2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS journal.
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
67 static inline void zero_ino_node_unused(struct ubifs_ino_node
*ino
)
69 memset(ino
->padding1
, 0, 4);
70 memset(ino
->padding2
, 0, 26);
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
76 * @dent: the directory entry to zero out
78 static inline void zero_dent_node_unused(struct ubifs_dent_node
*dent
)
81 memset(dent
->padding2
, 0, 4);
85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
86 * @data: the data node to zero out
88 static inline void zero_data_node_unused(struct ubifs_data_node
*data
)
90 memset(data
->padding
, 0, 2);
94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
96 * @trun: the truncation node to zero out
98 static inline void zero_trun_node_unused(struct ubifs_trun_node
*trun
)
100 memset(trun
->padding
, 0, 12);
104 * reserve_space - reserve space in the journal.
105 * @c: UBIFS file-system description object
106 * @jhead: journal head number
109 * This function reserves space in journal head @head. If the reservation
110 * succeeded, the journal head stays locked and later has to be unlocked using
111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113 * other negative error codes in case of other failures.
115 static int reserve_space(struct ubifs_info
*c
, int jhead
, int len
)
117 int err
= 0, err1
, retries
= 0, avail
, lnum
, offs
, squeeze
;
118 struct ubifs_wbuf
*wbuf
= &c
->jheads
[jhead
].wbuf
;
121 * Typically, the base head has smaller nodes written to it, so it is
122 * better to try to allocate space at the ends of eraseblocks. This is
123 * what the squeeze parameter does.
125 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
126 squeeze
= (jhead
== BASEHD
);
128 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
135 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
136 if (wbuf
->lnum
!= -1 && avail
>= len
)
140 * Write buffer wasn't seek'ed or there is no enough space - look for an
141 * LEB with some empty space.
143 lnum
= ubifs_find_free_space(c
, len
, &offs
, squeeze
);
152 * No free space, we have to run garbage collector to make
153 * some. But the write-buffer mutex has to be unlocked because
156 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead
));
157 mutex_unlock(&wbuf
->io_mutex
);
159 lnum
= ubifs_garbage_collect(c
, 0);
166 * GC could not make a free LEB. But someone else may
167 * have allocated new bud for this journal head,
168 * because we dropped @wbuf->io_mutex, so try once
171 dbg_jnl("GC couldn't make a free LEB for jhead %s",
174 dbg_jnl("retry (%d)", retries
);
178 dbg_jnl("return -ENOSPC");
182 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
183 dbg_jnl("got LEB %d for jhead %s", lnum
, dbg_jhead(jhead
));
184 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
186 if (wbuf
->lnum
!= -1 && avail
>= len
) {
188 * Someone else has switched the journal head and we have
189 * enough space now. This happens when more than one process is
190 * trying to write to the same journal head at the same time.
192 dbg_jnl("return LEB %d back, already have LEB %d:%d",
193 lnum
, wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
);
194 err
= ubifs_return_leb(c
, lnum
);
204 * Make sure we synchronize the write-buffer before we add the new bud
205 * to the log. Otherwise we may have a power cut after the log
206 * reference node for the last bud (@lnum) is written but before the
207 * write-buffer data are written to the next-to-last bud
208 * (@wbuf->lnum). And the effect would be that the recovery would see
209 * that there is corruption in the next-to-last bud.
211 err
= ubifs_wbuf_sync_nolock(wbuf
);
214 err
= ubifs_add_bud_to_log(c
, jhead
, lnum
, offs
);
217 err
= ubifs_wbuf_seek_nolock(wbuf
, lnum
, offs
, wbuf
->dtype
);
224 mutex_unlock(&wbuf
->io_mutex
);
228 /* An error occurred and the LEB has to be returned to lprops */
229 ubifs_assert(err
< 0);
230 err1
= ubifs_return_leb(c
, lnum
);
231 if (err1
&& err
== -EAGAIN
)
233 * Return original error code only if it is not %-EAGAIN,
234 * which is not really an error. Otherwise, return the error
235 * code of 'ubifs_return_leb()'.
238 mutex_unlock(&wbuf
->io_mutex
);
243 * write_node - write node to a journal head.
244 * @c: UBIFS file-system description object
245 * @jhead: journal head
246 * @node: node to write
248 * @lnum: LEB number written is returned here
249 * @offs: offset written is returned here
251 * This function writes a node to reserved space of journal head @jhead.
252 * Returns zero in case of success and a negative error code in case of
255 static int write_node(struct ubifs_info
*c
, int jhead
, void *node
, int len
,
256 int *lnum
, int *offs
)
258 struct ubifs_wbuf
*wbuf
= &c
->jheads
[jhead
].wbuf
;
260 ubifs_assert(jhead
!= GCHD
);
262 *lnum
= c
->jheads
[jhead
].wbuf
.lnum
;
263 *offs
= c
->jheads
[jhead
].wbuf
.offs
+ c
->jheads
[jhead
].wbuf
.used
;
265 dbg_jnl("jhead %s, LEB %d:%d, len %d",
266 dbg_jhead(jhead
), *lnum
, *offs
, len
);
267 ubifs_prepare_node(c
, node
, len
, 0);
269 return ubifs_wbuf_write_nolock(wbuf
, node
, len
);
273 * write_head - write data to a journal head.
274 * @c: UBIFS file-system description object
275 * @jhead: journal head
276 * @buf: buffer to write
277 * @len: length to write
278 * @lnum: LEB number written is returned here
279 * @offs: offset written is returned here
280 * @sync: non-zero if the write-buffer has to by synchronized
282 * This function is the same as 'write_node()' but it does not assume the
283 * buffer it is writing is a node, so it does not prepare it (which means
284 * initializing common header and calculating CRC).
