mach-ux500: update SoC and board IRQ handling
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / inode.c
blob05f4fa521325b071f7ad114354b30233b131ae48
1 /*
2 * linux/fs/inode.c
4 * (C) 1997 Linus Torvalds
5 */
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/prefetch.h>
28 #include <linux/ima.h>
29 #include <linux/cred.h>
30 #include "internal.h"
33 * inode locking rules.
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget()
37 * inode_lru_lock protects:
38 * inode_lru, inode->i_lru
39 * inode_sb_list_lock protects:
40 * sb->s_inodes, inode->i_sb_list
41 * inode_wb_list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
46 * Lock ordering:
48 * inode_sb_list_lock
49 * inode->i_lock
50 * inode_lru_lock
52 * inode_wb_list_lock
53 * inode->i_lock
55 * inode_hash_lock
56 * inode_sb_list_lock
57 * inode->i_lock
59 * iunique_lock
60 * inode_hash_lock
64 * This is needed for the following functions:
65 * - inode_has_buffers
66 * - invalidate_bdev
68 * FIXME: remove all knowledge of the buffer layer from this file
70 #include <linux/buffer_head.h>
73 * New inode.c implementation.
75 * This implementation has the basic premise of trying
76 * to be extremely low-overhead and SMP-safe, yet be
77 * simple enough to be "obviously correct".
79 * Famous last words.
82 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
84 /* #define INODE_PARANOIA 1 */
85 /* #define INODE_DEBUG 1 */
88 * Inode lookup is no longer as critical as it used to be:
89 * most of the lookups are going to be through the dcache.
91 #define I_HASHBITS i_hash_shift
92 #define I_HASHMASK i_hash_mask
94 static unsigned int i_hash_mask __read_mostly;
95 static unsigned int i_hash_shift __read_mostly;
96 static struct hlist_head *inode_hashtable __read_mostly;
97 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
100 * Each inode can be on two separate lists. One is
101 * the hash list of the inode, used for lookups. The
102 * other linked list is the "type" list:
103 * "in_use" - valid inode, i_count > 0, i_nlink > 0
104 * "dirty" - as "in_use" but also dirty
105 * "unused" - valid inode, i_count = 0
107 * A "dirty" list is maintained for each super block,
108 * allowing for low-overhead inode sync() operations.
111 static LIST_HEAD(inode_lru);
112 static DEFINE_SPINLOCK(inode_lru_lock);
114 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
115 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock);
118 * iprune_sem provides exclusion between the icache shrinking and the
119 * umount path.
121 * We don't actually need it to protect anything in the umount path,
122 * but only need to cycle through it to make sure any inode that
123 * prune_icache took off the LRU list has been fully torn down by the
124 * time we are past evict_inodes.
126 static DECLARE_RWSEM(iprune_sem);
129 * Empty aops. Can be used for the cases where the user does not
130 * define any of the address_space operations.
132 const struct address_space_operations empty_aops = {
134 EXPORT_SYMBOL(empty_aops);
137 * Statistics gathering..
139 struct inodes_stat_t inodes_stat;
141 static DEFINE_PER_CPU(unsigned int, nr_inodes);
143 static struct kmem_cache *inode_cachep __read_mostly;
145 static int get_nr_inodes(void)
147 int i;
148 int sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_inodes, i);
151 return sum < 0 ? 0 : sum;
154 static inline int get_nr_inodes_unused(void)
156 return inodes_stat.nr_unused;
159 int get_nr_dirty_inodes(void)
161 /* not actually dirty inodes, but a wild approximation */
162 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
163 return nr_dirty > 0 ? nr_dirty : 0;
167 * Handle nr_inode sysctl
169 #ifdef CONFIG_SYSCTL
170 int proc_nr_inodes(ctl_table *table, int write,
171 void __user *buffer, size_t *lenp, loff_t *ppos)
173 inodes_stat.nr_inodes = get_nr_inodes();
174 return proc_dointvec(table, write, buffer, lenp, ppos);
176 #endif
179 * inode_init_always - perform inode structure intialisation
180 * @sb: superblock inode belongs to
181 * @inode: inode to initialise
183 * These are initializations that need to be done on every inode
184 * allocation as the fields are not initialised by slab allocation.
186 int inode_init_always(struct super_block *sb, struct inode *inode)
188 static const struct inode_operations empty_iops;
189 static const struct file_operations empty_fops;
190 struct address_space *const mapping = &inode->i_data;
192 inode->i_sb = sb;
193 inode->i_blkbits = sb->s_blocksize_bits;
194 inode->i_flags = 0;
195 atomic_set(&inode->i_count, 1);
196 inode->i_op = &empty_iops;
197 inode->i_fop = &empty_fops;
198 inode->i_nlink = 1;
199 inode->i_uid = 0;
200 inode->i_gid = 0;
201 atomic_set(&inode->i_writecount, 0);
202 inode->i_size = 0;
203 inode->i_blocks = 0;
204 inode->i_bytes = 0;
205 inode->i_generation = 0;
206 #ifdef CONFIG_QUOTA
207 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
208 #endif
209 inode->i_pipe = NULL;
210 inode->i_bdev = NULL;
211 inode->i_cdev = NULL;
212 inode->i_rdev = 0;
213 inode->dirtied_when = 0;
215 if (security_inode_alloc(inode))
216 goto out;
217 spin_lock_init(&inode->i_lock);
218 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
220 mutex_init(&inode->i_mutex);
221 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
223 init_rwsem(&inode->i_alloc_sem);
224 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
226 mapping->a_ops = &empty_aops;
227 mapping->host = inode;
228 mapping->flags = 0;
229 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
230 mapping->assoc_mapping = NULL;
231 mapping->backing_dev_info = &default_backing_dev_info;
232 mapping->writeback_index = 0;
235 * If the block_device provides a backing_dev_info for client
236 * inodes then use that. Otherwise the inode share the bdev's
237 * backing_dev_info.
