Revert "Staging: comedi: integer overflow in do_insnlist_ioctl()"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / delayed-inode.c
blob5b163572e0ca7ddd6d5f8ef6ff6783dbd5871c4d
1 /*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
25 #define BTRFS_DELAYED_WRITEBACK 400
26 #define BTRFS_DELAYED_BACKGROUND 100
28 static struct kmem_cache *delayed_node_cache;
30 int __init btrfs_delayed_inode_init(void)
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
42 void btrfs_delayed_inode_exit(void)
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
48 static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
67 static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
79 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
82 return root->fs_info->delayed_root;
85 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 struct btrfs_root *root = btrfs_inode->root;
89 u64 ino = btrfs_ino(inode);
90 struct btrfs_delayed_node *node;
92 node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 if (node) {
94 atomic_inc(&node->refs);
95 return node;
98 spin_lock(&root->inode_lock);
99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
100 if (node) {
101 if (btrfs_inode->delayed_node) {
102 atomic_inc(&node->refs); /* can be accessed */
103 BUG_ON(btrfs_inode->delayed_node != node);
104 spin_unlock(&root->inode_lock);
105 return node;
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
113 spin_unlock(&root->inode_lock);
115 return NULL;
118 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
119 struct inode *inode)
121 struct btrfs_delayed_node *node;
122 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
123 struct btrfs_root *root = btrfs_inode->root;
124 u64 ino = btrfs_ino(inode);
125 int ret;
127 again:
128 node = btrfs_get_delayed_node(inode);
129 if (node)
130 return node;
132 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
133 if (!node)
134 return ERR_PTR(-ENOMEM);
135 btrfs_init_delayed_node(node, root, ino);
137 atomic_inc(&node->refs); /* cached in the btrfs inode */
138 atomic_inc(&node->refs); /* can be accessed */
140 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
141 if (ret) {
142 kmem_cache_free(delayed_node_cache, node);
143 return ERR_PTR(ret);
146 spin_lock(&root->inode_lock);
147 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
148 if (ret == -EEXIST) {
149 kmem_cache_free(delayed_node_cache, node);
150 spin_unlock(&root->inode_lock);
151 radix_tree_preload_end();
152 goto again;
154 btrfs_inode->delayed_node = node;
155 spin_unlock(&root->inode_lock);
156 radix_tree_preload_end();
158 return node;
162 * Call it when holding delayed_node->mutex
164 * If mod = 1, add this node into the prepared list.
166 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
167 struct btrfs_delayed_node *node,
168 int mod)
170 spin_lock(&root->lock);
171 if (node->in_list) {
172 if (!list_empty(&node->p_list))
173 list_move_tail(&node->p_list, &root->prepare_list);
174 else if (mod)
175 list_add_tail(&node->p_list, &root->prepare_list);
176 } else {
177 list_add_tail(&node->n_list, &root->node_list);
178 list_add_tail(&node->p_list, &root->prepare_list);
179 atomic_inc(&node->refs); /* inserted into list */
180 root->nodes++;
181 node->in_list = 1;
183 spin_unlock(&root->lock);
186 /* Call it when holding delayed_node->mutex */
187 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
188 struct btrfs_delayed_node *node)
190 spin_lock(&root->lock);
191 if (node->in_list) {
192 root->nodes--;
193 atomic_dec(&node->refs); /* not in the list */
194 list_del_init(&node->n_list);
195 if (!list_empty(&node->p_list))
196 list_del_init(&node->p_list);
197 node->in_list = 0;
199 spin_unlock(&root->lock);
202 struct btrfs_delayed_node *btrfs_first_delayed_node(
203 struct btrfs_delayed_root *delayed_root)
205 struct list_head *p;
206 struct btrfs_delayed_node *node = NULL;
208 spin_lock(&delayed_root->lock);
209 if (list_empty(&delayed_root->node_list))
210 goto out;
212 p = delayed_root->node_list.next;
213 node = list_entry(p, struct btrfs_delayed_node, n_list);
214 atomic_inc(&node->refs);
215 out:
216 spin_unlock(&delayed_root->lock);
218 return node;
221 struct btrfs_delayed_node *btrfs_next_delayed_node(
222 struct btrfs_delayed_node *node)
224 struct btrfs_delayed_root *delayed_root;
225 struct list_head *p;
226 struct btrfs_delayed_node *next = NULL;
228 delayed_root = node->root->fs_info->delayed_root;
229 spin_lock(&delayed_root->lock);
230 if (!node->in_list) { /* not in the list */
231 if (list_empty(&delayed_root->node_list))
232 goto out;
233 p = delayed_root->node_list.next;
234 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
235 goto out;
236 else
237 p = node->n_list.next;
239 next = list_entry(p, struct btrfs_delayed_node, n_list);
240 atomic_inc(&next->refs);
241 out:
242 spin_unlock(&delayed_root->lock);
244 return next;
247 static void __btrfs_release_delayed_node(
248 struct btrfs_delayed_node *delayed_node,
249 int mod)
251 struct btrfs_delayed_root *delayed_root;
253 if (!delayed_node)
254 return;
256 delayed_root = delayed_node->root->fs_info->delayed_root;
258 mutex_lock(&delayed_node->mutex);
259 if (delayed_node->count)
260 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
261 else
262 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
263 mutex_unlock(&delayed_node->mutex);
265 if (atomic_dec_and_test(&delayed_node->refs)) {
266 struct btrfs_root *root = delayed_node->root;
267 spin_lock(&root->inode_lock);
268 if (atomic_read(&delayed_node->refs) == 0) {
269 radix_tree_delete(&root->delayed_nodes_tree,
270 delayed_node->inode_id);
271 kmem_cache_free(delayed_node_cache, delayed_node);
273 spin_unlock(&root->inode_lock);
277 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279 __btrfs_release_delayed_node(node, 0);
282 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
283 struct btrfs_delayed_root *delayed_root)
285 struct list_head *p;
286 struct btrfs_delayed_node *node = NULL;
288 spin_lock(&delayed_root->lock);
289 if (list_empty(&delayed_root->prepare_list))
290 goto out;
292 p = delayed_root->prepare_list.next;
293 list_del_init(p);
294 node = list_entry(p, struct btrfs_delayed_node, p_list);
295 atomic_inc(&node->refs);
296 out:
297 spin_unlock(&delayed_root->lock);
299 return node;
302 static inline void btrfs_release_prepared_delayed_node(
303 struct btrfs_delayed_node *node)
305 __btrfs_release_delayed_node(node, 1);
308 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310 struct btrfs_delayed_item *item;
311 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
312 if (item) {
313 item->data_len = data_len;
314 item->ins_or_del = 0;
315 item->bytes_reserved = 0;
316 item->delayed_node = NULL;
317 atomic_set(&item->refs, 1);
319 return item;
323 * __btrfs_lookup_delayed_item - look up the delayed item by key
324 * @delayed_node: pointer to the delayed node
325 * @key: the key to look up
326 * @prev: used to store the prev item if the right item isn't found
327 * @next: used to store the next item if the right item isn't found
329 * Note: if we don't find the right item, we will return the prev item and
330 * the next item.
