4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
33 * Passed into wb_writeback(), essentially a subset of writeback_control
35 struct wb_writeback_work
{
37 struct super_block
*sb
;
38 enum writeback_sync_modes sync_mode
;
39 unsigned int for_kupdate
:1;
40 unsigned int range_cyclic
:1;
41 unsigned int for_background
:1;
43 struct list_head list
; /* pending work list */
44 struct completion
*done
; /* set if the caller waits */
48 * Include the creation of the trace points after defining the
49 * wb_writeback_work structure so that the definition remains local to this
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
56 * We don't actually have pdflush, but this one is exported though /proc...
58 int nr_pdflush_threads
;
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
64 * Determine whether there is writeback waiting to be handled against a
67 int writeback_in_progress(struct backing_dev_info
*bdi
)
69 return test_bit(BDI_writeback_running
, &bdi
->state
);
72 static inline struct backing_dev_info
*inode_to_bdi(struct inode
*inode
)
74 struct super_block
*sb
= inode
->i_sb
;
76 if (strcmp(sb
->s_type
->name
, "bdev") == 0)
77 return inode
->i_mapping
->backing_dev_info
;
82 static inline struct inode
*wb_inode(struct list_head
*head
)
84 return list_entry(head
, struct inode
, i_wb_list
);
87 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
88 static void bdi_wakeup_flusher(struct backing_dev_info
*bdi
)
91 wake_up_process(bdi
->wb
.task
);
94 * The bdi thread isn't there, wake up the forker thread which
95 * will create and run it.
97 wake_up_process(default_backing_dev_info
.wb
.task
);
101 static void bdi_queue_work(struct backing_dev_info
*bdi
,
102 struct wb_writeback_work
*work
)
104 trace_writeback_queue(bdi
, work
);
106 spin_lock_bh(&bdi
->wb_lock
);
107 list_add_tail(&work
->list
, &bdi
->work_list
);
109 trace_writeback_nothread(bdi
, work
);
110 bdi_wakeup_flusher(bdi
);
111 spin_unlock_bh(&bdi
->wb_lock
);
115 __bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
118 struct wb_writeback_work
*work
;
121 * This is WB_SYNC_NONE writeback, so if allocation fails just
122 * wakeup the thread for old dirty data writeback
124 work
= kzalloc(sizeof(*work
), GFP_ATOMIC
);
127 trace_writeback_nowork(bdi
);
128 wake_up_process(bdi
->wb
.task
);
133 work
->sync_mode
= WB_SYNC_NONE
;
134 work
->nr_pages
= nr_pages
;
135 work
->range_cyclic
= range_cyclic
;
137 bdi_queue_work(bdi
, work
);
141 * bdi_start_writeback - start writeback
142 * @bdi: the backing device to write from
143 * @nr_pages: the number of pages to write
146 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
147 * started when this function returns, we make no guarantees on
148 * completion. Caller need not hold sb s_umount semaphore.
151 void bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
)
153 __bdi_start_writeback(bdi
, nr_pages
, true);
157 * bdi_start_background_writeback - start background writeback
158 * @bdi: the backing device to write from
161 * This makes sure WB_SYNC_NONE background writeback happens. When
162 * this function returns, it is only guaranteed that for given BDI
163 * some IO is happening if we are over background dirty threshold.
164 * Caller need not hold sb s_umount semaphore.
166 void bdi_start_background_writeback(struct backing_dev_info
*bdi
)
169 * We just wake up the flusher thread. It will perform background
170 * writeback as soon as there is no other work to do.
172 trace_writeback_wake_background(bdi
);
173 spin_lock_bh(&bdi
->wb_lock
);
174 bdi_wakeup_flusher(bdi
);
175 spin_unlock_bh(&bdi
->wb_lock
);
179 * Remove the inode from the writeback list it is on.
181 void inode_wb_list_del(struct inode
*inode
)
183 spin_lock(&inode_wb_list_lock
);
184 list_del_init(&inode
->i_wb_list
);
185 spin_unlock(&inode_wb_list_lock
);
190 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
191 * furthest end of its superblock's dirty-inode list.
193 * Before stamping the inode's ->dirtied_when, we check to see whether it is
194 * already the most-recently-dirtied inode on the b_dirty list. If that is
195 * the case then the inode must have been redirtied while it was being written
196 * out and we don't reset its dirtied_when.
