2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed successfully. If not, the process of mounting
27 * incorporates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
32 * The general UBIFS approach to the recovery is that it recovers from
33 * corruptions which could be caused by power cuts, but it refuses to recover
34 * from corruption caused by other reasons. And UBIFS tries to distinguish
35 * between these 2 reasons of corruptions and silently recover in the former
36 * case and loudly complain in the latter case.
38 * UBIFS writes only to erased LEBs, so it writes only to the flash space
39 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
40 * of the LEB to the end. And UBIFS assumes that the underlying flash media
41 * writes in @c->max_write_size bytes at a time.
43 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
44 * I/O unit corresponding to offset X to contain corrupted data, all the
45 * following min. I/O units have to contain empty space (all 0xFFs). If this is
46 * not true, the corruption cannot be the result of a power cut, and UBIFS
50 #include <linux/crc32.h>
51 #include <linux/slab.h>
55 * is_empty - determine whether a buffer is empty (contains all 0xff).
56 * @buf: buffer to clean
57 * @len: length of buffer
59 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
62 static int is_empty(void *buf
, int len
)
67 for (i
= 0; i
< len
; i
++)
74 * first_non_ff - find offset of the first non-0xff byte.
75 * @buf: buffer to search in
76 * @len: length of buffer
78 * This function returns offset of the first non-0xff byte in @buf or %-1 if
79 * the buffer contains only 0xff bytes.
81 static int first_non_ff(void *buf
, int len
)
86 for (i
= 0; i
< len
; i
++)
93 * get_master_node - get the last valid master node allowing for corruption.
94 * @c: UBIFS file-system description object
96 * @pbuf: buffer containing the LEB read, is returned here
97 * @mst: master node, if found, is returned here
98 * @cor: corruption, if found, is returned here
100 * This function allocates a buffer, reads the LEB into it, and finds and
101 * returns the last valid master node allowing for one area of corruption.
102 * The corrupt area, if there is one, must be consistent with the assumption
103 * that it is the result of an unclean unmount while the master node was being
104 * written. Under those circumstances, it is valid to use the previously written
107 * This function returns %0 on success and a negative error code on failure.
109 static int get_master_node(const struct ubifs_info
*c
, int lnum
, void **pbuf
,
110 struct ubifs_mst_node
**mst
, void **cor
)
112 const int sz
= c
->mst_node_alsz
;
116 sbuf
= vmalloc(c
->leb_size
);
120 err
= ubi_read(c
->ubi
, lnum
, sbuf
, 0, c
->leb_size
);
121 if (err
&& err
!= -EBADMSG
)
124 /* Find the first position that is definitely not a node */
128 while (offs
+ UBIFS_MST_NODE_SZ
<= c
->leb_size
) {
129 struct ubifs_ch
*ch
= buf
;
131 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
)
137 /* See if there was a valid master node before that */
144 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
145 if (ret
!= SCANNED_A_NODE
&& offs
) {
146 /* Could have been corruption so check one place back */
150 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
151 if (ret
!= SCANNED_A_NODE
)
153 * We accept only one area of corruption because
154 * we are assuming that it was caused while
155 * trying to write a master node.
159 if (ret
== SCANNED_A_NODE
) {
160 struct ubifs_ch
*ch
= buf
;
162 if (ch
->node_type
!= UBIFS_MST_NODE
)
164 dbg_rcvry("found a master node at %d:%d", lnum
, offs
);
171 /* Check for corruption */
172 if (offs
< c
->leb_size
) {
173 if (!is_empty(buf
, min_t(int, len
, sz
))) {
175 dbg_rcvry("found corruption at %d:%d", lnum
, offs
);
181 /* Check remaining empty space */
182 if (offs
< c
->leb_size
)
183 if (!is_empty(buf
, len
))
198 * write_rcvrd_mst_node - write recovered master node.
199 * @c: UBIFS file-system description object
202 * This function returns %0 on success and a negative error code on failure.
204 static int write_rcvrd_mst_node(struct ubifs_info
*c
,
205 struct ubifs_mst_node
*mst
)
207 int err
= 0, lnum
= UBIFS_MST_LNUM
, sz
= c
->mst_node_alsz
;
210 dbg_rcvry("recovery");
212 save_flags
= mst
->flags
;
213 mst
->flags
|= cpu_to_le32(UBIFS_MST_RCVRY
);
215 ubifs_prepare_node(c
, mst
, UBIFS_MST_NODE_SZ
, 1);
216 err
= ubi_leb_change(c
->ubi
, lnum
, mst
, sz
, UBI_SHORTTERM
);
219 err
= ubi_leb_change(c
->ubi
, lnum
+ 1, mst
, sz
, UBI_SHORTTERM
);
223 mst
->flags
= save_flags
;
228 * ubifs_recover_master_node - recover the master node.
229 * @c: UBIFS file-system description object
231 * This function recovers the master node from corruption that may occur due to
232 * an unclean unmount.
234 * This function returns %0 on success and a negative error code on failure.
