mach-ux500: update SoC and board IRQ handling
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / recovery.c
blob731d9e2e7b50c848bf6088237922c43e0f00ef88
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed successfully. If not, the process of mounting
27 * incorporates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
32 * The general UBIFS approach to the recovery is that it recovers from
33 * corruptions which could be caused by power cuts, but it refuses to recover
34 * from corruption caused by other reasons. And UBIFS tries to distinguish
35 * between these 2 reasons of corruptions and silently recover in the former
36 * case and loudly complain in the latter case.
38 * UBIFS writes only to erased LEBs, so it writes only to the flash space
39 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
40 * of the LEB to the end. And UBIFS assumes that the underlying flash media
41 * writes in @c->max_write_size bytes at a time.
43 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
44 * I/O unit corresponding to offset X to contain corrupted data, all the
45 * following min. I/O units have to contain empty space (all 0xFFs). If this is
46 * not true, the corruption cannot be the result of a power cut, and UBIFS
47 * refuses to mount.
50 #include <linux/crc32.h>
51 #include <linux/slab.h>
52 #include "ubifs.h"
54 /**
55 * is_empty - determine whether a buffer is empty (contains all 0xff).
56 * @buf: buffer to clean
57 * @len: length of buffer
59 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
60 * %0 is returned.
62 static int is_empty(void *buf, int len)
64 uint8_t *p = buf;
65 int i;
67 for (i = 0; i < len; i++)
68 if (*p++ != 0xff)
69 return 0;
70 return 1;
73 /**
74 * first_non_ff - find offset of the first non-0xff byte.
75 * @buf: buffer to search in
76 * @len: length of buffer
78 * This function returns offset of the first non-0xff byte in @buf or %-1 if
79 * the buffer contains only 0xff bytes.
81 static int first_non_ff(void *buf, int len)
83 uint8_t *p = buf;
84 int i;
86 for (i = 0; i < len; i++)
87 if (*p++ != 0xff)
88 return i;
89 return -1;
92 /**
93 * get_master_node - get the last valid master node allowing for corruption.
94 * @c: UBIFS file-system description object
95 * @lnum: LEB number
96 * @pbuf: buffer containing the LEB read, is returned here
97 * @mst: master node, if found, is returned here
98 * @cor: corruption, if found, is returned here
100 * This function allocates a buffer, reads the LEB into it, and finds and
101 * returns the last valid master node allowing for one area of corruption.
102 * The corrupt area, if there is one, must be consistent with the assumption
103 * that it is the result of an unclean unmount while the master node was being
104 * written. Under those circumstances, it is valid to use the previously written
105 * master node.
107 * This function returns %0 on success and a negative error code on failure.
109 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
110 struct ubifs_mst_node **mst, void **cor)
112 const int sz = c->mst_node_alsz;
113 int err, offs, len;
114 void *sbuf, *buf;
116 sbuf = vmalloc(c->leb_size);
117 if (!sbuf)
118 return -ENOMEM;
120 err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
121 if (err && err != -EBADMSG)
122 goto out_free;
124 /* Find the first position that is definitely not a node */
125 offs = 0;
126 buf = sbuf;
127 len = c->leb_size;
128 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
129 struct ubifs_ch *ch = buf;
131 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
132 break;
133 offs += sz;
134 buf += sz;
135 len -= sz;
137 /* See if there was a valid master node before that */
138 if (offs) {
139 int ret;
141 offs -= sz;
142 buf -= sz;
143 len += sz;
144 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
145 if (ret != SCANNED_A_NODE && offs) {
146 /* Could have been corruption so check one place back */
147 offs -= sz;
148 buf -= sz;
149 len += sz;
150 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
151 if (ret != SCANNED_A_NODE)
153 * We accept only one area of corruption because
154 * we are assuming that it was caused while
155 * trying to write a master node.
157 goto out_err;
159 if (ret == SCANNED_A_NODE) {
160 struct ubifs_ch *ch = buf;
162 if (ch->node_type != UBIFS_MST_NODE)
163 goto out_err;
164 dbg_rcvry("found a master node at %d:%d", lnum, offs);
165 *mst = buf;
166 offs += sz;
167 buf += sz;
168 len -= sz;
171 /* Check for corruption */
172 if (offs < c->leb_size) {
173 if (!is_empty(buf, min_t(int, len, sz))) {
174 *cor = buf;
175 dbg_rcvry("found corruption at %d:%d", lnum, offs);
177 offs += sz;
178 buf += sz;
179 len -= sz;
181 /* Check remaining empty space */
182 if (offs < c->leb_size)
183 if (!is_empty(buf, len))
184 goto out_err;
185 *pbuf = sbuf;
186 return 0;
188 out_err:
189 err = -EINVAL;
190 out_free:
191 vfree(sbuf);
192 *mst = NULL;
193 *cor = NULL;
194 return err;
198 * write_rcvrd_mst_node - write recovered master node.
199 * @c: UBIFS file-system description object
200 * @mst: master node
202 * This function returns %0 on success and a negative error code on failure.
204 static int write_rcvrd_mst_node(struct ubifs_info *c,
205 struct ubifs_mst_node *mst)
207 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
208 __le32 save_flags;
210 dbg_rcvry("recovery");
212 save_flags = mst->flags;
213 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
215 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
216 err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
217 if (err)
218 goto out;
219 err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
220 if (err)
221 goto out;
222 out:
223 mst->flags = save_flags;
224 return err;
228 * ubifs_recover_master_node - recover the master node.