332 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
333 struct rb_root *root,
334 struct btrfs_key *key,
335 struct btrfs_delayed_item **prev,
336 struct btrfs_delayed_item **next)
338 struct rb_node *node, *prev_node = NULL;
339 struct btrfs_delayed_item *delayed_item = NULL;
340 int ret = 0;
342 node = root->rb_node;
344 while (node) {
345 delayed_item = rb_entry(node, struct btrfs_delayed_item,
346 rb_node);
347 prev_node = node;
348 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
349 if (ret < 0)
350 node = node->rb_right;
351 else if (ret > 0)
352 node = node->rb_left;
353 else
354 return delayed_item;
357 if (prev) {
358 if (!prev_node)
359 *prev = NULL;
360 else if (ret < 0)
361 *prev = delayed_item;
362 else if ((node = rb_prev(prev_node)) != NULL) {
363 *prev = rb_entry(node, struct btrfs_delayed_item,
364 rb_node);
365 } else
366 *prev = NULL;
369 if (next) {
370 if (!prev_node)
371 *next = NULL;
372 else if (ret > 0)
373 *next = delayed_item;
374 else if ((node = rb_next(prev_node)) != NULL) {
375 *next = rb_entry(node, struct btrfs_delayed_item,
376 rb_node);
377 } else
378 *next = NULL;
380 return NULL;
383 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
384 struct btrfs_delayed_node *delayed_node,
385 struct btrfs_key *key)
387 struct btrfs_delayed_item *item;
389 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
390 NULL, NULL);
391 return item;
394 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
395 struct btrfs_delayed_node *delayed_node,
396 struct btrfs_key *key)
398 struct btrfs_delayed_item *item;
400 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
401 NULL, NULL);
402 return item;
405 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
406 struct btrfs_delayed_node *delayed_node,
407 struct btrfs_key *key)
409 struct btrfs_delayed_item *item, *next;
411 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
412 NULL, &next);
413 if (!item)
414 item = next;
416 return item;
419 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
420 struct btrfs_delayed_node *delayed_node,
421 struct btrfs_key *key)
423 struct btrfs_delayed_item *item, *next;
425 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
426 NULL, &next);
427 if (!item)
428 item = next;
430 return item;
433 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
434 struct btrfs_delayed_item *ins,
435 int action)
437 struct rb_node **p, *node;
438 struct rb_node *parent_node = NULL;
439 struct rb_root *root;
440 struct btrfs_delayed_item *item;
441 int cmp;
443 if (action == BTRFS_DELAYED_INSERTION_ITEM)
444 root = &delayed_node->ins_root;
445 else if (action == BTRFS_DELAYED_DELETION_ITEM)
446 root = &delayed_node->del_root;
447 else
448 BUG();
449 p = &root->rb_node;
450 node = &ins->rb_node;
452 while (*p) {
453 parent_node = *p;
454 item = rb_entry(parent_node, struct btrfs_delayed_item,
455 rb_node);
457 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
458 if (cmp < 0)
459 p = &(*p)->rb_right;
460 else if (cmp > 0)
461 p = &(*p)->rb_left;
462 else
463 return -EEXIST;
466 rb_link_node(node, parent_node, p);
467 rb_insert_color(node, root);
468 ins->delayed_node = delayed_node;
469 ins->ins_or_del = action;
471 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
472 action == BTRFS_DELAYED_INSERTION_ITEM &&
473 ins->key.offset >= delayed_node->index_cnt)
474 delayed_node->index_cnt = ins->key.offset + 1;
476 delayed_node->count++;
477 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
478 return 0;
481 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
482 struct btrfs_delayed_item *item)
484 return __btrfs_add_delayed_item(node, item,
485 BTRFS_DELAYED_INSERTION_ITEM);
488 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
489 struct btrfs_delayed_item *item)
491 return __btrfs_add_delayed_item(node, item,
492 BTRFS_DELAYED_DELETION_ITEM);
495 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
497 struct rb_root *root;
498 struct btrfs_delayed_root *delayed_root;
500 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
502 BUG_ON(!delayed_root);
503 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
504 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
506 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
507 root = &delayed_item->delayed_node->ins_root;
508 else
509 root = &delayed_item->delayed_node->del_root;
511 rb_erase(&delayed_item->rb_node, root);
512 delayed_item->delayed_node->count--;
513 atomic_dec(&delayed_root->items);
514 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
515 waitqueue_active(&delayed_root->wait))
516 wake_up(&delayed_root->wait);
519 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
521 if (item) {
522 __btrfs_remove_delayed_item(item);
523 if (atomic_dec_and_test(&item->refs))
524 kfree(item);
528 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
529 struct btrfs_delayed_node *delayed_node)
531 struct rb_node *p;
532 struct btrfs_delayed_item *item = NULL;
534 p = rb_first(&delayed_node->ins_root);
535 if (p)
536 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
538 return item;
541 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
542 struct btrfs_delayed_node *delayed_node)
544 struct rb_node *p;
545 struct btrfs_delayed_item *item = NULL;
