Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / acenic.c
blobd7c1bfe4b6ec277eaf89ba7ef2731bf4cd14c33c
1 /*
2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * Additional credits:
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44 * endian systems.
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
49 * driver init path.
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/init.h>
65 #include <linux/delay.h>
66 #include <linux/mm.h>
67 #include <linux/highmem.h>
68 #include <linux/sockios.h>
69 #include <linux/firmware.h>
70 #include <linux/slab.h>
71 #include <linux/prefetch.h>
73 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
74 #include <linux/if_vlan.h>
75 #endif
77 #ifdef SIOCETHTOOL
78 #include <linux/ethtool.h>
79 #endif
81 #include <net/sock.h>
82 #include <net/ip.h>
84 #include <asm/system.h>
85 #include <asm/io.h>
86 #include <asm/irq.h>
87 #include <asm/byteorder.h>
88 #include <asm/uaccess.h>
91 #define DRV_NAME "acenic"
93 #undef INDEX_DEBUG
95 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
96 #define ACE_IS_TIGON_I(ap) 0
97 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
98 #else
99 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
100 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
101 #endif
103 #ifndef PCI_VENDOR_ID_ALTEON
104 #define PCI_VENDOR_ID_ALTEON 0x12ae
105 #endif
106 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
107 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
108 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
109 #endif
110 #ifndef PCI_DEVICE_ID_3COM_3C985
111 #define PCI_DEVICE_ID_3COM_3C985 0x0001
112 #endif
113 #ifndef PCI_VENDOR_ID_NETGEAR
114 #define PCI_VENDOR_ID_NETGEAR 0x1385
115 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
116 #endif
117 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
118 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
119 #endif
123 * Farallon used the DEC vendor ID by mistake and they seem not
124 * to care - stinky!
126 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
127 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
128 #endif
129 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
130 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
131 #endif
132 #ifndef PCI_VENDOR_ID_SGI
133 #define PCI_VENDOR_ID_SGI 0x10a9
134 #endif
135 #ifndef PCI_DEVICE_ID_SGI_ACENIC
136 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
137 #endif
139 static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = {
140 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
141 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
142 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
143 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
144 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
145 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
146 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
147 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
148 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
149 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
151 * Farallon used the DEC vendor ID on their cards incorrectly,
152 * then later Alteon's ID.
154 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
155 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
156 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
157 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
158 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
159 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
162 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
164 #define ace_sync_irq(irq) synchronize_irq(irq)
166 #ifndef offset_in_page
167 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
168 #endif
170 #define ACE_MAX_MOD_PARMS 8
171 #define BOARD_IDX_STATIC 0
172 #define BOARD_IDX_OVERFLOW -1
174 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
175 defined(NETIF_F_HW_VLAN_RX)
176 #define ACENIC_DO_VLAN 1
177 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
178 #else
179 #define ACENIC_DO_VLAN 0
180 #define ACE_RCB_VLAN_FLAG 0
181 #endif
183 #include "acenic.h"
186 * These must be defined before the firmware is included.
188 #define MAX_TEXT_LEN 96*1024
189 #define MAX_RODATA_LEN 8*1024
190 #define MAX_DATA_LEN 2*1024
192 #ifndef tigon2FwReleaseLocal
193 #define tigon2FwReleaseLocal 0
194 #endif
197 * This driver currently supports Tigon I and Tigon II based cards
198 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
199 * GA620. The driver should also work on the SGI, DEC and Farallon
200 * versions of the card, however I have not been able to test that
201 * myself.
203 * This card is really neat, it supports receive hardware checksumming
204 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
205 * firmware. Also the programming interface is quite neat, except for
206 * the parts dealing with the i2c eeprom on the card ;-)
208 * Using jumbo frames:
210 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
211 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
212 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
213 * interface number and <MTU> being the MTU value.
215 * Module parameters:
217 * When compiled as a loadable module, the driver allows for a number
218 * of module parameters to be specified. The driver supports the
219 * following module parameters:
221 * trace=<val> - Firmware trace level. This requires special traced
222 * firmware to replace the firmware supplied with
223 * the driver - for debugging purposes only.
225 * link=<val> - Link state. Normally you want to use the default link
226 * parameters set by the driver. This can be used to
227 * override these in case your switch doesn't negotiate
228 * the link properly. Valid values are:
229 * 0x0001 - Force half duplex link.
230 * 0x0002 - Do not negotiate line speed with the other end.
231 * 0x0010 - 10Mbit/sec link.
232 * 0x0020 - 100Mbit/sec link.
233 * 0x0040 - 1000Mbit/sec link.
234 * 0x0100 - Do not negotiate flow control.
235 * 0x0200 - Enable RX flow control Y
236 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
237 * Default value is 0x0270, ie. enable link+flow
238 * control negotiation. Negotiating the highest
239 * possible link speed with RX flow control enabled.
241 * When disabling link speed negotiation, only one link
242 * speed is allowed to be specified!
244 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
245 * to wait for more packets to arive before
246 * interrupting the host, from the time the first
247 * packet arrives.
249 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
250 * to wait for more packets to arive in the transmit ring,
251 * before interrupting the host, after transmitting the
252 * first packet in the ring.
254 * max_tx_desc=<val> - maximum number of transmit descriptors
255 * (packets) transmitted before interrupting the host.
257 * max_rx_desc=<val> - maximum number of receive descriptors
258 * (packets) received before interrupting the host.
260 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
261 * increments of the NIC's on board memory to be used for
262 * transmit and receive buffers. For the 1MB NIC app. 800KB
263 * is available, on the 1/2MB NIC app. 300KB is available.
264 * 68KB will always be available as a minimum for both
265 * directions. The default value is a 50/50 split.
266 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
267 * operations, default (1) is to always disable this as
268 * that is what Alteon does on NT. I have not been able
269 * to measure any real performance differences with
270 * this on my systems. Set <val>=0 if you want to
271 * enable these operations.
273 * If you use more than one NIC, specify the parameters for the
274 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
275 * run tracing on NIC #2 but not on NIC #1 and #3.
277 * TODO:
279 * - Proper multicast support.
280 * - NIC dump support.
281 * - More tuning parameters.
283 * The mini ring is not used under Linux and I am not sure it makes sense
284 * to actually use it.
286 * New interrupt handler strategy:
288 * The old interrupt handler worked using the traditional method of
289 * replacing an skbuff with a new one when a packet arrives. However
290 * the rx rings do not need to contain a static number of buffer
291 * descriptors, thus it makes sense to move the memory allocation out
292 * of the main interrupt handler and do it in a bottom half handler
293 * and only allocate new buffers when the number of buffers in the
294 * ring is below a certain threshold. In order to avoid starving the
295 * NIC under heavy load it is however necessary to force allocation
296 * when hitting a minimum threshold. The strategy for alloction is as
297 * follows:
299 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
300 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
301 * the buffers in the interrupt handler
302 * RX_RING_THRES - maximum number of buffers in the rx ring
303 * RX_MINI_THRES - maximum number of buffers in the mini ring
304 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
306 * One advantagous side effect of this allocation approach is that the
307 * entire rx processing can be done without holding any spin lock
308 * since the rx rings and registers are totally independent of the tx
309 * ring and its registers. This of course includes the kmalloc's of
310 * new skb's. Thus start_xmit can run in parallel with rx processing
311 * and the memory allocation on SMP systems.
313 * Note that running the skb reallocation in a bottom half opens up
314 * another can of races which needs to be handled properly. In
315 * particular it can happen that the interrupt handler tries to run
316 * the reallocation while the bottom half is either running on another
317 * CPU or was interrupted on the same CPU. To get around this the
318 * driver uses bitops to prevent the reallocation routines from being
319 * reentered.
321 * TX handling can also be done without holding any spin lock, wheee
322 * this is fun! since tx_ret_csm is only written to by the interrupt
323 * handler. The case to be aware of is when shutting down the device
324 * and cleaning up where it is necessary to make sure that
325 * start_xmit() is not running while this is happening. Well DaveM
326 * informs me that this case is already protected against ... bye bye
327 * Mr. Spin Lock, it was nice to know you.
329 * TX interrupts are now partly disabled so the NIC will only generate
330 * TX interrupts for the number of coal ticks, not for the number of
331 * TX packets in the queue. This should reduce the number of TX only,
332 * ie. when no RX processing is done, interrupts seen.
336 * Threshold values for RX buffer allocation - the low water marks for
337 * when to start refilling the rings are set to 75% of the ring
338 * sizes. It seems to make sense to refill the rings entirely from the
339 * intrrupt handler once it gets below the panic threshold, that way
340 * we don't risk that the refilling is moved to another CPU when the
341 * one running the interrupt handler just got the slab code hot in its
342 * cache.
344 #define RX_RING_SIZE 72
345 #define RX_MINI_SIZE 64
346 #define RX_JUMBO_SIZE 48
348 #define RX_PANIC_STD_THRES 16
349 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
350 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
351 #define RX_PANIC_MINI_THRES 12
352 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
353 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
354 #define RX_PANIC_JUMBO_THRES 6
355 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
356 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
360 * Size of the mini ring entries, basically these just should be big
361 * enough to take TCP ACKs
363 #define ACE_MINI_SIZE 100
365 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
366 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
367 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
370 * There seems to be a magic difference in the effect between 995 and 996
371 * but little difference between 900 and 995 ... no idea why.
373 * There is now a default set of tuning parameters which is set, depending
374 * on whether or not the user enables Jumbo frames. It's assumed that if
375 * Jumbo frames are enabled, the user wants optimal tuning for that case.
377 #define DEF_TX_COAL 400 /* 996 */
378 #define DEF_TX_MAX_DESC 60 /* was 40 */
379 #define DEF_RX_COAL 120 /* 1000 */
380 #define DEF_RX_MAX_DESC 25
381 #define DEF_TX_RATIO 21 /* 24 */
383 #define DEF_JUMBO_TX_COAL 20
384 #define DEF_JUMBO_TX_MAX_DESC 60
385 #define DEF_JUMBO_RX_COAL 30
386 #define DEF_JUMBO_RX_MAX_DESC 6
387 #define DEF_JUMBO_TX_RATIO 21
389 #if tigon2FwReleaseLocal < 20001118
391 * Standard firmware and early modifications duplicate
392 * IRQ load without this flag (coal timer is never reset).
393 * Note that with this flag tx_coal should be less than
394 * time to xmit full tx ring.
395 * 400usec is not so bad for tx ring size of 128.
397 #define TX_COAL_INTS_ONLY 1 /* worth it */
398 #else
400 * With modified firmware, this is not necessary, but still useful.