239 if (sb->s_bdev) {
240 struct backing_dev_info *bdi;
242 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
243 mapping->backing_dev_info = bdi;
245 inode->i_private = NULL;
246 inode->i_mapping = mapping;
247 #ifdef CONFIG_FS_POSIX_ACL
248 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
249 #endif
251 #ifdef CONFIG_FSNOTIFY
252 inode->i_fsnotify_mask = 0;
253 #endif
255 this_cpu_inc(nr_inodes);
257 return 0;
258 out:
259 return -ENOMEM;
261 EXPORT_SYMBOL(inode_init_always);
263 static struct inode *alloc_inode(struct super_block *sb)
265 struct inode *inode;
267 if (sb->s_op->alloc_inode)
268 inode = sb->s_op->alloc_inode(sb);
269 else
270 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
272 if (!inode)
273 return NULL;
275 if (unlikely(inode_init_always(sb, inode))) {
276 if (inode->i_sb->s_op->destroy_inode)
277 inode->i_sb->s_op->destroy_inode(inode);
278 else
279 kmem_cache_free(inode_cachep, inode);
280 return NULL;
283 return inode;
286 void free_inode_nonrcu(struct inode *inode)
288 kmem_cache_free(inode_cachep, inode);
290 EXPORT_SYMBOL(free_inode_nonrcu);
292 void __destroy_inode(struct inode *inode)
294 BUG_ON(inode_has_buffers(inode));
295 security_inode_free(inode);
296 fsnotify_inode_delete(inode);
297 #ifdef CONFIG_FS_POSIX_ACL
298 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
299 posix_acl_release(inode->i_acl);
300 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
301 posix_acl_release(inode->i_default_acl);
302 #endif
303 this_cpu_dec(nr_inodes);
305 EXPORT_SYMBOL(__destroy_inode);
307 static void i_callback(struct rcu_head *head)
309 struct inode *inode = container_of(head, struct inode, i_rcu);
310 INIT_LIST_HEAD(&inode->i_dentry);
311 kmem_cache_free(inode_cachep, inode);
314 static void destroy_inode(struct inode *inode)
316 BUG_ON(!list_empty(&inode->i_lru));
317 __destroy_inode(inode);
318 if (inode->i_sb->s_op->destroy_inode)
319 inode->i_sb->s_op->destroy_inode(inode);
320 else
321 call_rcu(&inode->i_rcu, i_callback);
324 void address_space_init_once(struct address_space *mapping)
326 memset(mapping, 0, sizeof(*mapping));
327 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
328 spin_lock_init(&mapping->tree_lock);
329 spin_lock_init(&mapping->i_mmap_lock);
330 INIT_LIST_HEAD(&mapping->private_list);
331 spin_lock_init(&mapping->private_lock);
332 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
333 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
334 mutex_init(&mapping->unmap_mutex);
336 EXPORT_SYMBOL(address_space_init_once);
339 * These are initializations that only need to be done
340 * once, because the fields are idempotent across use
341 * of the inode, so let the slab aware of that.
343 void inode_init_once(struct inode *inode)
345 memset(inode, 0, sizeof(*inode));
346 INIT_HLIST_NODE(&inode->i_hash);
347 INIT_LIST_HEAD(&inode->i_dentry);
348 INIT_LIST_HEAD(&inode->i_devices);
349 INIT_LIST_HEAD(&inode->i_wb_list);
350 INIT_LIST_HEAD(&inode->i_lru);
351 address_space_init_once(&inode->i_data);
352 i_size_ordered_init(inode);
353 #ifdef CONFIG_FSNOTIFY
354 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
355 #endif
357 EXPORT_SYMBOL(inode_init_once);
359 static void init_once(void *foo)
361 struct inode *inode = (struct inode *) foo;
363 inode_init_once(inode);
367 * inode->i_lock must be held
369 void __iget(struct inode *inode)
371 atomic_inc(&inode->i_count);
375 * get additional reference to inode; caller must already hold one.
377 void ihold(struct inode *inode)
379 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
381 EXPORT_SYMBOL(ihold);
383 static void inode_lru_list_add(struct inode *inode)
385 spin_lock(&inode_lru_lock);
386 if (list_empty(&inode->i_lru)) {
387 list_add(&inode->i_lru, &inode_lru);
388 inodes_stat.nr_unused++;
390 spin_unlock(&inode_lru_lock);
393 static void inode_lru_list_del(struct inode *inode)
395 spin_lock(&inode_lru_lock);
396 if (!list_empty(&inode->i_lru)) {
397 list_del_init(&inode->i_lru);
398 inodes_stat.nr_unused--;
400 spin_unlock(&inode_lru_lock);
404 * inode_sb_list_add - add inode to the superblock list of inodes
405 * @inode: inode to add
407 void inode_sb_list_add(struct inode *inode)
409 spin_lock(&inode_sb_list_lock);
410 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
411 spin_unlock(&inode_sb_list_lock);
413 EXPORT_SYMBOL_GPL(inode_sb_list_add);
415 static inline void inode_sb_list_del(struct inode *inode)
417 spin_lock(&inode_sb_list_lock);
418 list_del_init(&inode->i_sb_list);
419 spin_unlock(&inode_sb_list_lock);
422 static unsigned long hash(struct super_block *sb, unsigned long hashval)
424 unsigned long tmp;
426 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
427 L1_CACHE_BYTES;
428 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
429 return tmp & I_HASHMASK;
433 * __insert_inode_hash - hash an inode
434 * @inode: unhashed inode
435 * @hashval: unsigned long value used to locate this object in the
436 * inode_hashtable.
438 * Add an inode to the inode hash for this superblock.
440 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
442 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
444 spin_lock(&inode_hash_lock);
445 spin_lock(&inode->i_lock);
446 hlist_add_head(&inode->i_hash, b);
447 spin_unlock(&inode->i_lock);
448 spin_unlock(&inode_hash_lock);
450 EXPORT_SYMBOL(__insert_inode_hash);
453 * remove_inode_hash - remove an inode from the hash
454 * @inode: inode to unhash
456 * Remove an inode from the superblock.