547 p = rb_first(&delayed_node->del_root);
548 if (p)
549 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
551 return item;
554 struct btrfs_delayed_item *__btrfs_next_delayed_item(
555 struct btrfs_delayed_item *item)
557 struct rb_node *p;
558 struct btrfs_delayed_item *next = NULL;
560 p = rb_next(&item->rb_node);
561 if (p)
562 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
564 return next;
567 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
568 u64 root_id)
570 struct btrfs_key root_key;
572 if (root->objectid == root_id)
573 return root;
575 root_key.objectid = root_id;
576 root_key.type = BTRFS_ROOT_ITEM_KEY;
577 root_key.offset = (u64)-1;
578 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
581 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
585 struct btrfs_block_rsv *src_rsv;
586 struct btrfs_block_rsv *dst_rsv;
587 u64 num_bytes;
588 int ret;
590 if (!trans->bytes_reserved)
591 return 0;
593 src_rsv = trans->block_rsv;
594 dst_rsv = &root->fs_info->delayed_block_rsv;
596 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
597 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
598 if (!ret)
599 item->bytes_reserved = num_bytes;
601 return ret;
604 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
605 struct btrfs_delayed_item *item)
607 struct btrfs_block_rsv *rsv;
609 if (!item->bytes_reserved)
610 return;
612 rsv = &root->fs_info->delayed_block_rsv;
613 btrfs_block_rsv_release(root, rsv,
614 item->bytes_reserved);
617 static int btrfs_delayed_inode_reserve_metadata(
618 struct btrfs_trans_handle *trans,
619 struct btrfs_root *root,
620 struct inode *inode,
621 struct btrfs_delayed_node *node)
623 struct btrfs_block_rsv *src_rsv;
624 struct btrfs_block_rsv *dst_rsv;
625 u64 num_bytes;
626 int ret;
627 int release = false;
629 src_rsv = trans->block_rsv;
630 dst_rsv = &root->fs_info->delayed_block_rsv;
632 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
635 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
636 * which doesn't reserve space for speed. This is a problem since we
637 * still need to reserve space for this update, so try to reserve the
638 * space.
640 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
641 * we're accounted for.
643 if (!trans->bytes_reserved &&
644 src_rsv != &root->fs_info->delalloc_block_rsv) {
645 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
647 * Since we're under a transaction reserve_metadata_bytes could
648 * try to commit the transaction which will make it return
649 * EAGAIN to make us stop the transaction we have, so return
650 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
652 if (ret == -EAGAIN)
653 ret = -ENOSPC;
654 if (!ret)
655 node->bytes_reserved = num_bytes;
656 return ret;
657 } else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
658 spin_lock(&BTRFS_I(inode)->lock);
659 if (BTRFS_I(inode)->delalloc_meta_reserved) {
660 BTRFS_I(inode)->delalloc_meta_reserved = 0;
661 spin_unlock(&BTRFS_I(inode)->lock);
662 release = true;
663 goto migrate;
665 spin_unlock(&BTRFS_I(inode)->lock);
667 /* Ok we didn't have space pre-reserved. This shouldn't happen
668 * too often but it can happen if we do delalloc to an existing
669 * inode which gets dirtied because of the time update, and then
670 * isn't touched again until after the transaction commits and
671 * then we try to write out the data. First try to be nice and
672 * reserve something strictly for us. If not be a pain and try
673 * to steal from the delalloc block rsv.
675 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
676 if (!ret)
677 goto out;
679 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
680 if (!ret)
681 goto out;
684 * Ok this is a problem, let's just steal from the global rsv
685 * since this really shouldn't happen that often.
687 WARN_ON(1);
688 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
689 dst_rsv, num_bytes);
690 goto out;
693 migrate:
694 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
696 out:
698 * Migrate only takes a reservation, it doesn't touch the size of the
699 * block_rsv. This is to simplify people who don't normally have things
700 * migrated from their block rsv. If they go to release their
701 * reservation, that will decrease the size as well, so if migrate
702 * reduced size we'd end up with a negative size. But for the
703 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
704 * but we could in fact do this reserve/migrate dance several times
705 * between the time we did the original reservation and we'd clean it
706 * up. So to take care of this, release the space for the meta
707 * reservation here. I think it may be time for a documentation page on
708 * how block rsvs. work.
710 if (!ret)
711 node->bytes_reserved = num_bytes;
713 if (release)
714 btrfs_block_rsv_release(root, src_rsv, num_bytes);
716 return ret;
719 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
720 struct btrfs_delayed_node *node)
722 struct btrfs_block_rsv *rsv;
724 if (!node->bytes_reserved)
725 return;
727 rsv = &root->fs_info->delayed_block_rsv;
728 btrfs_block_rsv_release(root, rsv,
729 node->bytes_reserved);
730 node->bytes_reserved = 0;
734 * This helper will insert some continuous items into the same leaf according
735 * to the free space of the leaf.