198 static void redirty_tail(struct inode
*inode
)
200 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
202 assert_spin_locked(&inode_wb_list_lock
);
203 if (!list_empty(&wb
->b_dirty
)) {
206 tail
= wb_inode(wb
->b_dirty
.next
);
207 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
208 inode
->dirtied_when
= jiffies
;
210 list_move(&inode
->i_wb_list
, &wb
->b_dirty
);
214 * requeue inode for re-scanning after bdi->b_io list is exhausted.
216 static void requeue_io(struct inode
*inode
)
218 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
220 assert_spin_locked(&inode_wb_list_lock
);
221 list_move(&inode
->i_wb_list
, &wb
->b_more_io
);
224 static void inode_sync_complete(struct inode
*inode
)
227 * Prevent speculative execution through
228 * spin_unlock(&inode_wb_list_lock);
232 wake_up_bit(&inode
->i_state
, __I_SYNC
);
235 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
237 bool ret
= time_after(inode
->dirtied_when
, t
);
240 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 * It _appears_ to be in the future, but is actually in distant past.
242 * This test is necessary to prevent such wrapped-around relative times
243 * from permanently stopping the whole bdi writeback.
245 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
251 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
253 static void move_expired_inodes(struct list_head
*delaying_queue
,
254 struct list_head
*dispatch_queue
,
255 unsigned long *older_than_this
)
258 struct list_head
*pos
, *node
;
259 struct super_block
*sb
= NULL
;
263 while (!list_empty(delaying_queue
)) {
264 inode
= wb_inode(delaying_queue
->prev
);
265 if (older_than_this
&&
266 inode_dirtied_after(inode
, *older_than_this
))
268 if (sb
&& sb
!= inode
->i_sb
)
271 list_move(&inode
->i_wb_list
, &tmp
);
274 /* just one sb in list, splice to dispatch_queue and we're done */
276 list_splice(&tmp
, dispatch_queue
);
280 /* Move inodes from one superblock together */
281 while (!list_empty(&tmp
)) {
282 sb
= wb_inode(tmp
.prev
)->i_sb
;
283 list_for_each_prev_safe(pos
, node
, &tmp
) {
284 inode
= wb_inode(pos
);
285 if (inode
->i_sb
== sb
)
286 list_move(&inode
->i_wb_list
, dispatch_queue
);
292 * Queue all expired dirty inodes for io, eldest first.
294 * newly dirtied b_dirty b_io b_more_io
295 * =============> gf edc BA
297 * newly dirtied b_dirty b_io b_more_io
298 * =============> g fBAedc
300 * +--> dequeue for IO
302 static void queue_io(struct bdi_writeback
*wb
, unsigned long *older_than_this
)
304 assert_spin_locked(&inode_wb_list_lock
);
305 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
306 move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, older_than_this
);
309 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
311 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
312 return inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
317 * Wait for writeback on an inode to complete.
319 static void inode_wait_for_writeback(struct inode
*inode
)
321 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
322 wait_queue_head_t
*wqh
;
324 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
325 while (inode
->i_state
& I_SYNC
) {
326 spin_unlock(&inode
->i_lock
);
327 spin_unlock(&inode_wb_list_lock
);
328 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
329 spin_lock(&inode_wb_list_lock
);
330 spin_lock(&inode
->i_lock
);
335 * Write out an inode's dirty pages. Called under inode_wb_list_lock and
336 * inode->i_lock. Either the caller has an active reference on the inode or
337 * the inode has I_WILL_FREE set.
339 * If `wait' is set, wait on the writeout.
341 * The whole writeout design is quite complex and fragile. We want to avoid
342 * starvation of particular inodes when others are being redirtied, prevent
346 writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
348 struct address_space
*mapping
= inode
->i_mapping
;
352 assert_spin_locked(&inode_wb_list_lock
);
353 assert_spin_locked(&inode
->i_lock
);
355 if (!atomic_read(&inode
->i_count
))
356 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
358 WARN_ON(inode
->i_state
& I_WILL_FREE
);
360 if (inode
->i_state
& I_SYNC
) {
362 * If this inode is locked for writeback and we are not doing
363 * writeback-for-data-integrity, move it to b_more_io so that
364 * writeback can proceed with the other inodes on s_io.
366 * We'll have another go at writing back this inode when we
367 * completed a full scan of b_io.
369 if (wbc
->sync_mode
!= WB_SYNC_ALL
) {
375 * It's a data-integrity sync. We must wait.
