Add new string functions strict_strto* and convert kernel params to use them
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / loop.c
blob91ebb007416c185587b22ac08e46993f09fcb7dc
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations prepare_write and/or commit_write are not available on the
44 * backing filesystem.
45 * Anton Altaparmakov, 16 Feb 2005
47 * Still To Fix:
48 * - Advisory locking is ignored here.
49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
56 #include <linux/fs.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/compat.h>
70 #include <linux/suspend.h>
71 #include <linux/freezer.h>
72 #include <linux/writeback.h>
73 #include <linux/buffer_head.h> /* for invalidate_bdev() */
74 #include <linux/completion.h>
75 #include <linux/highmem.h>
76 #include <linux/gfp.h>
77 #include <linux/kthread.h>
78 #include <linux/splice.h>
80 #include <asm/uaccess.h>
82 static LIST_HEAD(loop_devices);
83 static DEFINE_MUTEX(loop_devices_mutex);
86 * Transfer functions
88 static int transfer_none(struct loop_device *lo, int cmd,
89 struct page *raw_page, unsigned raw_off,
90 struct page *loop_page, unsigned loop_off,
91 int size, sector_t real_block)
93 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
94 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
96 if (cmd == READ)
97 memcpy(loop_buf, raw_buf, size);
98 else
99 memcpy(raw_buf, loop_buf, size);
101 kunmap_atomic(raw_buf, KM_USER0);
102 kunmap_atomic(loop_buf, KM_USER1);
103 cond_resched();
104 return 0;
107 static int transfer_xor(struct loop_device *lo, int cmd,
108 struct page *raw_page, unsigned raw_off,
109 struct page *loop_page, unsigned loop_off,
110 int size, sector_t real_block)
112 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
113 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
114 char *in, *out, *key;
115 int i, keysize;
117 if (cmd == READ) {
118 in = raw_buf;
119 out = loop_buf;
120 } else {
121 in = loop_buf;
122 out = raw_buf;
125 key = lo->lo_encrypt_key;
126 keysize = lo->lo_encrypt_key_size;
127 for (i = 0; i < size; i++)
128 *out++ = *in++ ^ key[(i & 511) % keysize];
130 kunmap_atomic(raw_buf, KM_USER0);
131 kunmap_atomic(loop_buf, KM_USER1);
132 cond_resched();
133 return 0;
136 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
138 if (unlikely(info->lo_encrypt_key_size <= 0))
139 return -EINVAL;
140 return 0;
143 static struct loop_func_table none_funcs = {
144 .number = LO_CRYPT_NONE,
145 .transfer = transfer_none,
148 static struct loop_func_table xor_funcs = {
149 .number = LO_CRYPT_XOR,
150 .transfer = transfer_xor,
151 .init = xor_init
154 /* xfer_funcs[0] is special - its release function is never called */
155 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
156 &none_funcs,
157 &xor_funcs
160 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
162 loff_t size, offset, loopsize;
164 /* Compute loopsize in bytes */
165 size = i_size_read(file->f_mapping->host);
166 offset = lo->lo_offset;
167 loopsize = size - offset;
168 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
169 loopsize = lo->lo_sizelimit;
172 * Unfortunately, if we want to do I/O on the device,
173 * the number of 512-byte sectors has to fit into a sector_t.
175 return loopsize >> 9;
178 static int
179 figure_loop_size(struct loop_device *lo)
181 loff_t size = get_loop_size(lo, lo->lo_backing_file);
182 sector_t x = (sector_t)size;
184 if (unlikely((loff_t)x != size))
185 return -EFBIG;
187 set_capacity(lo->lo_disk, x);
188 return 0;
191 static inline int
192 lo_do_transfer(struct loop_device *lo, int cmd,
193 struct page *rpage, unsigned roffs,
194 struct page *lpage, unsigned loffs,
195 int size, sector_t rblock)
197 if (unlikely(!lo->transfer))
198 return 0;
200 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
204 * do_lo_send_aops - helper for writing data to a loop device
206 * This is the fast version for backing filesystems which implement the address
207 * space operations write_begin and write_end.
209 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
210 int bsize, loff_t pos, struct page *unused)
212 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
213 struct address_space *mapping = file->f_mapping;
214 pgoff_t index;
215 unsigned offset, bv_offs;
216 int len, ret;
218 mutex_lock(&mapping->host->i_mutex);
219 index = pos >> PAGE_CACHE_SHIFT;
220 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
221 bv_offs = bvec->bv_offset;
222 len = bvec->bv_len;
223 while (len > 0) {
224 sector_t IV;
225 unsigned size, copied;
226 int transfer_result;
227 struct page *page;
228 void *fsdata;
230 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
231 size = PAGE_CACHE_SIZE - offset;
232 if (size > len)
233 size = len;
235 ret = pagecache_write_begin(file, mapping, pos, size, 0,
236 &page, &fsdata);
237 if (ret)
238 goto fail;
240 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
241 bvec->bv_page, bv_offs, size, IV);
242 copied = size;
243 if (unlikely(transfer_result))
244 copied = 0;
246 ret = pagecache_write_end(file, mapping, pos, size, copied,
247 page, fsdata);
248 if (ret < 0 || ret != copied)
249 goto fail;
251 if (unlikely(transfer_result))
252 goto fail;
254 bv_offs += copied;
255 len -= copied;
256 offset = 0;
257 index++;
258 pos += copied;
260 ret = 0;
261 out:
262 mutex_unlock(&mapping->host->i_mutex);
263 return ret;
264 fail:
265 ret = -1;
266 goto out;
270 * __do_lo_send_write - helper for writing data to a loop device
272 * This helper just factors out common code between do_lo_send_direct_write()
273 * and do_lo_send_write().
