Add new string functions strict_strto* and convert kernel params to use them
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / cciss.c
blob9715be3f2487c161493f231ee2ef739806cdddc4
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/init.h>
37 #include <linux/hdreg.h>
38 #include <linux/spinlock.h>
39 #include <linux/compat.h>
40 #include <linux/blktrace_api.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/blkdev.h>
46 #include <linux/genhd.h>
47 #include <linux/completion.h>
48 #include <scsi/scsi.h>
49 #include <scsi/sg.h>
50 #include <scsi/scsi_ioctl.h>
51 #include <linux/cdrom.h>
53 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
54 #define DRIVER_NAME "HP CISS Driver (v 3.6.14)"
55 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3,6,14)
57 /* Embedded module documentation macros - see modules.h */
58 MODULE_AUTHOR("Hewlett-Packard Company");
59 MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 3.6.14");
60 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
61 " SA6i P600 P800 P400 P400i E200 E200i E500");
62 MODULE_VERSION("3.6.14");
63 MODULE_LICENSE("GPL");
65 #include "cciss_cmd.h"
66 #include "cciss.h"
67 #include <linux/cciss_ioctl.h>
69 /* define the PCI info for the cards we can control */
70 static const struct pci_device_id cciss_pci_device_id[] = {
71 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
72 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
73 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
91 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
92 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
93 {0,}
96 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
98 /* board_id = Subsystem Device ID & Vendor ID
99 * product = Marketing Name for the board
100 * access = Address of the struct of function pointers
101 * nr_cmds = Number of commands supported by controller
103 static struct board_type products[] = {
104 {0x40700E11, "Smart Array 5300", &SA5_access, 512},
105 {0x40800E11, "Smart Array 5i", &SA5B_access, 512},
106 {0x40820E11, "Smart Array 532", &SA5B_access, 512},
107 {0x40830E11, "Smart Array 5312", &SA5B_access, 512},
108 {0x409A0E11, "Smart Array 641", &SA5_access, 512},
109 {0x409B0E11, "Smart Array 642", &SA5_access, 512},
110 {0x409C0E11, "Smart Array 6400", &SA5_access, 512},
111 {0x409D0E11, "Smart Array 6400 EM", &SA5_access, 512},
112 {0x40910E11, "Smart Array 6i", &SA5_access, 512},
113 {0x3225103C, "Smart Array P600", &SA5_access, 512},
114 {0x3223103C, "Smart Array P800", &SA5_access, 512},
115 {0x3234103C, "Smart Array P400", &SA5_access, 512},
116 {0x3235103C, "Smart Array P400i", &SA5_access, 512},
117 {0x3211103C, "Smart Array E200i", &SA5_access, 120},
118 {0x3212103C, "Smart Array E200", &SA5_access, 120},
119 {0x3213103C, "Smart Array E200i", &SA5_access, 120},
120 {0x3214103C, "Smart Array E200i", &SA5_access, 120},
121 {0x3215103C, "Smart Array E200i", &SA5_access, 120},
122 {0x3237103C, "Smart Array E500", &SA5_access, 512},
123 {0x323D103C, "Smart Array P700m", &SA5_access, 512},
124 {0xFFFF103C, "Unknown Smart Array", &SA5_access, 120},
127 /* How long to wait (in milliseconds) for board to go into simple mode */
128 #define MAX_CONFIG_WAIT 30000
129 #define MAX_IOCTL_CONFIG_WAIT 1000
131 /*define how many times we will try a command because of bus resets */
132 #define MAX_CMD_RETRIES 3
134 #define READ_AHEAD 1024
135 #define MAX_CTLR 32
137 /* Originally cciss driver only supports 8 major numbers */
138 #define MAX_CTLR_ORIG 8
140 static ctlr_info_t *hba[MAX_CTLR];
142 static void do_cciss_request(struct request_queue *q);
143 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
144 static int cciss_open(struct inode *inode, struct file *filep);
145 static int cciss_release(struct inode *inode, struct file *filep);
146 static int cciss_ioctl(struct inode *inode, struct file *filep,
147 unsigned int cmd, unsigned long arg);
148 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
150 static int cciss_revalidate(struct gendisk *disk);
151 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