286 static int write_head(struct ubifs_info
*c
, int jhead
, void *buf
, int len
,
287 int *lnum
, int *offs
, int sync
)
290 struct ubifs_wbuf
*wbuf
= &c
->jheads
[jhead
].wbuf
;
292 ubifs_assert(jhead
!= GCHD
);
294 *lnum
= c
->jheads
[jhead
].wbuf
.lnum
;
295 *offs
= c
->jheads
[jhead
].wbuf
.offs
+ c
->jheads
[jhead
].wbuf
.used
;
296 dbg_jnl("jhead %s, LEB %d:%d, len %d",
297 dbg_jhead(jhead
), *lnum
, *offs
, len
);
299 err
= ubifs_wbuf_write_nolock(wbuf
, buf
, len
);
303 err
= ubifs_wbuf_sync_nolock(wbuf
);
308 * make_reservation - reserve journal space.
309 * @c: UBIFS file-system description object
310 * @jhead: journal head
311 * @len: how many bytes to reserve
313 * This function makes space reservation in journal head @jhead. The function
314 * takes the commit lock and locks the journal head, and the caller has to
315 * unlock the head and finish the reservation with 'finish_reservation()'.
316 * Returns zero in case of success and a negative error code in case of
319 * Note, the journal head may be unlocked as soon as the data is written, while
320 * the commit lock has to be released after the data has been added to the
323 static int make_reservation(struct ubifs_info
*c
, int jhead
, int len
)
325 int err
, cmt_retries
= 0, nospc_retries
= 0;
328 down_read(&c
->commit_sem
);
329 err
= reserve_space(c
, jhead
, len
);
332 up_read(&c
->commit_sem
);
334 if (err
== -ENOSPC
) {
336 * GC could not make any progress. We should try to commit
337 * once because it could make some dirty space and GC would
338 * make progress, so make the error -EAGAIN so that the below
339 * will commit and re-try.
341 if (nospc_retries
++ < 2) {
342 dbg_jnl("no space, retry");
347 * This means that the budgeting is incorrect. We always have
348 * to be able to write to the media, because all operations are
349 * budgeted. Deletions are not budgeted, though, but we reserve
350 * an extra LEB for them.
358 * -EAGAIN means that the journal is full or too large, or the above
359 * code wants to do one commit. Do this and re-try.
361 if (cmt_retries
> 128) {
363 * This should not happen unless the journal size limitations
366 ubifs_err("stuck in space allocation");
369 } else if (cmt_retries
> 32)
370 ubifs_warn("too many space allocation re-tries (%d)",
373 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
377 err
= ubifs_run_commit(c
);
383 ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
385 if (err
== -ENOSPC
) {
386 /* This are some budgeting problems, print useful information */
387 down_write(&c
->commit_sem
);
389 dbg_dump_budg(c
, &c
->bi
);
391 cmt_retries
= dbg_check_lprops(c
);
392 up_write(&c
->commit_sem
);
398 * release_head - release a journal head.
399 * @c: UBIFS file-system description object
400 * @jhead: journal head
402 * This function releases journal head @jhead which was locked by
403 * the 'make_reservation()' function. It has to be called after each successful
404 * 'make_reservation()' invocation.
406 static inline void release_head(struct ubifs_info
*c
, int jhead
)
408 mutex_unlock(&c
->jheads
[jhead
].wbuf
.io_mutex
);
412 * finish_reservation - finish a reservation.
413 * @c: UBIFS file-system description object
415 * This function finishes journal space reservation. It must be called after
416 * 'make_reservation()'.
418 static void finish_reservation(struct ubifs_info
*c
)
420 up_read(&c
->commit_sem
);
424 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
427 static int get_dent_type(int mode
)
429 switch (mode
& S_IFMT
) {
431 return UBIFS_ITYPE_REG
;
433 return UBIFS_ITYPE_DIR
;
435 return UBIFS_ITYPE_LNK
;
437 return UBIFS_ITYPE_BLK
;
439 return UBIFS_ITYPE_CHR
;
441 return UBIFS_ITYPE_FIFO
;
443 return UBIFS_ITYPE_SOCK
;
451 * pack_inode - pack an inode node.
452 * @c: UBIFS file-system description object
453 * @ino: buffer in which to pack inode node
454 * @inode: inode to pack
455 * @last: indicates the last node of the group
457 static void pack_inode(struct ubifs_info
*c
, struct ubifs_ino_node
*ino
,
458 const struct inode
*inode
, int last
)
460 int data_len
= 0, last_reference
= !inode
->i_nlink
;
461 struct ubifs_inode
*ui
= ubifs_inode(inode
);
463 ino
->ch
.node_type
= UBIFS_INO_NODE
;
464 ino_key_init_flash(c
, &ino
->key
, inode
->i_ino
);
465 ino
->creat_sqnum
= cpu_to_le64(ui
->creat_sqnum
);
466 ino
->atime_sec
= cpu_to_le64(inode
->i_atime
.tv_sec
);
467 ino
->atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
468 ino
->ctime_sec
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
469 ino
->ctime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
470 ino
->mtime_sec
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
471 ino
->mtime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
472 ino
->uid
= cpu_to_le32(inode
->i_uid
);
473 ino
->gid
= cpu_to_le32(inode
->i_gid
);
474 ino
->mode
= cpu_to_le32(inode
->i_mode
);
475 ino
->flags
= cpu_to_le32(ui
->flags
);
476 ino
->size
= cpu_to_le64(ui
->ui_size
);
477 ino
->nlink
= cpu_to_le32(inode
->i_nlink
);
478 ino
->compr_type
= cpu_to_le16(ui
->compr_type
);
479 ino
->data_len
= cpu_to_le32(ui
->data_len
);
480 ino
->xattr_cnt
= cpu_to_le32(ui
->xattr_cnt
);
481 ino
->xattr_size
= cpu_to_le32(ui
->xattr_size
);
482 ino
->xattr_names
= cpu_to_le32(ui
->xattr_names
);
483 zero_ino_node_unused(ino
);
486 * Drop the attached data if this is a deletion inode, the data is not
489 if (!last_reference
) {
490 memcpy(ino
->data
, ui
->data
, ui
->data_len
);
491 data_len
= ui
->data_len
;
494 ubifs_prep_grp_node(c
, ino
, UBIFS_INO_NODE_SZ
+ data_len
, last
);
498 * mark_inode_clean - mark UBIFS inode as clean.