229 * @c: UBIFS file-system description object
231 * This function recovers the master node from corruption that may occur due to
232 * an unclean unmount.
234 * This function returns %0 on success and a negative error code on failure.
236 int ubifs_recover_master_node(struct ubifs_info *c)
238 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
239 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
240 const int sz = c->mst_node_alsz;
241 int err, offs1, offs2;
243 dbg_rcvry("recovery");
245 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
246 if (err)
247 goto out_free;
249 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
250 if (err)
251 goto out_free;
253 if (mst1) {
254 offs1 = (void *)mst1 - buf1;
255 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
256 (offs1 == 0 && !cor1)) {
258 * mst1 was written by recovery at offset 0 with no
259 * corruption.
261 dbg_rcvry("recovery recovery");
262 mst = mst1;
263 } else if (mst2) {
264 offs2 = (void *)mst2 - buf2;
265 if (offs1 == offs2) {
266 /* Same offset, so must be the same */
267 if (memcmp((void *)mst1 + UBIFS_CH_SZ,
268 (void *)mst2 + UBIFS_CH_SZ,
269 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
270 goto out_err;
271 mst = mst1;
272 } else if (offs2 + sz == offs1) {
273 /* 1st LEB was written, 2nd was not */
274 if (cor1)
275 goto out_err;
276 mst = mst1;
277 } else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
278 /* 1st LEB was unmapped and written, 2nd not */
279 if (cor1)
280 goto out_err;
281 mst = mst1;
282 } else
283 goto out_err;
284 } else {
286 * 2nd LEB was unmapped and about to be written, so
287 * there must be only one master node in the first LEB
288 * and no corruption.
290 if (offs1 != 0 || cor1)
291 goto out_err;
292 mst = mst1;
294 } else {
295 if (!mst2)
296 goto out_err;
298 * 1st LEB was unmapped and about to be written, so there must
299 * be no room left in 2nd LEB.
301 offs2 = (void *)mst2 - buf2;
302 if (offs2 + sz + sz <= c->leb_size)
303 goto out_err;
304 mst = mst2;
307 ubifs_msg("recovered master node from LEB %d",
308 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
310 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
312 if (c->ro_mount) {
313 /* Read-only mode. Keep a copy for switching to rw mode */
314 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
315 if (!c->rcvrd_mst_node) {
316 err = -ENOMEM;
317 goto out_free;
319 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
322 * We had to recover the master node, which means there was an
323 * unclean reboot. However, it is possible that the master node
324 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
325 * E.g., consider the following chain of events:
327 * 1. UBIFS was cleanly unmounted, so the master node is clean
328 * 2. UBIFS is being mounted R/W and starts changing the master
329 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
330 * so this LEB ends up with some amount of garbage at the
331 * end.
332 * 3. UBIFS is being mounted R/O. We reach this place and
333 * recover the master node from the second LEB
334 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
335 * because we are being mounted R/O. We have to defer the
336 * operation.
337 * 4. However, this master node (@c->mst_node) is marked as
338 * clean (since the step 1). And if we just return, the
339 * mount code will be confused and won't recover the master
340 * node when it is re-mounter R/W later.
342 * Thus, to force the recovery by marking the master node as
343 * dirty.
345 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
346 } else {
347 /* Write the recovered master node */
348 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
349 err = write_rcvrd_mst_node(c, c->mst_node);
350 if (err)
351 goto out_free;
354 vfree(buf2);
355 vfree(buf1);
357 return 0;
359 out_err:
360 err = -EINVAL;
361 out_free:
362 ubifs_err("failed to recover master node");
363 if (mst1) {
364 dbg_err("dumping first master node");
365 dbg_dump_node(c, mst1);
367 if (mst2) {
368 dbg_err("dumping second master node");
369 dbg_dump_node(c, mst2);
371 vfree(buf2);
372 vfree(buf1);
373 return err;
377 * ubifs_write_rcvrd_mst_node - write the recovered master node.
378 * @c: UBIFS file-system description object
380 * This function writes the master node that was recovered during mounting in
381 * read-only mode and must now be written because we are remounting rw.
383 * This function returns %0 on success and a negative error code on failure.
385 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
387 int err;
389 if (!c->rcvrd_mst_node)
390 return 0;
391 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
392 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
393 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
394 if (err)
395 return err;
396 kfree(c->rcvrd_mst_node);
397 c->rcvrd_mst_node = NULL;
398 return 0;
402 * is_last_write - determine if an offset was in the last write to a LEB.
403 * @c: UBIFS file-system description object
404 * @buf: buffer to check
405 * @offs: offset to check
407 * This function returns %1 if @offs was in the last write to the LEB whose data
408 * is in @buf, otherwise %0 is returned. The determination is made by checking
409 * for subsequent empty space starting from the next @c->max_write_size
410 * boundary.
412 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
414 int empty_offs, check_len;
415 uint8_t *p;
418 * Round up to the next @c->max_write_size boundary i.e. @offs is in
419 * the last wbuf written. After that should be empty space.
421 empty_offs = ALIGN(offs + 1, c->max_write_size);
422 check_len = c->leb_size - empty_offs;
423 p = buf + empty_offs - offs;
424 return is_empty(p, check_len);
428 * clean_buf - clean the data from an LEB sitting in a buffer.