152 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
153 int clear_all);
155 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
156 sector_t *total_size, unsigned int *block_size);
157 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
158 sector_t *total_size, unsigned int *block_size);
159 static void cciss_geometry_inquiry(int ctlr, int logvol,
160 int withirq, sector_t total_size,
161 unsigned int block_size, InquiryData_struct *inq_buff,
162 drive_info_struct *drv);
163 static void cciss_getgeometry(int cntl_num);
164 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
165 __u32);
166 static void start_io(ctlr_info_t *h);
167 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
168 unsigned int use_unit_num, unsigned int log_unit,
169 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
170 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
171 unsigned int use_unit_num, unsigned int log_unit,
172 __u8 page_code, int cmd_type);
174 static void fail_all_cmds(unsigned long ctlr);
176 #ifdef CONFIG_PROC_FS
177 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
178 int length, int *eof, void *data);
179 static void cciss_procinit(int i);
180 #else
181 static void cciss_procinit(int i)
184 #endif /* CONFIG_PROC_FS */
186 #ifdef CONFIG_COMPAT
187 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
188 #endif
190 static struct block_device_operations cciss_fops = {
191 .owner = THIS_MODULE,
192 .open = cciss_open,
193 .release = cciss_release,
194 .ioctl = cciss_ioctl,
195 .getgeo = cciss_getgeo,
196 #ifdef CONFIG_COMPAT
197 .compat_ioctl = cciss_compat_ioctl,
198 #endif
199 .revalidate_disk = cciss_revalidate,
203 * Enqueuing and dequeuing functions for cmdlists.
205 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
207 if (*Qptr == NULL) {
208 *Qptr = c;
209 c->next = c->prev = c;
210 } else {
211 c->prev = (*Qptr)->prev;
212 c->next = (*Qptr);
213 (*Qptr)->prev->next = c;
214 (*Qptr)->prev = c;
218 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
219 CommandList_struct *c)
221 if (c && c->next != c) {
222 if (*Qptr == c)
223 *Qptr = c->next;
224 c->prev->next = c->next;
225 c->next->prev = c->prev;
226 } else {
227 *Qptr = NULL;
229 return c;
232 #include "cciss_scsi.c" /* For SCSI tape support */
234 #define RAID_UNKNOWN 6
236 #ifdef CONFIG_PROC_FS
239 * Report information about this controller.
241 #define ENG_GIG 1000000000
242 #define ENG_GIG_FACTOR (ENG_GIG/512)
243 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
244 "UNKNOWN"
247 static struct proc_dir_entry *proc_cciss;
249 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
250 int length, int *eof, void *data)
252 off_t pos = 0;
253 off_t len = 0;
254 int size, i, ctlr;
255 ctlr_info_t *h = (ctlr_info_t *) data;
256 drive_info_struct *drv;
257 unsigned long flags;
258 sector_t vol_sz, vol_sz_frac;
260 ctlr = h->ctlr;
262 /* prevent displaying bogus info during configuration
263 * or deconfiguration of a logical volume
265 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
266 if (h->busy_configuring) {
267 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
268 return -EBUSY;
270 h->busy_configuring = 1;
271 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
273 size = sprintf(buffer, "%s: HP %s Controller\n"
274 "Board ID: 0x%08lx\n"
275 "Firmware Version: %c%c%c%c\n"
276 "IRQ: %d\n"
277 "Logical drives: %d\n"
278 "Max sectors: %d\n"
279 "Current Q depth: %d\n"
280 "Current # commands on controller: %d\n"
281 "Max Q depth since init: %d\n"
282 "Max # commands on controller since init: %d\n"
283 "Max SG entries since init: %d\n\n",
284 h->devname,
285 h->product_name,
286 (unsigned long)h->board_id,
287 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
288 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
289 h->num_luns,
290 h->cciss_max_sectors,
291 h->Qdepth, h->commands_outstanding,
292 h->maxQsinceinit, h->max_outstanding, h->maxSG);
294 pos += size;
295 len += size;
296 cciss_proc_tape_report(ctlr, buffer, &pos, &len);
297 for (i = 0; i <= h->highest_lun; i++) {
299 drv = &h->drv[i];
300 if (drv->heads == 0)
301 continue;