737 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
738 struct btrfs_root *root,
739 struct btrfs_path *path,
740 struct btrfs_delayed_item *item)
742 struct btrfs_delayed_item *curr, *next;
743 int free_space;
744 int total_data_size = 0, total_size = 0;
745 struct extent_buffer *leaf;
746 char *data_ptr;
747 struct btrfs_key *keys;
748 u32 *data_size;
749 struct list_head head;
750 int slot;
751 int nitems;
752 int i;
753 int ret = 0;
755 BUG_ON(!path->nodes[0]);
757 leaf = path->nodes[0];
758 free_space = btrfs_leaf_free_space(root, leaf);
759 INIT_LIST_HEAD(&head);
761 next = item;
762 nitems = 0;
765 * count the number of the continuous items that we can insert in batch
767 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
768 free_space) {
769 total_data_size += next->data_len;
770 total_size += next->data_len + sizeof(struct btrfs_item);
771 list_add_tail(&next->tree_list, &head);
772 nitems++;
774 curr = next;
775 next = __btrfs_next_delayed_item(curr);
776 if (!next)
777 break;
779 if (!btrfs_is_continuous_delayed_item(curr, next))
780 break;
783 if (!nitems) {
784 ret = 0;
785 goto out;
789 * we need allocate some memory space, but it might cause the task
790 * to sleep, so we set all locked nodes in the path to blocking locks
791 * first.
793 btrfs_set_path_blocking(path);
795 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
796 if (!keys) {
797 ret = -ENOMEM;
798 goto out;
801 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
802 if (!data_size) {
803 ret = -ENOMEM;
804 goto error;
807 /* get keys of all the delayed items */
808 i = 0;
809 list_for_each_entry(next, &head, tree_list) {
810 keys[i] = next->key;
811 data_size[i] = next->data_len;
812 i++;
815 /* reset all the locked nodes in the patch to spinning locks. */
816 btrfs_clear_path_blocking(path, NULL, 0);
818 /* insert the keys of the items */
819 ret = setup_items_for_insert(trans, root, path, keys, data_size,
820 total_data_size, total_size, nitems);
821 if (ret)
822 goto error;
824 /* insert the dir index items */
825 slot = path->slots[0];
826 list_for_each_entry_safe(curr, next, &head, tree_list) {
827 data_ptr = btrfs_item_ptr(leaf, slot, char);
828 write_extent_buffer(leaf, &curr->data,
829 (unsigned long)data_ptr,
830 curr->data_len);
831 slot++;
833 btrfs_delayed_item_release_metadata(root, curr);
835 list_del(&curr->tree_list);
836 btrfs_release_delayed_item(curr);
839 error:
840 kfree(data_size);
841 kfree(keys);
842 out:
843 return ret;
847 * This helper can just do simple insertion that needn't extend item for new
848 * data, such as directory name index insertion, inode insertion.
850 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
851 struct btrfs_root *root,
852 struct btrfs_path *path,
853 struct btrfs_delayed_item *delayed_item)
855 struct extent_buffer *leaf;
856 struct btrfs_item *item;
857 char *ptr;
858 int ret;
860 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
861 delayed_item->data_len);
862 if (ret < 0 && ret != -EEXIST)
863 return ret;
865 leaf = path->nodes[0];
867 item = btrfs_item_nr(leaf, path->slots[0]);
868 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
870 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
871 delayed_item->data_len);
872 btrfs_mark_buffer_dirty(leaf);
874 btrfs_delayed_item_release_metadata(root, delayed_item);
875 return 0;
879 * we insert an item first, then if there are some continuous items, we try
880 * to insert those items into the same leaf.
882 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
883 struct btrfs_path *path,
884 struct btrfs_root *root,
885 struct btrfs_delayed_node *node)
887 struct btrfs_delayed_item *curr, *prev;
888 int ret = 0;
890 do_again:
891 mutex_lock(&node->mutex);
892 curr = __btrfs_first_delayed_insertion_item(node);
893 if (!curr)
894 goto insert_end;
896 ret = btrfs_insert_delayed_item(trans, root, path, curr);
897 if (ret < 0) {
898 btrfs_release_path(path);
899 goto insert_end;
902 prev = curr;
903 curr = __btrfs_next_delayed_item(prev);
904 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
905 /* insert the continuous items into the same leaf */
906 path->slots[0]++;
907 btrfs_batch_insert_items(trans, root, path, curr);
909 btrfs_release_delayed_item(prev);
910 btrfs_mark_buffer_dirty(path->nodes[0]);
912 btrfs_release_path(path);
913 mutex_unlock(&node->mutex);
914 goto do_again;
916 insert_end:
917 mutex_unlock(&node->mutex);
918 return ret;
921 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
922 struct btrfs_root *root,
923 struct btrfs_path *path,
924 struct btrfs_delayed_item *item)
926 struct btrfs_delayed_item *curr, *next;
927 struct extent_buffer *leaf;
928 struct btrfs_key key;
929 struct list_head head;
930 int nitems, i, last_item;
931 int ret = 0;
933 BUG_ON(!path->nodes[0]);
935 leaf = path->nodes[0];
937 i = path->slots[0];
938 last_item = btrfs_header_nritems(leaf) - 1;
939 if (i > last_item)
940 return -ENOENT; /* FIXME: Is errno suitable? */
942 next = item;
943 INIT_LIST_HEAD(&head);
944 btrfs_item_key_to_cpu(leaf, &key, i);
945 nitems = 0;
947 * count the number of the dir index items that we can delete in batch
949 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
950 list_add_tail(&next->tree_list, &head);
951 nitems++;
953 curr = next;
954 next = __btrfs_next_delayed_item(curr);
955 if (!next)
956 break;
958 if (!btrfs_is_continuous_delayed_item(curr, next))
959 break;
961 i++;
962 if (i > last_item)
963 break;
964 btrfs_item_key_to_cpu(leaf, &key, i);
967 if (!nitems)
968 return 0;
970 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
971 if (ret)
972 goto out;
974 list_for_each_entry_safe(curr, next, &head, tree_list) {
975 btrfs_delayed_item_release_metadata(root, curr);
976 list_del(&curr->tree_list);
977 btrfs_release_delayed_item(curr);
980 out:
981 return ret;
984 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
985 struct btrfs_path *path,
986 struct btrfs_root *root,
987 struct btrfs_delayed_node *node)
989 struct btrfs_delayed_item *curr, *prev;
990 int ret = 0;
992 do_again:
993 mutex_lock(&node->mutex);
994 curr = __btrfs_first_delayed_deletion_item(node);
995 if (!curr)
996 goto delete_fail;
998 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
999 if (ret < 0)
1000 goto delete_fail;
1001 else if (ret > 0) {
1003 * can't find the item which the node points to, so this node
1004 * is invalid, just drop it.