429 * @c: UBIFS file-system description object
430 * @buf: buffer to clean
431 * @lnum: LEB number to clean
432 * @offs: offset from which to clean
433 * @len: length of buffer
435 * This function pads up to the next min_io_size boundary (if there is one) and
436 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
437 * @c->min_io_size boundary.
439 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
440 int *offs, int *len)
442 int empty_offs, pad_len;
444 lnum = lnum;
445 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
447 ubifs_assert(!(*offs & 7));
448 empty_offs = ALIGN(*offs, c->min_io_size);
449 pad_len = empty_offs - *offs;
450 ubifs_pad(c, *buf, pad_len);
451 *offs += pad_len;
452 *buf += pad_len;
453 *len -= pad_len;
454 memset(*buf, 0xff, c->leb_size - empty_offs);
458 * no_more_nodes - determine if there are no more nodes in a buffer.
459 * @c: UBIFS file-system description object
460 * @buf: buffer to check
461 * @len: length of buffer
462 * @lnum: LEB number of the LEB from which @buf was read
463 * @offs: offset from which @buf was read
465 * This function ensures that the corrupted node at @offs is the last thing
466 * written to a LEB. This function returns %1 if more data is not found and
467 * %0 if more data is found.
469 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
470 int lnum, int offs)
472 struct ubifs_ch *ch = buf;
473 int skip, dlen = le32_to_cpu(ch->len);
475 /* Check for empty space after the corrupt node's common header */
476 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
477 if (is_empty(buf + skip, len - skip))
478 return 1;
480 * The area after the common header size is not empty, so the common
481 * header must be intact. Check it.
483 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
484 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
485 return 0;
487 /* Now we know the corrupt node's length we can skip over it */
488 skip = ALIGN(offs + dlen, c->max_write_size) - offs;
489 /* After which there should be empty space */
490 if (is_empty(buf + skip, len - skip))
491 return 1;
492 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
493 return 0;
497 * fix_unclean_leb - fix an unclean LEB.
498 * @c: UBIFS file-system description object
499 * @sleb: scanned LEB information
500 * @start: offset where scan started
502 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
503 int start)
505 int lnum = sleb->lnum, endpt = start;
507 /* Get the end offset of the last node we are keeping */
508 if (!list_empty(&sleb->nodes)) {
509 struct ubifs_scan_node *snod;
511 snod = list_entry(sleb->nodes.prev,
512 struct ubifs_scan_node, list);
513 endpt = snod->offs + snod->len;
516 if (c->ro_mount && !c->remounting_rw) {
517 /* Add to recovery list */
518 struct ubifs_unclean_leb *ucleb;
520 dbg_rcvry("need to fix LEB %d start %d endpt %d",
521 lnum, start, sleb->endpt);
522 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
523 if (!ucleb)
524 return -ENOMEM;
525 ucleb->lnum = lnum;
526 ucleb->endpt = endpt;
527 list_add_tail(&ucleb->list, &c->unclean_leb_list);
528 } else {
529 /* Write the fixed LEB back to flash */
530 int err;
532 dbg_rcvry("fixing LEB %d start %d endpt %d",
533 lnum, start, sleb->endpt);
534 if (endpt == 0) {
535 err = ubifs_leb_unmap(c, lnum);
536 if (err)
537 return err;
538 } else {
539 int len = ALIGN(endpt, c->min_io_size);
541 if (start) {
542 err = ubi_read(c->ubi, lnum, sleb->buf, 0,
543 start);
544 if (err)
545 return err;
547 /* Pad to min_io_size */
548 if (len > endpt) {
549 int pad_len = len - ALIGN(endpt, 8);
551 if (pad_len > 0) {
552 void *buf = sleb->buf + len - pad_len;
554 ubifs_pad(c, buf, pad_len);
557 err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
558 UBI_UNKNOWN);
559 if (err)
560 return err;
563 return 0;
567 * drop_last_node - drop the last node or group of nodes.
568 * @sleb: scanned LEB information
569 * @offs: offset of dropped nodes is returned here
570 * @grouped: non-zero if whole group of nodes have to be dropped
572 * This is a helper function for 'ubifs_recover_leb()' which drops the last
573 * node of the scanned LEB or the last group of nodes if @grouped is not zero.
574 * This function returns %1 if a node was dropped and %0 otherwise.
576 static int drop_last_node(struct ubifs_scan_leb *sleb, int *offs, int grouped)
578 int dropped = 0;
580 while (!list_empty(&sleb->nodes)) {
581 struct ubifs_scan_node *snod;
582 struct ubifs_ch *ch;
584 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
585 list);
586 ch = snod->node;
587 if (ch->group_type != UBIFS_IN_NODE_GROUP)
588 return dropped;
589 dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
590 *offs = snod->offs;
591 list_del(&snod->list);
592 kfree(snod);
593 sleb->nodes_cnt -= 1;
594 dropped = 1;
595 if (!grouped)
596 break;
598 return dropped;
602 * ubifs_recover_leb - scan and recover a LEB.
603 * @c: UBIFS file-system description object
604 * @lnum: LEB number
605 * @offs: offset
606 * @sbuf: LEB-sized buffer to use
607 * @grouped: nodes may be grouped for recovery
609 * This function does a scan of a LEB, but caters for errors that might have
610 * been caused by the unclean unmount from which we are attempting to recover.
611 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
612 * found, and a negative error code in case of failure.