458 void remove_inode_hash(struct inode *inode)
460 spin_lock(&inode_hash_lock);
461 spin_lock(&inode->i_lock);
462 hlist_del_init(&inode->i_hash);
463 spin_unlock(&inode->i_lock);
464 spin_unlock(&inode_hash_lock);
466 EXPORT_SYMBOL(remove_inode_hash);
468 void end_writeback(struct inode *inode)
470 might_sleep();
471 BUG_ON(inode->i_data.nrpages);
472 BUG_ON(!list_empty(&inode->i_data.private_list));
473 BUG_ON(!(inode->i_state & I_FREEING));
474 BUG_ON(inode->i_state & I_CLEAR);
475 inode_sync_wait(inode);
476 /* don't need i_lock here, no concurrent mods to i_state */
477 inode->i_state = I_FREEING | I_CLEAR;
479 EXPORT_SYMBOL(end_writeback);
482 * Free the inode passed in, removing it from the lists it is still connected
483 * to. We remove any pages still attached to the inode and wait for any IO that
484 * is still in progress before finally destroying the inode.
486 * An inode must already be marked I_FREEING so that we avoid the inode being
487 * moved back onto lists if we race with other code that manipulates the lists
488 * (e.g. writeback_single_inode). The caller is responsible for setting this.
490 * An inode must already be removed from the LRU list before being evicted from
491 * the cache. This should occur atomically with setting the I_FREEING state
492 * flag, so no inodes here should ever be on the LRU when being evicted.
494 static void evict(struct inode *inode)
496 const struct super_operations *op = inode->i_sb->s_op;
498 BUG_ON(!(inode->i_state & I_FREEING));
499 BUG_ON(!list_empty(&inode->i_lru));
501 inode_wb_list_del(inode);
502 inode_sb_list_del(inode);
504 if (op->evict_inode) {
505 op->evict_inode(inode);
506 } else {
507 if (inode->i_data.nrpages)
508 truncate_inode_pages(&inode->i_data, 0);
509 end_writeback(inode);
511 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
512 bd_forget(inode);
513 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
514 cd_forget(inode);
516 remove_inode_hash(inode);
518 spin_lock(&inode->i_lock);
519 wake_up_bit(&inode->i_state, __I_NEW);
520 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
521 spin_unlock(&inode->i_lock);
523 destroy_inode(inode);
527 * dispose_list - dispose of the contents of a local list
528 * @head: the head of the list to free
530 * Dispose-list gets a local list with local inodes in it, so it doesn't
531 * need to worry about list corruption and SMP locks.
533 static void dispose_list(struct list_head *head)
535 while (!list_empty(head)) {
536 struct inode *inode;
538 inode = list_first_entry(head, struct inode, i_lru);
539 list_del_init(&inode->i_lru);
541 evict(inode);
546 * evict_inodes - evict all evictable inodes for a superblock
547 * @sb: superblock to operate on
549 * Make sure that no inodes with zero refcount are retained. This is
550 * called by superblock shutdown after having MS_ACTIVE flag removed,
551 * so any inode reaching zero refcount during or after that call will
552 * be immediately evicted.
554 void evict_inodes(struct super_block *sb)
556 struct inode *inode, *next;
557 LIST_HEAD(dispose);
559 spin_lock(&inode_sb_list_lock);
560 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
561 if (atomic_read(&inode->i_count))
562 continue;
564 spin_lock(&inode->i_lock);
565 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
566 spin_unlock(&inode->i_lock);
567 continue;
570 inode->i_state |= I_FREEING;
571 inode_lru_list_del(inode);
572 spin_unlock(&inode->i_lock);
573 list_add(&inode->i_lru, &dispose);
575 spin_unlock(&inode_sb_list_lock);
577 dispose_list(&dispose);
580 * Cycle through iprune_sem to make sure any inode that prune_icache
581 * moved off the list before we took the lock has been fully torn
582 * down.
584 down_write(&iprune_sem);
585 up_write(&iprune_sem);
589 * invalidate_inodes - attempt to free all inodes on a superblock
590 * @sb: superblock to operate on
591 * @kill_dirty: flag to guide handling of dirty inodes
593 * Attempts to free all inodes for a given superblock. If there were any
594 * busy inodes return a non-zero value, else zero.
595 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
596 * them as busy.
598 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
600 int busy = 0;
601 struct inode *inode, *next;
602 LIST_HEAD(dispose);
604 spin_lock(&inode_sb_list_lock);
605 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
606 spin_lock(&inode->i_lock);
607 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
608 spin_unlock(&inode->i_lock);
609 continue;
611 if (inode->i_state & I_DIRTY && !kill_dirty) {
612 spin_unlock(&inode->i_lock);
613 busy = 1;
614 continue;
616 if (atomic_read(&inode->i_count)) {
617 spin_unlock(&inode->i_lock);
618 busy = 1;
619 continue;
622 inode->i_state |= I_FREEING;
623 inode_lru_list_del(inode);
624 spin_unlock(&inode->i_lock);
625 list_add(&inode->i_lru, &dispose);
627 spin_unlock(&inode_sb_list_lock);
629 dispose_list(&dispose);
631 return busy;
634 static int can_unuse(struct inode *inode)
636 if (inode->i_state & ~I_REFERENCED)
637 return 0;
638 if (inode_has_buffers(inode))
639 return 0;
640 if (atomic_read(&inode->i_count))
641 return 0;
642 if (inode->i_data.nrpages)
643 return 0;
644 return 1;
648 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
649 * temporary list and then are freed outside inode_lru_lock by dispose_list().
651 * Any inodes which are pinned purely because of attached pagecache have their
652 * pagecache removed. If the inode has metadata buffers attached to
653 * mapping->private_list then try to remove them.
655 * If the inode has the I_REFERENCED flag set, then it means that it has been
656 * used recently - the flag is set in iput_final(). When we encounter such an
657 * inode, clear the flag and move it to the back of the LRU so it gets another
658 * pass through the LRU before it gets reclaimed. This is necessary because of
659 * the fact we are doing lazy LRU updates to minimise lock contention so the
660 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
661 * with this flag set because they are the inodes that are out of order.