402 #define TX_COAL_INTS_ONLY 1
403 #endif
405 #define DEF_TRACE 0
406 #define DEF_STAT (2 * TICKS_PER_SEC)
409 static int link_state[ACE_MAX_MOD_PARMS];
410 static int trace[ACE_MAX_MOD_PARMS];
411 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
412 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
413 static int max_tx_desc[ACE_MAX_MOD_PARMS];
414 static int max_rx_desc[ACE_MAX_MOD_PARMS];
415 static int tx_ratio[ACE_MAX_MOD_PARMS];
416 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
418 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
419 MODULE_LICENSE("GPL");
420 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
421 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
422 MODULE_FIRMWARE("acenic/tg1.bin");
423 #endif
424 MODULE_FIRMWARE("acenic/tg2.bin");
426 module_param_array_named(link, link_state, int, NULL, 0);
427 module_param_array(trace, int, NULL, 0);
428 module_param_array(tx_coal_tick, int, NULL, 0);
429 module_param_array(max_tx_desc, int, NULL, 0);
430 module_param_array(rx_coal_tick, int, NULL, 0);
431 module_param_array(max_rx_desc, int, NULL, 0);
432 module_param_array(tx_ratio, int, NULL, 0);
433 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
434 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
435 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
436 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
437 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
438 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
439 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
442 static const char version[] __devinitconst =
443 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
444 " http://home.cern.ch/~jes/gige/acenic.html\n";
446 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
447 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
448 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
450 static const struct ethtool_ops ace_ethtool_ops = {
451 .get_settings = ace_get_settings,
452 .set_settings = ace_set_settings,
453 .get_drvinfo = ace_get_drvinfo,
456 static void ace_watchdog(struct net_device *dev);
458 static const struct net_device_ops ace_netdev_ops = {
459 .ndo_open = ace_open,
460 .ndo_stop = ace_close,
461 .ndo_tx_timeout = ace_watchdog,
462 .ndo_get_stats = ace_get_stats,
463 .ndo_start_xmit = ace_start_xmit,
464 .ndo_set_multicast_list = ace_set_multicast_list,
465 .ndo_validate_addr = eth_validate_addr,
466 .ndo_set_mac_address = ace_set_mac_addr,
467 .ndo_change_mtu = ace_change_mtu,
468 #if ACENIC_DO_VLAN
469 .ndo_vlan_rx_register = ace_vlan_rx_register,
470 #endif
473 static int __devinit acenic_probe_one(struct pci_dev *pdev,
474 const struct pci_device_id *id)
476 struct net_device *dev;
477 struct ace_private *ap;
478 static int boards_found;
480 dev = alloc_etherdev(sizeof(struct ace_private));
481 if (dev == NULL) {
482 printk(KERN_ERR "acenic: Unable to allocate "
483 "net_device structure!\n");
484 return -ENOMEM;
487 SET_NETDEV_DEV(dev, &pdev->dev);
489 ap = netdev_priv(dev);
490 ap->pdev = pdev;
491 ap->name = pci_name(pdev);
493 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
494 #if ACENIC_DO_VLAN
495 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
496 #endif
498 dev->watchdog_timeo = 5*HZ;
500 dev->netdev_ops = &ace_netdev_ops;
501 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
503 /* we only display this string ONCE */
504 if (!boards_found)
505 printk(version);
507 if (pci_enable_device(pdev))
508 goto fail_free_netdev;
511 * Enable master mode before we start playing with the
512 * pci_command word since pci_set_master() will modify
513 * it.
515 pci_set_master(pdev);
517 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
519 /* OpenFirmware on Mac's does not set this - DOH.. */
520 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
521 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
522 "access - was not enabled by BIOS/Firmware\n",
523 ap->name);
524 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
525 pci_write_config_word(ap->pdev, PCI_COMMAND,
526 ap->pci_command);
527 wmb();
530 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
531 if (ap->pci_latency <= 0x40) {
532 ap->pci_latency = 0x40;
533 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
537 * Remap the regs into kernel space - this is abuse of
538 * dev->base_addr since it was means for I/O port
539 * addresses but who gives a damn.
541 dev->base_addr = pci_resource_start(pdev, 0);
542 ap->regs = ioremap(dev->base_addr, 0x4000);
543 if (!ap->regs) {
544 printk(KERN_ERR "%s: Unable to map I/O register, "
545 "AceNIC %i will be disabled.\n",
546 ap->name, boards_found);
547 goto fail_free_netdev;
550 switch(pdev->vendor) {
551 case PCI_VENDOR_ID_ALTEON:
552 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
553 printk(KERN_INFO "%s: Farallon PN9100-T ",
554 ap->name);
555 } else {
556 printk(KERN_INFO "%s: Alteon AceNIC ",
557 ap->name);
559 break;
560 case PCI_VENDOR_ID_3COM:
561 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
562 break;
563 case PCI_VENDOR_ID_NETGEAR:
564 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
565 break;
566 case PCI_VENDOR_ID_DEC:
567 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
568 printk(KERN_INFO "%s: Farallon PN9000-SX ",
569 ap->name);
570 break;
572 case PCI_VENDOR_ID_SGI:
573 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
574 break;
575 default:
576 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
577 break;
580 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
581 printk("irq %d\n", pdev->irq);
583 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
584 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
585 printk(KERN_ERR "%s: Driver compiled without Tigon I"
586 " support - NIC disabled\n", dev->name);
587 goto fail_uninit;
589 #endif
591 if (ace_allocate_descriptors(dev))
592 goto fail_free_netdev;
594 #ifdef MODULE
595 if (boards_found >= ACE_MAX_MOD_PARMS)
596 ap->board_idx = BOARD_IDX_OVERFLOW;
597 else
598 ap->board_idx = boards_found;
599 #else
600 ap->board_idx = BOARD_IDX_STATIC;
601 #endif
603 if (ace_init(dev))
604 goto fail_free_netdev;
606 if (register_netdev(dev)) {
607 printk(KERN_ERR "acenic: device registration failed\n");
608 goto fail_uninit;
610 ap->name = dev->name;
612 if (ap->pci_using_dac)
613 dev->features |= NETIF_F_HIGHDMA;
615 pci_set_drvdata(pdev, dev);
617 boards_found++;
618 return 0;
620 fail_uninit:
621 ace_init_cleanup(dev);
622 fail_free_netdev:
623 free_netdev(dev);
624 return -ENODEV;
627 static void __devexit acenic_remove_one(struct pci_dev *pdev)
629 struct net_device *dev = pci_get_drvdata(pdev);
630 struct ace_private *ap = netdev_priv(dev);
631 struct ace_regs __iomem *regs = ap->regs;
632 short i;
634 unregister_netdev(dev);
636 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
637 if (ap->version >= 2)
638 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
641 * This clears any pending interrupts
643 writel(1, &regs->Mb0Lo);
644 readl(&regs->CpuCtrl); /* flush */
647 * Make sure no other CPUs are processing interrupts
648 * on the card before the buffers are being released.
649 * Otherwise one might experience some `interesting'
650 * effects.
652 * Then release the RX buffers - jumbo buffers were
653 * already released in ace_close().
655 ace_sync_irq(dev->irq);
657 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
658 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
660 if (skb) {
661 struct ring_info *ringp;
662 dma_addr_t mapping;
664 ringp = &ap->skb->rx_std_skbuff[i];
665 mapping = dma_unmap_addr(ringp, mapping);
666 pci_unmap_page(ap->pdev, mapping,
667 ACE_STD_BUFSIZE,
668 PCI_DMA_FROMDEVICE);
670 ap->rx_std_ring[i].size = 0;
671 ap->skb->rx_std_skbuff[i].skb = NULL;
672 dev_kfree_skb(skb);
676 if (ap->version >= 2) {
677 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
678 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
680 if (skb) {
681 struct ring_info *ringp;
682 dma_addr_t mapping;
684 ringp = &ap->skb->rx_mini_skbuff[i];
685 mapping = dma_unmap_addr(ringp,mapping);
686 pci_unmap_page(ap->pdev, mapping,
687 ACE_MINI_BUFSIZE,
688 PCI_DMA_FROMDEVICE);
690 ap->rx_mini_ring[i].size = 0;
691 ap->skb->rx_mini_skbuff[i].skb = NULL;
692 dev_kfree_skb(skb);
697 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
698 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
699 if (skb) {
700 struct ring_info *ringp;
701 dma_addr_t mapping;
703 ringp = &ap->skb->rx_jumbo_skbuff[i];
704 mapping = dma_unmap_addr(ringp, mapping);
705 pci_unmap_page(ap->pdev, mapping,
706 ACE_JUMBO_BUFSIZE,
707 PCI_DMA_FROMDEVICE);
709 ap->rx_jumbo_ring[i].size = 0;
710 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
711 dev_kfree_skb(skb);
715 ace_init_cleanup(dev);
716 free_netdev(dev);
719 static struct pci_driver acenic_pci_driver = {
720 .name = "acenic",
721 .id_table = acenic_pci_tbl,
722 .probe = acenic_probe_one,
723 .remove = __devexit_p(acenic_remove_one),
726 static int __init acenic_init(void)
728 return pci_register_driver(&acenic_pci_driver);
731 static void __exit acenic_exit(void)
733 pci_unregister_driver(&acenic_pci_driver);
736 module_init(acenic_init);
737 module_exit(acenic_exit);
739 static void ace_free_descriptors(struct net_device *dev)
741 struct ace_private *ap = netdev_priv(dev);
742 int size;
744 if (ap->rx_std_ring != NULL) {
745 size = (sizeof(struct rx_desc) *
746 (RX_STD_RING_ENTRIES +
747 RX_JUMBO_RING_ENTRIES +
748 RX_MINI_RING_ENTRIES +
749 RX_RETURN_RING_ENTRIES));
750 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
751 ap->rx_ring_base_dma);
752 ap->rx_std_ring = NULL;
753 ap->rx_jumbo_ring = NULL;
754 ap->rx_mini_ring = NULL;
755 ap->rx_return_ring = NULL;
757 if (ap->evt_ring != NULL) {
758 size = (sizeof(struct event) * EVT_RING_ENTRIES);
759 pci_free_consistent(ap->pdev, size, ap->evt_ring,
760 ap->evt_ring_dma);
761 ap->evt_ring = NULL;
763 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
764 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
765 pci_free_consistent(ap->pdev, size, ap->tx_ring,
766 ap->tx_ring_dma);
768 ap->tx_ring = NULL;
770 if (ap->evt_prd != NULL) {
771 pci_free_consistent(ap->pdev, sizeof(u32),
772 (void *)ap->evt_prd, ap->evt_prd_dma);
773 ap->evt_prd = NULL;
775 if (ap->rx_ret_prd != NULL) {
776 pci_free_consistent(ap->pdev, sizeof(u32),
777 (void *)ap->rx_ret_prd,
778 ap->rx_ret_prd_dma);
779 ap->rx_ret_prd = NULL;
781 if (ap->tx_csm != NULL) {
782 pci_free_consistent(ap->pdev, sizeof(u32),
783 (void *)ap->tx_csm, ap->tx_csm_dma);
784 ap->tx_csm = NULL;
789 static int ace_allocate_descriptors(struct net_device *dev)
791 struct ace_private *ap = netdev_priv(dev);
792 int size;
794 size = (sizeof(struct rx_desc) *
795 (RX_STD_RING_ENTRIES +
796 RX_JUMBO_RING_ENTRIES +
797 RX_MINI_RING_ENTRIES +
798 RX_RETURN_RING_ENTRIES));
800 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
801 &ap->rx_ring_base_dma);
802 if (ap->rx_std_ring == NULL)
803 goto fail;
805 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
806 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
807 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
809 size = (sizeof(struct event) * EVT_RING_ENTRIES);
811 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
813 if (ap->evt_ring == NULL)
814 goto fail;
817 * Only allocate a host TX ring for the Tigon II, the Tigon I
818 * has to use PCI registers for this ;-(
820 if (!ACE_IS_TIGON_I(ap)) {
821 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
823 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
824 &ap->tx_ring_dma);
826 if (ap->tx_ring == NULL)
827 goto fail;
830 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
831 &ap->evt_prd_dma);
832 if (ap->evt_prd == NULL)
833 goto fail;
835 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
836 &ap->rx_ret_prd_dma);
837 if (ap->rx_ret_prd == NULL)
838 goto fail;
840 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
841 &ap->tx_csm_dma);
842 if (ap->tx_csm == NULL)
843 goto fail;
845 return 0;
847 fail:
848 /* Clean up. */
849 ace_init_cleanup(dev);
850 return 1;
855 * Generic cleanup handling data allocated during init. Used when the
856 * module is unloaded or if an error occurs during initialization
858 static void ace_init_cleanup(struct net_device *dev)
860 struct ace_private *ap;
862 ap = netdev_priv(dev);
864 ace_free_descriptors(dev);
866 if (ap->info)
867 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
868 ap->info, ap->info_dma);
869 kfree(ap->skb);
870 kfree(ap->trace_buf);
872 if (dev->irq)
873 free_irq(dev->irq, dev);
875 iounmap(ap->regs);
880 * Commands are considered to be slow.