614 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
615 int offs, void *sbuf, int grouped)
617 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
618 struct ubifs_scan_leb *sleb;
619 void *buf = sbuf + offs;
621 dbg_rcvry("%d:%d", lnum, offs);
623 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
624 if (IS_ERR(sleb))
625 return sleb;
627 ubifs_assert(len >= 8);
628 while (len >= 8) {
629 dbg_scan("look at LEB %d:%d (%d bytes left)",
630 lnum, offs, len);
632 cond_resched();
635 * Scan quietly until there is an error from which we cannot
636 * recover
638 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 0);
639 if (ret == SCANNED_A_NODE) {
640 /* A valid node, and not a padding node */
641 struct ubifs_ch *ch = buf;
642 int node_len;
644 err = ubifs_add_snod(c, sleb, buf, offs);
645 if (err)
646 goto error;
647 node_len = ALIGN(le32_to_cpu(ch->len), 8);
648 offs += node_len;
649 buf += node_len;
650 len -= node_len;
651 } else if (ret > 0) {
652 /* Padding bytes or a valid padding node */
653 offs += ret;
654 buf += ret;
655 len -= ret;
656 } else if (ret == SCANNED_EMPTY_SPACE ||
657 ret == SCANNED_GARBAGE ||
658 ret == SCANNED_A_BAD_PAD_NODE ||
659 ret == SCANNED_A_CORRUPT_NODE) {
660 dbg_rcvry("found corruption - %d", ret);
661 break;
662 } else {
663 dbg_err("unexpected return value %d", ret);
664 err = -EINVAL;
665 goto error;
669 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
670 if (!is_last_write(c, buf, offs))
671 goto corrupted_rescan;
672 } else if (ret == SCANNED_A_CORRUPT_NODE) {
673 if (!no_more_nodes(c, buf, len, lnum, offs))
674 goto corrupted_rescan;
675 } else if (!is_empty(buf, len)) {
676 if (!is_last_write(c, buf, offs)) {
677 int corruption = first_non_ff(buf, len);
680 * See header comment for this file for more
681 * explanations about the reasons we have this check.
683 ubifs_err("corrupt empty space LEB %d:%d, corruption "
684 "starts at %d", lnum, offs, corruption);
685 /* Make sure we dump interesting non-0xFF data */
686 offs += corruption;
687 buf += corruption;
688 goto corrupted;
692 min_io_unit = round_down(offs, c->min_io_size);
693 if (grouped)
695 * If nodes are grouped, always drop the incomplete group at
696 * the end.
698 drop_last_node(sleb, &offs, 1);
701 * While we are in the middle of the same min. I/O unit keep dropping
702 * nodes. So basically, what we want is to make sure that the last min.
703 * I/O unit where we saw the corruption is dropped completely with all
704 * the uncorrupted node which may possibly sit there.
706 * In other words, let's name the min. I/O unit where the corruption
707 * starts B, and the previous min. I/O unit A. The below code tries to
708 * deal with a situation when half of B contains valid nodes or the end
709 * of a valid node, and the second half of B contains corrupted data or
710 * garbage. This means that UBIFS had been writing to B just before the
711 * power cut happened. I do not know how realistic is this scenario
712 * that half of the min. I/O unit had been written successfully and the
713 * other half not, but this is possible in our 'failure mode emulation'
714 * infrastructure at least.
716 * So what is the problem, why we need to drop those nodes? Whey can't
717 * we just clean-up the second half of B by putting a padding node
718 * there? We can, and this works fine with one exception which was
719 * reproduced with power cut emulation testing and happens extremely
720 * rarely. The description follows, but it is worth noting that that is
721 * only about the GC head, so we could do this trick only if the bud
722 * belongs to the GC head, but it does not seem to be worth an
723 * additional "if" statement.
725 * So, imagine the file-system is full, we run GC which is moving valid
726 * nodes from LEB X to LEB Y (obviously, LEB Y is the current GC head
727 * LEB). The @c->gc_lnum is -1, which means that GC will retain LEB X
728 * and will try to continue. Imagine that LEB X is currently the
729 * dirtiest LEB, and the amount of used space in LEB Y is exactly the
730 * same as amount of free space in LEB X.
732 * And a power cut happens when nodes are moved from LEB X to LEB Y. We
733 * are here trying to recover LEB Y which is the GC head LEB. We find
734 * the min. I/O unit B as described above. Then we clean-up LEB Y by
735 * padding min. I/O unit. And later 'ubifs_rcvry_gc_commit()' function
736 * fails, because it cannot find a dirty LEB which could be GC'd into
737 * LEB Y! Even LEB X does not match because the amount of valid nodes
738 * there does not fit the free space in LEB Y any more! And this is
739 * because of the padding node which we added to LEB Y. The
740 * user-visible effect of this which I once observed and analysed is
741 * that we cannot mount the file-system with -ENOSPC error.
743 * So obviously, to make sure that situation does not happen we should
744 * free min. I/O unit B in LEB Y completely and the last used min. I/O
745 * unit in LEB Y should be A. This is basically what the below code
746 * tries to do.
