2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
70 * - Break out common code from arch/arm/mach-s3c64xx and share
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
88 #define DRIVER_NAME "pl08xdmac"
90 static struct amba_driver pl08x_amba_driver
;
93 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
94 * @channels: the number of channels available in this variant
95 * @dualmaster: whether this version supports dual AHB masters or not.
103 * PL08X private data structures
104 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
105 * start & end do not - their bus bit info is in cctl. Also note that these
106 * are fixed 32-bit quantities.
116 * struct pl08x_driver_data - the local state holder for the PL08x
117 * @slave: slave engine for this instance
118 * @memcpy: memcpy engine for this instance
119 * @base: virtual memory base (remapped) for the PL08x
120 * @adev: the corresponding AMBA (PrimeCell) bus entry
121 * @vd: vendor data for this PL08x variant
122 * @pd: platform data passed in from the platform/machine
123 * @phy_chans: array of data for the physical channels
124 * @pool: a pool for the LLI descriptors
125 * @pool_ctr: counter of LLIs in the pool
126 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
128 * @mem_buses: set to indicate memory transfers on AHB2.
129 * @lock: a spinlock for this struct
131 struct pl08x_driver_data
{
132 struct dma_device slave
;
133 struct dma_device memcpy
;
135 struct amba_device
*adev
;
136 const struct vendor_data
*vd
;
137 struct pl08x_platform_data
*pd
;
138 struct pl08x_phy_chan
*phy_chans
;
139 struct dma_pool
*pool
;
147 * PL08X specific defines
150 /* Size (bytes) of each LLI buffer allocated for one transfer */
151 # define PL08X_LLI_TSFR_SIZE 0x2000
153 /* Maximum times we call dma_pool_alloc on this pool without freeing */
154 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
155 #define PL08X_ALIGN 8
157 static inline struct pl08x_dma_chan
*to_pl08x_chan(struct dma_chan
*chan
)
159 return container_of(chan
, struct pl08x_dma_chan
, chan
);
162 static inline struct pl08x_txd
*to_pl08x_txd(struct dma_async_tx_descriptor
*tx
)
164 return container_of(tx
, struct pl08x_txd
, tx
);
168 * Physical channel handling
171 /* Whether a certain channel is busy or not */
172 static int pl08x_phy_channel_busy(struct pl08x_phy_chan
*ch
)
176 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
177 return val
& PL080_CONFIG_ACTIVE
;
181 * Set the initial DMA register values i.e. those for the first LLI
182 * The next LLI pointer and the configuration interrupt bit have
183 * been set when the LLIs were constructed. Poke them into the hardware
184 * and start the transfer.
186 static void pl08x_start_txd(struct pl08x_dma_chan
*plchan
,
187 struct pl08x_txd
*txd
)
189 struct pl08x_driver_data
*pl08x
= plchan
->host
;
190 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
191 struct pl08x_lli
*lli
= &txd
->llis_va
[0];
196 /* Wait for channel inactive */
197 while (pl08x_phy_channel_busy(phychan
))
200 dev_vdbg(&pl08x
->adev
->dev
,
201 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
202 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
203 phychan
->id
, lli
->src
, lli
->dst
, lli
->lli
, lli
->cctl
,
206 writel(lli
->src
, phychan
->base
+ PL080_CH_SRC_ADDR
);
207 writel(lli
->dst
, phychan
->base
+ PL080_CH_DST_ADDR
);
208 writel(lli
->lli
, phychan
->base
+ PL080_CH_LLI
);
209 writel(lli
->cctl
, phychan
->base
+ PL080_CH_CONTROL
);
210 writel(txd
->ccfg
, phychan
->base
+ PL080_CH_CONFIG
);
212 /* Enable the DMA channel */
213 /* Do not access config register until channel shows as disabled */
214 while (readl(pl08x
->base
+ PL080_EN_CHAN
) & (1 << phychan
->id
))
217 /* Do not access config register until channel shows as inactive */
218 val
= readl(phychan
->base
+ PL080_CH_CONFIG
);
219 while ((val
& PL080_CONFIG_ACTIVE
) || (val
& PL080_CONFIG_ENABLE
))
220 val
= readl(phychan
->base
+ PL080_CH_CONFIG
);
222 writel(val
| PL080_CONFIG_ENABLE
, phychan
->base
+ PL080_CH_CONFIG
);
226 * Pause the channel by setting the HALT bit.
228 * For M->P transfers, pause the DMAC first and then stop the peripheral -
229 * the FIFO can only drain if the peripheral is still requesting data.
230 * (note: this can still timeout if the DMAC FIFO never drains of data.)
232 * For P->M transfers, disable the peripheral first to stop it filling
233 * the DMAC FIFO, and then pause the DMAC.
235 static void pl08x_pause_phy_chan(struct pl08x_phy_chan
*ch
)
240 /* Set the HALT bit and wait for the FIFO to drain */
241 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
242 val
|= PL080_CONFIG_HALT
;
243 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
245 /* Wait for channel inactive */
246 for (timeout
= 1000; timeout
; timeout
--) {
247 if (!pl08x_phy_channel_busy(ch
))
251 if (pl08x_phy_channel_busy(ch
))
252 pr_err("pl08x: channel%u timeout waiting for pause\n", ch
->id
);
255 static void pl08x_resume_phy_chan(struct pl08x_phy_chan
*ch
)
259 /* Clear the HALT bit */
260 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
261 val
&= ~PL080_CONFIG_HALT
;
262 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
266 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
267 * clears any pending interrupt status. This should not be used for
268 * an on-going transfer, but as a method of shutting down a channel
269 * (eg, when it's no longer used) or terminating a transfer.
271 static void pl08x_terminate_phy_chan(struct pl08x_driver_data
*pl08x
,
272 struct pl08x_phy_chan
*ch
)
274 u32 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
276 val
&= ~(PL080_CONFIG_ENABLE
| PL080_CONFIG_ERR_IRQ_MASK
|
277 PL080_CONFIG_TC_IRQ_MASK
);
279 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
281 writel(1 << ch
->id
, pl08x
->base
+ PL080_ERR_CLEAR
);
282 writel(1 << ch
->id
, pl08x
->base
+ PL080_TC_CLEAR
);
285 static inline u32
get_bytes_in_cctl(u32 cctl
)
287 /* The source width defines the number of bytes */
288 u32 bytes
= cctl
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
290 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
291 case PL080_WIDTH_8BIT
:
293 case PL080_WIDTH_16BIT
:
296 case PL080_WIDTH_32BIT
:
303 /* The channel should be paused when calling this */
304 static u32
pl08x_getbytes_chan(struct pl08x_dma_chan
*plchan
)
306 struct pl08x_phy_chan
*ch
;
307 struct pl08x_txd
*txd
;
311 spin_lock_irqsave(&plchan
->lock
, flags
);
312 ch
= plchan
->phychan
;
316 * Follow the LLIs to get the number of remaining
317 * bytes in the currently active transaction.
320 u32 clli
= readl(ch
->base
+ PL080_CH_LLI
) & ~PL080_LLI_LM_AHB2
;
322 /* First get the remaining bytes in the active transfer */
323 bytes
= get_bytes_in_cctl(readl(ch
->base
+ PL080_CH_CONTROL
));
326 struct pl08x_lli
*llis_va
= txd
->llis_va
;
327 dma_addr_t llis_bus
= txd
->llis_bus
;
330 BUG_ON(clli
< llis_bus
|| clli
>= llis_bus
+
331 sizeof(struct pl08x_lli
) * MAX_NUM_TSFR_LLIS
);
334 * Locate the next LLI - as this is an array,
335 * it's simple maths to find.