882 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
884 u32 idx;
886 idx = readl(&regs->CmdPrd);
888 writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
889 idx = (idx + 1) % CMD_RING_ENTRIES;
891 writel(idx, &regs->CmdPrd);
895 static int __devinit ace_init(struct net_device *dev)
897 struct ace_private *ap;
898 struct ace_regs __iomem *regs;
899 struct ace_info *info = NULL;
900 struct pci_dev *pdev;
901 unsigned long myjif;
902 u64 tmp_ptr;
903 u32 tig_ver, mac1, mac2, tmp, pci_state;
904 int board_idx, ecode = 0;
905 short i;
906 unsigned char cache_size;
908 ap = netdev_priv(dev);
909 regs = ap->regs;
911 board_idx = ap->board_idx;
914 * aman@sgi.com - its useful to do a NIC reset here to
915 * address the `Firmware not running' problem subsequent
916 * to any crashes involving the NIC
918 writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
919 readl(&regs->HostCtrl); /* PCI write posting */
920 udelay(5);
923 * Don't access any other registers before this point!
925 #ifdef __BIG_ENDIAN
927 * This will most likely need BYTE_SWAP once we switch
928 * to using __raw_writel()
930 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
931 &regs->HostCtrl);
932 #else
933 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
934 &regs->HostCtrl);
935 #endif
936 readl(&regs->HostCtrl); /* PCI write posting */
939 * Stop the NIC CPU and clear pending interrupts
941 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
942 readl(&regs->CpuCtrl); /* PCI write posting */
943 writel(0, &regs->Mb0Lo);
945 tig_ver = readl(&regs->HostCtrl) >> 28;
947 switch(tig_ver){
948 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
949 case 4:
950 case 5:
951 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
952 tig_ver, ap->firmware_major, ap->firmware_minor,
953 ap->firmware_fix);
954 writel(0, &regs->LocalCtrl);
955 ap->version = 1;
956 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
957 break;
958 #endif
959 case 6:
960 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
961 tig_ver, ap->firmware_major, ap->firmware_minor,
962 ap->firmware_fix);
963 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
964 readl(&regs->CpuBCtrl); /* PCI write posting */
966 * The SRAM bank size does _not_ indicate the amount
967 * of memory on the card, it controls the _bank_ size!
968 * Ie. a 1MB AceNIC will have two banks of 512KB.
970 writel(SRAM_BANK_512K, &regs->LocalCtrl);
971 writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
972 ap->version = 2;
973 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
974 break;
975 default:
976 printk(KERN_WARNING " Unsupported Tigon version detected "
977 "(%i)\n", tig_ver);
978 ecode = -ENODEV;
979 goto init_error;
983 * ModeStat _must_ be set after the SRAM settings as this change
984 * seems to corrupt the ModeStat and possible other registers.
985 * The SRAM settings survive resets and setting it to the same
986 * value a second time works as well. This is what caused the
987 * `Firmware not running' problem on the Tigon II.
989 #ifdef __BIG_ENDIAN
990 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
991 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
992 #else
993 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
994 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
995 #endif
996 readl(&regs->ModeStat); /* PCI write posting */
998 mac1 = 0;
999 for(i = 0; i < 4; i++) {
1000 int t;
1002 mac1 = mac1 << 8;
1003 t = read_eeprom_byte(dev, 0x8c+i);
1004 if (t < 0) {
1005 ecode = -EIO;
1006 goto init_error;
1007 } else
1008 mac1 |= (t & 0xff);
1010 mac2 = 0;
1011 for(i = 4; i < 8; i++) {
1012 int t;
1014 mac2 = mac2 << 8;
1015 t = read_eeprom_byte(dev, 0x8c+i);
1016 if (t < 0) {
1017 ecode = -EIO;
1018 goto init_error;
1019 } else
1020 mac2 |= (t & 0xff);
1023 writel(mac1, &regs->MacAddrHi);
1024 writel(mac2, &regs->MacAddrLo);
1026 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1027 dev->dev_addr[1] = mac1 & 0xff;
1028 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1029 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1030 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1031 dev->dev_addr[5] = mac2 & 0xff;
1033 printk("MAC: %pM\n", dev->dev_addr);
1036 * Looks like this is necessary to deal with on all architectures,
1037 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1038 * Ie. having two NICs in the machine, one will have the cache
1039 * line set at boot time, the other will not.
1041 pdev = ap->pdev;
1042 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1043 cache_size <<= 2;
1044 if (cache_size != SMP_CACHE_BYTES) {
1045 printk(KERN_INFO " PCI cache line size set incorrectly "
1046 "(%i bytes) by BIOS/FW, ", cache_size);
1047 if (cache_size > SMP_CACHE_BYTES)
1048 printk("expecting %i\n", SMP_CACHE_BYTES);
1049 else {
1050 printk("correcting to %i\n", SMP_CACHE_BYTES);
1051 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1052 SMP_CACHE_BYTES >> 2);
1056 pci_state = readl(&regs->PciState);
1057 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1058 "latency: %i clks\n",
1059 (pci_state & PCI_32BIT) ? 32 : 64,
1060 (pci_state & PCI_66MHZ) ? 66 : 33,
1061 ap->pci_latency);
1064 * Set the max DMA transfer size. Seems that for most systems
1065 * the performance is better when no MAX parameter is
1066 * set. However for systems enabling PCI write and invalidate,
1067 * DMA writes must be set to the L1 cache line size to get
1068 * optimal performance.
1070 * The default is now to turn the PCI write and invalidate off
1071 * - that is what Alteon does for NT.
1073 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1074 if (ap->version >= 2) {
1075 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1077 * Tuning parameters only supported for 8 cards
1079 if (board_idx == BOARD_IDX_OVERFLOW ||
1080 dis_pci_mem_inval[board_idx]) {
1081 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1082 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1083 pci_write_config_word(pdev, PCI_COMMAND,
1084 ap->pci_command);
1085 printk(KERN_INFO " Disabling PCI memory "
1086 "write and invalidate\n");
1088 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1089 printk(KERN_INFO " PCI memory write & invalidate "
1090 "enabled by BIOS, enabling counter measures\n");
1092 switch(SMP_CACHE_BYTES) {
1093 case 16:
1094 tmp |= DMA_WRITE_MAX_16;
1095 break;
1096 case 32:
1097 tmp |= DMA_WRITE_MAX_32;
1098 break;
1099 case 64:
1100 tmp |= DMA_WRITE_MAX_64;
1101 break;
1102 case 128:
1103 tmp |= DMA_WRITE_MAX_128;
1104 break;
1105 default:
1106 printk(KERN_INFO " Cache line size %i not "
1107 "supported, PCI write and invalidate "
1108 "disabled\n", SMP_CACHE_BYTES);
1109 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1110 pci_write_config_word(pdev, PCI_COMMAND,
1111 ap->pci_command);
1116 #ifdef __sparc__
1118 * On this platform, we know what the best dma settings
1119 * are. We use 64-byte maximum bursts, because if we
1120 * burst larger than the cache line size (or even cross
1121 * a 64byte boundary in a single burst) the UltraSparc
1122 * PCI controller will disconnect at 64-byte multiples.
1124 * Read-multiple will be properly enabled above, and when
1125 * set will give the PCI controller proper hints about
1126 * prefetching.
1128 tmp &= ~DMA_READ_WRITE_MASK;
1129 tmp |= DMA_READ_MAX_64;
1130 tmp |= DMA_WRITE_MAX_64;
1131 #endif
1132 #ifdef __alpha__
1133 tmp &= ~DMA_READ_WRITE_MASK;
1134 tmp |= DMA_READ_MAX_128;
1136 * All the docs say MUST NOT. Well, I did.
1137 * Nothing terrible happens, if we load wrong size.
1138 * Bit w&i still works better!
1140 tmp |= DMA_WRITE_MAX_128;
1141 #endif
1142 writel(tmp, &regs->PciState);
1144 #if 0
1146 * The Host PCI bus controller driver has to set FBB.
1147 * If all devices on that PCI bus support FBB, then the controller
1148 * can enable FBB support in the Host PCI Bus controller (or on
1149 * the PCI-PCI bridge if that applies).
1150 * -ggg
1153 * I have received reports from people having problems when this
1154 * bit is enabled.
1156 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1157 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1158 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1159 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1161 #endif
1164 * Configure DMA attributes.
1166 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1167 ap->pci_using_dac = 1;
1168 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1169 ap->pci_using_dac = 0;
1170 } else {
1171 ecode = -ENODEV;
1172 goto init_error;
1176 * Initialize the generic info block and the command+event rings
1177 * and the control blocks for the transmit and receive rings
1178 * as they need to be setup once and for all.
1180 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1181 &ap->info_dma))) {
1182 ecode = -EAGAIN;
1183 goto init_error;
1185 ap->info = info;
1188 * Get the memory for the skb rings.