499 * @c: UBIFS file-system description object
500 * @ui: UBIFS inode to mark as clean
502 * This helper function marks UBIFS inode @ui as clean by cleaning the
503 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
504 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
507 static void mark_inode_clean(struct ubifs_info
*c
, struct ubifs_inode
*ui
)
510 ubifs_release_dirty_inode_budget(c
, ui
);
515 * ubifs_jnl_update - update inode.
516 * @c: UBIFS file-system description object
517 * @dir: parent inode or host inode in case of extended attributes
518 * @nm: directory entry name
519 * @inode: inode to update
520 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
521 * @xent: non-zero if the directory entry is an extended attribute entry
523 * This function updates an inode by writing a directory entry (or extended
524 * attribute entry), the inode itself, and the parent directory inode (or the
525 * host inode) to the journal.
527 * The function writes the host inode @dir last, which is important in case of
528 * extended attributes. Indeed, then we guarantee that if the host inode gets
529 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
530 * the extended attribute inode gets flushed too. And this is exactly what the
531 * user expects - synchronizing the host inode synchronizes its extended
532 * attributes. Similarly, this guarantees that if @dir is synchronized, its
533 * directory entry corresponding to @nm gets synchronized too.
535 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
536 * function synchronizes the write-buffer.
538 * This function marks the @dir and @inode inodes as clean and returns zero on
539 * success. In case of failure, a negative error code is returned.
541 int ubifs_jnl_update(struct ubifs_info
*c
, const struct inode
*dir
,
542 const struct qstr
*nm
, const struct inode
*inode
,
543 int deletion
, int xent
)
545 int err
, dlen
, ilen
, len
, lnum
, ino_offs
, dent_offs
;
546 int aligned_dlen
, aligned_ilen
, sync
= IS_DIRSYNC(dir
);
547 int last_reference
= !!(deletion
&& inode
->i_nlink
== 0);
548 struct ubifs_inode
*ui
= ubifs_inode(inode
);
549 struct ubifs_inode
*dir_ui
= ubifs_inode(dir
);
550 struct ubifs_dent_node
*dent
;
551 struct ubifs_ino_node
*ino
;
552 union ubifs_key dent_key
, ino_key
;
554 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
555 inode
->i_ino
, nm
->len
, nm
->name
, ui
->data_len
, dir
->i_ino
);
556 ubifs_assert(dir_ui
->data_len
== 0);
557 ubifs_assert(mutex_is_locked(&dir_ui
->ui_mutex
));
559 dlen
= UBIFS_DENT_NODE_SZ
+ nm
->len
+ 1;
560 ilen
= UBIFS_INO_NODE_SZ
;
563 * If the last reference to the inode is being deleted, then there is
564 * no need to attach and write inode data, it is being deleted anyway.
565 * And if the inode is being deleted, no need to synchronize
566 * write-buffer even if the inode is synchronous.
568 if (!last_reference
) {
569 ilen
+= ui
->data_len
;
570 sync
|= IS_SYNC(inode
);
573 aligned_dlen
= ALIGN(dlen
, 8);
574 aligned_ilen
= ALIGN(ilen
, 8);
575 len
= aligned_dlen
+ aligned_ilen
+ UBIFS_INO_NODE_SZ
;
576 dent
= kmalloc(len
, GFP_NOFS
);
580 /* Make reservation before allocating sequence numbers */
581 err
= make_reservation(c
, BASEHD
, len
);
586 dent
->ch
.node_type
= UBIFS_DENT_NODE
;
587 dent_key_init(c
, &dent_key
, dir
->i_ino
, nm
);
589 dent
->ch
.node_type
= UBIFS_XENT_NODE
;
590 xent_key_init(c
, &dent_key
, dir
->i_ino
, nm
);
593 key_write(c
, &dent_key
, dent
->key
);
594 dent
->inum
= deletion
? 0 : cpu_to_le64(inode
->i_ino
);
595 dent
->type
= get_dent_type(inode
->i_mode
);
596 dent
->nlen
= cpu_to_le16(nm
->len
);
597 memcpy(dent
->name
, nm
->name
, nm
->len
);
598 dent
->name
[nm
->len
] = '\0';
599 zero_dent_node_unused(dent
);
600 ubifs_prep_grp_node(c
, dent
, dlen
, 0);
602 ino
= (void *)dent
+ aligned_dlen
;
603 pack_inode(c
, ino
, inode
, 0);
604 ino
= (void *)ino
+ aligned_ilen
;
605 pack_inode(c
, ino
, dir
, 1);
607 if (last_reference
) {
608 err
= ubifs_add_orphan(c
, inode
->i_ino
);
610 release_head(c
, BASEHD
);
613 ui
->del_cmtno
= c
->cmt_no
;
616 err
= write_head(c
, BASEHD
, dent
, len
, &lnum
, &dent_offs
, sync
);
620 struct ubifs_wbuf
*wbuf
= &c
->jheads
[BASEHD
].wbuf
;
622 ubifs_wbuf_add_ino_nolock(wbuf
, inode
->i_ino
);
623 ubifs_wbuf_add_ino_nolock(wbuf
, dir
->i_ino
);
625 release_head(c
, BASEHD
);
629 err
= ubifs_tnc_remove_nm(c
, &dent_key
, nm
);
632 err
= ubifs_add_dirt(c
, lnum
, dlen
);
634 err
= ubifs_tnc_add_nm(c
, &dent_key
, lnum
, dent_offs
, dlen
, nm
);
639 * Note, we do not remove the inode from TNC even if the last reference
640 * to it has just been deleted, because the inode may still be opened.
641 * Instead, the inode has been added to orphan lists and the orphan
642 * subsystem will take further care about it.