275 static int __do_lo_send_write(struct file *file,
276 u8 *buf, const int len, loff_t pos)
278 ssize_t bw;
279 mm_segment_t old_fs = get_fs();
281 set_fs(get_ds());
282 bw = file->f_op->write(file, buf, len, &pos);
283 set_fs(old_fs);
284 if (likely(bw == len))
285 return 0;
286 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
287 (unsigned long long)pos, len);
288 if (bw >= 0)
289 bw = -EIO;
290 return bw;
294 * do_lo_send_direct_write - helper for writing data to a loop device
296 * This is the fast, non-transforming version for backing filesystems which do
297 * not implement the address space operations write_begin and write_end.
298 * It uses the write file operation which should be present on all writeable
299 * filesystems.
301 static int do_lo_send_direct_write(struct loop_device *lo,
302 struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
304 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
305 kmap(bvec->bv_page) + bvec->bv_offset,
306 bvec->bv_len, pos);
307 kunmap(bvec->bv_page);
308 cond_resched();
309 return bw;
313 * do_lo_send_write - helper for writing data to a loop device
315 * This is the slow, transforming version for filesystems which do not
316 * implement the address space operations write_begin and write_end. It
317 * uses the write file operation which should be present on all writeable
318 * filesystems.
320 * Using fops->write is slower than using aops->{prepare,commit}_write in the
321 * transforming case because we need to double buffer the data as we cannot do
322 * the transformations in place as we do not have direct access to the
323 * destination pages of the backing file.
325 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
326 int bsize, loff_t pos, struct page *page)
328 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
329 bvec->bv_offset, bvec->bv_len, pos >> 9);
330 if (likely(!ret))
331 return __do_lo_send_write(lo->lo_backing_file,
332 page_address(page), bvec->bv_len,
333 pos);
334 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
335 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
336 if (ret > 0)
337 ret = -EIO;
338 return ret;
341 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
342 loff_t pos)
344 int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
345 struct page *page);
346 struct bio_vec *bvec;
347 struct page *page = NULL;
348 int i, ret = 0;
350 do_lo_send = do_lo_send_aops;
351 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
352 do_lo_send = do_lo_send_direct_write;
353 if (lo->transfer != transfer_none) {
354 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
355 if (unlikely(!page))
356 goto fail;
357 kmap(page);
358 do_lo_send = do_lo_send_write;
361 bio_for_each_segment(bvec, bio, i) {
362 ret = do_lo_send(lo, bvec, bsize, pos, page);
363 if (ret < 0)
364 break;
365 pos += bvec->bv_len;
367 if (page) {
368 kunmap(page);
369 __free_page(page);
371 out:
372 return ret;
373 fail:
374 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
375 ret = -ENOMEM;
376 goto out;
379 struct lo_read_data {
380 struct loop_device *lo;
381 struct page *page;
382 unsigned offset;
383 int bsize;
386 static int
387 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
388 struct splice_desc *sd)
390 struct lo_read_data *p = sd->u.data;
391 struct loop_device *lo = p->lo;
392 struct page *page = buf->page;
393 sector_t IV;
394 size_t size;
395 int ret;
397 ret = buf->ops->confirm(pipe, buf);
398 if (unlikely(ret))
399 return ret;
401 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
402 (buf->offset >> 9);
403 size = sd->len;
404 if (size > p->bsize)
405 size = p->bsize;
407 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
408 printk(KERN_ERR "loop: transfer error block %ld\n",
409 page->index);
410 size = -EINVAL;
413 flush_dcache_page(p->page);
415 if (size > 0)
416 p->offset += size;
418 return size;
421 static int
422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
424 return __splice_from_pipe(pipe, sd, lo_splice_actor);
427 static int
428 do_lo_receive(struct loop_device *lo,
429 struct bio_vec *bvec, int bsize, loff_t pos)
431 struct lo_read_data cookie;
432 struct splice_desc sd;
433 struct file *file;
434 long retval;
436 cookie.lo = lo;
437 cookie.page = bvec->bv_page;
438 cookie.offset = bvec->bv_offset;
439 cookie.bsize = bsize;
441 sd.len = 0;
442 sd.total_len = bvec->bv_len;
443 sd.flags = 0;
444 sd.pos = pos;
445 sd.u.data = &cookie;
447 file = lo->lo_backing_file;
448 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
450 if (retval < 0)
451 return retval;
453 return 0;
456 static int
457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
459 struct bio_vec *bvec;
460 int i, ret = 0;
462 bio_for_each_segment(bvec, bio, i) {
463 ret = do_lo_receive(lo, bvec, bsize, pos);