377 inode_wait_for_writeback(inode
);
380 BUG_ON(inode
->i_state
& I_SYNC
);
382 /* Set I_SYNC, reset I_DIRTY_PAGES */
383 inode
->i_state
|= I_SYNC
;
384 inode
->i_state
&= ~I_DIRTY_PAGES
;
385 spin_unlock(&inode
->i_lock
);
386 spin_unlock(&inode_wb_list_lock
);
388 ret
= do_writepages(mapping
, wbc
);
391 * Make sure to wait on the data before writing out the metadata.
392 * This is important for filesystems that modify metadata on data
395 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
396 int err
= filemap_fdatawait(mapping
);
402 * Some filesystems may redirty the inode during the writeback
403 * due to delalloc, clear dirty metadata flags right before
406 spin_lock(&inode
->i_lock
);
407 dirty
= inode
->i_state
& I_DIRTY
;
408 inode
->i_state
&= ~(I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
409 spin_unlock(&inode
->i_lock
);
410 /* Don't write the inode if only I_DIRTY_PAGES was set */
411 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
412 int err
= write_inode(inode
, wbc
);
417 spin_lock(&inode_wb_list_lock
);
418 spin_lock(&inode
->i_lock
);
419 inode
->i_state
&= ~I_SYNC
;
420 if (!(inode
->i_state
& I_FREEING
)) {
421 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
423 * We didn't write back all the pages. nfs_writepages()
424 * sometimes bales out without doing anything.
426 inode
->i_state
|= I_DIRTY_PAGES
;
427 if (wbc
->nr_to_write
<= 0) {
429 * slice used up: queue for next turn
434 * Writeback blocked by something other than
435 * congestion. Delay the inode for some time to
436 * avoid spinning on the CPU (100% iowait)
437 * retrying writeback of the dirty page/inode
438 * that cannot be performed immediately.
442 } else if (inode
->i_state
& I_DIRTY
) {
444 * Filesystems can dirty the inode during writeback
445 * operations, such as delayed allocation during
446 * submission or metadata updates after data IO
452 * The inode is clean. At this point we either have
453 * a reference to the inode or it's on it's way out.
454 * No need to add it back to the LRU.
456 list_del_init(&inode
->i_wb_list
);
459 inode_sync_complete(inode
);
464 * For background writeback the caller does not have the sb pinned
465 * before calling writeback. So make sure that we do pin it, so it doesn't
466 * go away while we are writing inodes from it.
468 static bool pin_sb_for_writeback(struct super_block
*sb
)
471 if (list_empty(&sb
->s_instances
)) {
472 spin_unlock(&sb_lock
);
477 spin_unlock(&sb_lock
);
479 if (down_read_trylock(&sb
->s_umount
)) {
482 up_read(&sb
->s_umount
);
490 * Write a portion of b_io inodes which belong to @sb.
492 * If @only_this_sb is true, then find and write all such
493 * inodes. Otherwise write only ones which go sequentially
496 * Return 1, if the caller writeback routine should be
497 * interrupted. Otherwise return 0.
499 static int writeback_sb_inodes(struct super_block
*sb
, struct bdi_writeback
*wb
,
500 struct writeback_control
*wbc
, bool only_this_sb
)
502 while (!list_empty(&wb
->b_io
)) {
504 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
506 if (inode
->i_sb
!= sb
) {
509 * We only want to write back data for this
510 * superblock, move all inodes not belonging
511 * to it back onto the dirty list.
518 * The inode belongs to a different superblock.
519 * Bounce back to the caller to unpin this and
520 * pin the next superblock.
526 * Don't bother with new inodes or inodes beeing freed, first
527 * kind does not need peridic writeout yet, and for the latter
528 * kind writeout is handled by the freer.
530 spin_lock(&inode
->i_lock
);
531 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
532 spin_unlock(&inode
->i_lock
);
538 * Was this inode dirtied after sync_sb_inodes was called?
539 * This keeps sync from extra jobs and livelock.
541 if (inode_dirtied_after(inode
, wbc
->wb_start
)) {
542 spin_unlock(&inode
->i_lock
);
548 pages_skipped
= wbc
->pages_skipped
;
549 writeback_single_inode(inode
, wbc
);
550 if (wbc
->pages_skipped
!= pages_skipped
) {
552 * writeback is not making progress due to locked
553 * buffers. Skip this inode for now.
