Linux 2.6.16.55
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / acpi / processor_idle.c
blobeb730a80952c6bc58c0cf3b0be80b9daf4aaf993
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
48 #define ACPI_PROCESSOR_COMPONENT 0x01000000
49 #define ACPI_PROCESSOR_CLASS "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
51 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER "power"
54 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void);
58 module_param(max_cstate, uint, 0644);
60 static unsigned int nocst = 0;
61 module_param(nocst, uint, 0000);
64 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68 * reduce history for more aggressive entry into C3
70 static unsigned int bm_history =
71 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74 Power Management
75 -------------------------------------------------------------------------- */
78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79 * For now disable this. Probably a bug somewhere else.
81 * To skip this limit, boot/load with a large max_cstate limit.
83 static int set_max_cstate(struct dmi_system_id *id)
85 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 return 0;
88 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
92 max_cstate = (long)id->driver_data;
94 return 0;
97 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
98 callers to only run once -AK */
99 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
100 { set_max_cstate, "IBM ThinkPad R40e", {
101 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
102 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
103 { set_max_cstate, "IBM ThinkPad R40e", {
104 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
105 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
106 { set_max_cstate, "IBM ThinkPad R40e", {
107 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
108 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
109 { set_max_cstate, "IBM ThinkPad R40e", {
110 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
111 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
112 { set_max_cstate, "IBM ThinkPad R40e", {
113 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
114 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
115 { set_max_cstate, "IBM ThinkPad R40e", {
116 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
117 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
118 { set_max_cstate, "IBM ThinkPad R40e", {
119 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
120 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
121 { set_max_cstate, "IBM ThinkPad R40e", {
122 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
123 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
124 { set_max_cstate, "IBM ThinkPad R40e", {
125 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
126 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
127 { set_max_cstate, "IBM ThinkPad R40e", {
128 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
129 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
130 { set_max_cstate, "IBM ThinkPad R40e", {
131 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
132 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
133 { set_max_cstate, "IBM ThinkPad R40e", {
134 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
135 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
136 { set_max_cstate, "IBM ThinkPad R40e", {
137 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
138 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
139 { set_max_cstate, "IBM ThinkPad R40e", {
140 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
141 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
142 { set_max_cstate, "IBM ThinkPad R40e", {
143 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
144 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
145 { set_max_cstate, "Medion 41700", {
146 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
147 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
148 { set_max_cstate, "Clevo 5600D", {
149 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
150 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
151 (void *)2},
155 static inline u32 ticks_elapsed(u32 t1, u32 t2)
157 if (t2 >= t1)
158 return (t2 - t1);
159 else if (!acpi_fadt.tmr_val_ext)
160 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
161 else
162 return ((0xFFFFFFFF - t1) + t2);
165 static void
166 acpi_processor_power_activate(struct acpi_processor *pr,
167 struct acpi_processor_cx *new)
169 struct acpi_processor_cx *old;
171 if (!pr || !new)
172 return;
174 old = pr->power.state;
176 if (old)
177 old->promotion.count = 0;
178 new->demotion.count = 0;
180 /* Cleanup from old state. */
181 if (old) {
182 switch (old->type) {
183 case ACPI_STATE_C3:
184 /* Disable bus master reload */
185 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
186 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
187 ACPI_MTX_DO_NOT_LOCK);
188 break;
192 /* Prepare to use new state. */
193 switch (new->type) {
194 case ACPI_STATE_C3:
195 /* Enable bus master reload */
196 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
197 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
198 ACPI_MTX_DO_NOT_LOCK);
199 break;
202 pr->power.state = new;
204 return;
207 static void acpi_safe_halt(void)
209 clear_thread_flag(TIF_POLLING_NRFLAG);
210 smp_mb__after_clear_bit();
211 if (!need_resched())
212 safe_halt();
213 set_thread_flag(TIF_POLLING_NRFLAG);
216 static atomic_t c3_cpu_count;
218 static void acpi_processor_idle(void)
220 struct acpi_processor *pr = NULL;
221 struct acpi_processor_cx *cx = NULL;
222 struct acpi_processor_cx *next_state = NULL;
223 int sleep_ticks = 0;
224 u32 t1, t2 = 0;
226 pr = processors[smp_processor_id()];
227 if (!pr)
228 return;
231 * Interrupts must be disabled during bus mastering calculations and
232 * for C2/C3 transitions.