464 if (ret < 0)
465 break;
466 pos += bvec->bv_len;
468 return ret;
471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
473 loff_t pos;
474 int ret;
476 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
477 if (bio_rw(bio) == WRITE)
478 ret = lo_send(lo, bio, lo->lo_blocksize, pos);
479 else
480 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
481 return ret;
485 * Add bio to back of pending list
487 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
489 if (lo->lo_biotail) {
490 lo->lo_biotail->bi_next = bio;
491 lo->lo_biotail = bio;
492 } else
493 lo->lo_bio = lo->lo_biotail = bio;
497 * Grab first pending buffer
499 static struct bio *loop_get_bio(struct loop_device *lo)
501 struct bio *bio;
503 if ((bio = lo->lo_bio)) {
504 if (bio == lo->lo_biotail)
505 lo->lo_biotail = NULL;
506 lo->lo_bio = bio->bi_next;
507 bio->bi_next = NULL;
510 return bio;
513 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
515 struct loop_device *lo = q->queuedata;
516 int rw = bio_rw(old_bio);
518 if (rw == READA)
519 rw = READ;
521 BUG_ON(!lo || (rw != READ && rw != WRITE));
523 spin_lock_irq(&lo->lo_lock);
524 if (lo->lo_state != Lo_bound)
525 goto out;
526 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
527 goto out;
528 loop_add_bio(lo, old_bio);
529 wake_up(&lo->lo_event);
530 spin_unlock_irq(&lo->lo_lock);
531 return 0;
533 out:
534 spin_unlock_irq(&lo->lo_lock);
535 bio_io_error(old_bio);
536 return 0;
540 * kick off io on the underlying address space
542 static void loop_unplug(struct request_queue *q)
544 struct loop_device *lo = q->queuedata;
546 clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
547 blk_run_address_space(lo->lo_backing_file->f_mapping);
550 struct switch_request {
551 struct file *file;
552 struct completion wait;
555 static void do_loop_switch(struct loop_device *, struct switch_request *);
557 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
559 if (unlikely(!bio->bi_bdev)) {
560 do_loop_switch(lo, bio->bi_private);
561 bio_put(bio);
562 } else {
563 int ret = do_bio_filebacked(lo, bio);
564 bio_endio(bio, ret);
569 * worker thread that handles reads/writes to file backed loop devices,
570 * to avoid blocking in our make_request_fn. it also does loop decrypting
571 * on reads for block backed loop, as that is too heavy to do from
572 * b_end_io context where irqs may be disabled.
574 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
575 * calling kthread_stop(). Therefore once kthread_should_stop() is
576 * true, make_request will not place any more requests. Therefore
577 * once kthread_should_stop() is true and lo_bio is NULL, we are
578 * done with the loop.
580 static int loop_thread(void *data)
582 struct loop_device *lo = data;
583 struct bio *bio;
585 set_user_nice(current, -20);
587 while (!kthread_should_stop() || lo->lo_bio) {
589 wait_event_interruptible(lo->lo_event,
590 lo->lo_bio || kthread_should_stop());
592 if (!lo->lo_bio)
593 continue;
594 spin_lock_irq(&lo->lo_lock);
595 bio = loop_get_bio(lo);
596 spin_unlock_irq(&lo->lo_lock);
598 BUG_ON(!bio);
599 loop_handle_bio(lo, bio);
602 return 0;
606 * loop_switch performs the hard work of switching a backing store.
607 * First it needs to flush existing IO, it does this by sending a magic
608 * BIO down the pipe. The completion of this BIO does the actual switch.
610 static int loop_switch(struct loop_device *lo, struct file *file)
612 struct switch_request w;
613 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
614 if (!bio)
615 return -ENOMEM;
616 init_completion(&w.wait);
617 w.file = file;
618 bio->bi_private = &w;
619 bio->bi_bdev = NULL;
620 loop_make_request(lo->lo_queue, bio);
621 wait_for_completion(&w.wait);
622 return 0;
626 * Do the actual switch; called from the BIO completion routine
628 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
630 struct file *file = p->file;
631 struct file *old_file = lo->lo_backing_file;
632 struct address_space *mapping = file->f_mapping;
634 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
635 lo->lo_backing_file = file;
636 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
637 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
638 lo->old_gfp_mask = mapping_gfp_mask(mapping);
639 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
640 complete(&p->wait);
645 * loop_change_fd switched the backing store of a loopback device to
646 * a new file. This is useful for operating system installers to free up
647 * the original file and in High Availability environments to switch to
648 * an alternative location for the content in case of server meltdown.
649 * This can only work if the loop device is used read-only, and if the
650 * new backing store is the same size and type as the old backing store.