644 ino_key_init(c
, &ino_key
, inode
->i_ino
);
645 ino_offs
= dent_offs
+ aligned_dlen
;
646 err
= ubifs_tnc_add(c
, &ino_key
, lnum
, ino_offs
, ilen
);
650 ino_key_init(c
, &ino_key
, dir
->i_ino
);
651 ino_offs
+= aligned_ilen
;
652 err
= ubifs_tnc_add(c
, &ino_key
, lnum
, ino_offs
, UBIFS_INO_NODE_SZ
);
656 finish_reservation(c
);
657 spin_lock(&ui
->ui_lock
);
658 ui
->synced_i_size
= ui
->ui_size
;
659 spin_unlock(&ui
->ui_lock
);
660 mark_inode_clean(c
, ui
);
661 mark_inode_clean(c
, dir_ui
);
665 finish_reservation(c
);
671 release_head(c
, BASEHD
);
673 ubifs_ro_mode(c
, err
);
675 ubifs_delete_orphan(c
, inode
->i_ino
);
676 finish_reservation(c
);
681 * ubifs_jnl_write_data - write a data node to the journal.
682 * @c: UBIFS file-system description object
683 * @inode: inode the data node belongs to
685 * @buf: buffer to write
686 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
688 * This function writes a data node to the journal. Returns %0 if the data node
689 * was successfully written, and a negative error code in case of failure.
691 int ubifs_jnl_write_data(struct ubifs_info
*c
, const struct inode
*inode
,
692 const union ubifs_key
*key
, const void *buf
, int len
)
694 struct ubifs_data_node
*data
;
695 int err
, lnum
, offs
, compr_type
, out_len
;
696 int dlen
= COMPRESSED_DATA_NODE_BUF_SZ
, allocated
= 1;
697 struct ubifs_inode
*ui
= ubifs_inode(inode
);
699 dbg_jnl("ino %lu, blk %u, len %d, key %s",
700 (unsigned long)key_inum(c
, key
), key_block(c
, key
), len
,
702 ubifs_assert(len
<= UBIFS_BLOCK_SIZE
);
704 data
= kmalloc(dlen
, GFP_NOFS
| __GFP_NOWARN
);
707 * Fall-back to the write reserve buffer. Note, we might be
708 * currently on the memory reclaim path, when the kernel is
709 * trying to free some memory by writing out dirty pages. The
710 * write reserve buffer helps us to guarantee that we are
711 * always able to write the data.
714 mutex_lock(&c
->write_reserve_mutex
);
715 data
= c
->write_reserve_buf
;
718 data
->ch
.node_type
= UBIFS_DATA_NODE
;
719 key_write(c
, key
, &data
->key
);
720 data
->size
= cpu_to_le32(len
);
721 zero_data_node_unused(data
);
723 if (!(ui
->flags
& UBIFS_COMPR_FL
))
724 /* Compression is disabled for this inode */
725 compr_type
= UBIFS_COMPR_NONE
;
727 compr_type
= ui
->compr_type
;
729 out_len
= dlen
- UBIFS_DATA_NODE_SZ
;
730 ubifs_compress(buf
, len
, &data
->data
, &out_len
, &compr_type
);
731 ubifs_assert(out_len
<= UBIFS_BLOCK_SIZE
);
733 dlen
= UBIFS_DATA_NODE_SZ
+ out_len
;
734 data
->compr_type
= cpu_to_le16(compr_type
);
736 /* Make reservation before allocating sequence numbers */
737 err
= make_reservation(c
, DATAHD
, dlen
);
741 err
= write_node(c
, DATAHD
, data
, dlen
, &lnum
, &offs
);
744 ubifs_wbuf_add_ino_nolock(&c
->jheads
[DATAHD
].wbuf
, key_inum(c
, key
));
745 release_head(c
, DATAHD
);
747 err
= ubifs_tnc_add(c
, key
, lnum
, offs
, dlen
);
751 finish_reservation(c
);
753 mutex_unlock(&c
->write_reserve_mutex
);
759 release_head(c
, DATAHD
);
761 ubifs_ro_mode(c
, err
);
762 finish_reservation(c
);
765 mutex_unlock(&c
->write_reserve_mutex
);
772 * ubifs_jnl_write_inode - flush inode to the journal.
773 * @c: UBIFS file-system description object
774 * @inode: inode to flush
776 * This function writes inode @inode to the journal. If the inode is
777 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
778 * success and a negative error code in case of failure.
780 int ubifs_jnl_write_inode(struct ubifs_info
*c
, const struct inode
*inode
)
783 struct ubifs_ino_node
*ino
;
784 struct ubifs_inode
*ui
= ubifs_inode(inode
);
785 int sync
= 0, len
= UBIFS_INO_NODE_SZ
, last_reference
= !inode
->i_nlink
;
787 dbg_jnl("ino %lu, nlink %u", inode
->i_ino
, inode
->i_nlink
);
790 * If the inode is being deleted, do not write the attached data. No
791 * need to synchronize the write-buffer either.
793 if (!last_reference
) {
795 sync
= IS_SYNC(inode
);
797 ino
= kmalloc(len
, GFP_NOFS
);
801 /* Make reservation before allocating sequence numbers */
802 err
= make_reservation(c
, BASEHD
, len
);
806 pack_inode(c
, ino
, inode
, 1);
807 err
= write_head(c
, BASEHD
, ino
, len
, &lnum
, &offs
, sync
);
811 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
,
813 release_head(c
, BASEHD
);
815 if (last_reference
) {
816 err
= ubifs_tnc_remove_ino(c
, inode
->i_ino
);
819 ubifs_delete_orphan(c
, inode
->i_ino
);
820 err
= ubifs_add_dirt(c
, lnum
, len
);
824 ino_key_init(c
, &key
, inode
->i_ino
);
825 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, len
);
830 finish_reservation(c
);
831 spin_lock(&ui
->ui_lock
);
832 ui
->synced_i_size
= ui
->ui_size
;
833 spin_unlock(&ui
->ui_lock
);
838 release_head(c
, BASEHD
);
840 ubifs_ro_mode(c
, err
);
841 finish_reservation(c
);
848 * ubifs_jnl_delete_inode - delete an inode.