236 int ubifs_recover_master_node(struct ubifs_info
*c
)
238 void *buf1
= NULL
, *buf2
= NULL
, *cor1
= NULL
, *cor2
= NULL
;
239 struct ubifs_mst_node
*mst1
= NULL
, *mst2
= NULL
, *mst
;
240 const int sz
= c
->mst_node_alsz
;
241 int err
, offs1
, offs2
;
243 dbg_rcvry("recovery");
245 err
= get_master_node(c
, UBIFS_MST_LNUM
, &buf1
, &mst1
, &cor1
);
249 err
= get_master_node(c
, UBIFS_MST_LNUM
+ 1, &buf2
, &mst2
, &cor2
);
254 offs1
= (void *)mst1
- buf1
;
255 if ((le32_to_cpu(mst1
->flags
) & UBIFS_MST_RCVRY
) &&
256 (offs1
== 0 && !cor1
)) {
258 * mst1 was written by recovery at offset 0 with no
261 dbg_rcvry("recovery recovery");
264 offs2
= (void *)mst2
- buf2
;
265 if (offs1
== offs2
) {
266 /* Same offset, so must be the same */
267 if (memcmp((void *)mst1
+ UBIFS_CH_SZ
,
268 (void *)mst2
+ UBIFS_CH_SZ
,
269 UBIFS_MST_NODE_SZ
- UBIFS_CH_SZ
))
272 } else if (offs2
+ sz
== offs1
) {
273 /* 1st LEB was written, 2nd was not */
277 } else if (offs1
== 0 && offs2
+ sz
>= c
->leb_size
) {
278 /* 1st LEB was unmapped and written, 2nd not */
286 * 2nd LEB was unmapped and about to be written, so
287 * there must be only one master node in the first LEB
290 if (offs1
!= 0 || cor1
)
298 * 1st LEB was unmapped and about to be written, so there must
299 * be no room left in 2nd LEB.
301 offs2
= (void *)mst2
- buf2
;
302 if (offs2
+ sz
+ sz
<= c
->leb_size
)
307 ubifs_msg("recovered master node from LEB %d",
308 (mst
== mst1
? UBIFS_MST_LNUM
: UBIFS_MST_LNUM
+ 1));
310 memcpy(c
->mst_node
, mst
, UBIFS_MST_NODE_SZ
);
313 /* Read-only mode. Keep a copy for switching to rw mode */
314 c
->rcvrd_mst_node
= kmalloc(sz
, GFP_KERNEL
);
315 if (!c
->rcvrd_mst_node
) {
319 memcpy(c
->rcvrd_mst_node
, c
->mst_node
, UBIFS_MST_NODE_SZ
);
322 * We had to recover the master node, which means there was an
323 * unclean reboot. However, it is possible that the master node
324 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
325 * E.g., consider the following chain of events:
327 * 1. UBIFS was cleanly unmounted, so the master node is clean
328 * 2. UBIFS is being mounted R/W and starts changing the master
329 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
330 * so this LEB ends up with some amount of garbage at the
332 * 3. UBIFS is being mounted R/O. We reach this place and
333 * recover the master node from the second LEB
334 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
335 * because we are being mounted R/O. We have to defer the
337 * 4. However, this master node (@c->mst_node) is marked as
338 * clean (since the step 1). And if we just return, the
339 * mount code will be confused and won't recover the master
340 * node when it is re-mounter R/W later.
342 * Thus, to force the recovery by marking the master node as
345 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
347 /* Write the recovered master node */
348 c
->max_sqnum
= le64_to_cpu(mst
->ch
.sqnum
) - 1;
349 err
= write_rcvrd_mst_node(c
, c
->mst_node
);
362 ubifs_err("failed to recover master node");
364 dbg_err("dumping first master node");
365 dbg_dump_node(c
, mst1
);
368 dbg_err("dumping second master node");
369 dbg_dump_node(c
, mst2
);
377 * ubifs_write_rcvrd_mst_node - write the recovered master node.
378 * @c: UBIFS file-system description object
380 * This function writes the master node that was recovered during mounting in
381 * read-only mode and must now be written because we are remounting rw.
383 * This function returns %0 on success and a negative error code on failure.
385 int ubifs_write_rcvrd_mst_node(struct ubifs_info
*c
)
389 if (!c
->rcvrd_mst_node
)
391 c
->rcvrd_mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
392 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
393 err
= write_rcvrd_mst_node(c
, c
->rcvrd_mst_node
);
396 kfree(c
->rcvrd_mst_node
);
397 c
->rcvrd_mst_node
= NULL
;
402 * is_last_write - determine if an offset was in the last write to a LEB.
403 * @c: UBIFS file-system description object
404 * @buf: buffer to check
405 * @offs: offset to check
407 * This function returns %1 if @offs was in the last write to the LEB whose data
408 * is in @buf, otherwise %0 is returned. The determination is made by checking
409 * for subsequent empty space starting from the next @c->max_write_size
412 static int is_last_write(const struct ubifs_info
*c
, void *buf
, int offs
)
414 int empty_offs
, check_len
;
418 * Round up to the next @c->max_write_size boundary i.e. @offs is in
419 * the last wbuf written. After that should be empty space.
421 empty_offs
= ALIGN(offs
+ 1, c
->max_write_size
);
422 check_len
= c
->leb_size
- empty_offs
;
423 p
= buf
+ empty_offs
- offs
;
424 return is_empty(p
, check_len
);
428 * clean_buf - clean the data from an LEB sitting in a buffer.
429 * @c: UBIFS file-system description object
430 * @buf: buffer to clean
431 * @lnum: LEB number to clean
432 * @offs: offset from which to clean
433 * @len: length of buffer
435 * This function pads up to the next min_io_size boundary (if there is one) and
436 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
437 * @c->min_io_size boundary.