748 while (min_io_unit == round_down(offs, c->min_io_size) &&
749 min_io_unit != offs &&
750 drop_last_node(sleb, &offs, grouped));
752 buf = sbuf + offs;
753 len = c->leb_size - offs;
755 clean_buf(c, &buf, lnum, &offs, &len);
756 ubifs_end_scan(c, sleb, lnum, offs);
758 err = fix_unclean_leb(c, sleb, start);
759 if (err)
760 goto error;
762 return sleb;
764 corrupted_rescan:
765 /* Re-scan the corrupted data with verbose messages */
766 dbg_err("corruptio %d", ret);
767 ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
768 corrupted:
769 ubifs_scanned_corruption(c, lnum, offs, buf);
770 err = -EUCLEAN;
771 error:
772 ubifs_err("LEB %d scanning failed", lnum);
773 ubifs_scan_destroy(sleb);
774 return ERR_PTR(err);
778 * get_cs_sqnum - get commit start sequence number.
779 * @c: UBIFS file-system description object
780 * @lnum: LEB number of commit start node
781 * @offs: offset of commit start node
782 * @cs_sqnum: commit start sequence number is returned here
784 * This function returns %0 on success and a negative error code on failure.
786 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
787 unsigned long long *cs_sqnum)
789 struct ubifs_cs_node *cs_node = NULL;
790 int err, ret;
792 dbg_rcvry("at %d:%d", lnum, offs);
793 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
794 if (!cs_node)
795 return -ENOMEM;
796 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
797 goto out_err;
798 err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
799 if (err && err != -EBADMSG)
800 goto out_free;
801 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
802 if (ret != SCANNED_A_NODE) {
803 dbg_err("Not a valid node");
804 goto out_err;
806 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
807 dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
808 goto out_err;
810 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
811 dbg_err("CS node cmt_no %llu != current cmt_no %llu",
812 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
813 c->cmt_no);
814 goto out_err;
816 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
817 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
818 kfree(cs_node);
819 return 0;
821 out_err:
822 err = -EINVAL;
823 out_free:
824 ubifs_err("failed to get CS sqnum");
825 kfree(cs_node);
826 return err;
830 * ubifs_recover_log_leb - scan and recover a log LEB.
831 * @c: UBIFS file-system description object
832 * @lnum: LEB number
833 * @offs: offset
834 * @sbuf: LEB-sized buffer to use
836 * This function does a scan of a LEB, but caters for errors that might have
837 * been caused by unclean reboots from which we are attempting to recover
838 * (assume that only the last log LEB can be corrupted by an unclean reboot).
840 * This function returns %0 on success and a negative error code on failure.
842 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
843 int offs, void *sbuf)
845 struct ubifs_scan_leb *sleb;
846 int next_lnum;
848 dbg_rcvry("LEB %d", lnum);
849 next_lnum = lnum + 1;
850 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
851 next_lnum = UBIFS_LOG_LNUM;
852 if (next_lnum != c->ltail_lnum) {
854 * We can only recover at the end of the log, so check that the
855 * next log LEB is empty or out of date.
857 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
858 if (IS_ERR(sleb))
859 return sleb;
860 if (sleb->nodes_cnt) {
861 struct ubifs_scan_node *snod;
862 unsigned long long cs_sqnum = c->cs_sqnum;
864 snod = list_entry(sleb->nodes.next,
865 struct ubifs_scan_node, list);
866 if (cs_sqnum == 0) {
867 int err;
869 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
870 if (err) {
871 ubifs_scan_destroy(sleb);
872 return ERR_PTR(err);
875 if (snod->sqnum > cs_sqnum) {
876 ubifs_err("unrecoverable log corruption "
877 "in LEB %d", lnum);
878 ubifs_scan_destroy(sleb);
879 return ERR_PTR(-EUCLEAN);
882 ubifs_scan_destroy(sleb);
884 return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
888 * recover_head - recover a head.
889 * @c: UBIFS file-system description object
890 * @lnum: LEB number of head to recover
891 * @offs: offset of head to recover
892 * @sbuf: LEB-sized buffer to use
894 * This function ensures that there is no data on the flash at a head location.
896 * This function returns %0 on success and a negative error code on failure.
898 static int recover_head(const struct ubifs_info *c, int lnum, int offs,
899 void *sbuf)
901 int len = c->max_write_size, err;
903 if (offs + len > c->leb_size)
904 len = c->leb_size - offs;
906 if (!len)
907 return 0;
909 /* Read at the head location and check it is empty flash */
910 err = ubi_read(c->ubi, lnum, sbuf, offs, len);
911 if (err || !is_empty(sbuf, len)) {
912 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
913 if (offs == 0)
914 return ubifs_leb_unmap(c, lnum);
915 err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
916 if (err)
917 return err;
918 return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
921 return 0;
925 * ubifs_recover_inl_heads - recover index and LPT heads.
926 * @c: UBIFS file-system description object
927 * @sbuf: LEB-sized buffer to use
929 * This function ensures that there is no data on the flash at the index and
930 * LPT head locations.
932 * This deals with the recovery of a half-completed journal commit. UBIFS is
933 * careful never to overwrite the last version of the index or the LPT. Because
934 * the index and LPT are wandering trees, data from a half-completed commit will
935 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
936 * assumed to be empty and will be unmapped anyway before use, or in the index
937 * and LPT heads.
939 * This function returns %0 on success and a negative error code on failure.
941 int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
943 int err;
945 ubifs_assert(!c->ro_mount || c->remounting_rw);
947 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
948 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
949 if (err)
950 return err;
952 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
953 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
954 if (err)
955 return err;
957 return 0;
961 * clean_an_unclean_leb - read and write a LEB to remove corruption.
962 * @c: UBIFS file-system description object
963 * @ucleb: unclean LEB information
964 * @sbuf: LEB-sized buffer to use
966 * This function reads a LEB up to a point pre-determined by the mount recovery,
967 * checks the nodes, and writes the result back to the flash, thereby cleaning
968 * off any following corruption, or non-fatal ECC errors.