652 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
653 struct block_device *bdev, unsigned int arg)
655 struct file *file, *old_file;
656 struct inode *inode;
657 int error;
659 error = -ENXIO;
660 if (lo->lo_state != Lo_bound)
661 goto out;
663 /* the loop device has to be read-only */
664 error = -EINVAL;
665 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
666 goto out;
668 error = -EBADF;
669 file = fget(arg);
670 if (!file)
671 goto out;
673 inode = file->f_mapping->host;
674 old_file = lo->lo_backing_file;
676 error = -EINVAL;
678 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
679 goto out_putf;
681 /* new backing store needs to support loop (eg splice_read) */
682 if (!inode->i_fop->splice_read)
683 goto out_putf;
685 /* size of the new backing store needs to be the same */
686 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
687 goto out_putf;
689 /* and ... switch */
690 error = loop_switch(lo, file);
691 if (error)
692 goto out_putf;
694 fput(old_file);
695 return 0;
697 out_putf:
698 fput(file);
699 out:
700 return error;
703 static inline int is_loop_device(struct file *file)
705 struct inode *i = file->f_mapping->host;
707 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
710 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
711 struct block_device *bdev, unsigned int arg)
713 struct file *file, *f;
714 struct inode *inode;
715 struct address_space *mapping;
716 unsigned lo_blocksize;
717 int lo_flags = 0;
718 int error;
719 loff_t size;
721 /* This is safe, since we have a reference from open(). */
722 __module_get(THIS_MODULE);
724 error = -EBADF;
725 file = fget(arg);
726 if (!file)
727 goto out;
729 error = -EBUSY;
730 if (lo->lo_state != Lo_unbound)
731 goto out_putf;
733 /* Avoid recursion */
734 f = file;
735 while (is_loop_device(f)) {
736 struct loop_device *l;
738 if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
739 goto out_putf;
741 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
742 if (l->lo_state == Lo_unbound) {
743 error = -EINVAL;
744 goto out_putf;
746 f = l->lo_backing_file;
749 mapping = file->f_mapping;
750 inode = mapping->host;
752 if (!(file->f_mode & FMODE_WRITE))
753 lo_flags |= LO_FLAGS_READ_ONLY;
755 error = -EINVAL;
756 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
757 const struct address_space_operations *aops = mapping->a_ops;
759 * If we can't read - sorry. If we only can't write - well,
760 * it's going to be read-only.
762 if (!file->f_op->splice_read)
763 goto out_putf;
764 if (aops->prepare_write || aops->write_begin)
765 lo_flags |= LO_FLAGS_USE_AOPS;
766 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
767 lo_flags |= LO_FLAGS_READ_ONLY;
769 lo_blocksize = S_ISBLK(inode->i_mode) ?
770 inode->i_bdev->bd_block_size : PAGE_SIZE;
772 error = 0;
773 } else {
774 goto out_putf;
777 size = get_loop_size(lo, file);
779 if ((loff_t)(sector_t)size != size) {
780 error = -EFBIG;
781 goto out_putf;
784 if (!(lo_file->f_mode & FMODE_WRITE))
785 lo_flags |= LO_FLAGS_READ_ONLY;
787 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
789 lo->lo_blocksize = lo_blocksize;
790 lo->lo_device = bdev;
791 lo->lo_flags = lo_flags;
792 lo->lo_backing_file = file;
793 lo->transfer = transfer_none;
794 lo->ioctl = NULL;
795 lo->lo_sizelimit = 0;
796 lo->old_gfp_mask = mapping_gfp_mask(mapping);
797 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
799 lo->lo_bio = lo->lo_biotail = NULL;
802 * set queue make_request_fn, and add limits based on lower level
803 * device
805 blk_queue_make_request(lo->lo_queue, loop_make_request);
806 lo->lo_queue->queuedata = lo;
807 lo->lo_queue->unplug_fn = loop_unplug;
809 set_capacity(lo->lo_disk, size);
810 bd_set_size(bdev, size << 9);
812 set_blocksize(bdev, lo_blocksize);
814 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
815 lo->lo_number);
816 if (IS_ERR(lo->lo_thread)) {
817 error = PTR_ERR(lo->lo_thread);
818 goto out_clr;
820 lo->lo_state = Lo_bound;
821 wake_up_process(lo->lo_thread);
822 return 0;
824 out_clr:
825 lo->lo_thread = NULL;
826 lo->lo_device = NULL;
827 lo->lo_backing_file = NULL;
828 lo->lo_flags = 0;
829 set_capacity(lo->lo_disk, 0);
830 invalidate_bdev(bdev);
831 bd_set_size(bdev, 0);
832 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
833 lo->lo_state = Lo_unbound;
834 out_putf:
835 fput(file);
836 out:
837 /* This is safe: open() is still holding a reference. */
838 module_put(THIS_MODULE);
839 return error;
842 static int
843 loop_release_xfer(struct loop_device *lo)
845 int err = 0;
846 struct loop_func_table *xfer = lo->lo_encryption;
848 if (xfer) {
849 if (xfer->release)
850 err = xfer->release(lo);
851 lo->transfer = NULL;
852 lo->lo_encryption = NULL;