234 local_irq_disable();
237 * Check whether we truly need to go idle, or should
238 * reschedule:
240 if (unlikely(need_resched())) {
241 local_irq_enable();
242 return;
245 cx = pr->power.state;
246 if (!cx) {
247 if (pm_idle_save)
248 pm_idle_save();
249 else
250 acpi_safe_halt();
251 return;
255 * Check BM Activity
256 * -----------------
257 * Check for bus mastering activity (if required), record, and check
258 * for demotion.
260 if (pr->flags.bm_check) {
261 u32 bm_status = 0;
262 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
264 if (diff > 32)
265 diff = 32;
267 while (diff) {
268 /* if we didn't get called, assume there was busmaster activity */
269 diff--;
270 if (diff)
271 pr->power.bm_activity |= 0x1;
272 pr->power.bm_activity <<= 1;
275 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
276 &bm_status, ACPI_MTX_DO_NOT_LOCK);
277 if (bm_status) {
278 pr->power.bm_activity++;
279 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
280 1, ACPI_MTX_DO_NOT_LOCK);
283 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
284 * the true state of bus mastering activity; forcing us to
285 * manually check the BMIDEA bit of each IDE channel.
287 else if (errata.piix4.bmisx) {
288 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
289 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
290 pr->power.bm_activity++;
293 pr->power.bm_check_timestamp = jiffies;
296 * Apply bus mastering demotion policy. Automatically demote
297 * to avoid a faulty transition. Note that the processor
298 * won't enter a low-power state during this call (to this
299 * funciton) but should upon the next.
301 * TBD: A better policy might be to fallback to the demotion
302 * state (use it for this quantum only) istead of
303 * demoting -- and rely on duration as our sole demotion
304 * qualification. This may, however, introduce DMA
305 * issues (e.g. floppy DMA transfer overrun/underrun).
307 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
308 local_irq_enable();
309 next_state = cx->demotion.state;
310 goto end;
314 #ifdef CONFIG_HOTPLUG_CPU
316 * Check for P_LVL2_UP flag before entering C2 and above on
317 * an SMP system. We do it here instead of doing it at _CST/P_LVL
318 * detection phase, to work cleanly with logical CPU hotplug.
320 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
321 !pr->flags.has_cst && !acpi_fadt.plvl2_up)
322 cx = &pr->power.states[ACPI_STATE_C1];
323 #endif
325 cx->usage++;
328 * Sleep:
329 * ------
330 * Invoke the current Cx state to put the processor to sleep.
332 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
333 clear_thread_flag(TIF_POLLING_NRFLAG);
334 smp_mb__after_clear_bit();
335 if (need_resched()) {
336 set_thread_flag(TIF_POLLING_NRFLAG);
337 local_irq_enable();
338 return;
342 switch (cx->type) {
344 case ACPI_STATE_C1:
346 * Invoke C1.
347 * Use the appropriate idle routine, the one that would
348 * be used without acpi C-states.
350 if (pm_idle_save)
351 pm_idle_save();
352 else
353 acpi_safe_halt();
356 * TBD: Can't get time duration while in C1, as resumes
357 * go to an ISR rather than here. Need to instrument
358 * base interrupt handler.