337 index
= (clli
- llis_bus
) / sizeof(struct pl08x_lli
);
339 for (; index
< MAX_NUM_TSFR_LLIS
; index
++) {
340 bytes
+= get_bytes_in_cctl(llis_va
[index
].cctl
);
343 * A LLI pointer of 0 terminates the LLI list
345 if (!llis_va
[index
].lli
)
351 /* Sum up all queued transactions */
352 if (!list_empty(&plchan
->pend_list
)) {
353 struct pl08x_txd
*txdi
;
354 list_for_each_entry(txdi
, &plchan
->pend_list
, node
) {
355 struct pl08x_sg
*dsg
;
356 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
361 spin_unlock_irqrestore(&plchan
->lock
, flags
);
367 * Allocate a physical channel for a virtual channel
369 * Try to locate a physical channel to be used for this transfer. If all
370 * are taken return NULL and the requester will have to cope by using
371 * some fallback PIO mode or retrying later.
373 static struct pl08x_phy_chan
*
374 pl08x_get_phy_channel(struct pl08x_driver_data
*pl08x
,
375 struct pl08x_dma_chan
*virt_chan
)
377 struct pl08x_phy_chan
*ch
= NULL
;
381 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
382 ch
= &pl08x
->phy_chans
[i
];
384 spin_lock_irqsave(&ch
->lock
, flags
);
387 ch
->serving
= virt_chan
;
389 spin_unlock_irqrestore(&ch
->lock
, flags
);
393 spin_unlock_irqrestore(&ch
->lock
, flags
);
396 if (i
== pl08x
->vd
->channels
) {
397 /* No physical channel available, cope with it */
401 pm_runtime_get_sync(&pl08x
->adev
->dev
);
405 static inline void pl08x_put_phy_channel(struct pl08x_driver_data
*pl08x
,
406 struct pl08x_phy_chan
*ch
)
410 spin_lock_irqsave(&ch
->lock
, flags
);
412 /* Stop the channel and clear its interrupts */
413 pl08x_terminate_phy_chan(pl08x
, ch
);
415 pm_runtime_put(&pl08x
->adev
->dev
);
417 /* Mark it as free */
419 spin_unlock_irqrestore(&ch
->lock
, flags
);
426 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded
)
429 case PL080_WIDTH_8BIT
:
431 case PL080_WIDTH_16BIT
:
433 case PL080_WIDTH_32BIT
:
442 static inline u32
pl08x_cctl_bits(u32 cctl
, u8 srcwidth
, u8 dstwidth
,
447 /* Remove all src, dst and transfer size bits */
448 retbits
&= ~PL080_CONTROL_DWIDTH_MASK
;
449 retbits
&= ~PL080_CONTROL_SWIDTH_MASK
;
450 retbits
&= ~PL080_CONTROL_TRANSFER_SIZE_MASK
;
452 /* Then set the bits according to the parameters */
455 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
458 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
461 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
470 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
473 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
476 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
483 retbits
|= tsize
<< PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
487 struct pl08x_lli_build_data
{
488 struct pl08x_txd
*txd
;
489 struct pl08x_bus_data srcbus
;
490 struct pl08x_bus_data dstbus
;
496 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
497 * victim in case src & dest are not similarly aligned. i.e. If after aligning
498 * masters address with width requirements of transfer (by sending few byte by
499 * byte data), slave is still not aligned, then its width will be reduced to
501 * - prefers the destination bus if both available
502 * - prefers bus with fixed address (i.e. peripheral)
504 static void pl08x_choose_master_bus(struct pl08x_lli_build_data
*bd
,
505 struct pl08x_bus_data
**mbus
, struct pl08x_bus_data
**sbus
, u32 cctl
)
507 if (!(cctl
& PL080_CONTROL_DST_INCR
)) {
510 } else if (!(cctl
& PL080_CONTROL_SRC_INCR
)) {
514 if (bd
->dstbus
.buswidth
>= bd
->srcbus
.buswidth
) {
525 * Fills in one LLI for a certain transfer descriptor and advance the counter
527 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data
*bd
,
528 int num_llis
, int len
, u32 cctl
)
530 struct pl08x_lli
*llis_va
= bd
->txd
->llis_va
;
531 dma_addr_t llis_bus
= bd
->txd
->llis_bus
;
533 BUG_ON(num_llis
>= MAX_NUM_TSFR_LLIS
);
535 llis_va
[num_llis
].cctl
= cctl
;
536 llis_va
[num_llis
].src
= bd
->srcbus
.addr
;
537 llis_va
[num_llis
].dst
= bd
->dstbus
.addr
;
538 llis_va
[num_llis
].lli
= llis_bus
+ (num_llis
+ 1) *
539 sizeof(struct pl08x_lli
);
540 llis_va
[num_llis
].lli
|= bd
->lli_bus
;
542 if (cctl
& PL080_CONTROL_SRC_INCR
)
543 bd
->srcbus
.addr
+= len
;
544 if (cctl
& PL080_CONTROL_DST_INCR
)
545 bd
->dstbus
.addr
+= len
;
547 BUG_ON(bd
->remainder
< len
);
549 bd
->remainder
-= len
;
552 static inline void prep_byte_width_lli(struct pl08x_lli_build_data
*bd
,
553 u32
*cctl
, u32 len
, int num_llis
, size_t *total_bytes
)
555 *cctl
= pl08x_cctl_bits(*cctl
, 1, 1, len
);
556 pl08x_fill_lli_for_desc(bd
, num_llis
, len
, *cctl
);
557 (*total_bytes
) += len
;
561 * This fills in the table of LLIs for the transfer descriptor
562 * Note that we assume we never have to change the burst sizes
565 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data
*pl08x
,
566 struct pl08x_txd
*txd
)
568 struct pl08x_bus_data
*mbus
, *sbus
;
569 struct pl08x_lli_build_data bd
;
571 u32 cctl
, early_bytes
= 0;
572 size_t max_bytes_per_lli
, total_bytes
;
573 struct pl08x_lli
*llis_va
;
574 struct pl08x_sg
*dsg
;
576 txd
->llis_va
= dma_pool_alloc(pl08x
->pool
, GFP_NOWAIT
, &txd
->llis_bus
);
578 dev_err(&pl08x
->adev
->dev
, "%s no memory for llis\n", __func__
);
585 bd
.lli_bus
= (pl08x
->lli_buses
& PL08X_AHB2
) ? PL080_LLI_LM_AHB2
: 0;
588 /* Find maximum width of the source bus */
590 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_SWIDTH_MASK
) >>
591 PL080_CONTROL_SWIDTH_SHIFT
);
593 /* Find maximum width of the destination bus */
595 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_DWIDTH_MASK
) >>
596 PL080_CONTROL_DWIDTH_SHIFT
);
598 list_for_each_entry(dsg
, &txd
->dsg_list
, node
) {
602 bd
.srcbus
.addr
= dsg
->src_addr
;
603 bd
.dstbus
.addr
= dsg
->dst_addr
;
604 bd
.remainder
= dsg
->len
;
605 bd
.srcbus
.buswidth
= bd
.srcbus
.maxwidth
;
606 bd
.dstbus
.buswidth
= bd
.dstbus
.maxwidth
;
608 pl08x_choose_master_bus(&bd
, &mbus
, &sbus
, cctl
);
610 dev_vdbg(&pl08x
->adev
->dev
, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
611 bd
.srcbus
.addr
, cctl
& PL080_CONTROL_SRC_INCR
? "+" : "",
613 bd
.dstbus
.addr
, cctl
& PL080_CONTROL_DST_INCR
? "+" : "",
616 dev_vdbg(&pl08x
->adev
->dev
, "mbus=%s sbus=%s\n",
617 mbus
== &bd
.srcbus
? "src" : "dst",
618 sbus
== &bd
.srcbus
? "src" : "dst");
621 * Zero length is only allowed if all these requirements are
623 * - flow controller is peripheral.