853 module_put(xfer->owner);
855 return err;
858 static int
859 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
860 const struct loop_info64 *i)
862 int err = 0;
864 if (xfer) {
865 struct module *owner = xfer->owner;
867 if (!try_module_get(owner))
868 return -EINVAL;
869 if (xfer->init)
870 err = xfer->init(lo, i);
871 if (err)
872 module_put(owner);
873 else
874 lo->lo_encryption = xfer;
876 return err;
879 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
881 struct file *filp = lo->lo_backing_file;
882 gfp_t gfp = lo->old_gfp_mask;
884 if (lo->lo_state != Lo_bound)
885 return -ENXIO;
887 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
888 return -EBUSY;
890 if (filp == NULL)
891 return -EINVAL;
893 spin_lock_irq(&lo->lo_lock);
894 lo->lo_state = Lo_rundown;
895 spin_unlock_irq(&lo->lo_lock);
897 kthread_stop(lo->lo_thread);
899 lo->lo_backing_file = NULL;
901 loop_release_xfer(lo);
902 lo->transfer = NULL;
903 lo->ioctl = NULL;
904 lo->lo_device = NULL;
905 lo->lo_encryption = NULL;
906 lo->lo_offset = 0;
907 lo->lo_sizelimit = 0;
908 lo->lo_encrypt_key_size = 0;
909 lo->lo_flags = 0;
910 lo->lo_thread = NULL;
911 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
912 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
913 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
914 invalidate_bdev(bdev);
915 set_capacity(lo->lo_disk, 0);
916 bd_set_size(bdev, 0);
917 mapping_set_gfp_mask(filp->f_mapping, gfp);
918 lo->lo_state = Lo_unbound;
919 fput(filp);
920 /* This is safe: open() is still holding a reference. */
921 module_put(THIS_MODULE);
922 return 0;
925 static int
926 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
928 int err;
929 struct loop_func_table *xfer;
931 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
932 !capable(CAP_SYS_ADMIN))
933 return -EPERM;
934 if (lo->lo_state != Lo_bound)
935 return -ENXIO;
936 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
937 return -EINVAL;
939 err = loop_release_xfer(lo);
940 if (err)
941 return err;
943 if (info->lo_encrypt_type) {
944 unsigned int type = info->lo_encrypt_type;
946 if (type >= MAX_LO_CRYPT)
947 return -EINVAL;
948 xfer = xfer_funcs[type];
949 if (xfer == NULL)
950 return -EINVAL;
951 } else
952 xfer = NULL;
954 err = loop_init_xfer(lo, xfer, info);
955 if (err)
956 return err;
958 if (lo->lo_offset != info->lo_offset ||
959 lo->lo_sizelimit != info->lo_sizelimit) {
960 lo->lo_offset = info->lo_offset;
961 lo->lo_sizelimit = info->lo_sizelimit;
962 if (figure_loop_size(lo))
963 return -EFBIG;
966 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
967 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
968 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
969 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
971 if (!xfer)
972 xfer = &none_funcs;
973 lo->transfer = xfer->transfer;
974 lo->ioctl = xfer->ioctl;
976 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
977 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
978 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
980 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
981 lo->lo_init[0] = info->lo_init[0];
982 lo->lo_init[1] = info->lo_init[1];
983 if (info->lo_encrypt_key_size) {
984 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
985 info->lo_encrypt_key_size);
986 lo->lo_key_owner = current->uid;
989 return 0;
992 static int
993 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
995 struct file *file = lo->lo_backing_file;
996 struct kstat stat;
997 int error;
999 if (lo->lo_state != Lo_bound)
1000 return -ENXIO;
1001 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1002 if (error)
1003 return error;
1004 memset(info, 0, sizeof(*info));
1005 info->lo_number = lo->lo_number;
1006 info->lo_device = huge_encode_dev(stat.dev);
1007 info->lo_inode = stat.ino;
1008 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1009 info->lo_offset = lo->lo_offset;
1010 info->lo_sizelimit = lo->lo_sizelimit;
1011 info->lo_flags = lo->lo_flags;
1012 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1013 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1014 info->lo_encrypt_type =
1015 lo->lo_encryption ? lo->lo_encryption->number : 0;
1016 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1017 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1018 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1019 lo->lo_encrypt_key_size);
1021 return 0;
1024 static void
1025 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1027 memset(info64, 0, sizeof(*info64));
1028 info64->lo_number = info->lo_number;
1029 info64->lo_device = info->lo_device;
1030 info64->lo_inode = info->lo_inode;
1031 info64->lo_rdevice = info->lo_rdevice;