360 sleep_ticks = 0xFFFFFFFF;
361 break;
363 case ACPI_STATE_C2:
364 /* Get start time (ticks) */
365 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
366 /* Invoke C2 */
367 inb(cx->address);
368 /* Dummy op - must do something useless after P_LVL2 read */
369 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
370 /* Get end time (ticks) */
371 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
372 /* Re-enable interrupts */
373 local_irq_enable();
374 set_thread_flag(TIF_POLLING_NRFLAG);
375 /* Compute time (ticks) that we were actually asleep */
376 sleep_ticks =
377 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
378 break;
380 case ACPI_STATE_C3:
382 if (pr->flags.bm_check) {
383 if (atomic_inc_return(&c3_cpu_count) ==
384 num_online_cpus()) {
386 * All CPUs are trying to go to C3
387 * Disable bus master arbitration
389 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
390 ACPI_MTX_DO_NOT_LOCK);
392 } else {
393 /* SMP with no shared cache... Invalidate cache */
394 ACPI_FLUSH_CPU_CACHE();
397 /* Get start time (ticks) */
398 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
399 /* Invoke C3 */
400 inb(cx->address);
401 /* Dummy op - must do something useless after P_LVL3 read */
402 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
403 /* Get end time (ticks) */
404 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
405 if (pr->flags.bm_check) {
406 /* Enable bus master arbitration */
407 atomic_dec(&c3_cpu_count);
408 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
409 ACPI_MTX_DO_NOT_LOCK);
412 /* Re-enable interrupts */
413 local_irq_enable();
414 set_thread_flag(TIF_POLLING_NRFLAG);
415 /* Compute time (ticks) that we were actually asleep */
416 sleep_ticks =
417 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
418 break;
420 default:
421 local_irq_enable();
422 return;
425 next_state = pr->power.state;
427 #ifdef CONFIG_HOTPLUG_CPU
428 /* Don't do promotion/demotion */
429 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
430 !pr->flags.has_cst && !acpi_fadt.plvl2_up) {
431 next_state = cx;
432 goto end;
434 #endif
437 * Promotion?
438 * ----------
439 * Track the number of longs (time asleep is greater than threshold)
440 * and promote when the count threshold is reached. Note that bus
441 * mastering activity may prevent promotions.
442 * Do not promote above max_cstate.
444 if (cx->promotion.state &&
445 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
446 if (sleep_ticks > cx->promotion.threshold.ticks) {
447 cx->promotion.count++;
448 cx->demotion.count = 0;
449 if (cx->promotion.count >=
450 cx->promotion.threshold.count) {
451 if (pr->flags.bm_check) {
452 if (!
453 (pr->power.bm_activity & cx->
454 promotion.threshold.bm)) {
455 next_state =
456 cx->promotion.state;
457 goto end;
459 } else {
460 next_state = cx->promotion.state;
461 goto end;
468 * Demotion?
469 * ---------
470 * Track the number of shorts (time asleep is less than time threshold)
471 * and demote when the usage threshold is reached.
473 if (cx->demotion.state) {
474 if (sleep_ticks < cx->demotion.threshold.ticks) {
475 cx->demotion.count++;
476 cx->promotion.count = 0;
477 if (cx->demotion.count >= cx->demotion.threshold.count) {
478 next_state = cx->demotion.state;
479 goto end;
484 end:
486 * Demote if current state exceeds max_cstate
488 if ((pr->power.state - pr->power.states) > max_cstate) {
489 if (cx->demotion.state)
490 next_state = cx->demotion.state;
494 * New Cx State?
495 * -------------
496 * If we're going to start using a new Cx state we must clean up
497 * from the previous and prepare to use the new.
499 if (next_state != pr->power.state)
500 acpi_processor_power_activate(pr, next_state);
503 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
505 unsigned int i;
506 unsigned int state_is_set = 0;
507 struct acpi_processor_cx *lower = NULL;
508 struct acpi_processor_cx *higher = NULL;
509 struct acpi_processor_cx *cx;
511 ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
513 if (!pr)
514 return_VALUE(-EINVAL);
517 * This function sets the default Cx state policy (OS idle handler).
518 * Our scheme is to promote quickly to C2 but more conservatively
519 * to C3. We're favoring C2 for its characteristics of low latency
520 * (quick response), good power savings, and ability to allow bus
521 * mastering activity. Note that the Cx state policy is completely
522 * customizable and can be altered dynamically.