970 * This function returns %0 on success and a negative error code on failure.
972 static int clean_an_unclean_leb(const struct ubifs_info *c,
973 struct ubifs_unclean_leb *ucleb, void *sbuf)
975 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
976 void *buf = sbuf;
978 dbg_rcvry("LEB %d len %d", lnum, len);
980 if (len == 0) {
981 /* Nothing to read, just unmap it */
982 err = ubifs_leb_unmap(c, lnum);
983 if (err)
984 return err;
985 return 0;
988 err = ubi_read(c->ubi, lnum, buf, offs, len);
989 if (err && err != -EBADMSG)
990 return err;
992 while (len >= 8) {
993 int ret;
995 cond_resched();
997 /* Scan quietly until there is an error */
998 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1000 if (ret == SCANNED_A_NODE) {
1001 /* A valid node, and not a padding node */
1002 struct ubifs_ch *ch = buf;
1003 int node_len;
1005 node_len = ALIGN(le32_to_cpu(ch->len), 8);
1006 offs += node_len;
1007 buf += node_len;
1008 len -= node_len;
1009 continue;
1012 if (ret > 0) {
1013 /* Padding bytes or a valid padding node */
1014 offs += ret;
1015 buf += ret;
1016 len -= ret;
1017 continue;
1020 if (ret == SCANNED_EMPTY_SPACE) {
1021 ubifs_err("unexpected empty space at %d:%d",
1022 lnum, offs);
1023 return -EUCLEAN;
1026 if (quiet) {
1027 /* Redo the last scan but noisily */
1028 quiet = 0;
1029 continue;
1032 ubifs_scanned_corruption(c, lnum, offs, buf);
1033 return -EUCLEAN;
1036 /* Pad to min_io_size */
1037 len = ALIGN(ucleb->endpt, c->min_io_size);
1038 if (len > ucleb->endpt) {
1039 int pad_len = len - ALIGN(ucleb->endpt, 8);
1041 if (pad_len > 0) {
1042 buf = c->sbuf + len - pad_len;
1043 ubifs_pad(c, buf, pad_len);
1047 /* Write back the LEB atomically */
1048 err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
1049 if (err)
1050 return err;
1052 dbg_rcvry("cleaned LEB %d", lnum);
1054 return 0;
1058 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1059 * @c: UBIFS file-system description object
1060 * @sbuf: LEB-sized buffer to use
1062 * This function cleans a LEB identified during recovery that needs to be
1063 * written but was not because UBIFS was mounted read-only. This happens when
1064 * remounting to read-write mode.
1066 * This function returns %0 on success and a negative error code on failure.
1068 int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
1070 dbg_rcvry("recovery");
1071 while (!list_empty(&c->unclean_leb_list)) {
1072 struct ubifs_unclean_leb *ucleb;
1073 int err;
1075 ucleb = list_entry(c->unclean_leb_list.next,
1076 struct ubifs_unclean_leb, list);
1077 err = clean_an_unclean_leb(c, ucleb, sbuf);
1078 if (err)
1079 return err;
1080 list_del(&ucleb->list);
1081 kfree(ucleb);
1083 return 0;
1087 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1088 * @c: UBIFS file-system description object
1090 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1091 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1092 * zero in case of success and a negative error code in case of failure.
1094 static int grab_empty_leb(struct ubifs_info *c)
1096 int lnum, err;
1099 * Note, it is very important to first search for an empty LEB and then
1100 * run the commit, not vice-versa. The reason is that there might be
1101 * only one empty LEB at the moment, the one which has been the
1102 * @c->gc_lnum just before the power cut happened. During the regular
1103 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1104 * one but GC can grab it. But at this moment this single empty LEB is
1105 * not marked as taken, so if we run commit - what happens? Right, the
1106 * commit will grab it and write the index there. Remember that the
1107 * index always expands as long as there is free space, and it only
1108 * starts consolidating when we run out of space.
1110 * IOW, if we run commit now, we might not be able to find a free LEB
1111 * after this.
1113 lnum = ubifs_find_free_leb_for_idx(c);
1114 if (lnum < 0) {
1115 dbg_err("could not find an empty LEB");
1116 dbg_dump_lprops(c);
1117 dbg_dump_budg(c, &c->bi);
1118 return lnum;
1121 /* Reset the index flag */
1122 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1123 LPROPS_INDEX, 0);
1124 if (err)
1125 return err;
1127 c->gc_lnum = lnum;
1128 dbg_rcvry("found empty LEB %d, run commit", lnum);
1130 return ubifs_run_commit(c);
1134 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1135 * @c: UBIFS file-system description object
1137 * Out-of-place garbage collection requires always one empty LEB with which to
1138 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1139 * written to the master node on unmounting. In the case of an unclean unmount
1140 * the value of gc_lnum recorded in the master node is out of date and cannot
1141 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1142 * However, there may not be enough empty space, in which case it must be
1143 * possible to GC the dirtiest LEB into the GC head LEB.
1145 * This function also runs the commit which causes the TNC updates from
1146 * size-recovery and orphans to be written to the flash. That is important to
1147 * ensure correct replay order for subsequent mounts.
1149 * This function returns %0 on success and a negative error code on failure.