663 static void prune_icache(int nr_to_scan)
665 LIST_HEAD(freeable);
666 int nr_scanned;
667 unsigned long reap = 0;
669 down_read(&iprune_sem);
670 spin_lock(&inode_lru_lock);
671 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
672 struct inode *inode;
674 if (list_empty(&inode_lru))
675 break;
677 inode = list_entry(inode_lru.prev, struct inode, i_lru);
680 * we are inverting the inode_lru_lock/inode->i_lock here,
681 * so use a trylock. If we fail to get the lock, just move the
682 * inode to the back of the list so we don't spin on it.
684 if (!spin_trylock(&inode->i_lock)) {
685 list_move(&inode->i_lru, &inode_lru);
686 continue;
690 * Referenced or dirty inodes are still in use. Give them
691 * another pass through the LRU as we canot reclaim them now.
693 if (atomic_read(&inode->i_count) ||
694 (inode->i_state & ~I_REFERENCED)) {
695 list_del_init(&inode->i_lru);
696 spin_unlock(&inode->i_lock);
697 inodes_stat.nr_unused--;
698 continue;
701 /* recently referenced inodes get one more pass */
702 if (inode->i_state & I_REFERENCED) {
703 inode->i_state &= ~I_REFERENCED;
704 list_move(&inode->i_lru, &inode_lru);
705 spin_unlock(&inode->i_lock);
706 continue;
708 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
709 __iget(inode);
710 spin_unlock(&inode->i_lock);
711 spin_unlock(&inode_lru_lock);
712 if (remove_inode_buffers(inode))
713 reap += invalidate_mapping_pages(&inode->i_data,
714 0, -1);
715 iput(inode);
716 spin_lock(&inode_lru_lock);
718 if (inode != list_entry(inode_lru.next,
719 struct inode, i_lru))
720 continue; /* wrong inode or list_empty */
721 /* avoid lock inversions with trylock */
722 if (!spin_trylock(&inode->i_lock))
723 continue;
724 if (!can_unuse(inode)) {
725 spin_unlock(&inode->i_lock);
726 continue;
729 WARN_ON(inode->i_state & I_NEW);
730 inode->i_state |= I_FREEING;
731 spin_unlock(&inode->i_lock);
733 list_move(&inode->i_lru, &freeable);
734 inodes_stat.nr_unused--;
736 if (current_is_kswapd())
737 __count_vm_events(KSWAPD_INODESTEAL, reap);
738 else
739 __count_vm_events(PGINODESTEAL, reap);
740 spin_unlock(&inode_lru_lock);
742 dispose_list(&freeable);
743 up_read(&iprune_sem);
747 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
748 * "unused" means that no dentries are referring to the inodes: the files are
749 * not open and the dcache references to those inodes have already been
750 * reclaimed.
752 * This function is passed the number of inodes to scan, and it returns the
753 * total number of remaining possibly-reclaimable inodes.
755 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
757 if (nr) {
759 * Nasty deadlock avoidance. We may hold various FS locks,
760 * and we don't want to recurse into the FS that called us
761 * in clear_inode() and friends..
763 if (!(gfp_mask & __GFP_FS))
764 return -1;
765 prune_icache(nr);
767 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
770 static struct shrinker icache_shrinker = {
771 .shrink = shrink_icache_memory,
772 .seeks = DEFAULT_SEEKS,
775 static void __wait_on_freeing_inode(struct inode *inode);
777 * Called with the inode lock held.
779 static struct inode *find_inode(struct super_block *sb,
780 struct hlist_head *head,
781 int (*test)(struct inode *, void *),
782 void *data)
784 struct hlist_node *node;
785 struct inode *inode = NULL;
787 repeat:
788 hlist_for_each_entry(inode, node, head, i_hash) {
789 spin_lock(&inode->i_lock);
790 if (inode->i_sb != sb) {
791 spin_unlock(&inode->i_lock);
792 continue;
794 if (!test(inode, data)) {
795 spin_unlock(&inode->i_lock);
796 continue;
798 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
799 __wait_on_freeing_inode(inode);
800 goto repeat;
802 __iget(inode);
803 spin_unlock(&inode->i_lock);
804 return inode;
806 return NULL;
810 * find_inode_fast is the fast path version of find_inode, see the comment at
811 * iget_locked for details.
813 static struct inode *find_inode_fast(struct super_block *sb,
814 struct hlist_head *head, unsigned long ino)
816 struct hlist_node *node;
817 struct inode *inode = NULL;
819 repeat:
820 hlist_for_each_entry(inode, node, head, i_hash) {
821 spin_lock(&inode->i_lock);
822 if (inode->i_ino != ino) {
823 spin_unlock(&inode->i_lock);
824 continue;
826 if (inode->i_sb != sb) {
827 spin_unlock(&inode->i_lock);
828 continue;
830 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
831 __wait_on_freeing_inode(inode);
832 goto repeat;
834 __iget(inode);
835 spin_unlock(&inode->i_lock);
836 return inode;
838 return NULL;
842 * Each cpu owns a range of LAST_INO_BATCH numbers.
843 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
844 * to renew the exhausted range.
846 * This does not significantly increase overflow rate because every CPU can
847 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
848 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
849 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
850 * overflow rate by 2x, which does not seem too significant.
852 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
853 * error if st_ino won't fit in target struct field. Use 32bit counter
854 * here to attempt to avoid that.