303 vol_sz = drv->nr_blocks;
304 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
305 vol_sz_frac *= 100;
306 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
308 if (drv->raid_level > 5)
309 drv->raid_level = RAID_UNKNOWN;
310 size = sprintf(buffer + len, "cciss/c%dd%d:"
311 "\t%4u.%02uGB\tRAID %s\n",
312 ctlr, i, (int)vol_sz, (int)vol_sz_frac,
313 raid_label[drv->raid_level]);
314 pos += size;
315 len += size;
318 *eof = 1;
319 *start = buffer + offset;
320 len -= offset;
321 if (len > length)
322 len = length;
323 h->busy_configuring = 0;
324 return len;
327 static int
328 cciss_proc_write(struct file *file, const char __user *buffer,
329 unsigned long count, void *data)
331 unsigned char cmd[80];
332 int len;
333 #ifdef CONFIG_CISS_SCSI_TAPE
334 ctlr_info_t *h = (ctlr_info_t *) data;
335 int rc;
336 #endif
338 if (count > sizeof(cmd) - 1)
339 return -EINVAL;
340 if (copy_from_user(cmd, buffer, count))
341 return -EFAULT;
342 cmd[count] = '\0';
343 len = strlen(cmd); // above 3 lines ensure safety
344 if (len && cmd[len - 1] == '\n')
345 cmd[--len] = '\0';
346 # ifdef CONFIG_CISS_SCSI_TAPE
347 if (strcmp("engage scsi", cmd) == 0) {
348 rc = cciss_engage_scsi(h->ctlr);
349 if (rc != 0)
350 return -rc;
351 return count;
353 /* might be nice to have "disengage" too, but it's not
354 safely possible. (only 1 module use count, lock issues.) */
355 # endif
356 return -EINVAL;
360 * Get us a file in /proc/cciss that says something about each controller.
361 * Create /proc/cciss if it doesn't exist yet.
363 static void __devinit cciss_procinit(int i)
365 struct proc_dir_entry *pde;
367 if (proc_cciss == NULL) {
368 proc_cciss = proc_mkdir("cciss", proc_root_driver);
369 if (!proc_cciss)
370 return;
373 pde = create_proc_read_entry(hba[i]->devname,
374 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
375 proc_cciss, cciss_proc_get_info, hba[i]);
376 pde->write_proc = cciss_proc_write;
378 #endif /* CONFIG_PROC_FS */
381 * For operations that cannot sleep, a command block is allocated at init,
382 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
383 * which ones are free or in use. For operations that can wait for kmalloc
384 * to possible sleep, this routine can be called with get_from_pool set to 0.
385 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
387 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
389 CommandList_struct *c;
390 int i;
391 u64bit temp64;
392 dma_addr_t cmd_dma_handle, err_dma_handle;
394 if (!get_from_pool) {
395 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
396 sizeof(CommandList_struct), &cmd_dma_handle);
397 if (c == NULL)
398 return NULL;
399 memset(c, 0, sizeof(CommandList_struct));
401 c->cmdindex = -1;
403 c->err_info = (ErrorInfo_struct *)
404 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
405 &err_dma_handle);
407 if (c->err_info == NULL) {
408 pci_free_consistent(h->pdev,
409 sizeof(CommandList_struct), c, cmd_dma_handle);
410 return NULL;
412 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
413 } else { /* get it out of the controllers pool */
415 do {
416 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
417 if (i == h->nr_cmds)
418 return NULL;
419 } while (test_and_set_bit
420 (i & (BITS_PER_LONG - 1),
421 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
422 #ifdef CCISS_DEBUG
423 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
424 #endif
425 c = h->cmd_pool + i;
426 memset(c, 0, sizeof(CommandList_struct));
427 cmd_dma_handle = h->cmd_pool_dhandle
428 + i * sizeof(CommandList_struct);
429 c->err_info = h->errinfo_pool + i;
430 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
431 err_dma_handle = h->errinfo_pool_dhandle
432 + i * sizeof(ErrorInfo_struct);
433 h->nr_allocs++;
435 c->cmdindex = i;
438 c->busaddr = (__u32) cmd_dma_handle;
439 temp64.val = (__u64) err_dma_handle;
440 c->ErrDesc.Addr.lower = temp64.val32.lower;
441 c->ErrDesc.Addr.upper = temp64.val32.upper;
442 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
444 c->ctlr = h->ctlr;
445 return c;
449 * Frees a command block that was previously allocated with cmd_alloc().