525 /* startup state */
526 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
527 cx = &pr->power.states[i];
528 if (!cx->valid)
529 continue;
531 if (!state_is_set)
532 pr->power.state = cx;
533 state_is_set++;
534 break;
537 if (!state_is_set)
538 return_VALUE(-ENODEV);
540 /* demotion */
541 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
542 cx = &pr->power.states[i];
543 if (!cx->valid)
544 continue;
546 if (lower) {
547 cx->demotion.state = lower;
548 cx->demotion.threshold.ticks = cx->latency_ticks;
549 cx->demotion.threshold.count = 1;
550 if (cx->type == ACPI_STATE_C3)
551 cx->demotion.threshold.bm = bm_history;
554 lower = cx;
557 /* promotion */
558 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
559 cx = &pr->power.states[i];
560 if (!cx->valid)
561 continue;
563 if (higher) {
564 cx->promotion.state = higher;
565 cx->promotion.threshold.ticks = cx->latency_ticks;
566 if (cx->type >= ACPI_STATE_C2)
567 cx->promotion.threshold.count = 4;
568 else
569 cx->promotion.threshold.count = 10;
570 if (higher->type == ACPI_STATE_C3)
571 cx->promotion.threshold.bm = bm_history;
574 higher = cx;
577 return_VALUE(0);
580 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
582 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
584 if (!pr)
585 return_VALUE(-EINVAL);
587 if (!pr->pblk)
588 return_VALUE(-ENODEV);
590 /* if info is obtained from pblk/fadt, type equals state */
591 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
592 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
594 #ifndef CONFIG_HOTPLUG_CPU
596 * Check for P_LVL2_UP flag before entering C2 and above on
597 * an SMP system.
599 if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up)
600 return_VALUE(-ENODEV);
601 #endif
603 /* determine C2 and C3 address from pblk */
604 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
605 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
607 /* determine latencies from FADT */
608 pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
609 pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
611 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
612 "lvl2[0x%08x] lvl3[0x%08x]\n",
613 pr->power.states[ACPI_STATE_C2].address,
614 pr->power.states[ACPI_STATE_C3].address));
616 return_VALUE(0);
619 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
621 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
623 /* Zero initialize all the C-states info. */
624 memset(pr->power.states, 0, sizeof(pr->power.states));
626 /* set the first C-State to C1 */
627 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
629 /* the C0 state only exists as a filler in our array,
630 * and all processors need to support C1 */
631 pr->power.states[ACPI_STATE_C0].valid = 1;
632 pr->power.states[ACPI_STATE_C1].valid = 1;
634 return_VALUE(0);
637 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
639 acpi_status status = 0;
640 acpi_integer count;
641 int current_count;
642 int i;
643 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
644 union acpi_object *cst;
646 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
648 if (nocst)
649 return_VALUE(-ENODEV);
651 current_count = 1;
653 /* Zero initialize C2 onwards and prepare for fresh CST lookup */
654 for (i = 2; i < ACPI_PROCESSOR_MAX_POWER; i++)
655 memset(&(pr->power.states[i]), 0,
656 sizeof(struct acpi_processor_cx));
658 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
659 if (ACPI_FAILURE(status)) {
660 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
661 return_VALUE(-ENODEV);
664 cst = (union acpi_object *)buffer.pointer;
666 /* There must be at least 2 elements */
667 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
668 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
669 "not enough elements in _CST\n"));
670 status = -EFAULT;
671 goto end;
674 count = cst->package.elements[0].integer.value;
676 /* Validate number of power states. */
677 if (count < 1 || count != cst->package.count - 1) {
678 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
679 "count given by _CST is not valid\n"));
680 status = -EFAULT;
681 goto end;
684 /* Tell driver that at least _CST is supported. */
685 pr->flags.has_cst = 1;
687 for (i = 1; i <= count; i++) {
688 union acpi_object *element;
689 union acpi_object *obj;
690 struct acpi_power_register *reg;
691 struct acpi_processor_cx cx;
693 memset(&cx, 0, sizeof(cx));
695 element = (union acpi_object *)&(cst->package.elements[i]);