557 spin_unlock(&inode
->i_lock
);
558 spin_unlock(&inode_wb_list_lock
);
561 spin_lock(&inode_wb_list_lock
);
562 if (wbc
->nr_to_write
<= 0) {
566 if (!list_empty(&wb
->b_more_io
))
573 void writeback_inodes_wb(struct bdi_writeback
*wb
,
574 struct writeback_control
*wbc
)
579 wbc
->wb_start
= jiffies
; /* livelock avoidance */
580 spin_lock(&inode_wb_list_lock
);
581 if (!wbc
->for_kupdate
|| list_empty(&wb
->b_io
))
582 queue_io(wb
, wbc
->older_than_this
);
584 while (!list_empty(&wb
->b_io
)) {
585 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
586 struct super_block
*sb
= inode
->i_sb
;
588 if (!pin_sb_for_writeback(sb
)) {
592 ret
= writeback_sb_inodes(sb
, wb
, wbc
, false);
598 spin_unlock(&inode_wb_list_lock
);
599 /* Leave any unwritten inodes on b_io */
602 static void __writeback_inodes_sb(struct super_block
*sb
,
603 struct bdi_writeback
*wb
, struct writeback_control
*wbc
)
605 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
607 spin_lock(&inode_wb_list_lock
);
608 if (!wbc
->for_kupdate
|| list_empty(&wb
->b_io
))
609 queue_io(wb
, wbc
->older_than_this
);
610 writeback_sb_inodes(sb
, wb
, wbc
, true);
611 spin_unlock(&inode_wb_list_lock
);
615 * The maximum number of pages to writeout in a single bdi flush/kupdate
616 * operation. We do this so we don't hold I_SYNC against an inode for
617 * enormous amounts of time, which would block a userspace task which has
618 * been forced to throttle against that inode. Also, the code reevaluates
619 * the dirty each time it has written this many pages.
621 #define MAX_WRITEBACK_PAGES 1024
623 static inline bool over_bground_thresh(void)
625 unsigned long background_thresh
, dirty_thresh
;
627 global_dirty_limits(&background_thresh
, &dirty_thresh
);
629 return (global_page_state(NR_FILE_DIRTY
) +
630 global_page_state(NR_UNSTABLE_NFS
) > background_thresh
);
634 * Explicit flushing or periodic writeback of "old" data.
636 * Define "old": the first time one of an inode's pages is dirtied, we mark the
637 * dirtying-time in the inode's address_space. So this periodic writeback code
638 * just walks the superblock inode list, writing back any inodes which are
639 * older than a specific point in time.
641 * Try to run once per dirty_writeback_interval. But if a writeback event
642 * takes longer than a dirty_writeback_interval interval, then leave a
645 * older_than_this takes precedence over nr_to_write. So we'll only write back
646 * all dirty pages if they are all attached to "old" mappings.
648 static long wb_writeback(struct bdi_writeback
*wb
,
649 struct wb_writeback_work
*work
)
651 struct writeback_control wbc
= {
652 .sync_mode
= work
->sync_mode
,
653 .older_than_this
= NULL
,
654 .for_kupdate
= work
->for_kupdate
,
655 .for_background
= work
->for_background
,
656 .range_cyclic
= work
->range_cyclic
,
658 unsigned long oldest_jif
;
663 if (wbc
.for_kupdate
) {
664 wbc
.older_than_this
= &oldest_jif
;
665 oldest_jif
= jiffies
-
666 msecs_to_jiffies(dirty_expire_interval
* 10);
668 if (!wbc
.range_cyclic
) {
670 wbc
.range_end
= LLONG_MAX
;
674 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
675 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
676 * here avoids calling into writeback_inodes_wb() more than once.
678 * The intended call sequence for WB_SYNC_ALL writeback is:
681 * __writeback_inodes_sb() <== called only once
682 * write_cache_pages() <== called once for each inode
683 * (quickly) tag currently dirty pages
684 * (maybe slowly) sync all tagged pages
686 if (wbc
.sync_mode
== WB_SYNC_NONE
)
687 write_chunk
= MAX_WRITEBACK_PAGES
;
689 write_chunk
= LONG_MAX
;
691 wbc
.wb_start
= jiffies
; /* livelock avoidance */
694 * Stop writeback when nr_pages has been consumed
696 if (work
->nr_pages
<= 0)
700 * Background writeout and kupdate-style writeback may
701 * run forever. Stop them if there is other work to do
702 * so that e.g. sync can proceed. They'll be restarted
703 * after the other works are all done.