1190 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1191 ecode = -EAGAIN;
1192 goto init_error;
1195 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1196 DRV_NAME, dev);
1197 if (ecode) {
1198 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1199 DRV_NAME, pdev->irq);
1200 goto init_error;
1201 } else
1202 dev->irq = pdev->irq;
1204 #ifdef INDEX_DEBUG
1205 spin_lock_init(&ap->debug_lock);
1206 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1207 ap->last_std_rx = 0;
1208 ap->last_mini_rx = 0;
1209 #endif
1211 memset(ap->info, 0, sizeof(struct ace_info));
1212 memset(ap->skb, 0, sizeof(struct ace_skb));
1214 ecode = ace_load_firmware(dev);
1215 if (ecode)
1216 goto init_error;
1218 ap->fw_running = 0;
1220 tmp_ptr = ap->info_dma;
1221 writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1222 writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1224 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1226 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1227 info->evt_ctrl.flags = 0;
1229 *(ap->evt_prd) = 0;
1230 wmb();
1231 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1232 writel(0, &regs->EvtCsm);
1234 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1235 info->cmd_ctrl.flags = 0;
1236 info->cmd_ctrl.max_len = 0;
1238 for (i = 0; i < CMD_RING_ENTRIES; i++)
1239 writel(0, &regs->CmdRng[i]);
1241 writel(0, &regs->CmdPrd);
1242 writel(0, &regs->CmdCsm);
1244 tmp_ptr = ap->info_dma;
1245 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1246 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1248 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1249 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1250 info->rx_std_ctrl.flags =
1251 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1253 memset(ap->rx_std_ring, 0,
1254 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1256 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1257 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1259 ap->rx_std_skbprd = 0;
1260 atomic_set(&ap->cur_rx_bufs, 0);
1262 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1263 (ap->rx_ring_base_dma +
1264 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1265 info->rx_jumbo_ctrl.max_len = 0;
1266 info->rx_jumbo_ctrl.flags =
1267 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1269 memset(ap->rx_jumbo_ring, 0,
1270 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1272 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1273 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1275 ap->rx_jumbo_skbprd = 0;
1276 atomic_set(&ap->cur_jumbo_bufs, 0);
1278 memset(ap->rx_mini_ring, 0,
1279 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1281 if (ap->version >= 2) {
1282 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1283 (ap->rx_ring_base_dma +
1284 (sizeof(struct rx_desc) *
1285 (RX_STD_RING_ENTRIES +
1286 RX_JUMBO_RING_ENTRIES))));
1287 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1288 info->rx_mini_ctrl.flags =
1289 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
1291 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1292 ap->rx_mini_ring[i].flags =
1293 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1294 } else {
1295 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1296 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1297 info->rx_mini_ctrl.max_len = 0;
1300 ap->rx_mini_skbprd = 0;
1301 atomic_set(&ap->cur_mini_bufs, 0);
1303 set_aceaddr(&info->rx_return_ctrl.rngptr,
1304 (ap->rx_ring_base_dma +
1305 (sizeof(struct rx_desc) *
1306 (RX_STD_RING_ENTRIES +
1307 RX_JUMBO_RING_ENTRIES +
1308 RX_MINI_RING_ENTRIES))));
1309 info->rx_return_ctrl.flags = 0;
1310 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1312 memset(ap->rx_return_ring, 0,
1313 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1315 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1316 *(ap->rx_ret_prd) = 0;
1318 writel(TX_RING_BASE, &regs->WinBase);
1320 if (ACE_IS_TIGON_I(ap)) {
1321 ap->tx_ring = (__force struct tx_desc *) regs->Window;
1322 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1323 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1324 writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
1326 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1327 } else {
1328 memset(ap->tx_ring, 0,
1329 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1331 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1334 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1335 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1338 * The Tigon I does not like having the TX ring in host memory ;-(
1340 if (!ACE_IS_TIGON_I(ap))
1341 tmp |= RCB_FLG_TX_HOST_RING;
1342 #if TX_COAL_INTS_ONLY
1343 tmp |= RCB_FLG_COAL_INT_ONLY;
1344 #endif
1345 info->tx_ctrl.flags = tmp;
1347 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1350 * Potential item for tuning parameter
1352 #if 0 /* NO */
1353 writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1354 writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1355 #else
1356 writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1357 writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1358 #endif
1360 writel(0, &regs->MaskInt);
1361 writel(1, &regs->IfIdx);
1362 #if 0
1364 * McKinley boxes do not like us fiddling with AssistState
1365 * this early
1367 writel(1, &regs->AssistState);
1368 #endif
1370 writel(DEF_STAT, &regs->TuneStatTicks);
1371 writel(DEF_TRACE, &regs->TuneTrace);
1373 ace_set_rxtx_parms(dev, 0);
1375 if (board_idx == BOARD_IDX_OVERFLOW) {
1376 printk(KERN_WARNING "%s: more than %i NICs detected, "
1377 "ignoring module parameters!\n",
1378 ap->name, ACE_MAX_MOD_PARMS);
1379 } else if (board_idx >= 0) {
1380 if (tx_coal_tick[board_idx])
1381 writel(tx_coal_tick[board_idx],
1382 &regs->TuneTxCoalTicks);
1383 if (max_tx_desc[board_idx])
1384 writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1386 if (rx_coal_tick[board_idx])
1387 writel(rx_coal_tick[board_idx],
1388 &regs->TuneRxCoalTicks);
1389 if (max_rx_desc[board_idx])
1390 writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1392 if (trace[board_idx])
1393 writel(trace[board_idx], &regs->TuneTrace);
1395 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1396 writel(tx_ratio[board_idx], &regs->TxBufRat);
1400 * Default link parameters
1402 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1403 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1404 if(ap->version >= 2)
1405 tmp |= LNK_TX_FLOW_CTL_Y;
1408 * Override link default parameters
1410 if ((board_idx >= 0) && link_state[board_idx]) {
1411 int option = link_state[board_idx];
1413 tmp = LNK_ENABLE;
1415 if (option & 0x01) {
1416 printk(KERN_INFO "%s: Setting half duplex link\n",
1417 ap->name);
1418 tmp &= ~LNK_FULL_DUPLEX;
1420 if (option & 0x02)
1421 tmp &= ~LNK_NEGOTIATE;
1422 if (option & 0x10)
1423 tmp |= LNK_10MB;
1424 if (option & 0x20)
1425 tmp |= LNK_100MB;
1426 if (option & 0x40)
1427 tmp |= LNK_1000MB;
1428 if ((option & 0x70) == 0) {
1429 printk(KERN_WARNING "%s: No media speed specified, "
1430 "forcing auto negotiation\n", ap->name);
1431 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1432 LNK_100MB | LNK_10MB;
1434 if ((option & 0x100) == 0)
1435 tmp |= LNK_NEG_FCTL;
1436 else
1437 printk(KERN_INFO "%s: Disabling flow control "
1438 "negotiation\n", ap->name);
1439 if (option & 0x200)
1440 tmp |= LNK_RX_FLOW_CTL_Y;
1441 if ((option & 0x400) && (ap->version >= 2)) {
1442 printk(KERN_INFO "%s: Enabling TX flow control\n",
1443 ap->name);
1444 tmp |= LNK_TX_FLOW_CTL_Y;
1448 ap->link = tmp;
1449 writel(tmp, &regs->TuneLink);
1450 if (ap->version >= 2)
1451 writel(tmp, &regs->TuneFastLink);
1453 writel(ap->firmware_start, &regs->Pc);
1455 writel(0, &regs->Mb0Lo);
1458 * Set tx_csm before we start receiving interrupts, otherwise
1459 * the interrupt handler might think it is supposed to process
1460 * tx ints before we are up and running, which may cause a null
1461 * pointer access in the int handler.
1463 ap->cur_rx = 0;
1464 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1466 wmb();
1467 ace_set_txprd(regs, ap, 0);
1468 writel(0, &regs->RxRetCsm);
1471 * Enable DMA engine now.
1472 * If we do this sooner, Mckinley box pukes.
1473 * I assume it's because Tigon II DMA engine wants to check
1474 * *something* even before the CPU is started.
1476 writel(1, &regs->AssistState); /* enable DMA */
1479 * Start the NIC CPU
1481 writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1482 readl(&regs->CpuCtrl);
1485 * Wait for the firmware to spin up - max 3 seconds.
1487 myjif = jiffies + 3 * HZ;
1488 while (time_before(jiffies, myjif) && !ap->fw_running)
1489 cpu_relax();
1491 if (!ap->fw_running) {
1492 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1494 ace_dump_trace(ap);
1495 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1496 readl(&regs->CpuCtrl);
1498 /* aman@sgi.com - account for badly behaving firmware/NIC:
1499 * - have observed that the NIC may continue to generate
1500 * interrupts for some reason; attempt to stop it - halt
1501 * second CPU for Tigon II cards, and also clear Mb0
1502 * - if we're a module, we'll fail to load if this was
1503 * the only GbE card in the system => if the kernel does
1504 * see an interrupt from the NIC, code to handle it is
1505 * gone and OOps! - so free_irq also
1507 if (ap->version >= 2)
1508 writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1509 &regs->CpuBCtrl);
1510 writel(0, &regs->Mb0Lo);
1511 readl(&regs->Mb0Lo);
1513 ecode = -EBUSY;
1514 goto init_error;
1518 * We load the ring here as there seem to be no way to tell the
1519 * firmware to wipe the ring without re-initializing it.
1521 if (!test_and_set_bit(0, &ap->std_refill_busy))
1522 ace_load_std_rx_ring(ap, RX_RING_SIZE);
1523 else
1524 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1525 ap->name);
1526 if (ap->version >= 2) {
1527 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1528 ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1529 else
1530 printk(KERN_ERR "%s: Someone is busy refilling "
1531 "the RX mini ring\n", ap->name);
1533 return 0;
1535 init_error:
1536 ace_init_cleanup(dev);
1537 return ecode;
1541 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1543 struct ace_private *ap = netdev_priv(dev);
1544 struct ace_regs __iomem *regs = ap->regs;
1545 int board_idx = ap->board_idx;
1547 if (board_idx >= 0) {
1548 if (!jumbo) {
1549 if (!tx_coal_tick[board_idx])
1550 writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1551 if (!max_tx_desc[board_idx])
1552 writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1553 if (!rx_coal_tick[board_idx])
1554 writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1555 if (!max_rx_desc[board_idx])
1556 writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1557 if (!tx_ratio[board_idx])
1558 writel(DEF_TX_RATIO, &regs->TxBufRat);
1559 } else {
1560 if (!tx_coal_tick[board_idx])
1561 writel(DEF_JUMBO_TX_COAL,
1562 &regs->TuneTxCoalTicks);
1563 if (!max_tx_desc[board_idx])
1564 writel(DEF_JUMBO_TX_MAX_DESC,
1565 &regs->TuneMaxTxDesc);
1566 if (!rx_coal_tick[board_idx])
1567 writel(DEF_JUMBO_RX_COAL,
1568 &regs->TuneRxCoalTicks);
1569 if (!max_rx_desc[board_idx])
1570 writel(DEF_JUMBO_RX_MAX_DESC,
1571 &regs->TuneMaxRxDesc);
1572 if (!tx_ratio[board_idx])
1573 writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1579 static void ace_watchdog(struct net_device *data)
1581 struct net_device *dev = data;
1582 struct ace_private *ap = netdev_priv(dev);
1583 struct ace_regs __iomem *regs = ap->regs;
1586 * We haven't received a stats update event for more than 2.5
1587 * seconds and there is data in the transmit queue, thus we
1588 * assume the card is stuck.
1590 if (*ap->tx_csm != ap->tx_ret_csm) {
1591 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1592 dev->name, (unsigned int)readl(&regs->HostCtrl));
1593 /* This can happen due to ieee flow control. */
1594 } else {
1595 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1596 dev->name);
1597 #if 0
1598 netif_wake_queue(dev);
1599 #endif
1604 static void ace_tasklet(unsigned long dev)
1606 struct ace_private *ap = netdev_priv((struct net_device *)dev);
1607 int cur_size;
1609 cur_size = atomic_read(&ap->cur_rx_bufs);
1610 if ((cur_size < RX_LOW_STD_THRES) &&
1611 !test_and_set_bit(0, &ap->std_refill_busy)) {
1612 #ifdef DEBUG
1613 printk("refilling buffers (current %i)\n", cur_size);
1614 #endif
1615 ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1618 if (ap->version >= 2) {
1619 cur_size = atomic_read(&ap->cur_mini_bufs);
1620 if ((cur_size < RX_LOW_MINI_THRES) &&
1621 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1622 #ifdef DEBUG
1623 printk("refilling mini buffers (current %i)\n",
1624 cur_size);
1625 #endif
1626 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1630 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1631 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1632 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1633 #ifdef DEBUG
1634 printk("refilling jumbo buffers (current %i)\n", cur_size);
1635 #endif
1636 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1638 ap->tasklet_pending = 0;
1643 * Copy the contents of the NIC's trace buffer to kernel memory.
1645 static void ace_dump_trace(struct ace_private *ap)
1647 #if 0
1648 if (!ap->trace_buf)
1649 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1650 return;
1651 #endif
1656 * Load the standard rx ring.
1658 * Loading rings is safe without holding the spin lock since this is
1659 * done only before the device is enabled, thus no interrupts are
1660 * generated and by the interrupt handler/tasklet handler.