1006 prev = curr;
1007 curr = __btrfs_next_delayed_item(prev);
1008 btrfs_release_delayed_item(prev);
1009 ret = 0;
1010 btrfs_release_path(path);
1011 if (curr)
1012 goto do_again;
1013 else
1014 goto delete_fail;
1017 btrfs_batch_delete_items(trans, root, path, curr);
1018 btrfs_release_path(path);
1019 mutex_unlock(&node->mutex);
1020 goto do_again;
1022 delete_fail:
1023 btrfs_release_path(path);
1024 mutex_unlock(&node->mutex);
1025 return ret;
1028 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1030 struct btrfs_delayed_root *delayed_root;
1032 if (delayed_node && delayed_node->inode_dirty) {
1033 BUG_ON(!delayed_node->root);
1034 delayed_node->inode_dirty = 0;
1035 delayed_node->count--;
1037 delayed_root = delayed_node->root->fs_info->delayed_root;
1038 atomic_dec(&delayed_root->items);
1039 if (atomic_read(&delayed_root->items) <
1040 BTRFS_DELAYED_BACKGROUND &&
1041 waitqueue_active(&delayed_root->wait))
1042 wake_up(&delayed_root->wait);
1046 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1047 struct btrfs_root *root,
1048 struct btrfs_path *path,
1049 struct btrfs_delayed_node *node)
1051 struct btrfs_key key;
1052 struct btrfs_inode_item *inode_item;
1053 struct extent_buffer *leaf;
1054 int ret;
1056 mutex_lock(&node->mutex);
1057 if (!node->inode_dirty) {
1058 mutex_unlock(&node->mutex);
1059 return 0;
1062 key.objectid = node->inode_id;
1063 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1064 key.offset = 0;
1065 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1066 if (ret > 0) {
1067 btrfs_release_path(path);
1068 mutex_unlock(&node->mutex);
1069 return -ENOENT;
1070 } else if (ret < 0) {
1071 mutex_unlock(&node->mutex);
1072 return ret;
1075 btrfs_unlock_up_safe(path, 1);
1076 leaf = path->nodes[0];
1077 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1078 struct btrfs_inode_item);
1079 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1080 sizeof(struct btrfs_inode_item));
1081 btrfs_mark_buffer_dirty(leaf);
1082 btrfs_release_path(path);
1084 btrfs_delayed_inode_release_metadata(root, node);
1085 btrfs_release_delayed_inode(node);
1086 mutex_unlock(&node->mutex);
1088 return 0;
1091 /* Called when committing the transaction. */
1092 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1093 struct btrfs_root *root)
1095 struct btrfs_delayed_root *delayed_root;
1096 struct btrfs_delayed_node *curr_node, *prev_node;
1097 struct btrfs_path *path;
1098 struct btrfs_block_rsv *block_rsv;
1099 int ret = 0;
1101 path = btrfs_alloc_path();
1102 if (!path)
1103 return -ENOMEM;
1104 path->leave_spinning = 1;
1106 block_rsv = trans->block_rsv;
1107 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1109 delayed_root = btrfs_get_delayed_root(root);
1111 curr_node = btrfs_first_delayed_node(delayed_root);
1112 while (curr_node) {
1113 root = curr_node->root;
1114 ret = btrfs_insert_delayed_items(trans, path, root,
1115 curr_node);
1116 if (!ret)
1117 ret = btrfs_delete_delayed_items(trans, path, root,
1118 curr_node);
1119 if (!ret)
1120 ret = btrfs_update_delayed_inode(trans, root, path,
1121 curr_node);
1122 if (ret) {
1123 btrfs_release_delayed_node(curr_node);
1124 break;
1127 prev_node = curr_node;
1128 curr_node = btrfs_next_delayed_node(curr_node);
1129 btrfs_release_delayed_node(prev_node);
1132 btrfs_free_path(path);
1133 trans->block_rsv = block_rsv;
1134 return ret;
1137 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1138 struct btrfs_delayed_node *node)
1140 struct btrfs_path *path;
1141 struct btrfs_block_rsv *block_rsv;
1142 int ret;
1144 path = btrfs_alloc_path();
1145 if (!path)
1146 return -ENOMEM;
1147 path->leave_spinning = 1;
1149 block_rsv = trans->block_rsv;
1150 trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1152 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1153 if (!ret)
1154 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1155 if (!ret)
1156 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1157 btrfs_free_path(path);
1159 trans->block_rsv = block_rsv;
1160 return ret;
1163 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1164 struct inode *inode)
1166 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1167 int ret;
1169 if (!delayed_node)
1170 return 0;
1172 mutex_lock(&delayed_node->mutex);
1173 if (!delayed_node->count) {
1174 mutex_unlock(&delayed_node->mutex);
1175 btrfs_release_delayed_node(delayed_node);
1176 return 0;
1178 mutex_unlock(&delayed_node->mutex);
1180 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1181 btrfs_release_delayed_node(delayed_node);
1182 return ret;
1185 void btrfs_remove_delayed_node(struct inode *inode)
1187 struct btrfs_delayed_node *delayed_node;
1189 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1190 if (!delayed_node)
1191 return;
1193 BTRFS_I(inode)->delayed_node = NULL;
1194 btrfs_release_delayed_node(delayed_node);
1197 struct btrfs_async_delayed_node {
1198 struct btrfs_root *root;
1199 struct btrfs_delayed_node *delayed_node;
1200 struct btrfs_work work;
1203 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1205 struct btrfs_async_delayed_node *async_node;
1206 struct btrfs_trans_handle *trans;
1207 struct btrfs_path *path;
1208 struct btrfs_delayed_node *delayed_node = NULL;
1209 struct btrfs_root *root;
1210 struct btrfs_block_rsv *block_rsv;
1211 unsigned long nr = 0;
1212 int need_requeue = 0;
1213 int ret;
1215 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1217 path = btrfs_alloc_path();
1218 if (!path)
1219 goto out;
1220 path->leave_spinning = 1;
1222 delayed_node = async_node->delayed_node;
1223 root = delayed_node->root;
1225 trans = btrfs_join_transaction(root);
1226 if (IS_ERR(trans))
1227 goto free_path;
1229 block_rsv = trans->block_rsv;
1230 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1232 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1233 if (!ret)
1234 ret = btrfs_delete_delayed_items(trans, path, root,
1235 delayed_node);
1237 if (!ret)
1238 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1241 * Maybe new delayed items have been inserted, so we need requeue
1242 * the work. Besides that, we must dequeue the empty delayed nodes
1243 * to avoid the race between delayed items balance and the worker.