439 static void clean_buf(const struct ubifs_info
*c
, void **buf
, int lnum
,
442 int empty_offs
, pad_len
;
445 dbg_rcvry("cleaning corruption at %d:%d", lnum
, *offs
);
447 ubifs_assert(!(*offs
& 7));
448 empty_offs
= ALIGN(*offs
, c
->min_io_size
);
449 pad_len
= empty_offs
- *offs
;
450 ubifs_pad(c
, *buf
, pad_len
);
454 memset(*buf
, 0xff, c
->leb_size
- empty_offs
);
458 * no_more_nodes - determine if there are no more nodes in a buffer.
459 * @c: UBIFS file-system description object
460 * @buf: buffer to check
461 * @len: length of buffer
462 * @lnum: LEB number of the LEB from which @buf was read
463 * @offs: offset from which @buf was read
465 * This function ensures that the corrupted node at @offs is the last thing
466 * written to a LEB. This function returns %1 if more data is not found and
467 * %0 if more data is found.
469 static int no_more_nodes(const struct ubifs_info
*c
, void *buf
, int len
,
472 struct ubifs_ch
*ch
= buf
;
473 int skip
, dlen
= le32_to_cpu(ch
->len
);
475 /* Check for empty space after the corrupt node's common header */
476 skip
= ALIGN(offs
+ UBIFS_CH_SZ
, c
->max_write_size
) - offs
;
477 if (is_empty(buf
+ skip
, len
- skip
))
480 * The area after the common header size is not empty, so the common
481 * header must be intact. Check it.
483 if (ubifs_check_node(c
, buf
, lnum
, offs
, 1, 0) != -EUCLEAN
) {
484 dbg_rcvry("unexpected bad common header at %d:%d", lnum
, offs
);
487 /* Now we know the corrupt node's length we can skip over it */
488 skip
= ALIGN(offs
+ dlen
, c
->max_write_size
) - offs
;
489 /* After which there should be empty space */
490 if (is_empty(buf
+ skip
, len
- skip
))
492 dbg_rcvry("unexpected data at %d:%d", lnum
, offs
+ skip
);
497 * fix_unclean_leb - fix an unclean LEB.
498 * @c: UBIFS file-system description object
499 * @sleb: scanned LEB information
500 * @start: offset where scan started
502 static int fix_unclean_leb(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
505 int lnum
= sleb
->lnum
, endpt
= start
;
507 /* Get the end offset of the last node we are keeping */
508 if (!list_empty(&sleb
->nodes
)) {
509 struct ubifs_scan_node
*snod
;
511 snod
= list_entry(sleb
->nodes
.prev
,
512 struct ubifs_scan_node
, list
);
513 endpt
= snod
->offs
+ snod
->len
;
516 if (c
->ro_mount
&& !c
->remounting_rw
) {
517 /* Add to recovery list */
518 struct ubifs_unclean_leb
*ucleb
;
520 dbg_rcvry("need to fix LEB %d start %d endpt %d",
521 lnum
, start
, sleb
->endpt
);
522 ucleb
= kzalloc(sizeof(struct ubifs_unclean_leb
), GFP_NOFS
);
526 ucleb
->endpt
= endpt
;
527 list_add_tail(&ucleb
->list
, &c
->unclean_leb_list
);
529 /* Write the fixed LEB back to flash */
532 dbg_rcvry("fixing LEB %d start %d endpt %d",
533 lnum
, start
, sleb
->endpt
);
535 err
= ubifs_leb_unmap(c
, lnum
);
539 int len
= ALIGN(endpt
, c
->min_io_size
);
542 err
= ubi_read(c
->ubi
, lnum
, sleb
->buf
, 0,
547 /* Pad to min_io_size */
549 int pad_len
= len
- ALIGN(endpt
, 8);
552 void *buf
= sleb
->buf
+ len
- pad_len
;
554 ubifs_pad(c
, buf
, pad_len
);
557 err
= ubi_leb_change(c
->ubi
, lnum
, sleb
->buf
, len
,
567 * drop_last_node - drop the last node or group of nodes.
568 * @sleb: scanned LEB information
569 * @offs: offset of dropped nodes is returned here
570 * @grouped: non-zero if whole group of nodes have to be dropped
572 * This is a helper function for 'ubifs_recover_leb()' which drops the last
573 * node of the scanned LEB or the last group of nodes if @grouped is not zero.
574 * This function returns %1 if a node was dropped and %0 otherwise.
576 static int drop_last_node(struct ubifs_scan_leb
*sleb
, int *offs
, int grouped
)
580 while (!list_empty(&sleb
->nodes
)) {
581 struct ubifs_scan_node
*snod
;
584 snod
= list_entry(sleb
->nodes
.prev
, struct ubifs_scan_node
,
587 if (ch
->group_type
!= UBIFS_IN_NODE_GROUP
)
589 dbg_rcvry("dropping node at %d:%d", sleb
->lnum
, snod
->offs
);
591 list_del(&snod
->list
);
593 sleb
->nodes_cnt
-= 1;
602 * ubifs_recover_leb - scan and recover a LEB.
603 * @c: UBIFS file-system description object
606 * @sbuf: LEB-sized buffer to use
607 * @grouped: nodes may be grouped for recovery
609 * This function does a scan of a LEB, but caters for errors that might have
610 * been caused by the unclean unmount from which we are attempting to recover.
611 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
612 * found, and a negative error code in case of failure.