624 * - src.addr is aligned to src.width
625 * - dst.addr is aligned to dst.width
627 * sg_len == 1 should be true, as there can be two cases here:
629 * - Memory addresses are contiguous and are not scattered.
630 * Here, Only one sg will be passed by user driver, with
631 * memory address and zero length. We pass this to controller
632 * and after the transfer it will receive the last burst
633 * request from peripheral and so transfer finishes.
635 * - Memory addresses are scattered and are not contiguous.
636 * Here, Obviously as DMA controller doesn't know when a lli's
637 * transfer gets over, it can't load next lli. So in this
638 * case, there has to be an assumption that only one lli is
639 * supported. Thus, we can't have scattered addresses.
642 u32 fc
= (txd
->ccfg
& PL080_CONFIG_FLOW_CONTROL_MASK
) >>
643 PL080_CONFIG_FLOW_CONTROL_SHIFT
;
644 if (!((fc
>= PL080_FLOW_SRC2DST_DST
) &&
645 (fc
<= PL080_FLOW_SRC2DST_SRC
))) {
646 dev_err(&pl08x
->adev
->dev
, "%s sg len can't be zero",
651 if ((bd
.srcbus
.addr
% bd
.srcbus
.buswidth
) ||
652 (bd
.srcbus
.addr
% bd
.srcbus
.buswidth
)) {
653 dev_err(&pl08x
->adev
->dev
,
654 "%s src & dst address must be aligned to src"
655 " & dst width if peripheral is flow controller",
660 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
661 bd
.dstbus
.buswidth
, 0);
662 pl08x_fill_lli_for_desc(&bd
, num_llis
++, 0, cctl
);
667 * Send byte by byte for following cases
668 * - Less than a bus width available
669 * - until master bus is aligned
671 if (bd
.remainder
< mbus
->buswidth
)
672 early_bytes
= bd
.remainder
;
673 else if ((mbus
->addr
) % (mbus
->buswidth
)) {
674 early_bytes
= mbus
->buswidth
- (mbus
->addr
) %
676 if ((bd
.remainder
- early_bytes
) < mbus
->buswidth
)
677 early_bytes
= bd
.remainder
;
681 dev_vdbg(&pl08x
->adev
->dev
,
682 "%s byte width LLIs (remain 0x%08x)\n",
683 __func__
, bd
.remainder
);
684 prep_byte_width_lli(&bd
, &cctl
, early_bytes
, num_llis
++,
691 * - if slave is not then we must set its width down
693 if (sbus
->addr
% sbus
->buswidth
) {
694 dev_dbg(&pl08x
->adev
->dev
,
695 "%s set down bus width to one byte\n",
702 * Bytes transferred = tsize * src width, not
705 max_bytes_per_lli
= bd
.srcbus
.buswidth
*
706 PL080_CONTROL_TRANSFER_SIZE_MASK
;
707 dev_vdbg(&pl08x
->adev
->dev
,
708 "%s max bytes per lli = %zu\n",
709 __func__
, max_bytes_per_lli
);
712 * Make largest possible LLIs until less than one bus
715 while (bd
.remainder
> (mbus
->buswidth
- 1)) {
716 size_t lli_len
, tsize
, width
;
719 * If enough left try to send max possible,
720 * otherwise try to send the remainder
722 lli_len
= min(bd
.remainder
, max_bytes_per_lli
);
725 * Check against maximum bus alignment:
726 * Calculate actual transfer size in relation to
727 * bus width an get a maximum remainder of the
728 * highest bus width - 1
730 width
= max(mbus
->buswidth
, sbus
->buswidth
);
731 lli_len
= (lli_len
/ width
) * width
;
732 tsize
= lli_len
/ bd
.srcbus
.buswidth
;
734 dev_vdbg(&pl08x
->adev
->dev
,
735 "%s fill lli with single lli chunk of "
736 "size 0x%08zx (remainder 0x%08zx)\n",
737 __func__
, lli_len
, bd
.remainder
);
739 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
740 bd
.dstbus
.buswidth
, tsize
);
741 pl08x_fill_lli_for_desc(&bd
, num_llis
++,
743 total_bytes
+= lli_len
;
750 dev_vdbg(&pl08x
->adev
->dev
,
751 "%s align with boundary, send odd bytes (remain %zu)\n",
752 __func__
, bd
.remainder
);
753 prep_byte_width_lli(&bd
, &cctl
, bd
.remainder
,
754 num_llis
++, &total_bytes
);
758 if (total_bytes
!= dsg
->len
) {
759 dev_err(&pl08x
->adev
->dev
,
760 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
761 __func__
, total_bytes
, dsg
->len
);
765 if (num_llis
>= MAX_NUM_TSFR_LLIS
) {
766 dev_err(&pl08x
->adev
->dev
,
767 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
768 __func__
, (u32
) MAX_NUM_TSFR_LLIS
);
773 llis_va
= txd
->llis_va
;
774 /* The final LLI terminates the LLI. */
775 llis_va
[num_llis
- 1].lli
= 0;
776 /* The final LLI element shall also fire an interrupt. */
777 llis_va
[num_llis
- 1].cctl
|= PL080_CONTROL_TC_IRQ_EN
;
783 dev_vdbg(&pl08x
->adev
->dev
,
784 "%-3s %-9s %-10s %-10s %-10s %s\n",
785 "lli", "", "csrc", "cdst", "clli", "cctl");
786 for (i
= 0; i
< num_llis
; i
++) {
787 dev_vdbg(&pl08x
->adev
->dev
,
788 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
789 i
, &llis_va
[i
], llis_va
[i
].src
,
790 llis_va
[i
].dst
, llis_va
[i
].lli
, llis_va
[i
].cctl
799 /* You should call this with the struct pl08x lock held */
800 static void pl08x_free_txd(struct pl08x_driver_data
*pl08x
,
801 struct pl08x_txd
*txd
)
803 struct pl08x_sg
*dsg
, *_dsg
;
807 dma_pool_free(pl08x
->pool
, txd
->llis_va
, txd
->llis_bus
);
811 list_for_each_entry_safe(dsg
, _dsg
, &txd
->dsg_list
, node
) {
812 list_del(&dsg
->node
);
819 static void pl08x_free_txd_list(struct pl08x_driver_data
*pl08x
,
820 struct pl08x_dma_chan
*plchan
)
822 struct pl08x_txd
*txdi
= NULL
;
823 struct pl08x_txd
*next
;
825 if (!list_empty(&plchan
->pend_list
)) {
826 list_for_each_entry_safe(txdi
,
827 next
, &plchan
->pend_list
, node
) {
828 list_del(&txdi
->node
);
829 pl08x_free_txd(pl08x
, txdi
);
837 static int pl08x_alloc_chan_resources(struct dma_chan
*chan
)
842 static void pl08x_free_chan_resources(struct dma_chan
*chan
)
847 * This should be called with the channel plchan->lock held
849 static int prep_phy_channel(struct pl08x_dma_chan
*plchan
,
850 struct pl08x_txd
*txd
)
852 struct pl08x_driver_data
*pl08x
= plchan
->host
;
853 struct pl08x_phy_chan
*ch
;
856 /* Check if we already have a channel */
860 ch
= pl08x_get_phy_channel(pl08x
, plchan
);
862 /* No physical channel available, cope with it */
863 dev_dbg(&pl08x
->adev
->dev
, "no physical channel available for xfer on %s\n", plchan
->name
);
868 * OK we have a physical channel: for memcpy() this is all we
869 * need, but for slaves the physical signals may be muxed!