1662 static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1664 struct ace_regs __iomem *regs = ap->regs;
1665 short i, idx;
1668 prefetchw(&ap->cur_rx_bufs);
1670 idx = ap->rx_std_skbprd;
1672 for (i = 0; i < nr_bufs; i++) {
1673 struct sk_buff *skb;
1674 struct rx_desc *rd;
1675 dma_addr_t mapping;
1677 skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1678 if (!skb)
1679 break;
1681 skb_reserve(skb, NET_IP_ALIGN);
1682 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1683 offset_in_page(skb->data),
1684 ACE_STD_BUFSIZE,
1685 PCI_DMA_FROMDEVICE);
1686 ap->skb->rx_std_skbuff[idx].skb = skb;
1687 dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1688 mapping, mapping);
1690 rd = &ap->rx_std_ring[idx];
1691 set_aceaddr(&rd->addr, mapping);
1692 rd->size = ACE_STD_BUFSIZE;
1693 rd->idx = idx;
1694 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1697 if (!i)
1698 goto error_out;
1700 atomic_add(i, &ap->cur_rx_bufs);
1701 ap->rx_std_skbprd = idx;
1703 if (ACE_IS_TIGON_I(ap)) {
1704 struct cmd cmd;
1705 cmd.evt = C_SET_RX_PRD_IDX;
1706 cmd.code = 0;
1707 cmd.idx = ap->rx_std_skbprd;
1708 ace_issue_cmd(regs, &cmd);
1709 } else {
1710 writel(idx, &regs->RxStdPrd);
1711 wmb();
1714 out:
1715 clear_bit(0, &ap->std_refill_busy);
1716 return;
1718 error_out:
1719 printk(KERN_INFO "Out of memory when allocating "
1720 "standard receive buffers\n");
1721 goto out;
1725 static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1727 struct ace_regs __iomem *regs = ap->regs;
1728 short i, idx;
1730 prefetchw(&ap->cur_mini_bufs);
1732 idx = ap->rx_mini_skbprd;
1733 for (i = 0; i < nr_bufs; i++) {
1734 struct sk_buff *skb;
1735 struct rx_desc *rd;
1736 dma_addr_t mapping;
1738 skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1739 if (!skb)
1740 break;
1742 skb_reserve(skb, NET_IP_ALIGN);
1743 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1744 offset_in_page(skb->data),
1745 ACE_MINI_BUFSIZE,
1746 PCI_DMA_FROMDEVICE);
1747 ap->skb->rx_mini_skbuff[idx].skb = skb;
1748 dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1749 mapping, mapping);
1751 rd = &ap->rx_mini_ring[idx];
1752 set_aceaddr(&rd->addr, mapping);
1753 rd->size = ACE_MINI_BUFSIZE;
1754 rd->idx = idx;
1755 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1758 if (!i)
1759 goto error_out;
1761 atomic_add(i, &ap->cur_mini_bufs);
1763 ap->rx_mini_skbprd = idx;
1765 writel(idx, &regs->RxMiniPrd);
1766 wmb();
1768 out:
1769 clear_bit(0, &ap->mini_refill_busy);
1770 return;
1771 error_out:
1772 printk(KERN_INFO "Out of memory when allocating "
1773 "mini receive buffers\n");
1774 goto out;
1779 * Load the jumbo rx ring, this may happen at any time if the MTU
1780 * is changed to a value > 1500.
1782 static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1784 struct ace_regs __iomem *regs = ap->regs;
1785 short i, idx;
1787 idx = ap->rx_jumbo_skbprd;
1789 for (i = 0; i < nr_bufs; i++) {
1790 struct sk_buff *skb;
1791 struct rx_desc *rd;
1792 dma_addr_t mapping;
1794 skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1795 if (!skb)
1796 break;
1798 skb_reserve(skb, NET_IP_ALIGN);
1799 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1800 offset_in_page(skb->data),
1801 ACE_JUMBO_BUFSIZE,
1802 PCI_DMA_FROMDEVICE);
1803 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1804 dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1805 mapping, mapping);
1807 rd = &ap->rx_jumbo_ring[idx];
1808 set_aceaddr(&rd->addr, mapping);
1809 rd->size = ACE_JUMBO_BUFSIZE;
1810 rd->idx = idx;
1811 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1814 if (!i)
1815 goto error_out;
1817 atomic_add(i, &ap->cur_jumbo_bufs);
1818 ap->rx_jumbo_skbprd = idx;
1820 if (ACE_IS_TIGON_I(ap)) {
1821 struct cmd cmd;
1822 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1823 cmd.code = 0;
1824 cmd.idx = ap->rx_jumbo_skbprd;
1825 ace_issue_cmd(regs, &cmd);
1826 } else {
1827 writel(idx, &regs->RxJumboPrd);
1828 wmb();
1831 out:
1832 clear_bit(0, &ap->jumbo_refill_busy);
1833 return;
1834 error_out:
1835 if (net_ratelimit())
1836 printk(KERN_INFO "Out of memory when allocating "
1837 "jumbo receive buffers\n");
1838 goto out;
1843 * All events are considered to be slow (RX/TX ints do not generate
1844 * events) and are handled here, outside the main interrupt handler,
1845 * to reduce the size of the handler.
1847 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1849 struct ace_private *ap;
1851 ap = netdev_priv(dev);
1853 while (evtcsm != evtprd) {
1854 switch (ap->evt_ring[evtcsm].evt) {
1855 case E_FW_RUNNING:
1856 printk(KERN_INFO "%s: Firmware up and running\n",
1857 ap->name);
1858 ap->fw_running = 1;
1859 wmb();
1860 break;
1861 case E_STATS_UPDATED:
1862 break;
1863 case E_LNK_STATE:
1865 u16 code = ap->evt_ring[evtcsm].code;
1866 switch (code) {
1867 case E_C_LINK_UP:
1869 u32 state = readl(&ap->regs->GigLnkState);
1870 printk(KERN_WARNING "%s: Optical link UP "
1871 "(%s Duplex, Flow Control: %s%s)\n",
1872 ap->name,
1873 state & LNK_FULL_DUPLEX ? "Full":"Half",
1874 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1875 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1876 break;
1878 case E_C_LINK_DOWN:
1879 printk(KERN_WARNING "%s: Optical link DOWN\n",
1880 ap->name);
1881 break;
1882 case E_C_LINK_10_100:
1883 printk(KERN_WARNING "%s: 10/100BaseT link "
1884 "UP\n", ap->name);
1885 break;
1886 default:
1887 printk(KERN_ERR "%s: Unknown optical link "
1888 "state %02x\n", ap->name, code);
1890 break;
1892 case E_ERROR:
1893 switch(ap->evt_ring[evtcsm].code) {
1894 case E_C_ERR_INVAL_CMD:
1895 printk(KERN_ERR "%s: invalid command error\n",
1896 ap->name);
1897 break;
1898 case E_C_ERR_UNIMP_CMD:
1899 printk(KERN_ERR "%s: unimplemented command "
1900 "error\n", ap->name);
1901 break;
1902 case E_C_ERR_BAD_CFG:
1903 printk(KERN_ERR "%s: bad config error\n",
1904 ap->name);
1905 break;
1906 default:
1907 printk(KERN_ERR "%s: unknown error %02x\n",
1908 ap->name, ap->evt_ring[evtcsm].code);
1910 break;
1911 case E_RESET_JUMBO_RNG:
1913 int i;
1914 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1915 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1916 ap->rx_jumbo_ring[i].size = 0;
1917 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1918 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1919 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1923 if (ACE_IS_TIGON_I(ap)) {
1924 struct cmd cmd;
1925 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1926 cmd.code = 0;
1927 cmd.idx = 0;
1928 ace_issue_cmd(ap->regs, &cmd);
1929 } else {
1930 writel(0, &((ap->regs)->RxJumboPrd));
1931 wmb();
1934 ap->jumbo = 0;
1935 ap->rx_jumbo_skbprd = 0;
1936 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1937 ap->name);
1938 clear_bit(0, &ap->jumbo_refill_busy);
1939 break;
1941 default:
1942 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1943 ap->name, ap->evt_ring[evtcsm].evt);
1945 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1948 return evtcsm;
1952 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1954 struct ace_private *ap = netdev_priv(dev);
1955 u32 idx;
1956 int mini_count = 0, std_count = 0;
1958 idx = rxretcsm;
1960 prefetchw(&ap->cur_rx_bufs);
1961 prefetchw(&ap->cur_mini_bufs);
1963 while (idx != rxretprd) {
1964 struct ring_info *rip;
1965 struct sk_buff *skb;
1966 struct rx_desc *rxdesc, *retdesc;
1967 u32 skbidx;
1968 int bd_flags, desc_type, mapsize;
1969 u16 csum;
1972 /* make sure the rx descriptor isn't read before rxretprd */
1973 if (idx == rxretcsm)
1974 rmb();
1976 retdesc = &ap->rx_return_ring[idx];
1977 skbidx = retdesc->idx;
1978 bd_flags = retdesc->flags;
1979 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1981 switch(desc_type) {
1983 * Normal frames do not have any flags set
1985 * Mini and normal frames arrive frequently,
1986 * so use a local counter to avoid doing
1987 * atomic operations for each packet arriving.
1989 case 0:
1990 rip = &ap->skb->rx_std_skbuff[skbidx];
1991 mapsize = ACE_STD_BUFSIZE;
1992 rxdesc = &ap->rx_std_ring[skbidx];
1993 std_count++;
1994 break;
1995 case BD_FLG_JUMBO:
1996 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1997 mapsize = ACE_JUMBO_BUFSIZE;
1998 rxdesc = &ap->rx_jumbo_ring[skbidx];
1999 atomic_dec(&ap->cur_jumbo_bufs);
2000 break;
2001 case BD_FLG_MINI:
2002 rip = &ap->skb->rx_mini_skbuff[skbidx];
2003 mapsize = ACE_MINI_BUFSIZE;
2004 rxdesc = &ap->rx_mini_ring[skbidx];
2005 mini_count++;
2006 break;
2007 default:
2008 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
2009 "returned by NIC\n", dev->name,
2010 retdesc->flags);
2011 goto error;
2014 skb = rip->skb;
2015 rip->skb = NULL;
2016 pci_unmap_page(ap->pdev,
2017 dma_unmap_addr(rip, mapping),
2018 mapsize,
2019 PCI_DMA_FROMDEVICE);
2020 skb_put(skb, retdesc->size);
2023 * Fly baby, fly!
2025 csum = retdesc->tcp_udp_csum;
2027 skb->protocol = eth_type_trans(skb, dev);
2030 * Instead of forcing the poor tigon mips cpu to calculate
2031 * pseudo hdr checksum, we do this ourselves.
2033 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2034 skb->csum = htons(csum);
2035 skb->ip_summed = CHECKSUM_COMPLETE;
2036 } else {
2037 skb_checksum_none_assert(skb);
2040 /* send it up */
2041 #if ACENIC_DO_VLAN
2042 if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
2043 vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
2044 } else
2045 #endif
2046 netif_rx(skb);
2048 dev->stats.rx_packets++;
2049 dev->stats.rx_bytes += retdesc->size;
2051 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2054 atomic_sub(std_count, &ap->cur_rx_bufs);
2055 if (!ACE_IS_TIGON_I(ap))
2056 atomic_sub(mini_count, &ap->cur_mini_bufs);
2058 out:
2060 * According to the documentation RxRetCsm is obsolete with
2061 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2063 if (ACE_IS_TIGON_I(ap)) {
2064 writel(idx, &ap->regs->RxRetCsm);
2066 ap->cur_rx = idx;
2068 return;
2069 error:
2070 idx = rxretprd;
2071 goto out;
2075 static inline void ace_tx_int(struct net_device *dev,
2076 u32 txcsm, u32 idx)
2078 struct ace_private *ap = netdev_priv(dev);
2080 do {
2081 struct sk_buff *skb;
2082 struct tx_ring_info *info;
2084 info = ap->skb->tx_skbuff + idx;
2085 skb = info->skb;
2087 if (dma_unmap_len(info, maplen)) {
2088 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2089 dma_unmap_len(info, maplen),
2090 PCI_DMA_TODEVICE);
2091 dma_unmap_len_set(info, maplen, 0);
2094 if (skb) {
2095 dev->stats.tx_packets++;
2096 dev->stats.tx_bytes += skb->len;
2097 dev_kfree_skb_irq(skb);
2098 info->skb = NULL;
2101 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2102 } while (idx != txcsm);
2104 if (netif_queue_stopped(dev))
2105 netif_wake_queue(dev);
2107 wmb();
2108 ap->tx_ret_csm = txcsm;
2110 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2112 * We could try to make it before. In this case we would get
2113 * the following race condition: hard_start_xmit on other cpu
2114 * enters after we advanced tx_ret_csm and fills space,
2115 * which we have just freed, so that we make illegal device wakeup.