1244 * The race like this:
1245 * Task1 Worker thread
1246 * count == 0, needn't requeue
1247 * also needn't insert the
1248 * delayed node into prepare
1249 * list again.
1250 * add lots of delayed items
1251 * queue the delayed node
1252 * already in the list,
1253 * and not in the prepare
1254 * list, it means the delayed
1255 * node is being dealt with
1256 * by the worker.
1257 * do delayed items balance
1258 * the delayed node is being
1259 * dealt with by the worker
1260 * now, just wait.
1261 * the worker goto idle.
1262 * Task1 will sleep until the transaction is commited.
1264 mutex_lock(&delayed_node->mutex);
1265 if (delayed_node->count)
1266 need_requeue = 1;
1267 else
1268 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1269 delayed_node);
1270 mutex_unlock(&delayed_node->mutex);
1272 nr = trans->blocks_used;
1274 trans->block_rsv = block_rsv;
1275 btrfs_end_transaction_dmeta(trans, root);
1276 __btrfs_btree_balance_dirty(root, nr);
1277 free_path:
1278 btrfs_free_path(path);
1279 out:
1280 if (need_requeue)
1281 btrfs_requeue_work(&async_node->work);
1282 else {
1283 btrfs_release_prepared_delayed_node(delayed_node);
1284 kfree(async_node);
1288 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1289 struct btrfs_root *root, int all)
1291 struct btrfs_async_delayed_node *async_node;
1292 struct btrfs_delayed_node *curr;
1293 int count = 0;
1295 again:
1296 curr = btrfs_first_prepared_delayed_node(delayed_root);
1297 if (!curr)
1298 return 0;
1300 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1301 if (!async_node) {
1302 btrfs_release_prepared_delayed_node(curr);
1303 return -ENOMEM;
1306 async_node->root = root;
1307 async_node->delayed_node = curr;
1309 async_node->work.func = btrfs_async_run_delayed_node_done;
1310 async_node->work.flags = 0;
1312 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1313 count++;
1315 if (all || count < 4)
1316 goto again;
1318 return 0;
1321 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1323 struct btrfs_delayed_root *delayed_root;
1324 delayed_root = btrfs_get_delayed_root(root);
1325 WARN_ON(btrfs_first_delayed_node(delayed_root));
1328 void btrfs_balance_delayed_items(struct btrfs_root *root)
1330 struct btrfs_delayed_root *delayed_root;
1332 delayed_root = btrfs_get_delayed_root(root);
1334 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1335 return;
1337 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1338 int ret;
1339 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1340 if (ret)
1341 return;
1343 wait_event_interruptible_timeout(
1344 delayed_root->wait,
1345 (atomic_read(&delayed_root->items) <
1346 BTRFS_DELAYED_BACKGROUND),
1347 HZ);
1348 return;
1351 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1354 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1355 struct btrfs_root *root, const char *name,
1356 int name_len, struct inode *dir,
1357 struct btrfs_disk_key *disk_key, u8 type,
1358 u64 index)
1360 struct btrfs_delayed_node *delayed_node;
1361 struct btrfs_delayed_item *delayed_item;
1362 struct btrfs_dir_item *dir_item;
1363 int ret;
1365 delayed_node = btrfs_get_or_create_delayed_node(dir);
1366 if (IS_ERR(delayed_node))
1367 return PTR_ERR(delayed_node);
1369 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1370 if (!delayed_item) {
1371 ret = -ENOMEM;
1372 goto release_node;
1375 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1377 * we have reserved enough space when we start a new transaction,
1378 * so reserving metadata failure is impossible
1380 BUG_ON(ret);
1382 delayed_item->key.objectid = btrfs_ino(dir);
1383 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1384 delayed_item->key.offset = index;
1386 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1387 dir_item->location = *disk_key;
1388 dir_item->transid = cpu_to_le64(trans->transid);
1389 dir_item->data_len = 0;
1390 dir_item->name_len = cpu_to_le16(name_len);
1391 dir_item->type = type;
1392 memcpy((char *)(dir_item + 1), name, name_len);
1394 mutex_lock(&delayed_node->mutex);
1395 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1396 if (unlikely(ret)) {
1397 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1398 "the insertion tree of the delayed node"
1399 "(root id: %llu, inode id: %llu, errno: %d)\n",
1400 name,
1401 (unsigned long long)delayed_node->root->objectid,
1402 (unsigned long long)delayed_node->inode_id,
1403 ret);
1404 BUG();
1406 mutex_unlock(&delayed_node->mutex);
1408 release_node:
1409 btrfs_release_delayed_node(delayed_node);
1410 return ret;
1413 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1414 struct btrfs_delayed_node *node,
1415 struct btrfs_key *key)
1417 struct btrfs_delayed_item *item;
1419 mutex_lock(&node->mutex);
1420 item = __btrfs_lookup_delayed_insertion_item(node, key);
1421 if (!item) {
1422 mutex_unlock(&node->mutex);
1423 return 1;
1426 btrfs_delayed_item_release_metadata(root, item);
1427 btrfs_release_delayed_item(item);
1428 mutex_unlock(&node->mutex);
1429 return 0;
1432 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1433 struct btrfs_root *root, struct inode *dir,
1434 u64 index)
1436 struct btrfs_delayed_node *node;
1437 struct btrfs_delayed_item *item;
1438 struct btrfs_key item_key;
1439 int ret;
1441 node = btrfs_get_or_create_delayed_node(dir);
1442 if (IS_ERR(node))
1443 return PTR_ERR(node);
1445 item_key.objectid = btrfs_ino(dir);
1446 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1447 item_key.offset = index;
1449 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1450 if (!ret)
1451 goto end;
1453 item = btrfs_alloc_delayed_item(0);
1454 if (!item) {
1455 ret = -ENOMEM;
1456 goto end;
1459 item->key = item_key;
1461 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1463 * we have reserved enough space when we start a new transaction,
1464 * so reserving metadata failure is impossible.