870 * Can the platform allow us to use this channel?
872 if (plchan
->slave
&& pl08x
->pd
->get_signal
) {
873 ret
= pl08x
->pd
->get_signal(plchan
);
875 dev_dbg(&pl08x
->adev
->dev
,
876 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
877 ch
->id
, plchan
->name
);
878 /* Release physical channel & return */
879 pl08x_put_phy_channel(pl08x
, ch
);
884 /* Assign the flow control signal to this channel */
885 if (txd
->direction
== DMA_TO_DEVICE
)
886 txd
->ccfg
|= ch
->signal
<< PL080_CONFIG_DST_SEL_SHIFT
;
887 else if (txd
->direction
== DMA_FROM_DEVICE
)
888 txd
->ccfg
|= ch
->signal
<< PL080_CONFIG_SRC_SEL_SHIFT
;
891 dev_dbg(&pl08x
->adev
->dev
, "allocated physical channel %d and signal %d for xfer on %s\n",
896 plchan
->phychan_hold
++;
897 plchan
->phychan
= ch
;
902 static void release_phy_channel(struct pl08x_dma_chan
*plchan
)
904 struct pl08x_driver_data
*pl08x
= plchan
->host
;
906 if ((plchan
->phychan
->signal
>= 0) && pl08x
->pd
->put_signal
) {
907 pl08x
->pd
->put_signal(plchan
);
908 plchan
->phychan
->signal
= -1;
910 pl08x_put_phy_channel(pl08x
, plchan
->phychan
);
911 plchan
->phychan
= NULL
;
914 static dma_cookie_t
pl08x_tx_submit(struct dma_async_tx_descriptor
*tx
)
916 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(tx
->chan
);
917 struct pl08x_txd
*txd
= to_pl08x_txd(tx
);
920 spin_lock_irqsave(&plchan
->lock
, flags
);
922 plchan
->chan
.cookie
+= 1;
923 if (plchan
->chan
.cookie
< 0)
924 plchan
->chan
.cookie
= 1;
925 tx
->cookie
= plchan
->chan
.cookie
;
927 /* Put this onto the pending list */
928 list_add_tail(&txd
->node
, &plchan
->pend_list
);
931 * If there was no physical channel available for this memcpy,
932 * stack the request up and indicate that the channel is waiting
933 * for a free physical channel.
935 if (!plchan
->slave
&& !plchan
->phychan
) {
936 /* Do this memcpy whenever there is a channel ready */
937 plchan
->state
= PL08X_CHAN_WAITING
;
938 plchan
->waiting
= txd
;
940 plchan
->phychan_hold
--;
943 spin_unlock_irqrestore(&plchan
->lock
, flags
);
948 static struct dma_async_tx_descriptor
*pl08x_prep_dma_interrupt(
949 struct dma_chan
*chan
, unsigned long flags
)
951 struct dma_async_tx_descriptor
*retval
= NULL
;
957 * Code accessing dma_async_is_complete() in a tight loop may give problems.
958 * If slaves are relying on interrupts to signal completion this function
959 * must not be called with interrupts disabled.
961 static enum dma_status
pl08x_dma_tx_status(struct dma_chan
*chan
,
962 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
964 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
965 dma_cookie_t last_used
;
966 dma_cookie_t last_complete
;
970 last_used
= plchan
->chan
.cookie
;
971 last_complete
= plchan
->lc
;
973 ret
= dma_async_is_complete(cookie
, last_complete
, last_used
);
974 if (ret
== DMA_SUCCESS
) {
975 dma_set_tx_state(txstate
, last_complete
, last_used
, 0);
980 * This cookie not complete yet
982 last_used
= plchan
->chan
.cookie
;
983 last_complete
= plchan
->lc
;
985 /* Get number of bytes left in the active transactions and queue */
986 bytesleft
= pl08x_getbytes_chan(plchan
);
988 dma_set_tx_state(txstate
, last_complete
, last_used
,
991 if (plchan
->state
== PL08X_CHAN_PAUSED
)
994 /* Whether waiting or running, we're in progress */
995 return DMA_IN_PROGRESS
;
998 /* PrimeCell DMA extension */
1004 static const struct burst_table burst_sizes
[] = {
1007 .reg
= PL080_BSIZE_256
,
1011 .reg
= PL080_BSIZE_128
,
1015 .reg
= PL080_BSIZE_64
,
1019 .reg
= PL080_BSIZE_32
,
1023 .reg
= PL080_BSIZE_16
,
1027 .reg
= PL080_BSIZE_8
,
1031 .reg
= PL080_BSIZE_4
,
1035 .reg
= PL080_BSIZE_1
,
1040 * Given the source and destination available bus masks, select which
1041 * will be routed to each port. We try to have source and destination
1042 * on separate ports, but always respect the allowable settings.