1032 info64->lo_offset = info->lo_offset;
1033 info64->lo_sizelimit = 0;
1034 info64->lo_encrypt_type = info->lo_encrypt_type;
1035 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1036 info64->lo_flags = info->lo_flags;
1037 info64->lo_init[0] = info->lo_init[0];
1038 info64->lo_init[1] = info->lo_init[1];
1039 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1040 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1041 else
1042 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1043 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1046 static int
1047 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1049 memset(info, 0, sizeof(*info));
1050 info->lo_number = info64->lo_number;
1051 info->lo_device = info64->lo_device;
1052 info->lo_inode = info64->lo_inode;
1053 info->lo_rdevice = info64->lo_rdevice;
1054 info->lo_offset = info64->lo_offset;
1055 info->lo_encrypt_type = info64->lo_encrypt_type;
1056 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1057 info->lo_flags = info64->lo_flags;
1058 info->lo_init[0] = info64->lo_init[0];
1059 info->lo_init[1] = info64->lo_init[1];
1060 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1061 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1062 else
1063 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1064 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1066 /* error in case values were truncated */
1067 if (info->lo_device != info64->lo_device ||
1068 info->lo_rdevice != info64->lo_rdevice ||
1069 info->lo_inode != info64->lo_inode ||
1070 info->lo_offset != info64->lo_offset)
1071 return -EOVERFLOW;
1073 return 0;
1076 static int
1077 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1079 struct loop_info info;
1080 struct loop_info64 info64;
1082 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1083 return -EFAULT;
1084 loop_info64_from_old(&info, &info64);
1085 return loop_set_status(lo, &info64);
1088 static int
1089 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1091 struct loop_info64 info64;
1093 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1094 return -EFAULT;
1095 return loop_set_status(lo, &info64);
1098 static int
1099 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1100 struct loop_info info;
1101 struct loop_info64 info64;
1102 int err = 0;
1104 if (!arg)
1105 err = -EINVAL;
1106 if (!err)
1107 err = loop_get_status(lo, &info64);
1108 if (!err)
1109 err = loop_info64_to_old(&info64, &info);
1110 if (!err && copy_to_user(arg, &info, sizeof(info)))
1111 err = -EFAULT;
1113 return err;
1116 static int
1117 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1118 struct loop_info64 info64;
1119 int err = 0;
1121 if (!arg)
1122 err = -EINVAL;
1123 if (!err)
1124 err = loop_get_status(lo, &info64);
1125 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1126 err = -EFAULT;
1128 return err;
1131 static int lo_ioctl(struct inode * inode, struct file * file,
1132 unsigned int cmd, unsigned long arg)
1134 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1135 int err;
1137 mutex_lock(&lo->lo_ctl_mutex);
1138 switch (cmd) {
1139 case LOOP_SET_FD:
1140 err = loop_set_fd(lo, file, inode->i_bdev, arg);
1141 break;
1142 case LOOP_CHANGE_FD:
1143 err = loop_change_fd(lo, file, inode->i_bdev, arg);
1144 break;
1145 case LOOP_CLR_FD:
1146 err = loop_clr_fd(lo, inode->i_bdev);
1147 break;
1148 case LOOP_SET_STATUS:
1149 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1150 break;
1151 case LOOP_GET_STATUS:
1152 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1153 break;
1154 case LOOP_SET_STATUS64:
1155 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1156 break;
1157 case LOOP_GET_STATUS64:
1158 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1159 break;
1160 default:
1161 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1163 mutex_unlock(&lo->lo_ctl_mutex);
1164 return err;
1167 #ifdef CONFIG_COMPAT
1168 struct compat_loop_info {
1169 compat_int_t lo_number; /* ioctl r/o */
1170 compat_dev_t lo_device; /* ioctl r/o */
1171 compat_ulong_t lo_inode; /* ioctl r/o */
1172 compat_dev_t lo_rdevice; /* ioctl r/o */
1173 compat_int_t lo_offset;
1174 compat_int_t lo_encrypt_type;
1175 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1176 compat_int_t lo_flags; /* ioctl r/o */
1177 char lo_name[LO_NAME_SIZE];
1178 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1179 compat_ulong_t lo_init[2];
1180 char reserved[4];
1184 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1185 * - noinlined to reduce stack space usage in main part of driver
1187 static noinline int
1188 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1189 struct loop_info64 *info64)
1191 struct compat_loop_info info;