856 #define LAST_INO_BATCH 1024
857 static DEFINE_PER_CPU(unsigned int, last_ino);
859 unsigned int get_next_ino(void)
861 unsigned int *p = &get_cpu_var(last_ino);
862 unsigned int res = *p;
864 #ifdef CONFIG_SMP
865 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
866 static atomic_t shared_last_ino;
867 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
869 res = next - LAST_INO_BATCH;
871 #endif
873 *p = ++res;
874 put_cpu_var(last_ino);
875 return res;
877 EXPORT_SYMBOL(get_next_ino);
880 * new_inode - obtain an inode
881 * @sb: superblock
883 * Allocates a new inode for given superblock. The default gfp_mask
884 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
885 * If HIGHMEM pages are unsuitable or it is known that pages allocated
886 * for the page cache are not reclaimable or migratable,
887 * mapping_set_gfp_mask() must be called with suitable flags on the
888 * newly created inode's mapping
891 struct inode *new_inode(struct super_block *sb)
893 struct inode *inode;
895 spin_lock_prefetch(&inode_sb_list_lock);
897 inode = alloc_inode(sb);
898 if (inode) {
899 spin_lock(&inode->i_lock);
900 inode->i_state = 0;
901 spin_unlock(&inode->i_lock);
902 inode_sb_list_add(inode);
904 return inode;
906 EXPORT_SYMBOL(new_inode);
909 * unlock_new_inode - clear the I_NEW state and wake up any waiters
910 * @inode: new inode to unlock
912 * Called when the inode is fully initialised to clear the new state of the
913 * inode and wake up anyone waiting for the inode to finish initialisation.
915 void unlock_new_inode(struct inode *inode)
917 #ifdef CONFIG_DEBUG_LOCK_ALLOC
918 if (S_ISDIR(inode->i_mode)) {
919 struct file_system_type *type = inode->i_sb->s_type;
921 /* Set new key only if filesystem hasn't already changed it */
922 if (!lockdep_match_class(&inode->i_mutex,
923 &type->i_mutex_key)) {
925 * ensure nobody is actually holding i_mutex
927 mutex_destroy(&inode->i_mutex);
928 mutex_init(&inode->i_mutex);
929 lockdep_set_class(&inode->i_mutex,
930 &type->i_mutex_dir_key);
933 #endif
934 spin_lock(&inode->i_lock);
935 WARN_ON(!(inode->i_state & I_NEW));
936 inode->i_state &= ~I_NEW;
937 wake_up_bit(&inode->i_state, __I_NEW);
938 spin_unlock(&inode->i_lock);
940 EXPORT_SYMBOL(unlock_new_inode);
943 * iget5_locked - obtain an inode from a mounted file system
944 * @sb: super block of file system
945 * @hashval: hash value (usually inode number) to get
946 * @test: callback used for comparisons between inodes
947 * @set: callback used to initialize a new struct inode
948 * @data: opaque data pointer to pass to @test and @set
950 * Search for the inode specified by @hashval and @data in the inode cache,
951 * and if present it is return it with an increased reference count. This is
952 * a generalized version of iget_locked() for file systems where the inode
953 * number is not sufficient for unique identification of an inode.
955 * If the inode is not in cache, allocate a new inode and return it locked,
956 * hashed, and with the I_NEW flag set. The file system gets to fill it in
957 * before unlocking it via unlock_new_inode().
959 * Note both @test and @set are called with the inode_hash_lock held, so can't
960 * sleep.
962 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
963 int (*test)(struct inode *, void *),
964 int (*set)(struct inode *, void *), void *data)
966 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
967 struct inode *inode;
969 spin_lock(&inode_hash_lock);
970 inode = find_inode(sb, head, test, data);
971 spin_unlock(&inode_hash_lock);
973 if (inode) {
974 wait_on_inode(inode);
975 return inode;
978 inode = alloc_inode(sb);
979 if (inode) {
980 struct inode *old;
982 spin_lock(&inode_hash_lock);
983 /* We released the lock, so.. */
984 old = find_inode(sb, head, test, data);
985 if (!old) {
986 if (set(inode, data))
987 goto set_failed;
989 spin_lock(&inode->i_lock);
990 inode->i_state = I_NEW;
991 hlist_add_head(&inode->i_hash, head);
992 spin_unlock(&inode->i_lock);
993 inode_sb_list_add(inode);
994 spin_unlock(&inode_hash_lock);
996 /* Return the locked inode with I_NEW set, the
997 * caller is responsible for filling in the contents
999 return inode;
1003 * Uhhuh, somebody else created the same inode under
1004 * us. Use the old inode instead of the one we just
1005 * allocated.
1007 spin_unlock(&inode_hash_lock);
1008 destroy_inode(inode);
1009 inode = old;
1010 wait_on_inode(inode);
1012 return inode;
1014 set_failed:
1015 spin_unlock(&inode_hash_lock);
1016 destroy_inode(inode);
1017 return NULL;
1019 EXPORT_SYMBOL(iget5_locked);
1022 * iget_locked - obtain an inode from a mounted file system
1023 * @sb: super block of file system
1024 * @ino: inode number to get
1026 * Search for the inode specified by @ino in the inode cache and if present
1027 * return it with an increased reference count. This is for file systems
1028 * where the inode number is sufficient for unique identification of an inode.
1030 * If the inode is not in cache, allocate a new inode and return it locked,
1031 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1032 * before unlocking it via unlock_new_inode().
1034 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1036 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1037 struct inode *inode;
1039 spin_lock(&inode_hash_lock);
1040 inode = find_inode_fast(sb, head, ino);
1041 spin_unlock(&inode_hash_lock);
1042 if (inode) {
1043 wait_on_inode(inode);
1044 return inode;
1047 inode = alloc_inode(sb);
1048 if (inode) {
1049 struct inode *old;
1051 spin_lock(&inode_hash_lock);
1052 /* We released the lock, so.. */
1053 old = find_inode_fast(sb, head, ino);
1054 if (!old) {
1055 inode->i_ino = ino;
1056 spin_lock(&inode->i_lock);
1057 inode->i_state = I_NEW;
1058 hlist_add_head(&inode->i_hash, head);
1059 spin_unlock(&inode->i_lock);
1060 inode_sb_list_add(inode);
1061 spin_unlock(&inode_hash_lock);
1063 /* Return the locked inode with I_NEW set, the
1064 * caller is responsible for filling in the contents
1066 return inode;
1070 * Uhhuh, somebody else created the same inode under
1071 * us. Use the old inode instead of the one we just
1072 * allocated.