1044 static u32
pl08x_select_bus(u8 src
, u8 dst
)
1048 if (!(dst
& PL08X_AHB1
) || ((dst
& PL08X_AHB2
) && (src
& PL08X_AHB1
)))
1049 cctl
|= PL080_CONTROL_DST_AHB2
;
1050 if (!(src
& PL08X_AHB1
) || ((src
& PL08X_AHB2
) && !(dst
& PL08X_AHB2
)))
1051 cctl
|= PL080_CONTROL_SRC_AHB2
;
1056 static u32
pl08x_cctl(u32 cctl
)
1058 cctl
&= ~(PL080_CONTROL_SRC_AHB2
| PL080_CONTROL_DST_AHB2
|
1059 PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
|
1060 PL080_CONTROL_PROT_MASK
);
1062 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1063 return cctl
| PL080_CONTROL_PROT_SYS
;
1066 static u32
pl08x_width(enum dma_slave_buswidth width
)
1069 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1070 return PL080_WIDTH_8BIT
;
1071 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1072 return PL080_WIDTH_16BIT
;
1073 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1074 return PL080_WIDTH_32BIT
;
1080 static u32
pl08x_burst(u32 maxburst
)
1084 for (i
= 0; i
< ARRAY_SIZE(burst_sizes
); i
++)
1085 if (burst_sizes
[i
].burstwords
<= maxburst
)
1088 return burst_sizes
[i
].reg
;
1091 static int dma_set_runtime_config(struct dma_chan
*chan
,
1092 struct dma_slave_config
*config
)
1094 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1095 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1096 enum dma_slave_buswidth addr_width
;
1097 u32 width
, burst
, maxburst
;
1103 /* Transfer direction */
1104 plchan
->runtime_direction
= config
->direction
;
1105 if (config
->direction
== DMA_TO_DEVICE
) {
1106 addr_width
= config
->dst_addr_width
;
1107 maxburst
= config
->dst_maxburst
;
1108 } else if (config
->direction
== DMA_FROM_DEVICE
) {
1109 addr_width
= config
->src_addr_width
;
1110 maxburst
= config
->src_maxburst
;
1112 dev_err(&pl08x
->adev
->dev
,
1113 "bad runtime_config: alien transfer direction\n");
1117 width
= pl08x_width(addr_width
);
1119 dev_err(&pl08x
->adev
->dev
,
1120 "bad runtime_config: alien address width\n");
1124 cctl
|= width
<< PL080_CONTROL_SWIDTH_SHIFT
;
1125 cctl
|= width
<< PL080_CONTROL_DWIDTH_SHIFT
;
1128 * If this channel will only request single transfers, set this
1129 * down to ONE element. Also select one element if no maxburst
1132 if (plchan
->cd
->single
)
1135 burst
= pl08x_burst(maxburst
);
1136 cctl
|= burst
<< PL080_CONTROL_SB_SIZE_SHIFT
;
1137 cctl
|= burst
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1139 if (plchan
->runtime_direction
== DMA_FROM_DEVICE
) {
1140 plchan
->src_addr
= config
->src_addr
;
1141 plchan
->src_cctl
= pl08x_cctl(cctl
) | PL080_CONTROL_DST_INCR
|
1142 pl08x_select_bus(plchan
->cd
->periph_buses
,
1145 plchan
->dst_addr
= config
->dst_addr
;
1146 plchan
->dst_cctl
= pl08x_cctl(cctl
) | PL080_CONTROL_SRC_INCR
|
1147 pl08x_select_bus(pl08x
->mem_buses
,
1148 plchan
->cd
->periph_buses
);
1151 dev_dbg(&pl08x
->adev
->dev
,
1152 "configured channel %s (%s) for %s, data width %d, "
1153 "maxburst %d words, LE, CCTL=0x%08x\n",
1154 dma_chan_name(chan
), plchan
->name
,
1155 (config
->direction
== DMA_FROM_DEVICE
) ? "RX" : "TX",
1164 * Slave transactions callback to the slave device to allow
1165 * synchronization of slave DMA signals with the DMAC enable
1167 static void pl08x_issue_pending(struct dma_chan
*chan
)
1169 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1170 unsigned long flags
;
1172 spin_lock_irqsave(&plchan
->lock
, flags
);
1173 /* Something is already active, or we're waiting for a channel... */
1174 if (plchan
->at
|| plchan
->state
== PL08X_CHAN_WAITING
) {
1175 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1179 /* Take the first element in the queue and execute it */
1180 if (!list_empty(&plchan
->pend_list
)) {
1181 struct pl08x_txd
*next
;
1183 next
= list_first_entry(&plchan
->pend_list
,
1186 list_del(&next
->node
);
1187 plchan
->state
= PL08X_CHAN_RUNNING
;
1189 pl08x_start_txd(plchan
, next
);
1192 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1195 static int pl08x_prep_channel_resources(struct pl08x_dma_chan
*plchan
,
1196 struct pl08x_txd
*txd
)
1198 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1199 unsigned long flags
;
1202 num_llis
= pl08x_fill_llis_for_desc(pl08x
, txd
);
1204 spin_lock_irqsave(&plchan
->lock
, flags
);
1205 pl08x_free_txd(pl08x
, txd
);
1206 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1210 spin_lock_irqsave(&plchan
->lock
, flags
);
1213 * See if we already have a physical channel allocated,
1214 * else this is the time to try to get one.
1216 ret
= prep_phy_channel(plchan
, txd
);
1219 * No physical channel was available.
1221 * memcpy transfers can be sorted out at submission time.
1223 * Slave transfers may have been denied due to platform
1224 * channel muxing restrictions. Since there is no guarantee
1225 * that this will ever be resolved, and the signal must be
1226 * acquired AFTER acquiring the physical channel, we will let
1227 * them be NACK:ed with -EBUSY here. The drivers can retry
1228 * the prep() call if they are eager on doing this using DMA.
1230 if (plchan
->slave
) {
1231 pl08x_free_txd_list(pl08x
, plchan
);
1232 pl08x_free_txd(pl08x
, txd
);
1233 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1238 * Else we're all set, paused and ready to roll, status
1239 * will switch to PL08X_CHAN_RUNNING when we call
1240 * issue_pending(). If there is something running on the
1241 * channel already we don't change its state.
1243 if (plchan
->state
== PL08X_CHAN_IDLE
)
1244 plchan
->state
= PL08X_CHAN_PAUSED
;
1246 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1251 static struct pl08x_txd
*pl08x_get_txd(struct pl08x_dma_chan
*plchan
,
1252 unsigned long flags
)
1254 struct pl08x_txd
*txd
= kzalloc(sizeof(*txd
), GFP_NOWAIT
);
1257 dma_async_tx_descriptor_init(&txd
->tx
, &plchan
->chan
);
1258 txd
->tx
.flags
= flags
;
1259 txd
->tx
.tx_submit
= pl08x_tx_submit
;
1260 INIT_LIST_HEAD(&txd
->node
);
1261 INIT_LIST_HEAD(&txd
->dsg_list
);
1263 /* Always enable error and terminal interrupts */
1264 txd
->ccfg
= PL080_CONFIG_ERR_IRQ_MASK
|
1265 PL080_CONFIG_TC_IRQ_MASK
;
1271 * Initialize a descriptor to be used by memcpy submit
1273 static struct dma_async_tx_descriptor
*pl08x_prep_dma_memcpy(
1274 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1275 size_t len
, unsigned long flags
)
1277 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1278 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1279 struct pl08x_txd
*txd
;
1280 struct pl08x_sg
*dsg
;
1283 txd
= pl08x_get_txd(plchan
, flags
);
1285 dev_err(&pl08x
->adev
->dev
,
1286 "%s no memory for descriptor\n", __func__
);
1290 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1292 pl08x_free_txd(pl08x
, txd
);
1293 dev_err(&pl08x
->adev
->dev
, "%s no memory for pl080 sg\n",
1297 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1299 txd
->direction
= DMA_NONE
;
1300 dsg
->src_addr
= src
;
1301 dsg
->dst_addr
= dest
;
1304 /* Set platform data for m2m */
1305 txd
->ccfg
|= PL080_FLOW_MEM2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1306 txd
->cctl
= pl08x
->pd
->memcpy_channel
.cctl
&
1307 ~(PL080_CONTROL_DST_AHB2
| PL080_CONTROL_SRC_AHB2
);
1309 /* Both to be incremented or the code will break */
1310 txd
->cctl
|= PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
;
1312 if (pl08x
->vd
->dualmaster
)
1313 txd
->cctl
|= pl08x_select_bus(pl08x
->mem_buses
,
1316 ret
= pl08x_prep_channel_resources(plchan
, txd
);
1323 static struct dma_async_tx_descriptor
*pl08x_prep_slave_sg(
1324 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1325 unsigned int sg_len
, enum dma_data_direction direction
,
1326 unsigned long flags
)
1328 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1329 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1330 struct pl08x_txd
*txd
;
1331 struct pl08x_sg
*dsg
;
1332 struct scatterlist
*sg
;
1333 dma_addr_t slave_addr
;
1336 dev_dbg(&pl08x
->adev
->dev
, "%s prepare transaction of %d bytes from %s\n",
1337 __func__
, sgl
->length
, plchan
->name
);
1339 txd
= pl08x_get_txd(plchan
, flags
);
1341 dev_err(&pl08x
->adev
->dev
, "%s no txd\n", __func__
);
1345 if (direction
!= plchan
->runtime_direction
)
1346 dev_err(&pl08x
->adev
->dev
, "%s DMA setup does not match "
1347 "the direction configured for the PrimeCell\n",
1351 * Set up addresses, the PrimeCell configured address
1352 * will take precedence since this may configure the
1353 * channel target address dynamically at runtime.