1151 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1153 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1154 struct ubifs_lprops lp;
1155 int err;
1157 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1159 c->gc_lnum = -1;
1160 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1161 return grab_empty_leb(c);
1163 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1164 if (err) {
1165 if (err != -ENOSPC)
1166 return err;
1168 dbg_rcvry("could not find a dirty LEB");
1169 return grab_empty_leb(c);
1172 ubifs_assert(!(lp.flags & LPROPS_INDEX));
1173 ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1176 * We run the commit before garbage collection otherwise subsequent
1177 * mounts will see the GC and orphan deletion in a different order.
1179 dbg_rcvry("committing");
1180 err = ubifs_run_commit(c);
1181 if (err)
1182 return err;
1184 dbg_rcvry("GC'ing LEB %d", lp.lnum);
1185 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1186 err = ubifs_garbage_collect_leb(c, &lp);
1187 if (err >= 0) {
1188 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1190 if (err2)
1191 err = err2;
1193 mutex_unlock(&wbuf->io_mutex);
1194 if (err < 0) {
1195 dbg_err("GC failed, error %d", err);
1196 if (err == -EAGAIN)
1197 err = -EINVAL;
1198 return err;
1201 ubifs_assert(err == LEB_RETAINED);
1202 if (err != LEB_RETAINED)
1203 return -EINVAL;
1205 err = ubifs_leb_unmap(c, c->gc_lnum);
1206 if (err)
1207 return err;
1209 dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1210 return 0;
1214 * struct size_entry - inode size information for recovery.
1215 * @rb: link in the RB-tree of sizes
1216 * @inum: inode number
1217 * @i_size: size on inode
1218 * @d_size: maximum size based on data nodes
1219 * @exists: indicates whether the inode exists
1220 * @inode: inode if pinned in memory awaiting rw mode to fix it
1222 struct size_entry {
1223 struct rb_node rb;
1224 ino_t inum;
1225 loff_t i_size;
1226 loff_t d_size;
1227 int exists;
1228 struct inode *inode;
1232 * add_ino - add an entry to the size tree.
1233 * @c: UBIFS file-system description object
1234 * @inum: inode number
1235 * @i_size: size on inode
1236 * @d_size: maximum size based on data nodes
1237 * @exists: indicates whether the inode exists
1239 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1240 loff_t d_size, int exists)
1242 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1243 struct size_entry *e;
1245 while (*p) {
1246 parent = *p;
1247 e = rb_entry(parent, struct size_entry, rb);
1248 if (inum < e->inum)
1249 p = &(*p)->rb_left;
1250 else
1251 p = &(*p)->rb_right;
1254 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1255 if (!e)
1256 return -ENOMEM;
1258 e->inum = inum;
1259 e->i_size = i_size;
1260 e->d_size = d_size;
1261 e->exists = exists;
1263 rb_link_node(&e->rb, parent, p);
1264 rb_insert_color(&e->rb, &c->size_tree);
1266 return 0;
1270 * find_ino - find an entry on the size tree.
1271 * @c: UBIFS file-system description object
1272 * @inum: inode number
1274 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1276 struct rb_node *p = c->size_tree.rb_node;
1277 struct size_entry *e;
1279 while (p) {
1280 e = rb_entry(p, struct size_entry, rb);
1281 if (inum < e->inum)
1282 p = p->rb_left;
1283 else if (inum > e->inum)
1284 p = p->rb_right;
1285 else
1286 return e;
1288 return NULL;
1292 * remove_ino - remove an entry from the size tree.
1293 * @c: UBIFS file-system description object
1294 * @inum: inode number
1296 static void remove_ino(struct ubifs_info *c, ino_t inum)
1298 struct size_entry *e = find_ino(c, inum);
1300 if (!e)
1301 return;
1302 rb_erase(&e->rb, &c->size_tree);
1303 kfree(e);
1307 * ubifs_destroy_size_tree - free resources related to the size tree.
1308 * @c: UBIFS file-system description object
1310 void ubifs_destroy_size_tree(struct ubifs_info *c)
1312 struct rb_node *this = c->size_tree.rb_node;
1313 struct size_entry *e;
1315 while (this) {
1316 if (this->rb_left) {
1317 this = this->rb_left;
1318 continue;
1319 } else if (this->rb_right) {
1320 this = this->rb_right;
1321 continue;
1323 e = rb_entry(this, struct size_entry, rb);
1324 if (e->inode)
1325 iput(e->inode);
1326 this = rb_parent(this);
1327 if (this) {
1328 if (this->rb_left == &e->rb)
1329 this->rb_left = NULL;
1330 else
1331 this->rb_right = NULL;
1333 kfree(e);
1335 c->size_tree = RB_ROOT;
1339 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1340 * @c: UBIFS file-system description object
1341 * @key: node key
1342 * @deletion: node is for a deletion
1343 * @new_size: inode size
1345 * This function has two purposes:
1346 * 1) to ensure there are no data nodes that fall outside the inode size
1347 * 2) to ensure there are no data nodes for inodes that do not exist
1348 * To accomplish those purposes, a rb-tree is constructed containing an entry
1349 * for each inode number in the journal that has not been deleted, and recording
1350 * the size from the inode node, the maximum size of any data node (also altered
1351 * by truncations) and a flag indicating a inode number for which no inode node
1352 * was present in the journal.
1354 * Note that there is still the possibility that there are data nodes that have
1355 * been committed that are beyond the inode size, however the only way to find
1356 * them would be to scan the entire index. Alternatively, some provision could
1357 * be made to record the size of inodes at the start of commit, which would seem
1358 * very cumbersome for a scenario that is quite unlikely and the only negative
1359 * consequence of which is wasted space.