705 if ((work
->for_background
|| work
->for_kupdate
) &&
706 !list_empty(&wb
->bdi
->work_list
))
710 * For background writeout, stop when we are below the
711 * background dirty threshold
713 if (work
->for_background
&& !over_bground_thresh())
717 wbc
.nr_to_write
= write_chunk
;
718 wbc
.pages_skipped
= 0;
720 trace_wbc_writeback_start(&wbc
, wb
->bdi
);
722 __writeback_inodes_sb(work
->sb
, wb
, &wbc
);
724 writeback_inodes_wb(wb
, &wbc
);
725 trace_wbc_writeback_written(&wbc
, wb
->bdi
);
727 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
728 wrote
+= write_chunk
- wbc
.nr_to_write
;
731 * If we consumed everything, see if we have more
733 if (wbc
.nr_to_write
<= 0)
736 * Didn't write everything and we don't have more IO, bail
741 * Did we write something? Try for more
743 if (wbc
.nr_to_write
< write_chunk
)
746 * Nothing written. Wait for some inode to
747 * become available for writeback. Otherwise
748 * we'll just busyloop.
750 spin_lock(&inode_wb_list_lock
);
751 if (!list_empty(&wb
->b_more_io
)) {
752 inode
= wb_inode(wb
->b_more_io
.prev
);
753 trace_wbc_writeback_wait(&wbc
, wb
->bdi
);
754 spin_lock(&inode
->i_lock
);
755 inode_wait_for_writeback(inode
);
756 spin_unlock(&inode
->i_lock
);
758 spin_unlock(&inode_wb_list_lock
);
765 * Return the next wb_writeback_work struct that hasn't been processed yet.
767 static struct wb_writeback_work
*
768 get_next_work_item(struct backing_dev_info
*bdi
)
770 struct wb_writeback_work
*work
= NULL
;
772 spin_lock_bh(&bdi
->wb_lock
);
773 if (!list_empty(&bdi
->work_list
)) {
774 work
= list_entry(bdi
->work_list
.next
,
775 struct wb_writeback_work
, list
);
776 list_del_init(&work
->list
);
778 spin_unlock_bh(&bdi
->wb_lock
);
783 * Add in the number of potentially dirty inodes, because each inode
784 * write can dirty pagecache in the underlying blockdev.
786 static unsigned long get_nr_dirty_pages(void)
788 return global_page_state(NR_FILE_DIRTY
) +
789 global_page_state(NR_UNSTABLE_NFS
) +
790 get_nr_dirty_inodes();
793 static long wb_check_background_flush(struct bdi_writeback
*wb
)
795 if (over_bground_thresh()) {
797 struct wb_writeback_work work
= {
798 .nr_pages
= LONG_MAX
,
799 .sync_mode
= WB_SYNC_NONE
,
804 return wb_writeback(wb
, &work
);
810 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
812 unsigned long expired
;
816 * When set to zero, disable periodic writeback
818 if (!dirty_writeback_interval
)
821 expired
= wb
->last_old_flush
+
822 msecs_to_jiffies(dirty_writeback_interval
* 10);
823 if (time_before(jiffies
, expired
))
826 wb
->last_old_flush
= jiffies
;
827 nr_pages
= get_nr_dirty_pages();
830 struct wb_writeback_work work
= {
831 .nr_pages
= nr_pages
,
832 .sync_mode
= WB_SYNC_NONE
,
837 return wb_writeback(wb
, &work
);
844 * Retrieve work items and do the writeback they describe
846 long wb_do_writeback(struct bdi_writeback
*wb
, int force_wait
)
848 struct backing_dev_info
*bdi
= wb
->bdi
;
849 struct wb_writeback_work
*work
;
852 set_bit(BDI_writeback_running
, &wb
->bdi
->state
);
853 while ((work
= get_next_work_item(bdi
)) != NULL
) {
855 * Override sync mode, in case we must wait for completion
856 * because this thread is exiting now.
859 work
->sync_mode
= WB_SYNC_ALL
;
861 trace_writeback_exec(bdi
, work
);
863 wrote
+= wb_writeback(wb
, work
);
866 * Notify the caller of completion if this is a synchronous
867 * work item, otherwise just free it.