696 if (element->type != ACPI_TYPE_PACKAGE)
697 continue;
699 if (element->package.count != 4)
700 continue;
702 obj = (union acpi_object *)&(element->package.elements[0]);
704 if (obj->type != ACPI_TYPE_BUFFER)
705 continue;
707 reg = (struct acpi_power_register *)obj->buffer.pointer;
709 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
710 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
711 continue;
713 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
714 0 : reg->address;
716 /* There should be an easy way to extract an integer... */
717 obj = (union acpi_object *)&(element->package.elements[1]);
718 if (obj->type != ACPI_TYPE_INTEGER)
719 continue;
721 cx.type = obj->integer.value;
723 if ((cx.type != ACPI_STATE_C1) &&
724 (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
725 continue;
727 if ((cx.type < ACPI_STATE_C2) || (cx.type > ACPI_STATE_C3))
728 continue;
730 obj = (union acpi_object *)&(element->package.elements[2]);
731 if (obj->type != ACPI_TYPE_INTEGER)
732 continue;
734 cx.latency = obj->integer.value;
736 obj = (union acpi_object *)&(element->package.elements[3]);
737 if (obj->type != ACPI_TYPE_INTEGER)
738 continue;
740 cx.power = obj->integer.value;
742 current_count++;
743 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
746 * We support total ACPI_PROCESSOR_MAX_POWER - 1
747 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
749 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
750 printk(KERN_WARNING
751 "Limiting number of power states to max (%d)\n",
752 ACPI_PROCESSOR_MAX_POWER);
753 printk(KERN_WARNING
754 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
755 break;
759 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
760 current_count));
762 /* Validate number of power states discovered */
763 if (current_count < 2)
764 status = -EFAULT;
766 end:
767 acpi_os_free(buffer.pointer);
769 return_VALUE(status);
772 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
774 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
776 if (!cx->address)
777 return_VOID;
780 * C2 latency must be less than or equal to 100
781 * microseconds.
783 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
784 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
785 "latency too large [%d]\n", cx->latency));
786 return_VOID;
790 * Otherwise we've met all of our C2 requirements.
791 * Normalize the C2 latency to expidite policy
793 cx->valid = 1;
794 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
796 return_VOID;
799 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
800 struct acpi_processor_cx *cx)
802 static int bm_check_flag;
804 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
806 if (!cx->address)
807 return_VOID;
810 * C3 latency must be less than or equal to 1000
811 * microseconds.
813 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
814 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
815 "latency too large [%d]\n", cx->latency));
816 return_VOID;
820 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
821 * DMA transfers are used by any ISA device to avoid livelock.
822 * Note that we could disable Type-F DMA (as recommended by
823 * the erratum), but this is known to disrupt certain ISA
824 * devices thus we take the conservative approach.
826 else if (errata.piix4.fdma) {
827 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
828 "C3 not supported on PIIX4 with Type-F DMA\n"));
829 return_VOID;
832 /* All the logic here assumes flags.bm_check is same across all CPUs */
833 if (!bm_check_flag) {
834 /* Determine whether bm_check is needed based on CPU */
835 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
836 bm_check_flag = pr->flags.bm_check;
837 } else {
838 pr->flags.bm_check = bm_check_flag;
841 if (pr->flags.bm_check) {
842 /* bus mastering control is necessary */
843 if (!pr->flags.bm_control) {
844 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
845 "C3 support requires bus mastering control\n"));
846 return_VOID;
848 } else {
850 * WBINVD should be set in fadt, for C3 state to be
851 * supported on when bm_check is not required.
853 if (acpi_fadt.wb_invd != 1) {
854 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
855 "Cache invalidation should work properly"
856 " for C3 to be enabled on SMP systems\n"));
857 return_VOID;
859 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
860 0, ACPI_MTX_DO_NOT_LOCK);
864 * Otherwise we've met all of our C3 requirements.