1355 txd
->direction
= direction
;
1357 if (direction
== DMA_TO_DEVICE
) {
1358 txd
->cctl
= plchan
->dst_cctl
;
1359 slave_addr
= plchan
->dst_addr
;
1360 } else if (direction
== DMA_FROM_DEVICE
) {
1361 txd
->cctl
= plchan
->src_cctl
;
1362 slave_addr
= plchan
->src_addr
;
1364 pl08x_free_txd(pl08x
, txd
);
1365 dev_err(&pl08x
->adev
->dev
,
1366 "%s direction unsupported\n", __func__
);
1370 if (plchan
->cd
->device_fc
)
1371 tmp
= (direction
== DMA_TO_DEVICE
) ? PL080_FLOW_MEM2PER_PER
:
1372 PL080_FLOW_PER2MEM_PER
;
1374 tmp
= (direction
== DMA_TO_DEVICE
) ? PL080_FLOW_MEM2PER
:
1377 txd
->ccfg
|= tmp
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1379 for_each_sg(sgl
, sg
, sg_len
, tmp
) {
1380 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1382 pl08x_free_txd(pl08x
, txd
);
1383 dev_err(&pl08x
->adev
->dev
, "%s no mem for pl080 sg\n",
1387 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1389 dsg
->len
= sg_dma_len(sg
);
1390 if (direction
== DMA_TO_DEVICE
) {
1391 dsg
->src_addr
= sg_phys(sg
);
1392 dsg
->dst_addr
= slave_addr
;
1394 dsg
->src_addr
= slave_addr
;
1395 dsg
->dst_addr
= sg_phys(sg
);
1399 ret
= pl08x_prep_channel_resources(plchan
, txd
);
1406 static int pl08x_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
1409 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1410 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1411 unsigned long flags
;
1414 /* Controls applicable to inactive channels */
1415 if (cmd
== DMA_SLAVE_CONFIG
) {
1416 return dma_set_runtime_config(chan
,
1417 (struct dma_slave_config
*)arg
);
1421 * Anything succeeds on channels with no physical allocation and
1422 * no queued transfers.
1424 spin_lock_irqsave(&plchan
->lock
, flags
);
1425 if (!plchan
->phychan
&& !plchan
->at
) {
1426 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1431 case DMA_TERMINATE_ALL
:
1432 plchan
->state
= PL08X_CHAN_IDLE
;
1434 if (plchan
->phychan
) {
1435 pl08x_terminate_phy_chan(pl08x
, plchan
->phychan
);
1438 * Mark physical channel as free and free any slave
1441 release_phy_channel(plchan
);
1443 /* Dequeue jobs and free LLIs */
1445 pl08x_free_txd(pl08x
, plchan
->at
);
1448 /* Dequeue jobs not yet fired as well */
1449 pl08x_free_txd_list(pl08x
, plchan
);
1452 pl08x_pause_phy_chan(plchan
->phychan
);
1453 plchan
->state
= PL08X_CHAN_PAUSED
;
1456 pl08x_resume_phy_chan(plchan
->phychan
);
1457 plchan
->state
= PL08X_CHAN_RUNNING
;
1460 /* Unknown command */
1465 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1470 bool pl08x_filter_id(struct dma_chan
*chan
, void *chan_id
)
1472 struct pl08x_dma_chan
*plchan
;
1473 char *name
= chan_id
;
1475 /* Reject channels for devices not bound to this driver */
1476 if (chan
->device
->dev
->driver
!= &pl08x_amba_driver
.drv
)
1479 plchan
= to_pl08x_chan(chan
);
1481 /* Check that the channel is not taken! */
1482 if (!strcmp(plchan
->name
, name
))
1489 * Just check that the device is there and active
1490 * TODO: turn this bit on/off depending on the number of physical channels
1491 * actually used, if it is zero... well shut it off. That will save some
1492 * power. Cut the clock at the same time.
1494 static void pl08x_ensure_on(struct pl08x_driver_data
*pl08x
)
1496 writel(PL080_CONFIG_ENABLE
, pl08x
->base
+ PL080_CONFIG
);
1499 static void pl08x_unmap_buffers(struct pl08x_txd
*txd
)
1501 struct device
*dev
= txd
->tx
.chan
->device
->dev
;
1502 struct pl08x_sg
*dsg
;
1504 if (!(txd
->tx
.flags
& DMA_COMPL_SKIP_SRC_UNMAP
)) {
1505 if (txd
->tx
.flags
& DMA_COMPL_SRC_UNMAP_SINGLE
)
1506 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1507 dma_unmap_single(dev
, dsg
->src_addr
, dsg
->len
,
1510 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1511 dma_unmap_page(dev
, dsg
->src_addr
, dsg
->len
,
1515 if (!(txd
->tx
.flags
& DMA_COMPL_SKIP_DEST_UNMAP
)) {
1516 if (txd
->tx
.flags
& DMA_COMPL_DEST_UNMAP_SINGLE
)
1517 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1518 dma_unmap_single(dev
, dsg
->dst_addr
, dsg
->len
,
1521 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1522 dma_unmap_page(dev
, dsg
->dst_addr
, dsg
->len
,
1527 static void pl08x_tasklet(unsigned long data
)
1529 struct pl08x_dma_chan
*plchan
= (struct pl08x_dma_chan
*) data
;
1530 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1531 struct pl08x_txd
*txd
;
1532 unsigned long flags
;
1534 spin_lock_irqsave(&plchan
->lock
, flags
);
1540 /* Update last completed */
1541 plchan
->lc
= txd
->tx
.cookie
;
1544 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1545 if (!list_empty(&plchan
->pend_list
)) {
1546 struct pl08x_txd
*next
;
1548 next
= list_first_entry(&plchan
->pend_list
,
1551 list_del(&next
->node
);
1553 pl08x_start_txd(plchan
, next
);
1554 } else if (plchan
->phychan_hold
) {
1556 * This channel is still in use - we have a new txd being
1557 * prepared and will soon be queued. Don't give up the
1561 struct pl08x_dma_chan
*waiting
= NULL
;
1564 * No more jobs, so free up the physical channel
1565 * Free any allocated signal on slave transfers too
1567 release_phy_channel(plchan
);
1568 plchan
->state
= PL08X_CHAN_IDLE
;
1571 * And NOW before anyone else can grab that free:d up
1572 * physical channel, see if there is some memcpy pending
1573 * that seriously needs to start because of being stacked
1574 * up while we were choking the physical channels with data.