1074 spin_unlock(&inode_hash_lock);
1075 destroy_inode(inode);
1076 inode = old;
1077 wait_on_inode(inode);
1079 return inode;
1081 EXPORT_SYMBOL(iget_locked);
1084 * search the inode cache for a matching inode number.
1085 * If we find one, then the inode number we are trying to
1086 * allocate is not unique and so we should not use it.
1088 * Returns 1 if the inode number is unique, 0 if it is not.
1090 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1092 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1093 struct hlist_node *node;
1094 struct inode *inode;
1096 spin_lock(&inode_hash_lock);
1097 hlist_for_each_entry(inode, node, b, i_hash) {
1098 if (inode->i_ino == ino && inode->i_sb == sb) {
1099 spin_unlock(&inode_hash_lock);
1100 return 0;
1103 spin_unlock(&inode_hash_lock);
1105 return 1;
1109 * iunique - get a unique inode number
1110 * @sb: superblock
1111 * @max_reserved: highest reserved inode number
1113 * Obtain an inode number that is unique on the system for a given
1114 * superblock. This is used by file systems that have no natural
1115 * permanent inode numbering system. An inode number is returned that
1116 * is higher than the reserved limit but unique.
1118 * BUGS:
1119 * With a large number of inodes live on the file system this function
1120 * currently becomes quite slow.
1122 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1125 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1126 * error if st_ino won't fit in target struct field. Use 32bit counter
1127 * here to attempt to avoid that.
1129 static DEFINE_SPINLOCK(iunique_lock);
1130 static unsigned int counter;
1131 ino_t res;
1133 spin_lock(&iunique_lock);
1134 do {
1135 if (counter <= max_reserved)
1136 counter = max_reserved + 1;
1137 res = counter++;
1138 } while (!test_inode_iunique(sb, res));
1139 spin_unlock(&iunique_lock);
1141 return res;
1143 EXPORT_SYMBOL(iunique);
1145 struct inode *igrab(struct inode *inode)
1147 spin_lock(&inode->i_lock);
1148 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1149 __iget(inode);
1150 spin_unlock(&inode->i_lock);
1151 } else {
1152 spin_unlock(&inode->i_lock);
1154 * Handle the case where s_op->clear_inode is not been
1155 * called yet, and somebody is calling igrab
1156 * while the inode is getting freed.
1158 inode = NULL;
1160 return inode;
1162 EXPORT_SYMBOL(igrab);
1165 * ilookup5_nowait - search for an inode in the inode cache
1166 * @sb: super block of file system to search
1167 * @hashval: hash value (usually inode number) to search for
1168 * @test: callback used for comparisons between inodes
1169 * @data: opaque data pointer to pass to @test
1171 * Search for the inode specified by @hashval and @data in the inode cache.
1172 * If the inode is in the cache, the inode is returned with an incremented
1173 * reference count.
1175 * Note: I_NEW is not waited upon so you have to be very careful what you do
1176 * with the returned inode. You probably should be using ilookup5() instead.
1178 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1180 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1181 int (*test)(struct inode *, void *), void *data)
1183 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1184 struct inode *inode;
1186 spin_lock(&inode_hash_lock);
1187 inode = find_inode(sb, head, test, data);
1188 spin_unlock(&inode_hash_lock);
1190 return inode;
1192 EXPORT_SYMBOL(ilookup5_nowait);
1195 * ilookup5 - search for an inode in the inode cache
1196 * @sb: super block of file system to search
1197 * @hashval: hash value (usually inode number) to search for
1198 * @test: callback used for comparisons between inodes
1199 * @data: opaque data pointer to pass to @test
1201 * Search for the inode specified by @hashval and @data in the inode cache,
1202 * and if the inode is in the cache, return the inode with an incremented
1203 * reference count. Waits on I_NEW before returning the inode.
1204 * returned with an incremented reference count.
1206 * This is a generalized version of ilookup() for file systems where the
1207 * inode number is not sufficient for unique identification of an inode.
1209 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1211 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1212 int (*test)(struct inode *, void *), void *data)
1214 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1216 if (inode)
1217 wait_on_inode(inode);
1218 return inode;
1220 EXPORT_SYMBOL(ilookup5);
1223 * ilookup - search for an inode in the inode cache
1224 * @sb: super block of file system to search
1225 * @ino: inode number to search for
1227 * Search for the inode @ino in the inode cache, and if the inode is in the
1228 * cache, the inode is returned with an incremented reference count.