849 * @c: UBIFS file-system description object
850 * @inode: inode to delete
852 * This function deletes inode @inode which includes removing it from orphans,
853 * deleting it from TNC and, in some cases, writing a deletion inode to the
856 * When regular file inodes are unlinked or a directory inode is removed, the
857 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
858 * direntry to the media, and adds the inode to orphans. After this, when the
859 * last reference to this inode has been dropped, this function is called. In
860 * general, it has to write one more deletion inode to the media, because if
861 * a commit happened between 'ubifs_jnl_update()' and
862 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
863 * anymore, and in fact it might not be on the flash anymore, because it might
864 * have been garbage-collected already. And for optimization reasons UBIFS does
865 * not read the orphan area if it has been unmounted cleanly, so it would have
866 * no indication in the journal that there is a deleted inode which has to be
869 * However, if there was no commit between 'ubifs_jnl_update()' and
870 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
871 * inode to the media for the second time. And this is quite a typical case.
873 * This function returns zero in case of success and a negative error code in
876 int ubifs_jnl_delete_inode(struct ubifs_info
*c
, const struct inode
*inode
)
879 struct ubifs_inode
*ui
= ubifs_inode(inode
);
881 ubifs_assert(inode
->i_nlink
== 0);
883 if (ui
->del_cmtno
!= c
->cmt_no
)
884 /* A commit happened for sure */
885 return ubifs_jnl_write_inode(c
, inode
);
887 down_read(&c
->commit_sem
);
889 * Check commit number again, because the first test has been done
890 * without @c->commit_sem, so a commit might have happened.
892 if (ui
->del_cmtno
!= c
->cmt_no
) {
893 up_read(&c
->commit_sem
);
894 return ubifs_jnl_write_inode(c
, inode
);
897 err
= ubifs_tnc_remove_ino(c
, inode
->i_ino
);
899 ubifs_ro_mode(c
, err
);
901 ubifs_delete_orphan(c
, inode
->i_ino
);
902 up_read(&c
->commit_sem
);
907 * ubifs_jnl_rename - rename a directory entry.
908 * @c: UBIFS file-system description object
909 * @old_dir: parent inode of directory entry to rename
910 * @old_dentry: directory entry to rename
911 * @new_dir: parent inode of directory entry to rename
912 * @new_dentry: new directory entry (or directory entry to replace)
913 * @sync: non-zero if the write-buffer has to be synchronized
915 * This function implements the re-name operation which may involve writing up
916 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
917 * and returns zero on success. In case of failure, a negative error code is
920 int ubifs_jnl_rename(struct ubifs_info
*c
, const struct inode
*old_dir
,
921 const struct dentry
*old_dentry
,
922 const struct inode
*new_dir
,
923 const struct dentry
*new_dentry
, int sync
)
927 struct ubifs_dent_node
*dent
, *dent2
;
928 int err
, dlen1
, dlen2
, ilen
, lnum
, offs
, len
;
929 const struct inode
*old_inode
= old_dentry
->d_inode
;
930 const struct inode
*new_inode
= new_dentry
->d_inode
;
931 int aligned_dlen1
, aligned_dlen2
, plen
= UBIFS_INO_NODE_SZ
;
932 int last_reference
= !!(new_inode
&& new_inode
->i_nlink
== 0);
933 int move
= (old_dir
!= new_dir
);
934 struct ubifs_inode
*uninitialized_var(new_ui
);
936 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
937 old_dentry
->d_name
.len
, old_dentry
->d_name
.name
,
938 old_dir
->i_ino
, new_dentry
->d_name
.len
,
939 new_dentry
->d_name
.name
, new_dir
->i_ino
);
940 ubifs_assert(ubifs_inode(old_dir
)->data_len
== 0);
941 ubifs_assert(ubifs_inode(new_dir
)->data_len
== 0);
942 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir
)->ui_mutex
));
943 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir
)->ui_mutex
));
945 dlen1
= UBIFS_DENT_NODE_SZ
+ new_dentry
->d_name
.len
+ 1;
946 dlen2
= UBIFS_DENT_NODE_SZ
+ old_dentry
->d_name
.len
+ 1;
948 new_ui
= ubifs_inode(new_inode
);
949 ubifs_assert(mutex_is_locked(&new_ui
->ui_mutex
));
950 ilen
= UBIFS_INO_NODE_SZ
;
952 ilen
+= new_ui
->data_len
;
956 aligned_dlen1
= ALIGN(dlen1
, 8);
957 aligned_dlen2
= ALIGN(dlen2
, 8);
958 len
= aligned_dlen1
+ aligned_dlen2
+ ALIGN(ilen
, 8) + ALIGN(plen
, 8);
959 if (old_dir
!= new_dir
)
961 dent
= kmalloc(len
, GFP_NOFS
);
965 /* Make reservation before allocating sequence numbers */
966 err
= make_reservation(c
, BASEHD
, len
);
971 dent
->ch
.node_type
= UBIFS_DENT_NODE
;