451 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
453 int i;
454 u64bit temp64;
456 if (!got_from_pool) {
457 temp64.val32.lower = c->ErrDesc.Addr.lower;
458 temp64.val32.upper = c->ErrDesc.Addr.upper;
459 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
460 c->err_info, (dma_addr_t) temp64.val);
461 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
462 c, (dma_addr_t) c->busaddr);
463 } else {
464 i = c - h->cmd_pool;
465 clear_bit(i & (BITS_PER_LONG - 1),
466 h->cmd_pool_bits + (i / BITS_PER_LONG));
467 h->nr_frees++;
471 static inline ctlr_info_t *get_host(struct gendisk *disk)
473 return disk->queue->queuedata;
476 static inline drive_info_struct *get_drv(struct gendisk *disk)
478 return disk->private_data;
482 * Open. Make sure the device is really there.
484 static int cciss_open(struct inode *inode, struct file *filep)
486 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
487 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
489 #ifdef CCISS_DEBUG
490 printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
491 #endif /* CCISS_DEBUG */
493 if (host->busy_initializing || drv->busy_configuring)
494 return -EBUSY;
496 * Root is allowed to open raw volume zero even if it's not configured
497 * so array config can still work. Root is also allowed to open any
498 * volume that has a LUN ID, so it can issue IOCTL to reread the
499 * disk information. I don't think I really like this
500 * but I'm already using way to many device nodes to claim another one
501 * for "raw controller".
503 if (drv->heads == 0) {
504 if (iminor(inode) != 0) { /* not node 0? */
505 /* if not node 0 make sure it is a partition = 0 */
506 if (iminor(inode) & 0x0f) {
507 return -ENXIO;
508 /* if it is, make sure we have a LUN ID */
509 } else if (drv->LunID == 0) {
510 return -ENXIO;
513 if (!capable(CAP_SYS_ADMIN))
514 return -EPERM;
516 drv->usage_count++;
517 host->usage_count++;
518 return 0;
522 * Close. Sync first.
524 static int cciss_release(struct inode *inode, struct file *filep)
526 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
527 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
529 #ifdef CCISS_DEBUG
530 printk(KERN_DEBUG "cciss_release %s\n",
531 inode->i_bdev->bd_disk->disk_name);
532 #endif /* CCISS_DEBUG */
534 drv->usage_count--;
535 host->usage_count--;
536 return 0;
539 #ifdef CONFIG_COMPAT
541 static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
543 int ret;
544 lock_kernel();
545 ret = cciss_ioctl(f->f_path.dentry->d_inode, f, cmd, arg);
546 unlock_kernel();
547 return ret;
550 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
551 unsigned long arg);
552 static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd,
553 unsigned long arg);
555 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
557 switch (cmd) {
558 case CCISS_GETPCIINFO:
559 case CCISS_GETINTINFO:
560 case CCISS_SETINTINFO:
561 case CCISS_GETNODENAME:
562 case CCISS_SETNODENAME:
563 case CCISS_GETHEARTBEAT:
564 case CCISS_GETBUSTYPES:
565 case CCISS_GETFIRMVER:
566 case CCISS_GETDRIVVER:
567 case CCISS_REVALIDVOLS:
568 case CCISS_DEREGDISK:
569 case CCISS_REGNEWDISK:
570 case CCISS_REGNEWD:
571 case CCISS_RESCANDISK:
572 case CCISS_GETLUNINFO:
573 return do_ioctl(f, cmd, arg);
575 case CCISS_PASSTHRU32:
576 return cciss_ioctl32_passthru(f, cmd, arg);
577 case CCISS_BIG_PASSTHRU32:
578 return cciss_ioctl32_big_passthru(f, cmd, arg);
580 default:
581 return -ENOIOCTLCMD;
585 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
586 unsigned long arg)
588 IOCTL32_Command_struct __user *arg32 =
589 (IOCTL32_Command_struct __user *) arg;
590 IOCTL_Command_struct arg64;
591 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
592 int err;
593 u32 cp;
595 err = 0;
596 err |=
597 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
598 sizeof(arg64.LUN_info));
599 err |=
600 copy_from_user(&arg64.Request, &arg32->Request,