870 complete(work
->done
);
876 * Check for periodic writeback, kupdated() style
878 wrote
+= wb_check_old_data_flush(wb
);
879 wrote
+= wb_check_background_flush(wb
);
880 clear_bit(BDI_writeback_running
, &wb
->bdi
->state
);
886 * Handle writeback of dirty data for the device backed by this bdi. Also
887 * wakes up periodically and does kupdated style flushing.
889 int bdi_writeback_thread(void *data
)
891 struct bdi_writeback
*wb
= data
;
892 struct backing_dev_info
*bdi
= wb
->bdi
;
895 current
->flags
|= PF_SWAPWRITE
;
897 wb
->last_active
= jiffies
;
900 * Our parent may run at a different priority, just set us to normal
902 set_user_nice(current
, 0);
904 trace_writeback_thread_start(bdi
);
906 while (!kthread_should_stop()) {
908 * Remove own delayed wake-up timer, since we are already awake
909 * and we'll take care of the preriodic write-back.
911 del_timer(&wb
->wakeup_timer
);
913 pages_written
= wb_do_writeback(wb
, 0);
915 trace_writeback_pages_written(pages_written
);
918 wb
->last_active
= jiffies
;
920 set_current_state(TASK_INTERRUPTIBLE
);
921 if (!list_empty(&bdi
->work_list
) || kthread_should_stop()) {
922 __set_current_state(TASK_RUNNING
);
926 if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
927 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval
* 10));
930 * We have nothing to do, so can go sleep without any
931 * timeout and save power. When a work is queued or
932 * something is made dirty - we will be woken up.
940 /* Flush any work that raced with us exiting */
941 if (!list_empty(&bdi
->work_list
))
942 wb_do_writeback(wb
, 1);
944 trace_writeback_thread_stop(bdi
);
950 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
953 void wakeup_flusher_threads(long nr_pages
)
955 struct backing_dev_info
*bdi
;
958 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
959 global_page_state(NR_UNSTABLE_NFS
);
963 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
964 if (!bdi_has_dirty_io(bdi
))
966 __bdi_start_writeback(bdi
, nr_pages
, false);
971 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
973 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
974 struct dentry
*dentry
;
975 const char *name
= "?";
977 dentry
= d_find_alias(inode
);
979 spin_lock(&dentry
->d_lock
);
980 name
= (const char *) dentry
->d_name
.name
;
983 "%s(%d): dirtied inode %lu (%s) on %s\n",
984 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
985 name
, inode
->i_sb
->s_id
);
987 spin_unlock(&dentry
->d_lock
);
994 * __mark_inode_dirty - internal function
995 * @inode: inode to mark
996 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
997 * Mark an inode as dirty. Callers should use mark_inode_dirty or
998 * mark_inode_dirty_sync.
1000 * Put the inode on the super block's dirty list.
1002 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1003 * dirty list only if it is hashed or if it refers to a blockdev.
1004 * If it was not hashed, it will never be added to the dirty list
1005 * even if it is later hashed, as it will have been marked dirty already.
1007 * In short, make sure you hash any inodes _before_ you start marking
1010 * This function *must* be atomic for the I_DIRTY_PAGES case -
1011 * set_page_dirty() is called under spinlock in several places.
1013 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1014 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1015 * the kernel-internal blockdev inode represents the dirtying time of the
1016 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1017 * page->mapping->host, so the page-dirtying time is recorded in the internal
1020 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1022 struct super_block
*sb
= inode
->i_sb
;
1023 struct backing_dev_info
*bdi
= NULL
;
1026 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1027 * dirty the inode itself
1029 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1030 if (sb
->s_op
->dirty_inode
)
1031 sb
->s_op
->dirty_inode(inode
);
1035 * make sure that changes are seen by all cpus before we test i_state
1040 /* avoid the locking if we can */
1041 if ((inode
->i_state
& flags
) == flags
)
1044 if (unlikely(block_dump
))
1045 block_dump___mark_inode_dirty(inode
);
1047 spin_lock(&inode
->i_lock
);
1048 if ((inode
->i_state
& flags
) != flags
) {
1049 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1051 inode
->i_state
|= flags
;
1054 * If the inode is being synced, just update its dirty state.
1055 * The unlocker will place the inode on the appropriate
1056 * superblock list, based upon its state.