1193 if (copy_from_user(&info, arg, sizeof(info)))
1194 return -EFAULT;
1196 memset(info64, 0, sizeof(*info64));
1197 info64->lo_number = info.lo_number;
1198 info64->lo_device = info.lo_device;
1199 info64->lo_inode = info.lo_inode;
1200 info64->lo_rdevice = info.lo_rdevice;
1201 info64->lo_offset = info.lo_offset;
1202 info64->lo_sizelimit = 0;
1203 info64->lo_encrypt_type = info.lo_encrypt_type;
1204 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1205 info64->lo_flags = info.lo_flags;
1206 info64->lo_init[0] = info.lo_init[0];
1207 info64->lo_init[1] = info.lo_init[1];
1208 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1209 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1210 else
1211 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1212 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1213 return 0;
1217 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1218 * - noinlined to reduce stack space usage in main part of driver
1220 static noinline int
1221 loop_info64_to_compat(const struct loop_info64 *info64,
1222 struct compat_loop_info __user *arg)
1224 struct compat_loop_info info;
1226 memset(&info, 0, sizeof(info));
1227 info.lo_number = info64->lo_number;
1228 info.lo_device = info64->lo_device;
1229 info.lo_inode = info64->lo_inode;
1230 info.lo_rdevice = info64->lo_rdevice;
1231 info.lo_offset = info64->lo_offset;
1232 info.lo_encrypt_type = info64->lo_encrypt_type;
1233 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1234 info.lo_flags = info64->lo_flags;
1235 info.lo_init[0] = info64->lo_init[0];
1236 info.lo_init[1] = info64->lo_init[1];
1237 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1238 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1239 else
1240 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1241 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1243 /* error in case values were truncated */
1244 if (info.lo_device != info64->lo_device ||
1245 info.lo_rdevice != info64->lo_rdevice ||
1246 info.lo_inode != info64->lo_inode ||
1247 info.lo_offset != info64->lo_offset ||
1248 info.lo_init[0] != info64->lo_init[0] ||
1249 info.lo_init[1] != info64->lo_init[1])
1250 return -EOVERFLOW;
1252 if (copy_to_user(arg, &info, sizeof(info)))
1253 return -EFAULT;
1254 return 0;
1257 static int
1258 loop_set_status_compat(struct loop_device *lo,
1259 const struct compat_loop_info __user *arg)
1261 struct loop_info64 info64;
1262 int ret;
1264 ret = loop_info64_from_compat(arg, &info64);
1265 if (ret < 0)
1266 return ret;
1267 return loop_set_status(lo, &info64);
1270 static int
1271 loop_get_status_compat(struct loop_device *lo,
1272 struct compat_loop_info __user *arg)
1274 struct loop_info64 info64;
1275 int err = 0;
1277 if (!arg)
1278 err = -EINVAL;
1279 if (!err)
1280 err = loop_get_status(lo, &info64);
1281 if (!err)
1282 err = loop_info64_to_compat(&info64, arg);
1283 return err;
1286 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1288 struct inode *inode = file->f_path.dentry->d_inode;
1289 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1290 int err;
1292 switch(cmd) {
1293 case LOOP_SET_STATUS:
1294 mutex_lock(&lo->lo_ctl_mutex);
1295 err = loop_set_status_compat(
1296 lo, (const struct compat_loop_info __user *) arg);
1297 mutex_unlock(&lo->lo_ctl_mutex);
1298 break;
1299 case LOOP_GET_STATUS:
1300 mutex_lock(&lo->lo_ctl_mutex);
1301 err = loop_get_status_compat(
1302 lo, (struct compat_loop_info __user *) arg);
1303 mutex_unlock(&lo->lo_ctl_mutex);
1304 break;
1305 case LOOP_CLR_FD:
1306 case LOOP_GET_STATUS64:
1307 case LOOP_SET_STATUS64:
1308 arg = (unsigned long) compat_ptr(arg);
1309 case LOOP_SET_FD:
1310 case LOOP_CHANGE_FD:
1311 err = lo_ioctl(inode, file, cmd, arg);
1312 break;
1313 default:
1314 err = -ENOIOCTLCMD;
1315 break;
1317 return err;
1319 #endif
1321 static int lo_open(struct inode *inode, struct file *file)
1323 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1325 mutex_lock(&lo->lo_ctl_mutex);
1326 lo->lo_refcnt++;
1327 mutex_unlock(&lo->lo_ctl_mutex);
1329 return 0;
1332 static int lo_release(struct inode *inode, struct file *file)
1334 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1336 mutex_lock(&lo->lo_ctl_mutex);
1337 --lo->lo_refcnt;
1339 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) && !lo->lo_refcnt)
1340 loop_clr_fd(lo, inode->i_bdev);
1342 mutex_unlock(&lo->lo_ctl_mutex);
1344 return 0;
1347 static struct block_device_operations lo_fops = {
1348 .owner = THIS_MODULE,
1349 .open = lo_open,
1350 .release = lo_release,
1351 .ioctl = lo_ioctl,
1352 #ifdef CONFIG_COMPAT
1353 .compat_ioctl = lo_compat_ioctl,
1354 #endif
1358 * And now the modules code and kernel interface.