2116 * There is no good way to workaround this (at entry
2117 * to ace_start_xmit detects this condition and prevents
2118 * ring corruption, but it is not a good workaround.)
2120 * When tx_ret_csm is advanced after, we wake up device _only_
2121 * if we really have some space in ring (though the core doing
2122 * hard_start_xmit can see full ring for some period and has to
2123 * synchronize.) Superb.
2124 * BUT! We get another subtle race condition. hard_start_xmit
2125 * may think that ring is full between wakeup and advancing
2126 * tx_ret_csm and will stop device instantly! It is not so bad.
2127 * We are guaranteed that there is something in ring, so that
2128 * the next irq will resume transmission. To speedup this we could
2129 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2130 * (see ace_start_xmit).
2132 * Well, this dilemma exists in all lock-free devices.
2133 * We, following scheme used in drivers by Donald Becker,
2134 * select the least dangerous.
2135 * --ANK
2140 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2142 struct net_device *dev = (struct net_device *)dev_id;
2143 struct ace_private *ap = netdev_priv(dev);
2144 struct ace_regs __iomem *regs = ap->regs;
2145 u32 idx;
2146 u32 txcsm, rxretcsm, rxretprd;
2147 u32 evtcsm, evtprd;
2150 * In case of PCI shared interrupts or spurious interrupts,
2151 * we want to make sure it is actually our interrupt before
2152 * spending any time in here.
2154 if (!(readl(&regs->HostCtrl) & IN_INT))
2155 return IRQ_NONE;
2158 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2159 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2160 * writel(0, &regs->Mb0Lo).
2162 * "IRQ avoidance" recommended in docs applies to IRQs served
2163 * threads and it is wrong even for that case.
2165 writel(0, &regs->Mb0Lo);
2166 readl(&regs->Mb0Lo);
2169 * There is no conflict between transmit handling in
2170 * start_xmit and receive processing, thus there is no reason
2171 * to take a spin lock for RX handling. Wait until we start
2172 * working on the other stuff - hey we don't need a spin lock
2173 * anymore.
2175 rxretprd = *ap->rx_ret_prd;
2176 rxretcsm = ap->cur_rx;
2178 if (rxretprd != rxretcsm)
2179 ace_rx_int(dev, rxretprd, rxretcsm);
2181 txcsm = *ap->tx_csm;
2182 idx = ap->tx_ret_csm;
2184 if (txcsm != idx) {
2186 * If each skb takes only one descriptor this check degenerates
2187 * to identity, because new space has just been opened.
2188 * But if skbs are fragmented we must check that this index
2189 * update releases enough of space, otherwise we just
2190 * wait for device to make more work.
2192 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2193 ace_tx_int(dev, txcsm, idx);
2196 evtcsm = readl(&regs->EvtCsm);
2197 evtprd = *ap->evt_prd;
2199 if (evtcsm != evtprd) {
2200 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2201 writel(evtcsm, &regs->EvtCsm);
2205 * This has to go last in the interrupt handler and run with
2206 * the spin lock released ... what lock?
2208 if (netif_running(dev)) {
2209 int cur_size;
2210 int run_tasklet = 0;
2212 cur_size = atomic_read(&ap->cur_rx_bufs);
2213 if (cur_size < RX_LOW_STD_THRES) {
2214 if ((cur_size < RX_PANIC_STD_THRES) &&
2215 !test_and_set_bit(0, &ap->std_refill_busy)) {
2216 #ifdef DEBUG
2217 printk("low on std buffers %i\n", cur_size);
2218 #endif
2219 ace_load_std_rx_ring(ap,
2220 RX_RING_SIZE - cur_size);
2221 } else
2222 run_tasklet = 1;
2225 if (!ACE_IS_TIGON_I(ap)) {
2226 cur_size = atomic_read(&ap->cur_mini_bufs);
2227 if (cur_size < RX_LOW_MINI_THRES) {
2228 if ((cur_size < RX_PANIC_MINI_THRES) &&
2229 !test_and_set_bit(0,
2230 &ap->mini_refill_busy)) {
2231 #ifdef DEBUG
2232 printk("low on mini buffers %i\n",
2233 cur_size);
2234 #endif
2235 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2236 } else
2237 run_tasklet = 1;
2241 if (ap->jumbo) {
2242 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2243 if (cur_size < RX_LOW_JUMBO_THRES) {
2244 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2245 !test_and_set_bit(0,
2246 &ap->jumbo_refill_busy)){
2247 #ifdef DEBUG
2248 printk("low on jumbo buffers %i\n",
2249 cur_size);
2250 #endif
2251 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2252 } else
2253 run_tasklet = 1;
2256 if (run_tasklet && !ap->tasklet_pending) {
2257 ap->tasklet_pending = 1;
2258 tasklet_schedule(&ap->ace_tasklet);
2262 return IRQ_HANDLED;
2266 #if ACENIC_DO_VLAN
2267 static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2269 struct ace_private *ap = netdev_priv(dev);
2270 unsigned long flags;
2272 local_irq_save(flags);
2273 ace_mask_irq(dev);
2275 ap->vlgrp = grp;
2277 ace_unmask_irq(dev);
2278 local_irq_restore(flags);
2280 #endif /* ACENIC_DO_VLAN */
2283 static int ace_open(struct net_device *dev)
2285 struct ace_private *ap = netdev_priv(dev);
2286 struct ace_regs __iomem *regs = ap->regs;
2287 struct cmd cmd;
2289 if (!(ap->fw_running)) {
2290 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2291 return -EBUSY;
2294 writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2296 cmd.evt = C_CLEAR_STATS;
2297 cmd.code = 0;
2298 cmd.idx = 0;
2299 ace_issue_cmd(regs, &cmd);
2301 cmd.evt = C_HOST_STATE;
2302 cmd.code = C_C_STACK_UP;
2303 cmd.idx = 0;
2304 ace_issue_cmd(regs, &cmd);
2306 if (ap->jumbo &&
2307 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2308 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2310 if (dev->flags & IFF_PROMISC) {
2311 cmd.evt = C_SET_PROMISC_MODE;
2312 cmd.code = C_C_PROMISC_ENABLE;
2313 cmd.idx = 0;
2314 ace_issue_cmd(regs, &cmd);
2316 ap->promisc = 1;
2317 }else
2318 ap->promisc = 0;
2319 ap->mcast_all = 0;
2321 #if 0
2322 cmd.evt = C_LNK_NEGOTIATION;
2323 cmd.code = 0;
2324 cmd.idx = 0;
2325 ace_issue_cmd(regs, &cmd);
2326 #endif
2328 netif_start_queue(dev);
2331 * Setup the bottom half rx ring refill handler
2333 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2334 return 0;
2338 static int ace_close(struct net_device *dev)
2340 struct ace_private *ap = netdev_priv(dev);
2341 struct ace_regs __iomem *regs = ap->regs;
2342 struct cmd cmd;
2343 unsigned long flags;
2344 short i;
2347 * Without (or before) releasing irq and stopping hardware, this
2348 * is an absolute non-sense, by the way. It will be reset instantly
2349 * by the first irq.
2351 netif_stop_queue(dev);
2354 if (ap->promisc) {
2355 cmd.evt = C_SET_PROMISC_MODE;
2356 cmd.code = C_C_PROMISC_DISABLE;
2357 cmd.idx = 0;
2358 ace_issue_cmd(regs, &cmd);
2359 ap->promisc = 0;
2362 cmd.evt = C_HOST_STATE;
2363 cmd.code = C_C_STACK_DOWN;
2364 cmd.idx = 0;
2365 ace_issue_cmd(regs, &cmd);
2367 tasklet_kill(&ap->ace_tasklet);
2370 * Make sure one CPU is not processing packets while
2371 * buffers are being released by another.
2374 local_irq_save(flags);
2375 ace_mask_irq(dev);
2377 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2378 struct sk_buff *skb;
2379 struct tx_ring_info *info;
2381 info = ap->skb->tx_skbuff + i;
2382 skb = info->skb;
2384 if (dma_unmap_len(info, maplen)) {
2385 if (ACE_IS_TIGON_I(ap)) {
2386 /* NB: TIGON_1 is special, tx_ring is in io space */
2387 struct tx_desc __iomem *tx;
2388 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2389 writel(0, &tx->addr.addrhi);
2390 writel(0, &tx->addr.addrlo);
2391 writel(0, &tx->flagsize);
2392 } else
2393 memset(ap->tx_ring + i, 0,
2394 sizeof(struct tx_desc));
2395 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2396 dma_unmap_len(info, maplen),
2397 PCI_DMA_TODEVICE);
2398 dma_unmap_len_set(info, maplen, 0);
2400 if (skb) {
2401 dev_kfree_skb(skb);
2402 info->skb = NULL;
2406 if (ap->jumbo) {
2407 cmd.evt = C_RESET_JUMBO_RNG;
2408 cmd.code = 0;
2409 cmd.idx = 0;
2410 ace_issue_cmd(regs, &cmd);
2413 ace_unmask_irq(dev);
2414 local_irq_restore(flags);
2416 return 0;
2420 static inline dma_addr_t
2421 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2422 struct sk_buff *tail, u32 idx)
2424 dma_addr_t mapping;
2425 struct tx_ring_info *info;
2427 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2428 offset_in_page(skb->data),
2429 skb->len, PCI_DMA_TODEVICE);
2431 info = ap->skb->tx_skbuff + idx;
2432 info->skb = tail;
2433 dma_unmap_addr_set(info, mapping, mapping);
2434 dma_unmap_len_set(info, maplen, skb->len);
2435 return mapping;
2439 static inline void
2440 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2441 u32 flagsize, u32 vlan_tag)
2443 #if !USE_TX_COAL_NOW
2444 flagsize &= ~BD_FLG_COAL_NOW;
2445 #endif
2447 if (ACE_IS_TIGON_I(ap)) {
2448 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2449 writel(addr >> 32, &io->addr.addrhi);
2450 writel(addr & 0xffffffff, &io->addr.addrlo);
2451 writel(flagsize, &io->flagsize);
2452 #if ACENIC_DO_VLAN
2453 writel(vlan_tag, &io->vlanres);
2454 #endif
2455 } else {
2456 desc->addr.addrhi = addr >> 32;
2457 desc->addr.addrlo = addr;
2458 desc->flagsize = flagsize;
2459 #if ACENIC_DO_VLAN
2460 desc->vlanres = vlan_tag;
2461 #endif
2466 static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2467 struct net_device *dev)
2469 struct ace_private *ap = netdev_priv(dev);
2470 struct ace_regs __iomem *regs = ap->regs;
2471 struct tx_desc *desc;
2472 u32 idx, flagsize;
2473 unsigned long maxjiff = jiffies + 3*HZ;
2475 restart:
2476 idx = ap->tx_prd;
2478 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2479 goto overflow;
2481 if (!skb_shinfo(skb)->nr_frags) {
2482 dma_addr_t mapping;
2483 u32 vlan_tag = 0;
2485 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2486 flagsize = (skb->len << 16) | (BD_FLG_END);
2487 if (skb->ip_summed == CHECKSUM_PARTIAL)
2488 flagsize |= BD_FLG_TCP_UDP_SUM;
2489 #if ACENIC_DO_VLAN
2490 if (vlan_tx_tag_present(skb)) {
2491 flagsize |= BD_FLG_VLAN_TAG;
2492 vlan_tag = vlan_tx_tag_get(skb);
2494 #endif
2495 desc = ap->tx_ring + idx;
2496 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2498 /* Look at ace_tx_int for explanations. */
2499 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2500 flagsize |= BD_FLG_COAL_NOW;
2502 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2503 } else {
2504 dma_addr_t mapping;
2505 u32 vlan_tag = 0;
2506 int i, len = 0;
2508 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2509 flagsize = (skb_headlen(skb) << 16);
2510 if (skb->ip_summed == CHECKSUM_PARTIAL)
2511 flagsize |= BD_FLG_TCP_UDP_SUM;
2512 #if ACENIC_DO_VLAN
2513 if (vlan_tx_tag_present(skb)) {
2514 flagsize |= BD_FLG_VLAN_TAG;
2515 vlan_tag = vlan_tx_tag_get(skb);
2517 #endif
2519 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2521 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2523 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2524 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2525 struct tx_ring_info *info;
2527 len += frag->size;
2528 info = ap->skb->tx_skbuff + idx;
2529 desc = ap->tx_ring + idx;
2531 mapping = pci_map_page(ap->pdev, frag->page,
2532 frag->page_offset, frag->size,
2533 PCI_DMA_TODEVICE);
2535 flagsize = (frag->size << 16);
2536 if (skb->ip_summed == CHECKSUM_PARTIAL)
2537 flagsize |= BD_FLG_TCP_UDP_SUM;
2538 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2540 if (i == skb_shinfo(skb)->nr_frags - 1) {
2541 flagsize |= BD_FLG_END;
2542 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2543 flagsize |= BD_FLG_COAL_NOW;
2546 * Only the last fragment frees
2547 * the skb!