1058 if (inode
->i_state
& I_SYNC
)
1059 goto out_unlock_inode
;
1062 * Only add valid (hashed) inodes to the superblock's
1063 * dirty list. Add blockdev inodes as well.
1065 if (!S_ISBLK(inode
->i_mode
)) {
1066 if (inode_unhashed(inode
))
1067 goto out_unlock_inode
;
1069 if (inode
->i_state
& I_FREEING
)
1070 goto out_unlock_inode
;
1073 * If the inode was already on b_dirty/b_io/b_more_io, don't
1074 * reposition it (that would break b_dirty time-ordering).
1077 bool wakeup_bdi
= false;
1078 bdi
= inode_to_bdi(inode
);
1080 if (bdi_cap_writeback_dirty(bdi
)) {
1081 WARN(!test_bit(BDI_registered
, &bdi
->state
),
1082 "bdi-%s not registered\n", bdi
->name
);
1085 * If this is the first dirty inode for this
1086 * bdi, we have to wake-up the corresponding
1087 * bdi thread to make sure background
1088 * write-back happens later.
1090 if (!wb_has_dirty_io(&bdi
->wb
))
1094 spin_unlock(&inode
->i_lock
);
1095 spin_lock(&inode_wb_list_lock
);
1096 inode
->dirtied_when
= jiffies
;
1097 list_move(&inode
->i_wb_list
, &bdi
->wb
.b_dirty
);
1098 spin_unlock(&inode_wb_list_lock
);
1101 bdi_wakeup_thread_delayed(bdi
);
1106 spin_unlock(&inode
->i_lock
);
1109 EXPORT_SYMBOL(__mark_inode_dirty
);
1112 * Write out a superblock's list of dirty inodes. A wait will be performed
1113 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1115 * If older_than_this is non-NULL, then only write out inodes which
1116 * had their first dirtying at a time earlier than *older_than_this.
1118 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1119 * This function assumes that the blockdev superblock's inodes are backed by
1120 * a variety of queues, so all inodes are searched. For other superblocks,
1121 * assume that all inodes are backed by the same queue.
1123 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1124 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1125 * on the writer throttling path, and we get decent balancing between many
1126 * throttled threads: we don't want them all piling up on inode_sync_wait.
1128 static void wait_sb_inodes(struct super_block
*sb
)
1130 struct inode
*inode
, *old_inode
= NULL
;
1133 * We need to be protected against the filesystem going from
1134 * r/o to r/w or vice versa.
1136 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1138 spin_lock(&inode_sb_list_lock
);
1141 * Data integrity sync. Must wait for all pages under writeback,
1142 * because there may have been pages dirtied before our sync
1143 * call, but which had writeout started before we write it out.
1144 * In which case, the inode may not be on the dirty list, but
1145 * we still have to wait for that writeout.
1147 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
1148 struct address_space
*mapping
= inode
->i_mapping
;
1150 spin_lock(&inode
->i_lock
);
1151 if ((inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) ||
1152 (mapping
->nrpages
== 0)) {
1153 spin_unlock(&inode
->i_lock
);
1157 spin_unlock(&inode
->i_lock
);
1158 spin_unlock(&inode_sb_list_lock
);
1161 * We hold a reference to 'inode' so it couldn't have been
1162 * removed from s_inodes list while we dropped the
1163 * inode_sb_list_lock. We cannot iput the inode now as we can
1164 * be holding the last reference and we cannot iput it under
1165 * inode_sb_list_lock. So we keep the reference and iput it
1171 filemap_fdatawait(mapping
);
1175 spin_lock(&inode_sb_list_lock
);
1177 spin_unlock(&inode_sb_list_lock
);
1182 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1183 * @sb: the superblock
1184 * @nr: the number of pages to write
1186 * Start writeback on some inodes on this super_block. No guarantees are made
1187 * on how many (if any) will be written, and this function does not wait
1188 * for IO completion of submitted IO.
1190 void writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
)
1192 DECLARE_COMPLETION_ONSTACK(done
);
1193 struct wb_writeback_work work
= {
1195 .sync_mode
= WB_SYNC_NONE
,
1200 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1201 bdi_queue_work(sb
->s_bdi
, &work
);
1202 wait_for_completion(&done
);
1204 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
1207 * writeback_inodes_sb - writeback dirty inodes from given super_block
1208 * @sb: the superblock
1210 * Start writeback on some inodes on this super_block. No guarantees are made
1211 * on how many (if any) will be written, and this function does not wait
1212 * for IO completion of submitted IO.