1230 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1232 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1233 struct inode *inode;
1235 spin_lock(&inode_hash_lock);
1236 inode = find_inode_fast(sb, head, ino);
1237 spin_unlock(&inode_hash_lock);
1239 if (inode)
1240 wait_on_inode(inode);
1241 return inode;
1243 EXPORT_SYMBOL(ilookup);
1245 int insert_inode_locked(struct inode *inode)
1247 struct super_block *sb = inode->i_sb;
1248 ino_t ino = inode->i_ino;
1249 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1251 while (1) {
1252 struct hlist_node *node;
1253 struct inode *old = NULL;
1254 spin_lock(&inode_hash_lock);
1255 hlist_for_each_entry(old, node, head, i_hash) {
1256 if (old->i_ino != ino)
1257 continue;
1258 if (old->i_sb != sb)
1259 continue;
1260 spin_lock(&old->i_lock);
1261 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1262 spin_unlock(&old->i_lock);
1263 continue;
1265 break;
1267 if (likely(!node)) {
1268 spin_lock(&inode->i_lock);
1269 inode->i_state |= I_NEW;
1270 hlist_add_head(&inode->i_hash, head);
1271 spin_unlock(&inode->i_lock);
1272 spin_unlock(&inode_hash_lock);
1273 return 0;
1275 __iget(old);
1276 spin_unlock(&old->i_lock);
1277 spin_unlock(&inode_hash_lock);
1278 wait_on_inode(old);
1279 if (unlikely(!inode_unhashed(old))) {
1280 iput(old);
1281 return -EBUSY;
1283 iput(old);
1286 EXPORT_SYMBOL(insert_inode_locked);
1288 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1289 int (*test)(struct inode *, void *), void *data)
1291 struct super_block *sb = inode->i_sb;
1292 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1294 while (1) {
1295 struct hlist_node *node;
1296 struct inode *old = NULL;
1298 spin_lock(&inode_hash_lock);
1299 hlist_for_each_entry(old, node, head, i_hash) {
1300 if (old->i_sb != sb)
1301 continue;
1302 if (!test(old, data))
1303 continue;
1304 spin_lock(&old->i_lock);
1305 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1306 spin_unlock(&old->i_lock);
1307 continue;
1309 break;
1311 if (likely(!node)) {
1312 spin_lock(&inode->i_lock);
1313 inode->i_state |= I_NEW;
1314 hlist_add_head(&inode->i_hash, head);
1315 spin_unlock(&inode->i_lock);
1316 spin_unlock(&inode_hash_lock);
1317 return 0;
1319 __iget(old);
1320 spin_unlock(&old->i_lock);
1321 spin_unlock(&inode_hash_lock);
1322 wait_on_inode(old);
1323 if (unlikely(!inode_unhashed(old))) {
1324 iput(old);
1325 return -EBUSY;
1327 iput(old);
1330 EXPORT_SYMBOL(insert_inode_locked4);
1333 int generic_delete_inode(struct inode *inode)
1335 return 1;
1337 EXPORT_SYMBOL(generic_delete_inode);
1340 * Normal UNIX filesystem behaviour: delete the
1341 * inode when the usage count drops to zero, and
1342 * i_nlink is zero.
1344 int generic_drop_inode(struct inode *inode)
1346 return !inode->i_nlink || inode_unhashed(inode);
1348 EXPORT_SYMBOL_GPL(generic_drop_inode);
1351 * Called when we're dropping the last reference
1352 * to an inode.
1354 * Call the FS "drop_inode()" function, defaulting to
1355 * the legacy UNIX filesystem behaviour. If it tells
1356 * us to evict inode, do so. Otherwise, retain inode
1357 * in cache if fs is alive, sync and evict if fs is
1358 * shutting down.
1360 static void iput_final(struct inode *inode)
1362 struct super_block *sb = inode->i_sb;
1363 const struct super_operations *op = inode->i_sb->s_op;
1364 int drop;
1366 WARN_ON(inode->i_state & I_NEW);
1368 if (op && op->drop_inode)
1369 drop = op->drop_inode(inode);
1370 else
1371 drop = generic_drop_inode(inode);
1373 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1374 inode->i_state |= I_REFERENCED;
1375 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1376 inode_lru_list_add(inode);
1377 spin_unlock(&inode->i_lock);
1378 return;
1381 if (!drop) {
1382 inode->i_state |= I_WILL_FREE;
1383 spin_unlock(&inode->i_lock);
1384 write_inode_now(inode, 1);
1385 spin_lock(&inode->i_lock);
1386 WARN_ON(inode->i_state & I_NEW);
1387 inode->i_state &= ~I_WILL_FREE;
1390 inode->i_state |= I_FREEING;
1391 inode_lru_list_del(inode);
1392 spin_unlock(&inode->i_lock);
1394 evict(inode);
1398 * iput - put an inode
1399 * @inode: inode to put
1401 * Puts an inode, dropping its usage count. If the inode use count hits
1402 * zero, the inode is then freed and may also be destroyed.
1404 * Consequently, iput() can sleep.
1406 void iput(struct inode *inode)
1408 if (inode) {
1409 BUG_ON(inode->i_state & I_CLEAR);
1411 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1412 iput_final(inode);
1415 EXPORT_SYMBOL(iput);
1418 * bmap - find a block number in a file
1419 * @inode: inode of file
1420 * @block: block to find
1422 * Returns the block number on the device holding the inode that
1423 * is the disk block number for the block of the file requested.
1424 * That is, asked for block 4 of inode 1 the function will return the
1425 * disk block relative to the disk start that holds that block of the
1426 * file.
1428 sector_t bmap(struct inode *inode, sector_t block)
1430 sector_t res = 0;
1431 if (inode->i_mapping->a_ops->bmap)
1432 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1433 return res;
1435 EXPORT_SYMBOL(bmap);
1438 * With relative atime, only update atime if the previous atime is
1439 * earlier than either the ctime or mtime or if at least a day has
1440 * passed since the last atime update.
1442 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1443 struct timespec now)
1446 if (!(mnt->mnt_flags & MNT_RELATIME))
1447 return 1;
1449 * Is mtime younger than atime? If yes, update atime:
1451 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1452 return 1;
1454 * Is ctime younger than atime? If yes, update atime:
1456 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1457 return 1;
1460 * Is the previous atime value older than a day? If yes,
1461 * update atime:
1463 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1464 return 1;
1466 * Good, we can skip the atime update:
1468 return 0;
1472 * touch_atime - update the access time
1473 * @mnt: mount the inode is accessed on
1474 * @dentry: dentry accessed
1476 * Update the accessed time on an inode and mark it for writeback.
1477 * This function automatically handles read only file systems and media,
1478 * as well as the "noatime" flag and inode specific "noatime" markers.
1480 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1482 struct inode *inode = dentry->d_inode;
1483 struct timespec now;
1485 if (inode->i_flags & S_NOATIME)
1486 return;
1487 if (IS_NOATIME(inode))
1488 return;
1489 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1490 return;
1492 if (mnt->mnt_flags & MNT_NOATIME)
1493 return;
1494 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1495 return;
1497 now = current_fs_time(inode->i_sb);
1499 if (!relatime_need_update(mnt, inode, now))
1500 return;
1502 if (timespec_equal(&inode->i_atime, &now))
1503 return;
1505 if (mnt_want_write(mnt))
1506 return;
1508 inode->i_atime = now;
1509 mark_inode_dirty_sync(inode);
1510 mnt_drop_write(mnt);
1512 EXPORT_SYMBOL(touch_atime);
1515 * file_update_time - update mtime and ctime time
1516 * @file: file accessed
1518 * Update the mtime and ctime members of an inode and mark the inode
1519 * for writeback. Note that this function is meant exclusively for
1520 * usage in the file write path of filesystems, and filesystems may
1521 * choose to explicitly ignore update via this function with the
1522 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1523 * timestamps are handled by the server.