614 struct ubifs_scan_leb
*ubifs_recover_leb(struct ubifs_info
*c
, int lnum
,
615 int offs
, void *sbuf
, int grouped
)
617 int ret
= 0, err
, len
= c
->leb_size
- offs
, start
= offs
, min_io_unit
;
618 struct ubifs_scan_leb
*sleb
;
619 void *buf
= sbuf
+ offs
;
621 dbg_rcvry("%d:%d", lnum
, offs
);
623 sleb
= ubifs_start_scan(c
, lnum
, offs
, sbuf
);
627 ubifs_assert(len
>= 8);
629 dbg_scan("look at LEB %d:%d (%d bytes left)",
635 * Scan quietly until there is an error from which we cannot
638 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 0);
639 if (ret
== SCANNED_A_NODE
) {
640 /* A valid node, and not a padding node */
641 struct ubifs_ch
*ch
= buf
;
644 err
= ubifs_add_snod(c
, sleb
, buf
, offs
);
647 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
651 } else if (ret
> 0) {
652 /* Padding bytes or a valid padding node */
656 } else if (ret
== SCANNED_EMPTY_SPACE
||
657 ret
== SCANNED_GARBAGE
||
658 ret
== SCANNED_A_BAD_PAD_NODE
||
659 ret
== SCANNED_A_CORRUPT_NODE
) {
660 dbg_rcvry("found corruption - %d", ret
);
663 dbg_err("unexpected return value %d", ret
);
669 if (ret
== SCANNED_GARBAGE
|| ret
== SCANNED_A_BAD_PAD_NODE
) {
670 if (!is_last_write(c
, buf
, offs
))
671 goto corrupted_rescan
;
672 } else if (ret
== SCANNED_A_CORRUPT_NODE
) {
673 if (!no_more_nodes(c
, buf
, len
, lnum
, offs
))
674 goto corrupted_rescan
;
675 } else if (!is_empty(buf
, len
)) {
676 if (!is_last_write(c
, buf
, offs
)) {
677 int corruption
= first_non_ff(buf
, len
);
680 * See header comment for this file for more
681 * explanations about the reasons we have this check.
683 ubifs_err("corrupt empty space LEB %d:%d, corruption "
684 "starts at %d", lnum
, offs
, corruption
);
685 /* Make sure we dump interesting non-0xFF data */
692 min_io_unit
= round_down(offs
, c
->min_io_size
);
695 * If nodes are grouped, always drop the incomplete group at
698 drop_last_node(sleb
, &offs
, 1);
701 * While we are in the middle of the same min. I/O unit keep dropping
702 * nodes. So basically, what we want is to make sure that the last min.
703 * I/O unit where we saw the corruption is dropped completely with all
704 * the uncorrupted node which may possibly sit there.
706 * In other words, let's name the min. I/O unit where the corruption
707 * starts B, and the previous min. I/O unit A. The below code tries to
708 * deal with a situation when half of B contains valid nodes or the end
709 * of a valid node, and the second half of B contains corrupted data or
710 * garbage. This means that UBIFS had been writing to B just before the
711 * power cut happened. I do not know how realistic is this scenario
712 * that half of the min. I/O unit had been written successfully and the
713 * other half not, but this is possible in our 'failure mode emulation'
714 * infrastructure at least.
716 * So what is the problem, why we need to drop those nodes? Whey can't
717 * we just clean-up the second half of B by putting a padding node
718 * there? We can, and this works fine with one exception which was
719 * reproduced with power cut emulation testing and happens extremely
720 * rarely. The description follows, but it is worth noting that that is
721 * only about the GC head, so we could do this trick only if the bud
722 * belongs to the GC head, but it does not seem to be worth an
723 * additional "if" statement.
725 * So, imagine the file-system is full, we run GC which is moving valid
726 * nodes from LEB X to LEB Y (obviously, LEB Y is the current GC head
727 * LEB). The @c->gc_lnum is -1, which means that GC will retain LEB X
728 * and will try to continue. Imagine that LEB X is currently the
729 * dirtiest LEB, and the amount of used space in LEB Y is exactly the
730 * same as amount of free space in LEB X.
732 * And a power cut happens when nodes are moved from LEB X to LEB Y. We
733 * are here trying to recover LEB Y which is the GC head LEB. We find
734 * the min. I/O unit B as described above. Then we clean-up LEB Y by
735 * padding min. I/O unit. And later 'ubifs_rcvry_gc_commit()' function
736 * fails, because it cannot find a dirty LEB which could be GC'd into
737 * LEB Y! Even LEB X does not match because the amount of valid nodes
738 * there does not fit the free space in LEB Y any more! And this is
739 * because of the padding node which we added to LEB Y. The
740 * user-visible effect of this which I once observed and analysed is
741 * that we cannot mount the file-system with -ENOSPC error.
743 * So obviously, to make sure that situation does not happen we should
744 * free min. I/O unit B in LEB Y completely and the last used min. I/O
745 * unit in LEB Y should be A. This is basically what the below code
748 while (min_io_unit
== round_down(offs
, c
->min_io_size
) &&
749 min_io_unit
!= offs
&&
750 drop_last_node(sleb
, &offs
, grouped
));
753 len
= c
->leb_size
- offs
;
755 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
756 ubifs_end_scan(c
, sleb
, lnum
, offs
);
758 err
= fix_unclean_leb(c
, sleb
, start
);
765 /* Re-scan the corrupted data with verbose messages */
766 dbg_err("corruptio %d", ret
);
767 ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
769 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
772 ubifs_err("LEB %d scanning failed", lnum
);
773 ubifs_scan_destroy(sleb
);
778 * get_cs_sqnum - get commit start sequence number.