1214 void writeback_inodes_sb(struct super_block
*sb
)
1216 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages());
1218 EXPORT_SYMBOL(writeback_inodes_sb
);
1221 * writeback_inodes_sb_if_idle - start writeback if none underway
1222 * @sb: the superblock
1224 * Invoke writeback_inodes_sb if no writeback is currently underway.
1225 * Returns 1 if writeback was started, 0 if not.
1227 int writeback_inodes_sb_if_idle(struct super_block
*sb
)
1229 if (!writeback_in_progress(sb
->s_bdi
)) {
1230 down_read(&sb
->s_umount
);
1231 writeback_inodes_sb(sb
);
1232 up_read(&sb
->s_umount
);
1237 EXPORT_SYMBOL(writeback_inodes_sb_if_idle
);
1240 * writeback_inodes_sb_if_idle - start writeback if none underway
1241 * @sb: the superblock
1242 * @nr: the number of pages to write
1244 * Invoke writeback_inodes_sb if no writeback is currently underway.
1245 * Returns 1 if writeback was started, 0 if not.
1247 int writeback_inodes_sb_nr_if_idle(struct super_block
*sb
,
1250 if (!writeback_in_progress(sb
->s_bdi
)) {
1251 down_read(&sb
->s_umount
);
1252 writeback_inodes_sb_nr(sb
, nr
);
1253 up_read(&sb
->s_umount
);
1258 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle
);
1261 * sync_inodes_sb - sync sb inode pages
1262 * @sb: the superblock
1264 * This function writes and waits on any dirty inode belonging to this
1267 void sync_inodes_sb(struct super_block
*sb
)
1269 DECLARE_COMPLETION_ONSTACK(done
);
1270 struct wb_writeback_work work
= {
1272 .sync_mode
= WB_SYNC_ALL
,
1273 .nr_pages
= LONG_MAX
,
1278 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1280 bdi_queue_work(sb
->s_bdi
, &work
);
1281 wait_for_completion(&done
);
1285 EXPORT_SYMBOL(sync_inodes_sb
);
1288 * write_inode_now - write an inode to disk
1289 * @inode: inode to write to disk
1290 * @sync: whether the write should be synchronous or not
1292 * This function commits an inode to disk immediately if it is dirty. This is
1293 * primarily needed by knfsd.
1295 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1297 int write_inode_now(struct inode
*inode
, int sync
)
1300 struct writeback_control wbc
= {
1301 .nr_to_write
= LONG_MAX
,
1302 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1304 .range_end
= LLONG_MAX
,
1307 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1308 wbc
.nr_to_write
= 0;
1311 spin_lock(&inode_wb_list_lock
);
1312 spin_lock(&inode
->i_lock
);
1313 ret
= writeback_single_inode(inode
, &wbc
);
1314 spin_unlock(&inode
->i_lock
);
1315 spin_unlock(&inode_wb_list_lock
);
1317 inode_sync_wait(inode
);
1320 EXPORT_SYMBOL(write_inode_now
);
1323 * sync_inode - write an inode and its pages to disk.
1324 * @inode: the inode to sync
1325 * @wbc: controls the writeback mode
1327 * sync_inode() will write an inode and its pages to disk. It will also
1328 * correctly update the inode on its superblock's dirty inode lists and will
1329 * update inode->i_state.
1331 * The caller must have a ref on the inode.
1333 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1337 spin_lock(&inode_wb_list_lock
);
1338 spin_lock(&inode
->i_lock
);
1339 ret
= writeback_single_inode(inode
, wbc
);
1340 spin_unlock(&inode
->i_lock
);
1341 spin_unlock(&inode_wb_list_lock
);
1344 EXPORT_SYMBOL(sync_inode
);
1347 * sync_inode_metadata - write an inode to disk
1348 * @inode: the inode to sync
1349 * @wait: wait for I/O to complete.
1351 * Write an inode to disk and adjust its dirty state after completion.
1353 * Note: only writes the actual inode, no associated data or other metadata.
1355 int sync_inode_metadata(struct inode
*inode
, int wait
)
1357 struct writeback_control wbc
= {
1358 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1359 .nr_to_write
= 0, /* metadata-only */
1362 return sync_inode(inode
, &wbc
);
1364 EXPORT_SYMBOL(sync_inode_metadata
);