1466 BUG_ON(ret);
1468 mutex_lock(&node->mutex);
1469 ret = __btrfs_add_delayed_deletion_item(node, item);
1470 if (unlikely(ret)) {
1471 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1472 "into the deletion tree of the delayed node"
1473 "(root id: %llu, inode id: %llu, errno: %d)\n",
1474 (unsigned long long)index,
1475 (unsigned long long)node->root->objectid,
1476 (unsigned long long)node->inode_id,
1477 ret);
1478 BUG();
1480 mutex_unlock(&node->mutex);
1481 end:
1482 btrfs_release_delayed_node(node);
1483 return ret;
1486 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1488 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1490 if (!delayed_node)
1491 return -ENOENT;
1494 * Since we have held i_mutex of this directory, it is impossible that
1495 * a new directory index is added into the delayed node and index_cnt
1496 * is updated now. So we needn't lock the delayed node.
1498 if (!delayed_node->index_cnt) {
1499 btrfs_release_delayed_node(delayed_node);
1500 return -EINVAL;
1503 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1504 btrfs_release_delayed_node(delayed_node);
1505 return 0;
1508 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1509 struct list_head *del_list)
1511 struct btrfs_delayed_node *delayed_node;
1512 struct btrfs_delayed_item *item;
1514 delayed_node = btrfs_get_delayed_node(inode);
1515 if (!delayed_node)
1516 return;
1518 mutex_lock(&delayed_node->mutex);
1519 item = __btrfs_first_delayed_insertion_item(delayed_node);
1520 while (item) {
1521 atomic_inc(&item->refs);
1522 list_add_tail(&item->readdir_list, ins_list);
1523 item = __btrfs_next_delayed_item(item);
1526 item = __btrfs_first_delayed_deletion_item(delayed_node);
1527 while (item) {
1528 atomic_inc(&item->refs);
1529 list_add_tail(&item->readdir_list, del_list);
1530 item = __btrfs_next_delayed_item(item);
1532 mutex_unlock(&delayed_node->mutex);
1534 * This delayed node is still cached in the btrfs inode, so refs
1535 * must be > 1 now, and we needn't check it is going to be freed
1536 * or not.
1538 * Besides that, this function is used to read dir, we do not
1539 * insert/delete delayed items in this period. So we also needn't
1540 * requeue or dequeue this delayed node.
1542 atomic_dec(&delayed_node->refs);
1545 void btrfs_put_delayed_items(struct list_head *ins_list,
1546 struct list_head *del_list)
1548 struct btrfs_delayed_item *curr, *next;
1550 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1551 list_del(&curr->readdir_list);
1552 if (atomic_dec_and_test(&curr->refs))
1553 kfree(curr);
1556 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1557 list_del(&curr->readdir_list);
1558 if (atomic_dec_and_test(&curr->refs))
1559 kfree(curr);
1563 int btrfs_should_delete_dir_index(struct list_head *del_list,
1564 u64 index)
1566 struct btrfs_delayed_item *curr, *next;
1567 int ret;
1569 if (list_empty(del_list))
1570 return 0;
1572 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1573 if (curr->key.offset > index)
1574 break;
1576 list_del(&curr->readdir_list);
1577 ret = (curr->key.offset == index);
1579 if (atomic_dec_and_test(&curr->refs))
1580 kfree(curr);
1582 if (ret)
1583 return 1;
1584 else
1585 continue;
1587 return 0;
1591 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1594 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1595 filldir_t filldir,
1596 struct list_head *ins_list)
1598 struct btrfs_dir_item *di;
1599 struct btrfs_delayed_item *curr, *next;
1600 struct btrfs_key location;
1601 char *name;
1602 int name_len;
1603 int over = 0;
1604 unsigned char d_type;
1606 if (list_empty(ins_list))
1607 return 0;
1610 * Changing the data of the delayed item is impossible. So
1611 * we needn't lock them. And we have held i_mutex of the
1612 * directory, nobody can delete any directory indexes now.