779 * @c: UBIFS file-system description object
780 * @lnum: LEB number of commit start node
781 * @offs: offset of commit start node
782 * @cs_sqnum: commit start sequence number is returned here
784 * This function returns %0 on success and a negative error code on failure.
786 static int get_cs_sqnum(struct ubifs_info
*c
, int lnum
, int offs
,
787 unsigned long long *cs_sqnum
)
789 struct ubifs_cs_node
*cs_node
= NULL
;
792 dbg_rcvry("at %d:%d", lnum
, offs
);
793 cs_node
= kmalloc(UBIFS_CS_NODE_SZ
, GFP_KERNEL
);
796 if (c
->leb_size
- offs
< UBIFS_CS_NODE_SZ
)
798 err
= ubi_read(c
->ubi
, lnum
, (void *)cs_node
, offs
, UBIFS_CS_NODE_SZ
);
799 if (err
&& err
!= -EBADMSG
)
801 ret
= ubifs_scan_a_node(c
, cs_node
, UBIFS_CS_NODE_SZ
, lnum
, offs
, 0);
802 if (ret
!= SCANNED_A_NODE
) {
803 dbg_err("Not a valid node");
806 if (cs_node
->ch
.node_type
!= UBIFS_CS_NODE
) {
807 dbg_err("Node a CS node, type is %d", cs_node
->ch
.node_type
);
810 if (le64_to_cpu(cs_node
->cmt_no
) != c
->cmt_no
) {
811 dbg_err("CS node cmt_no %llu != current cmt_no %llu",
812 (unsigned long long)le64_to_cpu(cs_node
->cmt_no
),
816 *cs_sqnum
= le64_to_cpu(cs_node
->ch
.sqnum
);
817 dbg_rcvry("commit start sqnum %llu", *cs_sqnum
);
824 ubifs_err("failed to get CS sqnum");
830 * ubifs_recover_log_leb - scan and recover a log LEB.
831 * @c: UBIFS file-system description object
834 * @sbuf: LEB-sized buffer to use
836 * This function does a scan of a LEB, but caters for errors that might have
837 * been caused by unclean reboots from which we are attempting to recover
838 * (assume that only the last log LEB can be corrupted by an unclean reboot).
840 * This function returns %0 on success and a negative error code on failure.
842 struct ubifs_scan_leb
*ubifs_recover_log_leb(struct ubifs_info
*c
, int lnum
,
843 int offs
, void *sbuf
)
845 struct ubifs_scan_leb
*sleb
;
848 dbg_rcvry("LEB %d", lnum
);
849 next_lnum
= lnum
+ 1;
850 if (next_lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
851 next_lnum
= UBIFS_LOG_LNUM
;
852 if (next_lnum
!= c
->ltail_lnum
) {
854 * We can only recover at the end of the log, so check that the
855 * next log LEB is empty or out of date.
857 sleb
= ubifs_scan(c
, next_lnum
, 0, sbuf
, 0);
860 if (sleb
->nodes_cnt
) {
861 struct ubifs_scan_node
*snod
;
862 unsigned long long cs_sqnum
= c
->cs_sqnum
;
864 snod
= list_entry(sleb
->nodes
.next
,
865 struct ubifs_scan_node
, list
);
869 err
= get_cs_sqnum(c
, lnum
, offs
, &cs_sqnum
);
871 ubifs_scan_destroy(sleb
);
875 if (snod
->sqnum
> cs_sqnum
) {
876 ubifs_err("unrecoverable log corruption "
878 ubifs_scan_destroy(sleb
);
879 return ERR_PTR(-EUCLEAN
);
882 ubifs_scan_destroy(sleb
);
884 return ubifs_recover_leb(c
, lnum
, offs
, sbuf
, 0);
888 * recover_head - recover a head.
889 * @c: UBIFS file-system description object
890 * @lnum: LEB number of head to recover
891 * @offs: offset of head to recover
892 * @sbuf: LEB-sized buffer to use
894 * This function ensures that there is no data on the flash at a head location.
896 * This function returns %0 on success and a negative error code on failure.
898 static int recover_head(const struct ubifs_info
*c
, int lnum
, int offs
,
901 int len
= c
->max_write_size
, err
;
903 if (offs
+ len
> c
->leb_size
)
904 len
= c
->leb_size
- offs
;
909 /* Read at the head location and check it is empty flash */
910 err
= ubi_read(c
->ubi
, lnum
, sbuf
, offs
, len
);
911 if (err
|| !is_empty(sbuf
, len
)) {
912 dbg_rcvry("cleaning head at %d:%d", lnum
, offs
);
914 return ubifs_leb_unmap(c
, lnum
);
915 err
= ubi_read(c
->ubi
, lnum
, sbuf
, 0, offs
);
918 return ubi_leb_change(c
->ubi
, lnum
, sbuf
, offs
, UBI_UNKNOWN
);
925 * ubifs_recover_inl_heads - recover index and LPT heads.
926 * @c: UBIFS file-system description object
927 * @sbuf: LEB-sized buffer to use
929 * This function ensures that there is no data on the flash at the index and
930 * LPT head locations.