972 dent_key_init_flash(c
, &dent
->key
, new_dir
->i_ino
, &new_dentry
->d_name
);
973 dent
->inum
= cpu_to_le64(old_inode
->i_ino
);
974 dent
->type
= get_dent_type(old_inode
->i_mode
);
975 dent
->nlen
= cpu_to_le16(new_dentry
->d_name
.len
);
976 memcpy(dent
->name
, new_dentry
->d_name
.name
, new_dentry
->d_name
.len
);
977 dent
->name
[new_dentry
->d_name
.len
] = '\0';
978 zero_dent_node_unused(dent
);
979 ubifs_prep_grp_node(c
, dent
, dlen1
, 0);
981 /* Make deletion dent */
982 dent2
= (void *)dent
+ aligned_dlen1
;
983 dent2
->ch
.node_type
= UBIFS_DENT_NODE
;
984 dent_key_init_flash(c
, &dent2
->key
, old_dir
->i_ino
,
985 &old_dentry
->d_name
);
987 dent2
->type
= DT_UNKNOWN
;
988 dent2
->nlen
= cpu_to_le16(old_dentry
->d_name
.len
);
989 memcpy(dent2
->name
, old_dentry
->d_name
.name
, old_dentry
->d_name
.len
);
990 dent2
->name
[old_dentry
->d_name
.len
] = '\0';
991 zero_dent_node_unused(dent2
);
992 ubifs_prep_grp_node(c
, dent2
, dlen2
, 0);
994 p
= (void *)dent2
+ aligned_dlen2
;
996 pack_inode(c
, p
, new_inode
, 0);
1001 pack_inode(c
, p
, old_dir
, 1);
1003 pack_inode(c
, p
, old_dir
, 0);
1004 p
+= ALIGN(plen
, 8);
1005 pack_inode(c
, p
, new_dir
, 1);
1008 if (last_reference
) {
1009 err
= ubifs_add_orphan(c
, new_inode
->i_ino
);
1011 release_head(c
, BASEHD
);
1014 new_ui
->del_cmtno
= c
->cmt_no
;
1017 err
= write_head(c
, BASEHD
, dent
, len
, &lnum
, &offs
, sync
);
1021 struct ubifs_wbuf
*wbuf
= &c
->jheads
[BASEHD
].wbuf
;
1023 ubifs_wbuf_add_ino_nolock(wbuf
, new_dir
->i_ino
);
1024 ubifs_wbuf_add_ino_nolock(wbuf
, old_dir
->i_ino
);
1026 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
,
1029 release_head(c
, BASEHD
);
1031 dent_key_init(c
, &key
, new_dir
->i_ino
, &new_dentry
->d_name
);
1032 err
= ubifs_tnc_add_nm(c
, &key
, lnum
, offs
, dlen1
, &new_dentry
->d_name
);
1036 err
= ubifs_add_dirt(c
, lnum
, dlen2
);
1040 dent_key_init(c
, &key
, old_dir
->i_ino
, &old_dentry
->d_name
);
1041 err
= ubifs_tnc_remove_nm(c
, &key
, &old_dentry
->d_name
);
1045 offs
+= aligned_dlen1
+ aligned_dlen2
;
1047 ino_key_init(c
, &key
, new_inode
->i_ino
);
1048 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, ilen
);
1051 offs
+= ALIGN(ilen
, 8);
1054 ino_key_init(c
, &key
, old_dir
->i_ino
);
1055 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, plen
);
1059 if (old_dir
!= new_dir
) {
1060 offs
+= ALIGN(plen
, 8);
1061 ino_key_init(c
, &key
, new_dir
->i_ino
);
1062 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, plen
);
1067 finish_reservation(c
);
1069 mark_inode_clean(c
, new_ui
);
1070 spin_lock(&new_ui
->ui_lock
);
1071 new_ui
->synced_i_size
= new_ui
->ui_size
;
1072 spin_unlock(&new_ui
->ui_lock
);
1074 mark_inode_clean(c
, ubifs_inode(old_dir
));
1076 mark_inode_clean(c
, ubifs_inode(new_dir
));
1081 release_head(c
, BASEHD
);
1083 ubifs_ro_mode(c
, err
);
1085 ubifs_delete_orphan(c
, new_inode
->i_ino
);
1087 finish_reservation(c
);
1094 * recomp_data_node - re-compress a truncated data node.
1095 * @dn: data node to re-compress
1096 * @new_len: new length
1098 * This function is used when an inode is truncated and the last data node of
1099 * the inode has to be re-compressed and re-written.
1101 static int recomp_data_node(struct ubifs_data_node
*dn
, int *new_len
)
1104 int err
, len
, compr_type
, out_len
;
1106 out_len
= le32_to_cpu(dn
->size
);
1107 buf
= kmalloc(out_len
* WORST_COMPR_FACTOR
, GFP_NOFS
);
1111 len
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
1112 compr_type
= le16_to_cpu(dn
->compr_type
);
1113 err
= ubifs_decompress(&dn
->data
, len
, buf
, &out_len
, compr_type
);
1117 ubifs_compress(buf
, *new_len
, &dn
->data
, &out_len
, &compr_type
);
1118 ubifs_assert(out_len
<= UBIFS_BLOCK_SIZE
);
1119 dn
->compr_type
= cpu_to_le16(compr_type
);
1120 dn
->size
= cpu_to_le32(*new_len
);
1121 *new_len
= UBIFS_DATA_NODE_SZ
+ out_len
;
1128 * ubifs_jnl_truncate - update the journal for a truncation.
1129 * @c: UBIFS file-system description object
1130 * @inode: inode to truncate
1131 * @old_size: old size
1132 * @new_size: new size
1134 * When the size of a file decreases due to truncation, a truncation node is
1135 * written, the journal tree is updated, and the last data block is re-written
1136 * if it has been affected. The inode is also updated in order to synchronize
1137 * the new inode size.
1139 * This function marks the inode as clean and returns zero on success. In case
1140 * of failure, a negative error code is returned.