865 * Normalize the C3 latency to expidite policy. Enable
866 * checking of bus mastering status (bm_check) so we can
867 * use this in our C3 policy
869 cx->valid = 1;
870 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
872 return_VOID;
875 static int acpi_processor_power_verify(struct acpi_processor *pr)
877 unsigned int i;
878 unsigned int working = 0;
880 #ifdef ARCH_APICTIMER_STOPS_ON_C3
881 struct cpuinfo_x86 *c = cpu_data + pr->id;
882 cpumask_t mask = cpumask_of_cpu(pr->id);
884 if (c->x86_vendor == X86_VENDOR_INTEL) {
885 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
887 #endif
889 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
890 struct acpi_processor_cx *cx = &pr->power.states[i];
892 switch (cx->type) {
893 case ACPI_STATE_C1:
894 cx->valid = 1;
895 break;
897 case ACPI_STATE_C2:
898 acpi_processor_power_verify_c2(cx);
899 break;
901 case ACPI_STATE_C3:
902 acpi_processor_power_verify_c3(pr, cx);
903 #ifdef ARCH_APICTIMER_STOPS_ON_C3
904 if (cx->valid && c->x86_vendor == X86_VENDOR_INTEL) {
905 on_each_cpu(switch_APIC_timer_to_ipi,
906 &mask, 1, 1);
908 #endif
909 break;
912 if (cx->valid)
913 working++;
916 return (working);
919 static int acpi_processor_get_power_info(struct acpi_processor *pr)
921 unsigned int i;
922 int result;
924 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
926 /* NOTE: the idle thread may not be running while calling
927 * this function */
929 /* Adding C1 state */
930 acpi_processor_get_power_info_default_c1(pr);
931 result = acpi_processor_get_power_info_cst(pr);
932 if (result == -ENODEV)
933 acpi_processor_get_power_info_fadt(pr);
935 pr->power.count = acpi_processor_power_verify(pr);
938 * Set Default Policy
939 * ------------------
940 * Now that we know which states are supported, set the default
941 * policy. Note that this policy can be changed dynamically
942 * (e.g. encourage deeper sleeps to conserve battery life when
943 * not on AC).
945 result = acpi_processor_set_power_policy(pr);
946 if (result)
947 return_VALUE(result);
950 * if one state of type C2 or C3 is available, mark this
951 * CPU as being "idle manageable"
953 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
954 if (pr->power.states[i].valid) {
955 pr->power.count = i;
956 if (pr->power.states[i].type >= ACPI_STATE_C2)
957 pr->flags.power = 1;
961 return_VALUE(0);
964 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
966 int result = 0;
968 ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
970 if (!pr)
971 return_VALUE(-EINVAL);
973 if (nocst) {
974 return_VALUE(-ENODEV);
977 if (!pr->flags.power_setup_done)
978 return_VALUE(-ENODEV);
980 /* Fall back to the default idle loop */
981 pm_idle = pm_idle_save;
982 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
984 pr->flags.power = 0;
985 result = acpi_processor_get_power_info(pr);
986 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
987 pm_idle = acpi_processor_idle;
989 return_VALUE(result);
992 /* proc interface */
994 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
996 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
997 unsigned int i;
999 ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
1001 if (!pr)
1002 goto end;
1004 seq_printf(seq, "active state: C%zd\n"
1005 "max_cstate: C%d\n"
1006 "bus master activity: %08x\n",
1007 pr->power.state ? pr->power.state - pr->power.states : 0,
1008 max_cstate, (unsigned)pr->power.bm_activity);
1010 seq_puts(seq, "states:\n");
1012 for (i = 1; i <= pr->power.count; i++) {
1013 seq_printf(seq, " %cC%d: ",
1014 (&pr->power.states[i] ==
1015 pr->power.state ? '*' : ' '), i);
1017 if (!pr->power.states[i].valid) {
1018 seq_puts(seq, "<not supported>\n");
1019 continue;