2549 info->skb = skb;
2550 } else {
2551 info->skb = NULL;
2553 dma_unmap_addr_set(info, mapping, mapping);
2554 dma_unmap_len_set(info, maplen, frag->size);
2555 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2559 wmb();
2560 ap->tx_prd = idx;
2561 ace_set_txprd(regs, ap, idx);
2563 if (flagsize & BD_FLG_COAL_NOW) {
2564 netif_stop_queue(dev);
2567 * A TX-descriptor producer (an IRQ) might have gotten
2568 * between, making the ring free again. Since xmit is
2569 * serialized, this is the only situation we have to
2570 * re-test.
2572 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2573 netif_wake_queue(dev);
2576 return NETDEV_TX_OK;
2578 overflow:
2580 * This race condition is unavoidable with lock-free drivers.
2581 * We wake up the queue _before_ tx_prd is advanced, so that we can
2582 * enter hard_start_xmit too early, while tx ring still looks closed.
2583 * This happens ~1-4 times per 100000 packets, so that we can allow
2584 * to loop syncing to other CPU. Probably, we need an additional
2585 * wmb() in ace_tx_intr as well.
2587 * Note that this race is relieved by reserving one more entry
2588 * in tx ring than it is necessary (see original non-SG driver).
2589 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2590 * is already overkill.
2592 * Alternative is to return with 1 not throttling queue. In this
2593 * case loop becomes longer, no more useful effects.
2595 if (time_before(jiffies, maxjiff)) {
2596 barrier();
2597 cpu_relax();
2598 goto restart;
2601 /* The ring is stuck full. */
2602 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2603 return NETDEV_TX_BUSY;
2607 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2609 struct ace_private *ap = netdev_priv(dev);
2610 struct ace_regs __iomem *regs = ap->regs;
2612 if (new_mtu > ACE_JUMBO_MTU)
2613 return -EINVAL;
2615 writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2616 dev->mtu = new_mtu;
2618 if (new_mtu > ACE_STD_MTU) {
2619 if (!(ap->jumbo)) {
2620 printk(KERN_INFO "%s: Enabling Jumbo frame "
2621 "support\n", dev->name);
2622 ap->jumbo = 1;
2623 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2624 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2625 ace_set_rxtx_parms(dev, 1);
2627 } else {
2628 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2629 ace_sync_irq(dev->irq);
2630 ace_set_rxtx_parms(dev, 0);
2631 if (ap->jumbo) {
2632 struct cmd cmd;
2634 cmd.evt = C_RESET_JUMBO_RNG;
2635 cmd.code = 0;
2636 cmd.idx = 0;
2637 ace_issue_cmd(regs, &cmd);
2641 return 0;
2644 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2646 struct ace_private *ap = netdev_priv(dev);
2647 struct ace_regs __iomem *regs = ap->regs;
2648 u32 link;
2650 memset(ecmd, 0, sizeof(struct ethtool_cmd));
2651 ecmd->supported =
2652 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2653 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2654 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2655 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2657 ecmd->port = PORT_FIBRE;
2658 ecmd->transceiver = XCVR_INTERNAL;
2660 link = readl(&regs->GigLnkState);
2661 if (link & LNK_1000MB)
2662 ethtool_cmd_speed_set(ecmd, SPEED_1000);
2663 else {
2664 link = readl(&regs->FastLnkState);
2665 if (link & LNK_100MB)
2666 ethtool_cmd_speed_set(ecmd, SPEED_100);
2667 else if (link & LNK_10MB)
2668 ethtool_cmd_speed_set(ecmd, SPEED_10);
2669 else
2670 ethtool_cmd_speed_set(ecmd, 0);
2672 if (link & LNK_FULL_DUPLEX)
2673 ecmd->duplex = DUPLEX_FULL;
2674 else
2675 ecmd->duplex = DUPLEX_HALF;
2677 if (link & LNK_NEGOTIATE)
2678 ecmd->autoneg = AUTONEG_ENABLE;
2679 else
2680 ecmd->autoneg = AUTONEG_DISABLE;
2682 #if 0
2684 * Current struct ethtool_cmd is insufficient
2686 ecmd->trace = readl(&regs->TuneTrace);
2688 ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2689 ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2690 #endif
2691 ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2692 ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2694 return 0;
2697 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2699 struct ace_private *ap = netdev_priv(dev);
2700 struct ace_regs __iomem *regs = ap->regs;
2701 u32 link, speed;
2703 link = readl(&regs->GigLnkState);
2704 if (link & LNK_1000MB)
2705 speed = SPEED_1000;
2706 else {
2707 link = readl(&regs->FastLnkState);
2708 if (link & LNK_100MB)
2709 speed = SPEED_100;
2710 else if (link & LNK_10MB)
2711 speed = SPEED_10;
2712 else
2713 speed = SPEED_100;
2716 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2717 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2718 if (!ACE_IS_TIGON_I(ap))
2719 link |= LNK_TX_FLOW_CTL_Y;
2720 if (ecmd->autoneg == AUTONEG_ENABLE)
2721 link |= LNK_NEGOTIATE;
2722 if (ethtool_cmd_speed(ecmd) != speed) {
2723 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2724 switch (ethtool_cmd_speed(ecmd)) {
2725 case SPEED_1000:
2726 link |= LNK_1000MB;
2727 break;
2728 case SPEED_100:
2729 link |= LNK_100MB;
2730 break;
2731 case SPEED_10:
2732 link |= LNK_10MB;
2733 break;
2737 if (ecmd->duplex == DUPLEX_FULL)
2738 link |= LNK_FULL_DUPLEX;
2740 if (link != ap->link) {
2741 struct cmd cmd;
2742 printk(KERN_INFO "%s: Renegotiating link state\n",
2743 dev->name);
2745 ap->link = link;
2746 writel(link, &regs->TuneLink);
2747 if (!ACE_IS_TIGON_I(ap))
2748 writel(link, &regs->TuneFastLink);
2749 wmb();
2751 cmd.evt = C_LNK_NEGOTIATION;
2752 cmd.code = 0;
2753 cmd.idx = 0;
2754 ace_issue_cmd(regs, &cmd);
2756 return 0;
2759 static void ace_get_drvinfo(struct net_device *dev,
2760 struct ethtool_drvinfo *info)
2762 struct ace_private *ap = netdev_priv(dev);
2764 strlcpy(info->driver, "acenic", sizeof(info->driver));
2765 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2766 ap->firmware_major, ap->firmware_minor,
2767 ap->firmware_fix);
2769 if (ap->pdev)
2770 strlcpy(info->bus_info, pci_name(ap->pdev),
2771 sizeof(info->bus_info));
2776 * Set the hardware MAC address.
2778 static int ace_set_mac_addr(struct net_device *dev, void *p)
2780 struct ace_private *ap = netdev_priv(dev);
2781 struct ace_regs __iomem *regs = ap->regs;
2782 struct sockaddr *addr=p;
2783 u8 *da;
2784 struct cmd cmd;
2786 if(netif_running(dev))
2787 return -EBUSY;
2789 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2791 da = (u8 *)dev->dev_addr;
2793 writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2794 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2795 &regs->MacAddrLo);
2797 cmd.evt = C_SET_MAC_ADDR;
2798 cmd.code = 0;
2799 cmd.idx = 0;
2800 ace_issue_cmd(regs, &cmd);
2802 return 0;
2806 static void ace_set_multicast_list(struct net_device *dev)
2808 struct ace_private *ap = netdev_priv(dev);
2809 struct ace_regs __iomem *regs = ap->regs;
2810 struct cmd cmd;
2812 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2813 cmd.evt = C_SET_MULTICAST_MODE;
2814 cmd.code = C_C_MCAST_ENABLE;
2815 cmd.idx = 0;
2816 ace_issue_cmd(regs, &cmd);
2817 ap->mcast_all = 1;
2818 } else if (ap->mcast_all) {
2819 cmd.evt = C_SET_MULTICAST_MODE;
2820 cmd.code = C_C_MCAST_DISABLE;
2821 cmd.idx = 0;
2822 ace_issue_cmd(regs, &cmd);
2823 ap->mcast_all = 0;
2826 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2827 cmd.evt = C_SET_PROMISC_MODE;
2828 cmd.code = C_C_PROMISC_ENABLE;
2829 cmd.idx = 0;
2830 ace_issue_cmd(regs, &cmd);
2831 ap->promisc = 1;
2832 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2833 cmd.evt = C_SET_PROMISC_MODE;
2834 cmd.code = C_C_PROMISC_DISABLE;
2835 cmd.idx = 0;
2836 ace_issue_cmd(regs, &cmd);
2837 ap->promisc = 0;
2841 * For the time being multicast relies on the upper layers
2842 * filtering it properly. The Firmware does not allow one to
2843 * set the entire multicast list at a time and keeping track of
2844 * it here is going to be messy.