1526 void file_update_time(struct file *file)
1528 struct inode *inode = file->f_path.dentry->d_inode;
1529 struct timespec now;
1530 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1532 /* First try to exhaust all avenues to not sync */
1533 if (IS_NOCMTIME(inode))
1534 return;
1536 now = current_fs_time(inode->i_sb);
1537 if (!timespec_equal(&inode->i_mtime, &now))
1538 sync_it = S_MTIME;
1540 if (!timespec_equal(&inode->i_ctime, &now))
1541 sync_it |= S_CTIME;
1543 if (IS_I_VERSION(inode))
1544 sync_it |= S_VERSION;
1546 if (!sync_it)
1547 return;
1549 /* Finally allowed to write? Takes lock. */
1550 if (mnt_want_write_file(file))
1551 return;
1553 /* Only change inode inside the lock region */
1554 if (sync_it & S_VERSION)
1555 inode_inc_iversion(inode);
1556 if (sync_it & S_CTIME)
1557 inode->i_ctime = now;
1558 if (sync_it & S_MTIME)
1559 inode->i_mtime = now;
1560 mark_inode_dirty_sync(inode);
1561 mnt_drop_write(file->f_path.mnt);
1563 EXPORT_SYMBOL(file_update_time);
1565 int inode_needs_sync(struct inode *inode)
1567 if (IS_SYNC(inode))
1568 return 1;
1569 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1570 return 1;
1571 return 0;
1573 EXPORT_SYMBOL(inode_needs_sync);
1575 int inode_wait(void *word)
1577 schedule();
1578 return 0;
1580 EXPORT_SYMBOL(inode_wait);
1583 * If we try to find an inode in the inode hash while it is being
1584 * deleted, we have to wait until the filesystem completes its
1585 * deletion before reporting that it isn't found. This function waits
1586 * until the deletion _might_ have completed. Callers are responsible
1587 * to recheck inode state.
1589 * It doesn't matter if I_NEW is not set initially, a call to
1590 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1591 * will DTRT.
1593 static void __wait_on_freeing_inode(struct inode *inode)
1595 wait_queue_head_t *wq;
1596 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1597 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1598 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1599 spin_unlock(&inode->i_lock);
1600 spin_unlock(&inode_hash_lock);
1601 schedule();
1602 finish_wait(wq, &wait.wait);
1603 spin_lock(&inode_hash_lock);
1606 static __initdata unsigned long ihash_entries;
1607 static int __init set_ihash_entries(char *str)
1609 if (!str)
1610 return 0;
1611 ihash_entries = simple_strtoul(str, &str, 0);
1612 return 1;
1614 __setup("ihash_entries=", set_ihash_entries);
1617 * Initialize the waitqueues and inode hash table.
1619 void __init inode_init_early(void)
1621 int loop;
1623 /* If hashes are distributed across NUMA nodes, defer
1624 * hash allocation until vmalloc space is available.
1626 if (hashdist)
1627 return;
1629 inode_hashtable =
1630 alloc_large_system_hash("Inode-cache",
1631 sizeof(struct hlist_head),
1632 ihash_entries,
1634 HASH_EARLY,
1635 &i_hash_shift,
1636 &i_hash_mask,
1639 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1640 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1643 void __init inode_init(void)
1645 int loop;
1647 /* inode slab cache */
1648 inode_cachep = kmem_cache_create("inode_cache",
1649 sizeof(struct inode),
1651 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1652 SLAB_MEM_SPREAD),
1653 init_once);
1654 register_shrinker(&icache_shrinker);
1656 /* Hash may have been set up in inode_init_early */
1657 if (!hashdist)
1658 return;
1660 inode_hashtable =
1661 alloc_large_system_hash("Inode-cache",
1662 sizeof(struct hlist_head),
1663 ihash_entries,
1666 &i_hash_shift,
1667 &i_hash_mask,
1670 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1671 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1674 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1676 inode->i_mode = mode;
1677 if (S_ISCHR(mode)) {
1678 inode->i_fop = &def_chr_fops;
1679 inode->i_rdev = rdev;
1680 } else if (S_ISBLK(mode)) {
1681 inode->i_fop = &def_blk_fops;
1682 inode->i_rdev = rdev;
1683 } else if (S_ISFIFO(mode))
1684 inode->i_fop = &def_fifo_fops;
1685 else if (S_ISSOCK(mode))
1686 inode->i_fop = &bad_sock_fops;
1687 else
1688 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1689 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1690 inode->i_ino);
1692 EXPORT_SYMBOL(init_special_inode);
1695 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1696 * @inode: New inode
1697 * @dir: Directory inode
1698 * @mode: mode of the new inode
1700 void inode_init_owner(struct inode *inode, const struct inode *dir,
1701 mode_t mode)
1703 inode->i_uid = current_fsuid();
1704 if (dir && dir->i_mode & S_ISGID) {
1705 inode->i_gid = dir->i_gid;
1706 if (S_ISDIR(mode))
1707 mode |= S_ISGID;
1708 } else
1709 inode->i_gid = current_fsgid();
1710 inode->i_mode = mode;
1712 EXPORT_SYMBOL(inode_init_owner);
1715 * inode_owner_or_capable - check current task permissions to inode
1716 * @inode: inode being checked
1718 * Return true if current either has CAP_FOWNER to the inode, or
1719 * owns the file.
1721 bool inode_owner_or_capable(const struct inode *inode)
1723 struct user_namespace *ns = inode_userns(inode);
1725 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1726 return true;
1727 if (ns_capable(ns, CAP_FOWNER))
1728 return true;
1729 return false;
1731 EXPORT_SYMBOL(inode_owner_or_capable);