932 * This deals with the recovery of a half-completed journal commit. UBIFS is
933 * careful never to overwrite the last version of the index or the LPT. Because
934 * the index and LPT are wandering trees, data from a half-completed commit will
935 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
936 * assumed to be empty and will be unmapped anyway before use, or in the index
939 * This function returns %0 on success and a negative error code on failure.
941 int ubifs_recover_inl_heads(const struct ubifs_info
*c
, void *sbuf
)
945 ubifs_assert(!c
->ro_mount
|| c
->remounting_rw
);
947 dbg_rcvry("checking index head at %d:%d", c
->ihead_lnum
, c
->ihead_offs
);
948 err
= recover_head(c
, c
->ihead_lnum
, c
->ihead_offs
, sbuf
);
952 dbg_rcvry("checking LPT head at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
953 err
= recover_head(c
, c
->nhead_lnum
, c
->nhead_offs
, sbuf
);
961 * clean_an_unclean_leb - read and write a LEB to remove corruption.
962 * @c: UBIFS file-system description object
963 * @ucleb: unclean LEB information
964 * @sbuf: LEB-sized buffer to use
966 * This function reads a LEB up to a point pre-determined by the mount recovery,
967 * checks the nodes, and writes the result back to the flash, thereby cleaning
968 * off any following corruption, or non-fatal ECC errors.
970 * This function returns %0 on success and a negative error code on failure.
972 static int clean_an_unclean_leb(const struct ubifs_info
*c
,
973 struct ubifs_unclean_leb
*ucleb
, void *sbuf
)
975 int err
, lnum
= ucleb
->lnum
, offs
= 0, len
= ucleb
->endpt
, quiet
= 1;
978 dbg_rcvry("LEB %d len %d", lnum
, len
);
981 /* Nothing to read, just unmap it */
982 err
= ubifs_leb_unmap(c
, lnum
);
988 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
989 if (err
&& err
!= -EBADMSG
)
997 /* Scan quietly until there is an error */
998 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, quiet
);
1000 if (ret
== SCANNED_A_NODE
) {
1001 /* A valid node, and not a padding node */
1002 struct ubifs_ch
*ch
= buf
;
1005 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
1013 /* Padding bytes or a valid padding node */
1020 if (ret
== SCANNED_EMPTY_SPACE
) {
1021 ubifs_err("unexpected empty space at %d:%d",
1027 /* Redo the last scan but noisily */
1032 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
1036 /* Pad to min_io_size */
1037 len
= ALIGN(ucleb
->endpt
, c
->min_io_size
);
1038 if (len
> ucleb
->endpt
) {
1039 int pad_len
= len
- ALIGN(ucleb
->endpt
, 8);
1042 buf
= c
->sbuf
+ len
- pad_len
;
1043 ubifs_pad(c
, buf
, pad_len
);
1047 /* Write back the LEB atomically */
1048 err
= ubi_leb_change(c
->ubi
, lnum
, sbuf
, len
, UBI_UNKNOWN
);
1052 dbg_rcvry("cleaned LEB %d", lnum
);
1058 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1059 * @c: UBIFS file-system description object
1060 * @sbuf: LEB-sized buffer to use
1062 * This function cleans a LEB identified during recovery that needs to be
1063 * written but was not because UBIFS was mounted read-only. This happens when
1064 * remounting to read-write mode.
1066 * This function returns %0 on success and a negative error code on failure.
1068 int ubifs_clean_lebs(const struct ubifs_info
*c
, void *sbuf
)
1070 dbg_rcvry("recovery");
1071 while (!list_empty(&c
->unclean_leb_list
)) {
1072 struct ubifs_unclean_leb
*ucleb
;
1075 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1076 struct ubifs_unclean_leb
, list
);
1077 err
= clean_an_unclean_leb(c
, ucleb
, sbuf
);
1080 list_del(&ucleb
->list
);
1087 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1088 * @c: UBIFS file-system description object
1090 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1091 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1092 * zero in case of success and a negative error code in case of failure.
1094 static int grab_empty_leb(struct ubifs_info
*c
)
1099 * Note, it is very important to first search for an empty LEB and then
1100 * run the commit, not vice-versa. The reason is that there might be
1101 * only one empty LEB at the moment, the one which has been the
1102 * @c->gc_lnum just before the power cut happened. During the regular
1103 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1104 * one but GC can grab it. But at this moment this single empty LEB is
1105 * not marked as taken, so if we run commit - what happens? Right, the
1106 * commit will grab it and write the index there. Remember that the
1107 * index always expands as long as there is free space, and it only
1108 * starts consolidating when we run out of space.
1110 * IOW, if we run commit now, we might not be able to find a free LEB
1113 lnum
= ubifs_find_free_leb_for_idx(c
);
1115 dbg_err("could not find an empty LEB");
1117 dbg_dump_budg(c
, &c
->bi
);
1121 /* Reset the index flag */
1122 err
= ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
1128 dbg_rcvry("found empty LEB %d, run commit", lnum
);
1130 return ubifs_run_commit(c
);
1134 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1135 * @c: UBIFS file-system description object
1137 * Out-of-place garbage collection requires always one empty LEB with which to
1138 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1139 * written to the master node on unmounting. In the case of an unclean unmount
1140 * the value of gc_lnum recorded in the master node is out of date and cannot
1141 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1142 * However, there may not be enough empty space, in which case it must be
1143 * possible to GC the dirtiest LEB into the GC head LEB.