1614 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1615 list_del(&curr->readdir_list);
1617 if (curr->key.offset < filp->f_pos) {
1618 if (atomic_dec_and_test(&curr->refs))
1619 kfree(curr);
1620 continue;
1623 filp->f_pos = curr->key.offset;
1625 di = (struct btrfs_dir_item *)curr->data;
1626 name = (char *)(di + 1);
1627 name_len = le16_to_cpu(di->name_len);
1629 d_type = btrfs_filetype_table[di->type];
1630 btrfs_disk_key_to_cpu(&location, &di->location);
1632 over = filldir(dirent, name, name_len, curr->key.offset,
1633 location.objectid, d_type);
1635 if (atomic_dec_and_test(&curr->refs))
1636 kfree(curr);
1638 if (over)
1639 return 1;
1641 return 0;
1644 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1645 generation, 64);
1646 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1647 sequence, 64);
1648 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1649 transid, 64);
1650 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1651 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1652 nbytes, 64);
1653 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1654 block_group, 64);
1655 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1656 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1657 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1658 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1659 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1660 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1662 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1663 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1665 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1666 struct btrfs_inode_item *inode_item,
1667 struct inode *inode)
1669 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1670 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1671 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1672 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1673 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1674 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1675 btrfs_set_stack_inode_generation(inode_item,
1676 BTRFS_I(inode)->generation);
1677 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1678 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1679 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1680 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1681 btrfs_set_stack_inode_block_group(inode_item, 0);
1683 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1684 inode->i_atime.tv_sec);
1685 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1686 inode->i_atime.tv_nsec);
1688 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1689 inode->i_mtime.tv_sec);
1690 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1691 inode->i_mtime.tv_nsec);
1693 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1694 inode->i_ctime.tv_sec);
1695 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1696 inode->i_ctime.tv_nsec);
1699 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1701 struct btrfs_delayed_node *delayed_node;
1702 struct btrfs_inode_item *inode_item;
1703 struct btrfs_timespec *tspec;
1705 delayed_node = btrfs_get_delayed_node(inode);
1706 if (!delayed_node)
1707 return -ENOENT;
1709 mutex_lock(&delayed_node->mutex);
1710 if (!delayed_node->inode_dirty) {
1711 mutex_unlock(&delayed_node->mutex);
1712 btrfs_release_delayed_node(delayed_node);
1713 return -ENOENT;
1716 inode_item = &delayed_node->inode_item;
1718 inode->i_uid = btrfs_stack_inode_uid(inode_item);
1719 inode->i_gid = btrfs_stack_inode_gid(inode_item);
1720 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1721 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1722 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1723 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1724 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1725 BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
1726 inode->i_rdev = 0;
1727 *rdev = btrfs_stack_inode_rdev(inode_item);
1728 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1730 tspec = btrfs_inode_atime(inode_item);
1731 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1732 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1734 tspec = btrfs_inode_mtime(inode_item);
1735 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1736 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1738 tspec = btrfs_inode_ctime(inode_item);
1739 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1740 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1742 inode->i_generation = BTRFS_I(inode)->generation;
1743 BTRFS_I(inode)->index_cnt = (u64)-1;
1745 mutex_unlock(&delayed_node->mutex);
1746 btrfs_release_delayed_node(delayed_node);
1747 return 0;
1750 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1751 struct btrfs_root *root, struct inode *inode)
1753 struct btrfs_delayed_node *delayed_node;
1754 int ret = 0;
1756 delayed_node = btrfs_get_or_create_delayed_node(inode);
1757 if (IS_ERR(delayed_node))
1758 return PTR_ERR(delayed_node);
1760 mutex_lock(&delayed_node->mutex);
1761 if (delayed_node->inode_dirty) {
1762 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1763 goto release_node;
1766 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1767 delayed_node);
1768 if (ret)
1769 goto release_node;
1771 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1772 delayed_node->inode_dirty = 1;
1773 delayed_node->count++;
1774 atomic_inc(&root->fs_info->delayed_root->items);
1775 release_node:
1776 mutex_unlock(&delayed_node->mutex);
1777 btrfs_release_delayed_node(delayed_node);
1778 return ret;
1781 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1783 struct btrfs_root *root = delayed_node->root;
1784 struct btrfs_delayed_item *curr_item, *prev_item;
1786 mutex_lock(&delayed_node->mutex);
1787 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1788 while (curr_item) {
1789 btrfs_delayed_item_release_metadata(root, curr_item);
1790 prev_item = curr_item;
1791 curr_item = __btrfs_next_delayed_item(prev_item);
1792 btrfs_release_delayed_item(prev_item);
1795 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1796 while (curr_item) {
1797 btrfs_delayed_item_release_metadata(root, curr_item);
1798 prev_item = curr_item;
1799 curr_item = __btrfs_next_delayed_item(prev_item);
1800 btrfs_release_delayed_item(prev_item);
1803 if (delayed_node->inode_dirty) {
1804 btrfs_delayed_inode_release_metadata(root, delayed_node);
1805 btrfs_release_delayed_inode(delayed_node);
1807 mutex_unlock(&delayed_node->mutex);
1810 void btrfs_kill_delayed_inode_items(struct inode *inode)
1812 struct btrfs_delayed_node *delayed_node;
1814 delayed_node = btrfs_get_delayed_node(inode);
1815 if (!delayed_node)
1816 return;
1818 __btrfs_kill_delayed_node(delayed_node);
1819 btrfs_release_delayed_node(delayed_node);
1822 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1824 u64 inode_id = 0;
1825 struct btrfs_delayed_node *delayed_nodes[8];
1826 int i, n;
1828 while (1) {
1829 spin_lock(&root->inode_lock);
1830 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1831 (void **)delayed_nodes, inode_id,
1832 ARRAY_SIZE(delayed_nodes));
1833 if (!n) {
1834 spin_unlock(&root->inode_lock);
1835 break;
1838 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1840 for (i = 0; i < n; i++)
1841 atomic_inc(&delayed_nodes[i]->refs);
1842 spin_unlock(&root->inode_lock);
1844 for (i = 0; i < n; i++) {
1845 __btrfs_kill_delayed_node(delayed_nodes[i]);
1846 btrfs_release_delayed_node(delayed_nodes[i]);