1576 list_for_each_entry(waiting
, &pl08x
->memcpy
.channels
,
1578 if (waiting
->state
== PL08X_CHAN_WAITING
&&
1579 waiting
->waiting
!= NULL
) {
1582 /* This should REALLY not fail now */
1583 ret
= prep_phy_channel(waiting
,
1586 waiting
->phychan_hold
--;
1587 waiting
->state
= PL08X_CHAN_RUNNING
;
1588 waiting
->waiting
= NULL
;
1589 pl08x_issue_pending(&waiting
->chan
);
1595 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1598 dma_async_tx_callback callback
= txd
->tx
.callback
;
1599 void *callback_param
= txd
->tx
.callback_param
;
1601 /* Don't try to unmap buffers on slave channels */
1603 pl08x_unmap_buffers(txd
);
1605 /* Free the descriptor */
1606 spin_lock_irqsave(&plchan
->lock
, flags
);
1607 pl08x_free_txd(pl08x
, txd
);
1608 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1610 /* Callback to signal completion */
1612 callback(callback_param
);
1616 static irqreturn_t
pl08x_irq(int irq
, void *dev
)
1618 struct pl08x_driver_data
*pl08x
= dev
;
1619 u32 mask
= 0, err
, tc
, i
;
1621 /* check & clear - ERR & TC interrupts */
1622 err
= readl(pl08x
->base
+ PL080_ERR_STATUS
);
1624 dev_err(&pl08x
->adev
->dev
, "%s error interrupt, register value 0x%08x\n",
1626 writel(err
, pl08x
->base
+ PL080_ERR_CLEAR
);
1628 tc
= readl(pl08x
->base
+ PL080_INT_STATUS
);
1630 writel(tc
, pl08x
->base
+ PL080_TC_CLEAR
);
1635 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1636 if (((1 << i
) & err
) || ((1 << i
) & tc
)) {
1637 /* Locate physical channel */
1638 struct pl08x_phy_chan
*phychan
= &pl08x
->phy_chans
[i
];
1639 struct pl08x_dma_chan
*plchan
= phychan
->serving
;
1642 dev_err(&pl08x
->adev
->dev
,
1643 "%s Error TC interrupt on unused channel: 0x%08x\n",
1648 /* Schedule tasklet on this channel */
1649 tasklet_schedule(&plchan
->tasklet
);
1654 return mask
? IRQ_HANDLED
: IRQ_NONE
;
1657 static void pl08x_dma_slave_init(struct pl08x_dma_chan
*chan
)
1659 u32 cctl
= pl08x_cctl(chan
->cd
->cctl
);
1662 chan
->name
= chan
->cd
->bus_id
;
1663 chan
->src_addr
= chan
->cd
->addr
;
1664 chan
->dst_addr
= chan
->cd
->addr
;
1665 chan
->src_cctl
= cctl
| PL080_CONTROL_DST_INCR
|
1666 pl08x_select_bus(chan
->cd
->periph_buses
, chan
->host
->mem_buses
);
1667 chan
->dst_cctl
= cctl
| PL080_CONTROL_SRC_INCR
|
1668 pl08x_select_bus(chan
->host
->mem_buses
, chan
->cd
->periph_buses
);
1672 * Initialise the DMAC memcpy/slave channels.
1673 * Make a local wrapper to hold required data
1675 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data
*pl08x
,
1676 struct dma_device
*dmadev
, unsigned int channels
, bool slave
)
1678 struct pl08x_dma_chan
*chan
;
1681 INIT_LIST_HEAD(&dmadev
->channels
);
1684 * Register as many many memcpy as we have physical channels,
1685 * we won't always be able to use all but the code will have
1686 * to cope with that situation.
1688 for (i
= 0; i
< channels
; i
++) {
1689 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1691 dev_err(&pl08x
->adev
->dev
,
1692 "%s no memory for channel\n", __func__
);
1697 chan
->state
= PL08X_CHAN_IDLE
;
1700 chan
->cd
= &pl08x
->pd
->slave_channels
[i
];
1701 pl08x_dma_slave_init(chan
);
1703 chan
->cd
= &pl08x
->pd
->memcpy_channel
;
1704 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1710 if (chan
->cd
->circular_buffer
) {
1711 dev_err(&pl08x
->adev
->dev
,
1712 "channel %s: circular buffers not supported\n",
1717 dev_dbg(&pl08x
->adev
->dev
,
1718 "initialize virtual channel \"%s\"\n",
1721 chan
->chan
.device
= dmadev
;
1722 chan
->chan
.cookie
= 0;
1725 spin_lock_init(&chan
->lock
);
1726 INIT_LIST_HEAD(&chan
->pend_list
);
1727 tasklet_init(&chan
->tasklet
, pl08x_tasklet
,
1728 (unsigned long) chan
);
1730 list_add_tail(&chan
->chan
.device_node
, &dmadev
->channels
);
1732 dev_info(&pl08x
->adev
->dev
, "initialized %d virtual %s channels\n",
1733 i
, slave
? "slave" : "memcpy");
1737 static void pl08x_free_virtual_channels(struct dma_device
*dmadev
)
1739 struct pl08x_dma_chan
*chan
= NULL
;
1740 struct pl08x_dma_chan
*next
;
1742 list_for_each_entry_safe(chan
,
1743 next
, &dmadev
->channels
, chan
.device_node
) {
1744 list_del(&chan
->chan
.device_node
);
1749 #ifdef CONFIG_DEBUG_FS
1750 static const char *pl08x_state_str(enum pl08x_dma_chan_state state
)
1753 case PL08X_CHAN_IDLE
:
1755 case PL08X_CHAN_RUNNING
:
1757 case PL08X_CHAN_PAUSED
:
1759 case PL08X_CHAN_WAITING
:
1764 return "UNKNOWN STATE";
1767 static int pl08x_debugfs_show(struct seq_file
*s
, void *data
)
1769 struct pl08x_driver_data
*pl08x
= s
->private;
1770 struct pl08x_dma_chan
*chan
;
1771 struct pl08x_phy_chan
*ch
;
1772 unsigned long flags
;
1775 seq_printf(s
, "PL08x physical channels:\n");
1776 seq_printf(s
, "CHANNEL:\tUSER:\n");
1777 seq_printf(s
, "--------\t-----\n");
1778 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1779 struct pl08x_dma_chan
*virt_chan
;
1781 ch
= &pl08x
->phy_chans
[i
];
1783 spin_lock_irqsave(&ch
->lock
, flags
);
1784 virt_chan
= ch
->serving
;
1786 seq_printf(s
, "%d\t\t%s\n",
1787 ch
->id
, virt_chan
? virt_chan
->name
: "(none)");
1789 spin_unlock_irqrestore(&ch
->lock
, flags
);
1792 seq_printf(s
, "\nPL08x virtual memcpy channels:\n");
1793 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1794 seq_printf(s
, "--------\t------\n");
1795 list_for_each_entry(chan
, &pl08x
->memcpy
.channels
, chan
.device_node
) {
1796 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
1797 pl08x_state_str(chan
->state
));
1800 seq_printf(s
, "\nPL08x virtual slave channels:\n");
1801 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1802 seq_printf(s
, "--------\t------\n");
1803 list_for_each_entry(chan
, &pl08x
->slave
.channels
, chan
.device_node
) {
1804 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
1805 pl08x_state_str(chan
->state
));
1811 static int pl08x_debugfs_open(struct inode
*inode
, struct file
*file
)
1813 return single_open(file
, pl08x_debugfs_show
, inode
->i_private
);
1816 static const struct file_operations pl08x_debugfs_operations
= {
1817 .open
= pl08x_debugfs_open
,
1819 .llseek
= seq_lseek
,
1820 .release
= single_release
,