1022 switch (pr->power.states[i].type) {
1023 case ACPI_STATE_C1:
1024 seq_printf(seq, "type[C1] ");
1025 break;
1026 case ACPI_STATE_C2:
1027 seq_printf(seq, "type[C2] ");
1028 break;
1029 case ACPI_STATE_C3:
1030 seq_printf(seq, "type[C3] ");
1031 break;
1032 default:
1033 seq_printf(seq, "type[--] ");
1034 break;
1037 if (pr->power.states[i].promotion.state)
1038 seq_printf(seq, "promotion[C%zd] ",
1039 (pr->power.states[i].promotion.state -
1040 pr->power.states));
1041 else
1042 seq_puts(seq, "promotion[--] ");
1044 if (pr->power.states[i].demotion.state)
1045 seq_printf(seq, "demotion[C%zd] ",
1046 (pr->power.states[i].demotion.state -
1047 pr->power.states));
1048 else
1049 seq_puts(seq, "demotion[--] ");
1051 seq_printf(seq, "latency[%03d] usage[%08d]\n",
1052 pr->power.states[i].latency,
1053 pr->power.states[i].usage);
1056 end:
1057 return_VALUE(0);
1060 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1062 return single_open(file, acpi_processor_power_seq_show,
1063 PDE(inode)->data);
1066 static struct file_operations acpi_processor_power_fops = {
1067 .open = acpi_processor_power_open_fs,
1068 .read = seq_read,
1069 .llseek = seq_lseek,
1070 .release = single_release,
1073 int acpi_processor_power_init(struct acpi_processor *pr,
1074 struct acpi_device *device)
1076 acpi_status status = 0;
1077 static int first_run = 0;
1078 struct proc_dir_entry *entry = NULL;
1079 unsigned int i;
1081 ACPI_FUNCTION_TRACE("acpi_processor_power_init");
1083 if (!first_run) {
1084 dmi_check_system(processor_power_dmi_table);
1085 if (max_cstate < ACPI_C_STATES_MAX)
1086 printk(KERN_NOTICE
1087 "ACPI: processor limited to max C-state %d\n",
1088 max_cstate);
1089 first_run++;
1092 if (!pr)
1093 return_VALUE(-EINVAL);
1095 if (acpi_fadt.cst_cnt && !nocst) {
1096 status =
1097 acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1098 if (ACPI_FAILURE(status)) {
1099 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1100 "Notifying BIOS of _CST ability failed\n"));
1104 acpi_processor_get_power_info(pr);
1107 * Install the idle handler if processor power management is supported.
1108 * Note that we use previously set idle handler will be used on
1109 * platforms that only support C1.
1111 if ((pr->flags.power) && (!boot_option_idle_override)) {
1112 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1113 for (i = 1; i <= pr->power.count; i++)
1114 if (pr->power.states[i].valid)
1115 printk(" C%d[C%d]", i,
1116 pr->power.states[i].type);
1117 printk(")\n");
1119 if (pr->id == 0) {
1120 pm_idle_save = pm_idle;
1121 pm_idle = acpi_processor_idle;
1125 /* 'power' [R] */
1126 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1127 S_IRUGO, acpi_device_dir(device));
1128 if (!entry)
1129 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1130 "Unable to create '%s' fs entry\n",
1131 ACPI_PROCESSOR_FILE_POWER));
1132 else {
1133 entry->proc_fops = &acpi_processor_power_fops;
1134 entry->data = acpi_driver_data(device);
1135 entry->owner = THIS_MODULE;
1138 pr->flags.power_setup_done = 1;
1140 return_VALUE(0);
1143 int acpi_processor_power_exit(struct acpi_processor *pr,
1144 struct acpi_device *device)
1146 ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1148 pr->flags.power_setup_done = 0;
1150 if (acpi_device_dir(device))
1151 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1152 acpi_device_dir(device));
1154 /* Unregister the idle handler when processor #0 is removed. */
1155 if (pr->id == 0) {
1156 pm_idle = pm_idle_save;
1159 * We are about to unload the current idle thread pm callback
1160 * (pm_idle), Wait for all processors to update cached/local
1161 * copies of pm_idle before proceeding.
1163 cpu_idle_wait();
1166 return_VALUE(0);