1361 * This functions returns %0 on success and a negative error code on failure.
1363 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1364 int deletion, loff_t new_size)
1366 ino_t inum = key_inum(c, key);
1367 struct size_entry *e;
1368 int err;
1370 switch (key_type(c, key)) {
1371 case UBIFS_INO_KEY:
1372 if (deletion)
1373 remove_ino(c, inum);
1374 else {
1375 e = find_ino(c, inum);
1376 if (e) {
1377 e->i_size = new_size;
1378 e->exists = 1;
1379 } else {
1380 err = add_ino(c, inum, new_size, 0, 1);
1381 if (err)
1382 return err;
1385 break;
1386 case UBIFS_DATA_KEY:
1387 e = find_ino(c, inum);
1388 if (e) {
1389 if (new_size > e->d_size)
1390 e->d_size = new_size;
1391 } else {
1392 err = add_ino(c, inum, 0, new_size, 0);
1393 if (err)
1394 return err;
1396 break;
1397 case UBIFS_TRUN_KEY:
1398 e = find_ino(c, inum);
1399 if (e)
1400 e->d_size = new_size;
1401 break;
1403 return 0;
1407 * fix_size_in_place - fix inode size in place on flash.
1408 * @c: UBIFS file-system description object
1409 * @e: inode size information for recovery
1411 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1413 struct ubifs_ino_node *ino = c->sbuf;
1414 unsigned char *p;
1415 union ubifs_key key;
1416 int err, lnum, offs, len;
1417 loff_t i_size;
1418 uint32_t crc;
1420 /* Locate the inode node LEB number and offset */
1421 ino_key_init(c, &key, e->inum);
1422 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1423 if (err)
1424 goto out;
1426 * If the size recorded on the inode node is greater than the size that
1427 * was calculated from nodes in the journal then don't change the inode.
1429 i_size = le64_to_cpu(ino->size);
1430 if (i_size >= e->d_size)
1431 return 0;
1432 /* Read the LEB */
1433 err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
1434 if (err)
1435 goto out;
1436 /* Change the size field and recalculate the CRC */
1437 ino = c->sbuf + offs;
1438 ino->size = cpu_to_le64(e->d_size);
1439 len = le32_to_cpu(ino->ch.len);
1440 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1441 ino->ch.crc = cpu_to_le32(crc);
1442 /* Work out where data in the LEB ends and free space begins */
1443 p = c->sbuf;
1444 len = c->leb_size - 1;
1445 while (p[len] == 0xff)
1446 len -= 1;
1447 len = ALIGN(len + 1, c->min_io_size);
1448 /* Atomically write the fixed LEB back again */
1449 err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
1450 if (err)
1451 goto out;
1452 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1453 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1454 return 0;
1456 out:
1457 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1458 (unsigned long)e->inum, e->i_size, e->d_size, err);
1459 return err;
1463 * ubifs_recover_size - recover inode size.
1464 * @c: UBIFS file-system description object
1466 * This function attempts to fix inode size discrepancies identified by the
1467 * 'ubifs_recover_size_accum()' function.
1469 * This functions returns %0 on success and a negative error code on failure.
1471 int ubifs_recover_size(struct ubifs_info *c)
1473 struct rb_node *this = rb_first(&c->size_tree);
1475 while (this) {
1476 struct size_entry *e;
1477 int err;
1479 e = rb_entry(this, struct size_entry, rb);
1480 if (!e->exists) {
1481 union ubifs_key key;
1483 ino_key_init(c, &key, e->inum);
1484 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1485 if (err && err != -ENOENT)
1486 return err;
1487 if (err == -ENOENT) {
1488 /* Remove data nodes that have no inode */
1489 dbg_rcvry("removing ino %lu",
1490 (unsigned long)e->inum);
1491 err = ubifs_tnc_remove_ino(c, e->inum);
1492 if (err)
1493 return err;
1494 } else {
1495 struct ubifs_ino_node *ino = c->sbuf;
1497 e->exists = 1;
1498 e->i_size = le64_to_cpu(ino->size);
1502 if (e->exists && e->i_size < e->d_size) {
1503 if (c->ro_mount) {
1504 /* Fix the inode size and pin it in memory */
1505 struct inode *inode;
1506 struct ubifs_inode *ui;
1508 ubifs_assert(!e->inode);
1510 inode = ubifs_iget(c->vfs_sb, e->inum);
1511 if (IS_ERR(inode))
1512 return PTR_ERR(inode);
1514 ui = ubifs_inode(inode);
1515 if (inode->i_size < e->d_size) {
1516 dbg_rcvry("ino %lu size %lld -> %lld",
1517 (unsigned long)e->inum,
1518 inode->i_size, e->d_size);
1519 inode->i_size = e->d_size;
1520 ui->ui_size = e->d_size;
1521 ui->synced_i_size = e->d_size;
1522 e->inode = inode;
1523 this = rb_next(this);
1524 continue;
1526 iput(inode);
1527 } else {
1528 /* Fix the size in place */
1529 err = fix_size_in_place(c, e);
1530 if (err)
1531 return err;
1532 if (e->inode)
1533 iput(e->inode);
1537 this = rb_next(this);
1538 rb_erase(&e->rb, &c->size_tree);
1539 kfree(e);
1542 return 0;