1145 * This function also runs the commit which causes the TNC updates from
1146 * size-recovery and orphans to be written to the flash. That is important to
1147 * ensure correct replay order for subsequent mounts.
1149 * This function returns %0 on success and a negative error code on failure.
1151 int ubifs_rcvry_gc_commit(struct ubifs_info
*c
)
1153 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
1154 struct ubifs_lprops lp
;
1157 dbg_rcvry("GC head LEB %d, offs %d", wbuf
->lnum
, wbuf
->offs
);
1160 if (wbuf
->lnum
== -1 || wbuf
->offs
== c
->leb_size
)
1161 return grab_empty_leb(c
);
1163 err
= ubifs_find_dirty_leb(c
, &lp
, wbuf
->offs
, 2);
1168 dbg_rcvry("could not find a dirty LEB");
1169 return grab_empty_leb(c
);
1172 ubifs_assert(!(lp
.flags
& LPROPS_INDEX
));
1173 ubifs_assert(lp
.free
+ lp
.dirty
>= wbuf
->offs
);
1176 * We run the commit before garbage collection otherwise subsequent
1177 * mounts will see the GC and orphan deletion in a different order.
1179 dbg_rcvry("committing");
1180 err
= ubifs_run_commit(c
);
1184 dbg_rcvry("GC'ing LEB %d", lp
.lnum
);
1185 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1186 err
= ubifs_garbage_collect_leb(c
, &lp
);
1188 int err2
= ubifs_wbuf_sync_nolock(wbuf
);
1193 mutex_unlock(&wbuf
->io_mutex
);
1195 dbg_err("GC failed, error %d", err
);
1201 ubifs_assert(err
== LEB_RETAINED
);
1202 if (err
!= LEB_RETAINED
)
1205 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1209 dbg_rcvry("allocated LEB %d for GC", lp
.lnum
);
1214 * struct size_entry - inode size information for recovery.
1215 * @rb: link in the RB-tree of sizes
1216 * @inum: inode number
1217 * @i_size: size on inode
1218 * @d_size: maximum size based on data nodes
1219 * @exists: indicates whether the inode exists
1220 * @inode: inode if pinned in memory awaiting rw mode to fix it
1228 struct inode
*inode
;
1232 * add_ino - add an entry to the size tree.
1233 * @c: UBIFS file-system description object
1234 * @inum: inode number
1235 * @i_size: size on inode
1236 * @d_size: maximum size based on data nodes
1237 * @exists: indicates whether the inode exists
1239 static int add_ino(struct ubifs_info
*c
, ino_t inum
, loff_t i_size
,
1240 loff_t d_size
, int exists
)
1242 struct rb_node
**p
= &c
->size_tree
.rb_node
, *parent
= NULL
;
1243 struct size_entry
*e
;
1247 e
= rb_entry(parent
, struct size_entry
, rb
);
1251 p
= &(*p
)->rb_right
;
1254 e
= kzalloc(sizeof(struct size_entry
), GFP_KERNEL
);
1263 rb_link_node(&e
->rb
, parent
, p
);
1264 rb_insert_color(&e
->rb
, &c
->size_tree
);
1270 * find_ino - find an entry on the size tree.
1271 * @c: UBIFS file-system description object
1272 * @inum: inode number
1274 static struct size_entry
*find_ino(struct ubifs_info
*c
, ino_t inum
)
1276 struct rb_node
*p
= c
->size_tree
.rb_node
;
1277 struct size_entry
*e
;
1280 e
= rb_entry(p
, struct size_entry
, rb
);
1283 else if (inum
> e
->inum
)
1292 * remove_ino - remove an entry from the size tree.
1293 * @c: UBIFS file-system description object
1294 * @inum: inode number
1296 static void remove_ino(struct ubifs_info
*c
, ino_t inum
)
1298 struct size_entry
*e
= find_ino(c
, inum
);
1302 rb_erase(&e
->rb
, &c
->size_tree
);
1307 * ubifs_destroy_size_tree - free resources related to the size tree.
1308 * @c: UBIFS file-system description object
1310 void ubifs_destroy_size_tree(struct ubifs_info
*c
)
1312 struct rb_node
*this = c
->size_tree
.rb_node
;
1313 struct size_entry
*e
;
1316 if (this->rb_left
) {
1317 this = this->rb_left
;
1319 } else if (this->rb_right
) {
1320 this = this->rb_right
;
1323 e
= rb_entry(this, struct size_entry
, rb
);
1326 this = rb_parent(this);
1328 if (this->rb_left
== &e
->rb
)
1329 this->rb_left
= NULL
;
1331 this->rb_right
= NULL
;
1335 c
->size_tree
= RB_ROOT
;
1339 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1340 * @c: UBIFS file-system description object
1342 * @deletion: node is for a deletion
1343 * @new_size: inode size
1345 * This function has two purposes:
1346 * 1) to ensure there are no data nodes that fall outside the inode size
1347 * 2) to ensure there are no data nodes for inodes that do not exist
1348 * To accomplish those purposes, a rb-tree is constructed containing an entry
1349 * for each inode number in the journal that has not been deleted, and recording
1350 * the size from the inode node, the maximum size of any data node (also altered
1351 * by truncations) and a flag indicating a inode number for which no inode node
1352 * was present in the journal.
1354 * Note that there is still the possibility that there are data nodes that have
1355 * been committed that are beyond the inode size, however the only way to find
1356 * them would be to scan the entire index. Alternatively, some provision could
1357 * be made to record the size of inodes at the start of commit, which would seem
1358 * very cumbersome for a scenario that is quite unlikely and the only negative
1359 * consequence of which is wasted space.