2846 if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2847 cmd.evt = C_SET_MULTICAST_MODE;
2848 cmd.code = C_C_MCAST_ENABLE;
2849 cmd.idx = 0;
2850 ace_issue_cmd(regs, &cmd);
2851 }else if (!ap->mcast_all) {
2852 cmd.evt = C_SET_MULTICAST_MODE;
2853 cmd.code = C_C_MCAST_DISABLE;
2854 cmd.idx = 0;
2855 ace_issue_cmd(regs, &cmd);
2860 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2862 struct ace_private *ap = netdev_priv(dev);
2863 struct ace_mac_stats __iomem *mac_stats =
2864 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2866 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2867 dev->stats.multicast = readl(&mac_stats->kept_mc);
2868 dev->stats.collisions = readl(&mac_stats->coll);
2870 return &dev->stats;
2874 static void __devinit ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2875 u32 dest, int size)
2877 void __iomem *tdest;
2878 short tsize, i;
2880 if (size <= 0)
2881 return;
2883 while (size > 0) {
2884 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2885 min_t(u32, size, ACE_WINDOW_SIZE));
2886 tdest = (void __iomem *) &regs->Window +
2887 (dest & (ACE_WINDOW_SIZE - 1));
2888 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2889 for (i = 0; i < (tsize / 4); i++) {
2890 /* Firmware is big-endian */
2891 writel(be32_to_cpup(src), tdest);
2892 src++;
2893 tdest += 4;
2894 dest += 4;
2895 size -= 4;
2901 static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2903 void __iomem *tdest;
2904 short tsize = 0, i;
2906 if (size <= 0)
2907 return;
2909 while (size > 0) {
2910 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2911 min_t(u32, size, ACE_WINDOW_SIZE));
2912 tdest = (void __iomem *) &regs->Window +
2913 (dest & (ACE_WINDOW_SIZE - 1));
2914 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2916 for (i = 0; i < (tsize / 4); i++) {
2917 writel(0, tdest + i*4);
2920 dest += tsize;
2921 size -= tsize;
2927 * Download the firmware into the SRAM on the NIC
2929 * This operation requires the NIC to be halted and is performed with
2930 * interrupts disabled and with the spinlock hold.
2932 static int __devinit ace_load_firmware(struct net_device *dev)
2934 const struct firmware *fw;
2935 const char *fw_name = "acenic/tg2.bin";
2936 struct ace_private *ap = netdev_priv(dev);
2937 struct ace_regs __iomem *regs = ap->regs;
2938 const __be32 *fw_data;
2939 u32 load_addr;
2940 int ret;
2942 if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2943 printk(KERN_ERR "%s: trying to download firmware while the "
2944 "CPU is running!\n", ap->name);
2945 return -EFAULT;
2948 if (ACE_IS_TIGON_I(ap))
2949 fw_name = "acenic/tg1.bin";
2951 ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2952 if (ret) {
2953 printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2954 ap->name, fw_name);
2955 return ret;
2958 fw_data = (void *)fw->data;
2960 /* Firmware blob starts with version numbers, followed by
2961 load and start address. Remainder is the blob to be loaded
2962 contiguously from load address. We don't bother to represent
2963 the BSS/SBSS sections any more, since we were clearing the
2964 whole thing anyway. */
2965 ap->firmware_major = fw->data[0];
2966 ap->firmware_minor = fw->data[1];
2967 ap->firmware_fix = fw->data[2];
2969 ap->firmware_start = be32_to_cpu(fw_data[1]);
2970 if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2971 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2972 ap->name, ap->firmware_start, fw_name);
2973 ret = -EINVAL;
2974 goto out;
2977 load_addr = be32_to_cpu(fw_data[2]);
2978 if (load_addr < 0x4000 || load_addr >= 0x80000) {
2979 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2980 ap->name, load_addr, fw_name);
2981 ret = -EINVAL;
2982 goto out;
2986 * Do not try to clear more than 512KiB or we end up seeing
2987 * funny things on NICs with only 512KiB SRAM
2989 ace_clear(regs, 0x2000, 0x80000-0x2000);
2990 ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2991 out:
2992 release_firmware(fw);
2993 return ret;
2998 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
3000 * Accessing the EEPROM is `interesting' to say the least - don't read
3001 * this code right after dinner.
3003 * This is all about black magic and bit-banging the device .... I
3004 * wonder in what hospital they have put the guy who designed the i2c
3005 * specs.
3007 * Oh yes, this is only the beginning!
3009 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3010 * code i2c readout code by beta testing all my hacks.
3012 static void __devinit eeprom_start(struct ace_regs __iomem *regs)
3014 u32 local;
3016 readl(&regs->LocalCtrl);
3017 udelay(ACE_SHORT_DELAY);
3018 local = readl(&regs->LocalCtrl);
3019 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
3020 writel(local, &regs->LocalCtrl);
3021 readl(&regs->LocalCtrl);
3022 mb();
3023 udelay(ACE_SHORT_DELAY);
3024 local |= EEPROM_CLK_OUT;
3025 writel(local, &regs->LocalCtrl);
3026 readl(&regs->LocalCtrl);
3027 mb();
3028 udelay(ACE_SHORT_DELAY);
3029 local &= ~EEPROM_DATA_OUT;
3030 writel(local, &regs->LocalCtrl);
3031 readl(&regs->LocalCtrl);
3032 mb();
3033 udelay(ACE_SHORT_DELAY);
3034 local &= ~EEPROM_CLK_OUT;
3035 writel(local, &regs->LocalCtrl);
3036 readl(&regs->LocalCtrl);
3037 mb();
3041 static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
3043 short i;
3044 u32 local;
3046 udelay(ACE_SHORT_DELAY);
3047 local = readl(&regs->LocalCtrl);
3048 local &= ~EEPROM_DATA_OUT;
3049 local |= EEPROM_WRITE_ENABLE;
3050 writel(local, &regs->LocalCtrl);
3051 readl(&regs->LocalCtrl);
3052 mb();
3054 for (i = 0; i < 8; i++, magic <<= 1) {
3055 udelay(ACE_SHORT_DELAY);
3056 if (magic & 0x80)
3057 local |= EEPROM_DATA_OUT;
3058 else
3059 local &= ~EEPROM_DATA_OUT;
3060 writel(local, &regs->LocalCtrl);
3061 readl(&regs->LocalCtrl);
3062 mb();
3064 udelay(ACE_SHORT_DELAY);
3065 local |= EEPROM_CLK_OUT;
3066 writel(local, &regs->LocalCtrl);
3067 readl(&regs->LocalCtrl);
3068 mb();
3069 udelay(ACE_SHORT_DELAY);
3070 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3071 writel(local, &regs->LocalCtrl);
3072 readl(&regs->LocalCtrl);
3073 mb();
3078 static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3080 int state;
3081 u32 local;
3083 local = readl(&regs->LocalCtrl);
3084 local &= ~EEPROM_WRITE_ENABLE;
3085 writel(local, &regs->LocalCtrl);
3086 readl(&regs->LocalCtrl);
3087 mb();
3088 udelay(ACE_LONG_DELAY);
3089 local |= EEPROM_CLK_OUT;
3090 writel(local, &regs->LocalCtrl);
3091 readl(&regs->LocalCtrl);
3092 mb();
3093 udelay(ACE_SHORT_DELAY);
3094 /* sample data in middle of high clk */
3095 state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3096 udelay(ACE_SHORT_DELAY);
3097 mb();
3098 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3099 readl(&regs->LocalCtrl);
3100 mb();
3102 return state;
3106 static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3108 u32 local;
3110 udelay(ACE_SHORT_DELAY);
3111 local = readl(&regs->LocalCtrl);
3112 local |= EEPROM_WRITE_ENABLE;
3113 writel(local, &regs->LocalCtrl);
3114 readl(&regs->LocalCtrl);
3115 mb();
3116 udelay(ACE_SHORT_DELAY);
3117 local &= ~EEPROM_DATA_OUT;
3118 writel(local, &regs->LocalCtrl);
3119 readl(&regs->LocalCtrl);
3120 mb();
3121 udelay(ACE_SHORT_DELAY);
3122 local |= EEPROM_CLK_OUT;
3123 writel(local, &regs->LocalCtrl);
3124 readl(&regs->LocalCtrl);
3125 mb();
3126 udelay(ACE_SHORT_DELAY);
3127 local |= EEPROM_DATA_OUT;
3128 writel(local, &regs->LocalCtrl);
3129 readl(&regs->LocalCtrl);
3130 mb();
3131 udelay(ACE_LONG_DELAY);
3132 local &= ~EEPROM_CLK_OUT;
3133 writel(local, &regs->LocalCtrl);
3134 mb();
3139 * Read a whole byte from the EEPROM.
3141 static int __devinit read_eeprom_byte(struct net_device *dev,
3142 unsigned long offset)
3144 struct ace_private *ap = netdev_priv(dev);
3145 struct ace_regs __iomem *regs = ap->regs;
3146 unsigned long flags;
3147 u32 local;
3148 int result = 0;
3149 short i;
3152 * Don't take interrupts on this CPU will bit banging
3153 * the %#%#@$ I2C device
3155 local_irq_save(flags);
3157 eeprom_start(regs);
3159 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3160 if (eeprom_check_ack(regs)) {
3161 local_irq_restore(flags);
3162 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3163 result = -EIO;
3164 goto eeprom_read_error;
3167 eeprom_prep(regs, (offset >> 8) & 0xff);
3168 if (eeprom_check_ack(regs)) {
3169 local_irq_restore(flags);
3170 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3171 ap->name);
3172 result = -EIO;
3173 goto eeprom_read_error;
3176 eeprom_prep(regs, offset & 0xff);
3177 if (eeprom_check_ack(regs)) {
3178 local_irq_restore(flags);
3179 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3180 ap->name);
3181 result = -EIO;
3182 goto eeprom_read_error;
3185 eeprom_start(regs);
3186 eeprom_prep(regs, EEPROM_READ_SELECT);
3187 if (eeprom_check_ack(regs)) {
3188 local_irq_restore(flags);
3189 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3190 ap->name);
3191 result = -EIO;
3192 goto eeprom_read_error;
3195 for (i = 0; i < 8; i++) {
3196 local = readl(&regs->LocalCtrl);
3197 local &= ~EEPROM_WRITE_ENABLE;
3198 writel(local, &regs->LocalCtrl);
3199 readl(&regs->LocalCtrl);
3200 udelay(ACE_LONG_DELAY);
3201 mb();
3202 local |= EEPROM_CLK_OUT;
3203 writel(local, &regs->LocalCtrl);
3204 readl(&regs->LocalCtrl);
3205 mb();
3206 udelay(ACE_SHORT_DELAY);
3207 /* sample data mid high clk */
3208 result = (result << 1) |
3209 ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3210 udelay(ACE_SHORT_DELAY);
3211 mb();
3212 local = readl(&regs->LocalCtrl);
3213 local &= ~EEPROM_CLK_OUT;
3214 writel(local, &regs->LocalCtrl);
3215 readl(&regs->LocalCtrl);
3216 udelay(ACE_SHORT_DELAY);
3217 mb();
3218 if (i == 7) {
3219 local |= EEPROM_WRITE_ENABLE;
3220 writel(local, &regs->LocalCtrl);
3221 readl(&regs->LocalCtrl);
3222 mb();
3223 udelay(ACE_SHORT_DELAY);
3227 local |= EEPROM_DATA_OUT;
3228 writel(local, &regs->LocalCtrl);
3229 readl(&regs->LocalCtrl);
3230 mb();
3231 udelay(ACE_SHORT_DELAY);
3232 writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3233 readl(&regs->LocalCtrl);
3234 udelay(ACE_LONG_DELAY);
3235 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3236 readl(&regs->LocalCtrl);
3237 mb();
3238 udelay(ACE_SHORT_DELAY);
3239 eeprom_stop(regs);
3241 local_irq_restore(flags);
3242 out:
3243 return result;
3245 eeprom_read_error:
3246 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3247 ap->name, offset);
3248 goto out;