1360 static int max_loop;
1361 module_param(max_loop, int, 0);
1362 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1363 MODULE_LICENSE("GPL");
1364 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1366 int loop_register_transfer(struct loop_func_table *funcs)
1368 unsigned int n = funcs->number;
1370 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1371 return -EINVAL;
1372 xfer_funcs[n] = funcs;
1373 return 0;
1376 int loop_unregister_transfer(int number)
1378 unsigned int n = number;
1379 struct loop_device *lo;
1380 struct loop_func_table *xfer;
1382 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1383 return -EINVAL;
1385 xfer_funcs[n] = NULL;
1387 list_for_each_entry(lo, &loop_devices, lo_list) {
1388 mutex_lock(&lo->lo_ctl_mutex);
1390 if (lo->lo_encryption == xfer)
1391 loop_release_xfer(lo);
1393 mutex_unlock(&lo->lo_ctl_mutex);
1396 return 0;
1399 EXPORT_SYMBOL(loop_register_transfer);
1400 EXPORT_SYMBOL(loop_unregister_transfer);
1402 static struct loop_device *loop_alloc(int i)
1404 struct loop_device *lo;
1405 struct gendisk *disk;
1407 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1408 if (!lo)
1409 goto out;
1411 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1412 if (!lo->lo_queue)
1413 goto out_free_dev;
1415 disk = lo->lo_disk = alloc_disk(1);
1416 if (!disk)
1417 goto out_free_queue;
1419 mutex_init(&lo->lo_ctl_mutex);
1420 lo->lo_number = i;
1421 lo->lo_thread = NULL;
1422 init_waitqueue_head(&lo->lo_event);
1423 spin_lock_init(&lo->lo_lock);
1424 disk->major = LOOP_MAJOR;
1425 disk->first_minor = i;
1426 disk->fops = &lo_fops;
1427 disk->private_data = lo;
1428 disk->queue = lo->lo_queue;
1429 sprintf(disk->disk_name, "loop%d", i);
1430 return lo;
1432 out_free_queue:
1433 blk_cleanup_queue(lo->lo_queue);
1434 out_free_dev:
1435 kfree(lo);
1436 out:
1437 return NULL;
1440 static void loop_free(struct loop_device *lo)
1442 blk_cleanup_queue(lo->lo_queue);
1443 put_disk(lo->lo_disk);
1444 list_del(&lo->lo_list);
1445 kfree(lo);
1448 static struct loop_device *loop_init_one(int i)
1450 struct loop_device *lo;
1452 list_for_each_entry(lo, &loop_devices, lo_list) {
1453 if (lo->lo_number == i)
1454 return lo;
1457 lo = loop_alloc(i);
1458 if (lo) {
1459 add_disk(lo->lo_disk);
1460 list_add_tail(&lo->lo_list, &loop_devices);
1462 return lo;
1465 static void loop_del_one(struct loop_device *lo)
1467 del_gendisk(lo->lo_disk);
1468 loop_free(lo);
1471 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1473 struct loop_device *lo;
1474 struct kobject *kobj;
1476 mutex_lock(&loop_devices_mutex);
1477 lo = loop_init_one(dev & MINORMASK);
1478 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1479 mutex_unlock(&loop_devices_mutex);
1481 *part = 0;
1482 return kobj;
1485 static int __init loop_init(void)
1487 int i, nr;
1488 unsigned long range;
1489 struct loop_device *lo, *next;
1492 * loop module now has a feature to instantiate underlying device
1493 * structure on-demand, provided that there is an access dev node.
1494 * However, this will not work well with user space tool that doesn't
1495 * know about such "feature". In order to not break any existing
1496 * tool, we do the following:
1498 * (1) if max_loop is specified, create that many upfront, and this
1499 * also becomes a hard limit.
1500 * (2) if max_loop is not specified, create 8 loop device on module
1501 * load, user can further extend loop device by create dev node
1502 * themselves and have kernel automatically instantiate actual
1503 * device on-demand.
1505 if (max_loop > 1UL << MINORBITS)
1506 return -EINVAL;
1508 if (max_loop) {
1509 nr = max_loop;
1510 range = max_loop;
1511 } else {
1512 nr = 8;
1513 range = 1UL << MINORBITS;
1516 if (register_blkdev(LOOP_MAJOR, "loop"))
1517 return -EIO;
1519 for (i = 0; i < nr; i++) {
1520 lo = loop_alloc(i);
1521 if (!lo)
1522 goto Enomem;
1523 list_add_tail(&lo->lo_list, &loop_devices);
1526 /* point of no return */
1528 list_for_each_entry(lo, &loop_devices, lo_list)
1529 add_disk(lo->lo_disk);
1531 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1532 THIS_MODULE, loop_probe, NULL, NULL);
1534 printk(KERN_INFO "loop: module loaded\n");
1535 return 0;
1537 Enomem:
1538 printk(KERN_INFO "loop: out of memory\n");
1540 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1541 loop_free(lo);
1543 unregister_blkdev(LOOP_MAJOR, "loop");
1544 return -ENOMEM;
1547 static void __exit loop_exit(void)
1549 unsigned long range;
1550 struct loop_device *lo, *next;
1552 range = max_loop ? max_loop : 1UL << MINORBITS;
1554 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1555 loop_del_one(lo);
1557 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1558 unregister_blkdev(LOOP_MAJOR, "loop");
1561 module_init(loop_init);
1562 module_exit(loop_exit);
1564 #ifndef MODULE
1565 static int __init max_loop_setup(char *str)
1567 max_loop = simple_strtol(str, NULL, 0);
1568 return 1;
1571 __setup("max_loop=", max_loop_setup);
1572 #endif