1361 * This functions returns %0 on success and a negative error code on failure.
1363 int ubifs_recover_size_accum(struct ubifs_info
*c
, union ubifs_key
*key
,
1364 int deletion
, loff_t new_size
)
1366 ino_t inum
= key_inum(c
, key
);
1367 struct size_entry
*e
;
1370 switch (key_type(c
, key
)) {
1373 remove_ino(c
, inum
);
1375 e
= find_ino(c
, inum
);
1377 e
->i_size
= new_size
;
1380 err
= add_ino(c
, inum
, new_size
, 0, 1);
1386 case UBIFS_DATA_KEY
:
1387 e
= find_ino(c
, inum
);
1389 if (new_size
> e
->d_size
)
1390 e
->d_size
= new_size
;
1392 err
= add_ino(c
, inum
, 0, new_size
, 0);
1397 case UBIFS_TRUN_KEY
:
1398 e
= find_ino(c
, inum
);
1400 e
->d_size
= new_size
;
1407 * fix_size_in_place - fix inode size in place on flash.
1408 * @c: UBIFS file-system description object
1409 * @e: inode size information for recovery
1411 static int fix_size_in_place(struct ubifs_info
*c
, struct size_entry
*e
)
1413 struct ubifs_ino_node
*ino
= c
->sbuf
;
1415 union ubifs_key key
;
1416 int err
, lnum
, offs
, len
;
1420 /* Locate the inode node LEB number and offset */
1421 ino_key_init(c
, &key
, e
->inum
);
1422 err
= ubifs_tnc_locate(c
, &key
, ino
, &lnum
, &offs
);
1426 * If the size recorded on the inode node is greater than the size that
1427 * was calculated from nodes in the journal then don't change the inode.
1429 i_size
= le64_to_cpu(ino
->size
);
1430 if (i_size
>= e
->d_size
)
1433 err
= ubi_read(c
->ubi
, lnum
, c
->sbuf
, 0, c
->leb_size
);
1436 /* Change the size field and recalculate the CRC */
1437 ino
= c
->sbuf
+ offs
;
1438 ino
->size
= cpu_to_le64(e
->d_size
);
1439 len
= le32_to_cpu(ino
->ch
.len
);
1440 crc
= crc32(UBIFS_CRC32_INIT
, (void *)ino
+ 8, len
- 8);
1441 ino
->ch
.crc
= cpu_to_le32(crc
);
1442 /* Work out where data in the LEB ends and free space begins */
1444 len
= c
->leb_size
- 1;
1445 while (p
[len
] == 0xff)
1447 len
= ALIGN(len
+ 1, c
->min_io_size
);
1448 /* Atomically write the fixed LEB back again */
1449 err
= ubi_leb_change(c
->ubi
, lnum
, c
->sbuf
, len
, UBI_UNKNOWN
);
1452 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1453 (unsigned long)e
->inum
, lnum
, offs
, i_size
, e
->d_size
);
1457 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1458 (unsigned long)e
->inum
, e
->i_size
, e
->d_size
, err
);
1463 * ubifs_recover_size - recover inode size.
1464 * @c: UBIFS file-system description object
1466 * This function attempts to fix inode size discrepancies identified by the
1467 * 'ubifs_recover_size_accum()' function.
1469 * This functions returns %0 on success and a negative error code on failure.
1471 int ubifs_recover_size(struct ubifs_info
*c
)
1473 struct rb_node
*this = rb_first(&c
->size_tree
);
1476 struct size_entry
*e
;
1479 e
= rb_entry(this, struct size_entry
, rb
);
1481 union ubifs_key key
;
1483 ino_key_init(c
, &key
, e
->inum
);
1484 err
= ubifs_tnc_lookup(c
, &key
, c
->sbuf
);
1485 if (err
&& err
!= -ENOENT
)
1487 if (err
== -ENOENT
) {
1488 /* Remove data nodes that have no inode */
1489 dbg_rcvry("removing ino %lu",
1490 (unsigned long)e
->inum
);
1491 err
= ubifs_tnc_remove_ino(c
, e
->inum
);
1495 struct ubifs_ino_node
*ino
= c
->sbuf
;
1498 e
->i_size
= le64_to_cpu(ino
->size
);
1502 if (e
->exists
&& e
->i_size
< e
->d_size
) {
1504 /* Fix the inode size and pin it in memory */
1505 struct inode
*inode
;
1506 struct ubifs_inode
*ui
;
1508 ubifs_assert(!e
->inode
);
1510 inode
= ubifs_iget(c
->vfs_sb
, e
->inum
);
1512 return PTR_ERR(inode
);
1514 ui
= ubifs_inode(inode
);
1515 if (inode
->i_size
< e
->d_size
) {
1516 dbg_rcvry("ino %lu size %lld -> %lld",
1517 (unsigned long)e
->inum
,
1518 inode
->i_size
, e
->d_size
);
1519 inode
->i_size
= e
->d_size
;
1520 ui
->ui_size
= e
->d_size
;
1521 ui
->synced_i_size
= e
->d_size
;
1523 this = rb_next(this);
1528 /* Fix the size in place */
1529 err
= fix_size_in_place(c
, e
);
1537 this = rb_next(this);
1538 rb_erase(&e
->rb
, &c
->size_tree
);