1823 static void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
1825 /* Expose a simple debugfs interface to view all clocks */
1826 (void) debugfs_create_file(dev_name(&pl08x
->adev
->dev
),
1827 S_IFREG
| S_IRUGO
, NULL
, pl08x
,
1828 &pl08x_debugfs_operations
);
1832 static inline void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
1837 static int pl08x_probe(struct amba_device
*adev
, const struct amba_id
*id
)
1839 struct pl08x_driver_data
*pl08x
;
1840 const struct vendor_data
*vd
= id
->data
;
1844 ret
= amba_request_regions(adev
, NULL
);
1848 /* Create the driver state holder */
1849 pl08x
= kzalloc(sizeof(*pl08x
), GFP_KERNEL
);
1855 pm_runtime_set_active(&adev
->dev
);
1856 pm_runtime_enable(&adev
->dev
);
1858 /* Initialize memcpy engine */
1859 dma_cap_set(DMA_MEMCPY
, pl08x
->memcpy
.cap_mask
);
1860 pl08x
->memcpy
.dev
= &adev
->dev
;
1861 pl08x
->memcpy
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
1862 pl08x
->memcpy
.device_free_chan_resources
= pl08x_free_chan_resources
;
1863 pl08x
->memcpy
.device_prep_dma_memcpy
= pl08x_prep_dma_memcpy
;
1864 pl08x
->memcpy
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
1865 pl08x
->memcpy
.device_tx_status
= pl08x_dma_tx_status
;
1866 pl08x
->memcpy
.device_issue_pending
= pl08x_issue_pending
;
1867 pl08x
->memcpy
.device_control
= pl08x_control
;
1869 /* Initialize slave engine */
1870 dma_cap_set(DMA_SLAVE
, pl08x
->slave
.cap_mask
);
1871 pl08x
->slave
.dev
= &adev
->dev
;
1872 pl08x
->slave
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
1873 pl08x
->slave
.device_free_chan_resources
= pl08x_free_chan_resources
;
1874 pl08x
->slave
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
1875 pl08x
->slave
.device_tx_status
= pl08x_dma_tx_status
;
1876 pl08x
->slave
.device_issue_pending
= pl08x_issue_pending
;
1877 pl08x
->slave
.device_prep_slave_sg
= pl08x_prep_slave_sg
;
1878 pl08x
->slave
.device_control
= pl08x_control
;
1880 /* Get the platform data */
1881 pl08x
->pd
= dev_get_platdata(&adev
->dev
);
1883 dev_err(&adev
->dev
, "no platform data supplied\n");
1884 goto out_no_platdata
;
1887 /* Assign useful pointers to the driver state */
1891 /* By default, AHB1 only. If dualmaster, from platform */
1892 pl08x
->lli_buses
= PL08X_AHB1
;
1893 pl08x
->mem_buses
= PL08X_AHB1
;
1894 if (pl08x
->vd
->dualmaster
) {
1895 pl08x
->lli_buses
= pl08x
->pd
->lli_buses
;
1896 pl08x
->mem_buses
= pl08x
->pd
->mem_buses
;
1899 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1900 pl08x
->pool
= dma_pool_create(DRIVER_NAME
, &pl08x
->adev
->dev
,
1901 PL08X_LLI_TSFR_SIZE
, PL08X_ALIGN
, 0);
1904 goto out_no_lli_pool
;
1907 spin_lock_init(&pl08x
->lock
);
1909 pl08x
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
1912 goto out_no_ioremap
;
1915 /* Turn on the PL08x */
1916 pl08x_ensure_on(pl08x
);
1918 /* Attach the interrupt handler */
1919 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
1920 writel(0x000000FF, pl08x
->base
+ PL080_TC_CLEAR
);
1922 ret
= request_irq(adev
->irq
[0], pl08x_irq
, IRQF_DISABLED
,
1923 DRIVER_NAME
, pl08x
);
1925 dev_err(&adev
->dev
, "%s failed to request interrupt %d\n",
1926 __func__
, adev
->irq
[0]);
1930 /* Initialize physical channels */
1931 pl08x
->phy_chans
= kmalloc((vd
->channels
* sizeof(*pl08x
->phy_chans
)),
1933 if (!pl08x
->phy_chans
) {
1934 dev_err(&adev
->dev
, "%s failed to allocate "
1935 "physical channel holders\n",
1937 goto out_no_phychans
;
1940 for (i
= 0; i
< vd
->channels
; i
++) {
1941 struct pl08x_phy_chan
*ch
= &pl08x
->phy_chans
[i
];
1944 ch
->base
= pl08x
->base
+ PL080_Cx_BASE(i
);
1945 spin_lock_init(&ch
->lock
);
1948 dev_dbg(&adev
->dev
, "physical channel %d is %s\n",
1949 i
, pl08x_phy_channel_busy(ch
) ? "BUSY" : "FREE");
1952 /* Register as many memcpy channels as there are physical channels */
1953 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->memcpy
,
1954 pl08x
->vd
->channels
, false);
1956 dev_warn(&pl08x
->adev
->dev
,
1957 "%s failed to enumerate memcpy channels - %d\n",
1961 pl08x
->memcpy
.chancnt
= ret
;
1963 /* Register slave channels */
1964 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->slave
,
1965 pl08x
->pd
->num_slave_channels
, true);
1967 dev_warn(&pl08x
->adev
->dev
,
1968 "%s failed to enumerate slave channels - %d\n",
1972 pl08x
->slave
.chancnt
= ret
;
1974 ret
= dma_async_device_register(&pl08x
->memcpy
);
1976 dev_warn(&pl08x
->adev
->dev
,
1977 "%s failed to register memcpy as an async device - %d\n",
1979 goto out_no_memcpy_reg
;
1982 ret
= dma_async_device_register(&pl08x
->slave
);
1984 dev_warn(&pl08x
->adev
->dev
,
1985 "%s failed to register slave as an async device - %d\n",
1987 goto out_no_slave_reg
;
1990 amba_set_drvdata(adev
, pl08x
);
1991 init_pl08x_debugfs(pl08x
);
1992 dev_info(&pl08x
->adev
->dev
, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1993 amba_part(adev
), amba_rev(adev
),
1994 (unsigned long long)adev
->res
.start
, adev
->irq
[0]);
1996 pm_runtime_put(&adev
->dev
);
2000 dma_async_device_unregister(&pl08x
->memcpy
);
2002 pl08x_free_virtual_channels(&pl08x
->slave
);
2004 pl08x_free_virtual_channels(&pl08x
->memcpy
);
2006 kfree(pl08x
->phy_chans
);
2008 free_irq(adev
->irq
[0], pl08x
);
2010 iounmap(pl08x
->base
);
2012 dma_pool_destroy(pl08x
->pool
);
2015 pm_runtime_put(&adev
->dev
);
2016 pm_runtime_disable(&adev
->dev
);
2020 amba_release_regions(adev
);
2024 /* PL080 has 8 channels and the PL080 have just 2 */
2025 static struct vendor_data vendor_pl080
= {
2030 static struct vendor_data vendor_pl081
= {
2032 .dualmaster
= false,
2035 static struct amba_id pl08x_ids
[] = {
2040 .data
= &vendor_pl080
,
2046 .data
= &vendor_pl081
,
2048 /* Nomadik 8815 PL080 variant */
2052 .data
= &vendor_pl080
,
2057 static struct amba_driver pl08x_amba_driver
= {
2058 .drv
.name
= DRIVER_NAME
,
2059 .id_table
= pl08x_ids
,
2060 .probe
= pl08x_probe
,
2063 static int __init
pl08x_init(void)
2066 retval
= amba_driver_register(&pl08x_amba_driver
);
2068 printk(KERN_WARNING DRIVER_NAME
2069 "failed to register as an AMBA device (%d)\n",
2073 subsys_initcall(pl08x_init
);