1142 int ubifs_jnl_truncate(struct ubifs_info
*c
, const struct inode
*inode
,
1143 loff_t old_size
, loff_t new_size
)
1145 union ubifs_key key
, to_key
;
1146 struct ubifs_ino_node
*ino
;
1147 struct ubifs_trun_node
*trun
;
1148 struct ubifs_data_node
*uninitialized_var(dn
);
1149 int err
, dlen
, len
, lnum
, offs
, bit
, sz
, sync
= IS_SYNC(inode
);
1150 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1151 ino_t inum
= inode
->i_ino
;
1154 dbg_jnl("ino %lu, size %lld -> %lld",
1155 (unsigned long)inum
, old_size
, new_size
);
1156 ubifs_assert(!ui
->data_len
);
1157 ubifs_assert(S_ISREG(inode
->i_mode
));
1158 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
1160 sz
= UBIFS_TRUN_NODE_SZ
+ UBIFS_INO_NODE_SZ
+
1161 UBIFS_MAX_DATA_NODE_SZ
* WORST_COMPR_FACTOR
;
1162 ino
= kmalloc(sz
, GFP_NOFS
);
1166 trun
= (void *)ino
+ UBIFS_INO_NODE_SZ
;
1167 trun
->ch
.node_type
= UBIFS_TRUN_NODE
;
1168 trun
->inum
= cpu_to_le32(inum
);
1169 trun
->old_size
= cpu_to_le64(old_size
);
1170 trun
->new_size
= cpu_to_le64(new_size
);
1171 zero_trun_node_unused(trun
);
1173 dlen
= new_size
& (UBIFS_BLOCK_SIZE
- 1);
1175 /* Get last data block so it can be truncated */
1176 dn
= (void *)trun
+ UBIFS_TRUN_NODE_SZ
;
1177 blk
= new_size
>> UBIFS_BLOCK_SHIFT
;
1178 data_key_init(c
, &key
, inum
, blk
);
1179 dbg_jnl("last block key %s", DBGKEY(&key
));
1180 err
= ubifs_tnc_lookup(c
, &key
, dn
);
1182 dlen
= 0; /* Not found (so it is a hole) */
1186 if (le32_to_cpu(dn
->size
) <= dlen
)
1187 dlen
= 0; /* Nothing to do */
1189 int compr_type
= le16_to_cpu(dn
->compr_type
);
1191 if (compr_type
!= UBIFS_COMPR_NONE
) {
1192 err
= recomp_data_node(dn
, &dlen
);
1196 dn
->size
= cpu_to_le32(dlen
);
1197 dlen
+= UBIFS_DATA_NODE_SZ
;
1199 zero_data_node_unused(dn
);
1204 /* Must make reservation before allocating sequence numbers */
1205 len
= UBIFS_TRUN_NODE_SZ
+ UBIFS_INO_NODE_SZ
;
1208 err
= make_reservation(c
, BASEHD
, len
);
1212 pack_inode(c
, ino
, inode
, 0);
1213 ubifs_prep_grp_node(c
, trun
, UBIFS_TRUN_NODE_SZ
, dlen
? 0 : 1);
1215 ubifs_prep_grp_node(c
, dn
, dlen
, 1);
1217 err
= write_head(c
, BASEHD
, ino
, len
, &lnum
, &offs
, sync
);
1221 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
, inum
);
1222 release_head(c
, BASEHD
);
1225 sz
= offs
+ UBIFS_INO_NODE_SZ
+ UBIFS_TRUN_NODE_SZ
;
1226 err
= ubifs_tnc_add(c
, &key
, lnum
, sz
, dlen
);
1231 ino_key_init(c
, &key
, inum
);
1232 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, UBIFS_INO_NODE_SZ
);
1236 err
= ubifs_add_dirt(c
, lnum
, UBIFS_TRUN_NODE_SZ
);
1240 bit
= new_size
& (UBIFS_BLOCK_SIZE
- 1);
1241 blk
= (new_size
>> UBIFS_BLOCK_SHIFT
) + (bit
? 1 : 0);
1242 data_key_init(c
, &key
, inum
, blk
);
1244 bit
= old_size
& (UBIFS_BLOCK_SIZE
- 1);
1245 blk
= (old_size
>> UBIFS_BLOCK_SHIFT
) - (bit
? 0 : 1);
1246 data_key_init(c
, &to_key
, inum
, blk
);
1248 err
= ubifs_tnc_remove_range(c
, &key
, &to_key
);
1252 finish_reservation(c
);
1253 spin_lock(&ui
->ui_lock
);
1254 ui
->synced_i_size
= ui
->ui_size
;
1255 spin_unlock(&ui
->ui_lock
);
1256 mark_inode_clean(c
, ui
);
1261 release_head(c
, BASEHD
);
1263 ubifs_ro_mode(c
, err
);
1264 finish_reservation(c
);
1270 #ifdef CONFIG_UBIFS_FS_XATTR
1273 * ubifs_jnl_delete_xattr - delete an extended attribute.
1274 * @c: UBIFS file-system description object
1276 * @inode: extended attribute inode
1277 * @nm: extended attribute entry name
1279 * This function delete an extended attribute which is very similar to
1280 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1281 * updates the target inode. Returns zero in case of success and a negative
1282 * error code in case of failure.
