380 flush_workqueue(wq);
382 /* We don't need the distraction of CPUs appearing and vanishing. */
383 lock_cpu_hotplug();
384 if (is_single_threaded(wq))
385 cleanup_workqueue_thread(wq, singlethread_cpu);
386 else {
387 for_each_online_cpu(cpu)
388 cleanup_workqueue_thread(wq, cpu);
389 spin_lock(&workqueue_lock);
390 list_del(&wq->list);
391 spin_unlock(&workqueue_lock);
393 unlock_cpu_hotplug();
394 free_percpu(wq->cpu_wq);
395 kfree(wq);
398 static struct workqueue_struct *keventd_wq;
400 int fastcall schedule_work(struct work_struct *work)
402 return queue_work(keventd_wq, work);
405 int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
407 return queue_delayed_work(keventd_wq, work, delay);
410 int schedule_delayed_work_on(int cpu,
411 struct work_struct *work, unsigned long delay)
413 int ret = 0;
414 struct timer_list *timer = &work->timer;
416 if (!test_and_set_bit(0, &work->pending)) {
417 BUG_ON(timer_pending(timer));
418 BUG_ON(!list_empty(&work->entry));
419 /* This stores keventd_wq for the moment, for the timer_fn */
420 work->wq_data = keventd_wq;
421 timer->expires = jiffies + delay;
422 timer->data = (unsigned long)work;
423 timer->function = delayed_work_timer_fn;
424 add_timer_on(timer, cpu);
425 ret = 1;
427 return ret;
430 int schedule_on_each_cpu(void (*func) (void *info), void *info)
432 int cpu;
433 struct work_struct *work;
435 work = kmalloc(NR_CPUS * sizeof(struct work_struct), GFP_KERNEL);
437 if (!work)
438 return -ENOMEM;
439 for_each_online_cpu(cpu) {
440 INIT_WORK(work + cpu, func, info);
441 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
442 work + cpu);
444 flush_workqueue(keventd_wq);
445 kfree(work);
446 return 0;
449 void flush_scheduled_work(void)
451 flush_workqueue(keventd_wq);
455 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
456 * work whose handler rearms the delayed work.
457 * @wq: the controlling workqueue structure
458 * @work: the delayed work struct
460 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
461 struct work_struct *work)
463 while (!cancel_delayed_work(work))
464 flush_workqueue(wq);
466 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
469 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
470 * work whose handler rearms the delayed work.
471 * @work: the delayed work struct
473 void cancel_rearming_delayed_work(struct work_struct *work)
475 cancel_rearming_delayed_workqueue(keventd_wq, work);
477 EXPORT_SYMBOL(cancel_rearming_delayed_work);
479 int keventd_up(void)
481 return keventd_wq != NULL;
484 int current_is_keventd(void)
486 struct cpu_workqueue_struct *cwq;
487 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
488 int ret = 0;
490 BUG_ON(!keventd_wq);
492 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
493 if (current == cwq->thread)
494 ret = 1;
496 return ret;
500 #ifdef CONFIG_HOTPLUG_CPU
501 /* Take the work from this (downed) CPU. */
502 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
504 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
505 LIST_HEAD(list);
506 struct work_struct *work;
508 spin_lock_irq(&cwq->lock);
509 list_splice_init(&cwq->worklist, &list);
511 while (!list_empty(&list)) {
512 printk("Taking work for %s\n", wq->name);
513 work = list_entry(list.next,struct work_struct,entry);
514 list_del(&work->entry);
515 __queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
517 spin_unlock_irq(&cwq->lock);
520 /* We're holding the cpucontrol mutex here */
521 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
522 unsigned long action,
523 void *hcpu)
525 unsigned int hotcpu = (unsigned long)hcpu;
526 struct workqueue_struct *wq;
528 switch (action) {
529 case CPU_UP_PREPARE:
530 /* Create a new workqueue thread for it. */
531 list_for_each_entry(wq, &workqueues, list) {
532 if (!create_workqueue_thread(wq, hotcpu)) {
533 printk("workqueue for %i failed\n", hotcpu);
534 return NOTIFY_BAD;
537 break;
539 case CPU_ONLINE:
540 /* Kick off worker threads. */
541 list_for_each_entry(wq, &workqueues, list) {
542 struct cpu_workqueue_struct *cwq;
544 cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
545 kthread_bind(cwq->thread, hotcpu);
546 wake_up_process(cwq->thread);
548 break;
550 case CPU_UP_CANCELED:
551 list_for_each_entry(wq, &workqueues, list) {
552 /* Unbind so it can run. */
553 kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
554 any_online_cpu(cpu_online_map));
555 cleanup_workqueue_thread(wq, hotcpu);
557 break;
559 case CPU_DEAD:
560 list_for_each_entry(wq, &workqueues, list)
561 cleanup_workqueue_thread(wq, hotcpu);
562 list_for_each_entry(wq, &workqueues, list)
563 take_over_work(wq, hotcpu);
564 break;
567 return NOTIFY_OK;
569 #endif
571 void init_workqueues(void)
573 singlethread_cpu = first_cpu(cpu_possible_map);
574 hotcpu_notifier(workqueue_cpu_callback, 0);
575 keventd_wq = create_workqueue("events");
576 BUG_ON(!keventd_wq);
579 EXPORT_SYMBOL_GPL(__create_workqueue);
580 EXPORT_SYMBOL_GPL(queue_work);
581 EXPORT_SYMBOL_GPL(queue_delayed_work);
582 EXPORT_SYMBOL_GPL(flush_workqueue);
583 EXPORT_SYMBOL_GPL(destroy_workqueue);
585 EXPORT_SYMBOL(schedule_work);
586 EXPORT_SYMBOL(schedule_delayed_work);
587 EXPORT_SYMBOL(schedule_delayed_work_on);
588 EXPORT_SYMBOL(flush_scheduled_work);