1284 int ubifs_jnl_delete_xattr(struct ubifs_info
*c
, const struct inode
*host
,
1285 const struct inode
*inode
, const struct qstr
*nm
)
1287 int err
, xlen
, hlen
, len
, lnum
, xent_offs
, aligned_xlen
;
1288 struct ubifs_dent_node
*xent
;
1289 struct ubifs_ino_node
*ino
;
1290 union ubifs_key xent_key
, key1
, key2
;
1291 int sync
= IS_DIRSYNC(host
);
1292 struct ubifs_inode
*host_ui
= ubifs_inode(host
);
1294 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1295 host
->i_ino
, inode
->i_ino
, nm
->name
,
1296 ubifs_inode(inode
)->data_len
);
1297 ubifs_assert(inode
->i_nlink
== 0);
1298 ubifs_assert(mutex_is_locked(&host_ui
->ui_mutex
));
1301 * Since we are deleting the inode, we do not bother to attach any data
1302 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1304 xlen
= UBIFS_DENT_NODE_SZ
+ nm
->len
+ 1;
1305 aligned_xlen
= ALIGN(xlen
, 8);
1306 hlen
= host_ui
->data_len
+ UBIFS_INO_NODE_SZ
;
1307 len
= aligned_xlen
+ UBIFS_INO_NODE_SZ
+ ALIGN(hlen
, 8);
1309 xent
= kmalloc(len
, GFP_NOFS
);
1313 /* Make reservation before allocating sequence numbers */
1314 err
= make_reservation(c
, BASEHD
, len
);
1320 xent
->ch
.node_type
= UBIFS_XENT_NODE
;
1321 xent_key_init(c
, &xent_key
, host
->i_ino
, nm
);
1322 key_write(c
, &xent_key
, xent
->key
);
1324 xent
->type
= get_dent_type(inode
->i_mode
);
1325 xent
->nlen
= cpu_to_le16(nm
->len
);
1326 memcpy(xent
->name
, nm
->name
, nm
->len
);
1327 xent
->name
[nm
->len
] = '\0';
1328 zero_dent_node_unused(xent
);
1329 ubifs_prep_grp_node(c
, xent
, xlen
, 0);
1331 ino
= (void *)xent
+ aligned_xlen
;
1332 pack_inode(c
, ino
, inode
, 0);
1333 ino
= (void *)ino
+ UBIFS_INO_NODE_SZ
;
1334 pack_inode(c
, ino
, host
, 1);
1336 err
= write_head(c
, BASEHD
, xent
, len
, &lnum
, &xent_offs
, sync
);
1338 ubifs_wbuf_add_ino_nolock(&c
->jheads
[BASEHD
].wbuf
, host
->i_ino
);
1339 release_head(c
, BASEHD
);
1344 /* Remove the extended attribute entry from TNC */
1345 err
= ubifs_tnc_remove_nm(c
, &xent_key
, nm
);
1348 err
= ubifs_add_dirt(c
, lnum
, xlen
);
1353 * Remove all nodes belonging to the extended attribute inode from TNC.
1354 * Well, there actually must be only one node - the inode itself.
1356 lowest_ino_key(c
, &key1
, inode
->i_ino
);
1357 highest_ino_key(c
, &key2
, inode
->i_ino
);
1358 err
= ubifs_tnc_remove_range(c
, &key1
, &key2
);
1361 err
= ubifs_add_dirt(c
, lnum
, UBIFS_INO_NODE_SZ
);
1365 /* And update TNC with the new host inode position */
1366 ino_key_init(c
, &key1
, host
->i_ino
);
1367 err
= ubifs_tnc_add(c
, &key1
, lnum
, xent_offs
+ len
- hlen
, hlen
);
1371 finish_reservation(c
);
1372 spin_lock(&host_ui
->ui_lock
);
1373 host_ui
->synced_i_size
= host_ui
->ui_size
;
1374 spin_unlock(&host_ui
->ui_lock
);
1375 mark_inode_clean(c
, host_ui
);
1379 ubifs_ro_mode(c
, err
);
1380 finish_reservation(c
);
1385 * ubifs_jnl_change_xattr - change an extended attribute.
1386 * @c: UBIFS file-system description object
1387 * @inode: extended attribute inode
1390 * This function writes the updated version of an extended attribute inode and
1391 * the host inode to the journal (to the base head). The host inode is written
1392 * after the extended attribute inode in order to guarantee that the extended
1393 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1394 * consequently, the write-buffer is synchronized. This function returns zero
1395 * in case of success and a negative error code in case of failure.
1397 int ubifs_jnl_change_xattr(struct ubifs_info
*c
, const struct inode
*inode
,
1398 const struct inode
*host
)
1400 int err
, len1
, len2
, aligned_len
, aligned_len1
, lnum
, offs
;
1401 struct ubifs_inode
*host_ui
= ubifs_inode(host
);
1402 struct ubifs_ino_node
*ino
;
1403 union ubifs_key key
;
1404 int sync
= IS_DIRSYNC(host
);
1406 dbg_jnl("ino %lu, ino %lu", host
->i_ino
, inode
->i_ino
);
1407 ubifs_assert(host
->i_nlink
> 0);
1408 ubifs_assert(inode
->i_nlink
> 0);
1409 ubifs_assert(mutex_is_locked(&host_ui
->ui_mutex
));
1411 len1
= UBIFS_INO_NODE_SZ
+ host_ui
->data_len
;
1412 len2
= UBIFS_INO_NODE_SZ
+ ubifs_inode(inode
)->data_len
;
1413 aligned_len1
= ALIGN(len1
, 8);
1414 aligned_len
= aligned_len1
+ ALIGN(len2
, 8);
1416 ino
= kmalloc(aligned_len
, GFP_NOFS
);
1420 /* Make reservation before allocating sequence numbers */
1421 err
= make_reservation(c
, BASEHD
, aligned_len
);
1425 pack_inode(c
, ino
, host
, 0);
1426 pack_inode(c
, (void *)ino
+ aligned_len1
, inode
, 1);
1428 err
= write_head(c
, BASEHD
, ino
, aligned_len
, &lnum
, &offs
, 0);
1429 if (!sync
&& !err
) {
1430 struct ubifs_wbuf
*wbuf
= &c
->jheads
[BASEHD
].wbuf
;
1432 ubifs_wbuf_add_ino_nolock(wbuf
, host
->i_ino
);
1433 ubifs_wbuf_add_ino_nolock(wbuf
, inode
->i_ino
);
1435 release_head(c
, BASEHD
);
1439 ino_key_init(c
, &key
, host
->i_ino
);
1440 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
, len1
);
1444 ino_key_init(c
, &key
, inode
->i_ino
);
1445 err
= ubifs_tnc_add(c
, &key
, lnum
, offs
+ aligned_len1
, len2
);
1449 finish_reservation(c
);
1450 spin_lock(&host_ui
->ui_lock
);
1451 host_ui
->synced_i_size
= host_ui
->ui_size
;
1452 spin_unlock(&host_ui
->ui_lock
);
1453 mark_inode_clean(c
, host_ui
);
1458 ubifs_ro_mode(c
, err
);
1459 finish_reservation(c
);
1465 #endif /* CONFIG_UBIFS_FS_XATTR */