601 sizeof(arg64.Request));
602 err |=
603 copy_from_user(&arg64.error_info, &arg32->error_info,
604 sizeof(arg64.error_info));
605 err |= get_user(arg64.buf_size, &arg32->buf_size);
606 err |= get_user(cp, &arg32->buf);
607 arg64.buf = compat_ptr(cp);
608 err |= copy_to_user(p, &arg64, sizeof(arg64));
610 if (err)
611 return -EFAULT;
613 err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long)p);
614 if (err)
615 return err;
616 err |=
617 copy_in_user(&arg32->error_info, &p->error_info,
618 sizeof(arg32->error_info));
619 if (err)
620 return -EFAULT;
621 return err;
624 static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd,
625 unsigned long arg)
627 BIG_IOCTL32_Command_struct __user *arg32 =
628 (BIG_IOCTL32_Command_struct __user *) arg;
629 BIG_IOCTL_Command_struct arg64;
630 BIG_IOCTL_Command_struct __user *p =
631 compat_alloc_user_space(sizeof(arg64));
632 int err;
633 u32 cp;
635 err = 0;
636 err |=
637 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
638 sizeof(arg64.LUN_info));
639 err |=
640 copy_from_user(&arg64.Request, &arg32->Request,
641 sizeof(arg64.Request));
642 err |=
643 copy_from_user(&arg64.error_info, &arg32->error_info,
644 sizeof(arg64.error_info));
645 err |= get_user(arg64.buf_size, &arg32->buf_size);
646 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
647 err |= get_user(cp, &arg32->buf);
648 arg64.buf = compat_ptr(cp);
649 err |= copy_to_user(p, &arg64, sizeof(arg64));
651 if (err)
652 return -EFAULT;
654 err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long)p);
655 if (err)
656 return err;
657 err |=
658 copy_in_user(&arg32->error_info, &p->error_info,
659 sizeof(arg32->error_info));
660 if (err)
661 return -EFAULT;
662 return err;
664 #endif
666 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
668 drive_info_struct *drv = get_drv(bdev->bd_disk);
670 if (!drv->cylinders)
671 return -ENXIO;
673 geo->heads = drv->heads;
674 geo->sectors = drv->sectors;
675 geo->cylinders = drv->cylinders;
676 return 0;
680 * ioctl
682 static int cciss_ioctl(struct inode *inode, struct file *filep,
683 unsigned int cmd, unsigned long arg)
685 struct block_device *bdev = inode->i_bdev;
686 struct gendisk *disk = bdev->bd_disk;
687 ctlr_info_t *host = get_host(disk);
688 drive_info_struct *drv = get_drv(disk);
689 int ctlr = host->ctlr;
690 void __user *argp = (void __user *)arg;
692 #ifdef CCISS_DEBUG
693 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
694 #endif /* CCISS_DEBUG */
696 switch (cmd) {
697 case CCISS_GETPCIINFO:
699 cciss_pci_info_struct pciinfo;
701 if (!arg)
702 return -EINVAL;
703 pciinfo.domain = pci_domain_nr(host->pdev->bus);
704 pciinfo.bus = host->pdev->bus->number;
705 pciinfo.dev_fn = host->pdev->devfn;
706 pciinfo.board_id = host->board_id;
707 if (copy_to_user
708 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
709 return -EFAULT;
710 return 0;
712 case CCISS_GETINTINFO:
714 cciss_coalint_struct intinfo;
715 if (!arg)
716 return -EINVAL;
717 intinfo.delay =
718 readl(&host->cfgtable->HostWrite.CoalIntDelay);
719 intinfo.count =
720 readl(&host->cfgtable->HostWrite.CoalIntCount);
721 if (copy_to_user
722 (argp, &intinfo, sizeof(cciss_coalint_struct)))
723 return -EFAULT;
724 return 0;
726 case CCISS_SETINTINFO:
728 cciss_coalint_struct intinfo;
729 unsigned long flags;
730 int i;
732 if (!arg)
733 return -EINVAL;
734 if (!capable(CAP_SYS_ADMIN))
735 return -EPERM;
736 if (copy_from_user
737 (&intinfo, argp, sizeof(cciss_coalint_struct)))
738 return -EFAULT;
739 if ((intinfo.delay == 0) && (intinfo.count == 0))
741 // printk("cciss_ioctl: delay and count cannot be 0\n");
742 return -EINVAL;
744 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
745 /* Update the field, and then ring the doorbell */
746 writel(intinfo.delay,
747 &(host->cfgtable->HostWrite.CoalIntDelay));
748 writel(intinfo.count,
749 &(host->cfgtable->HostWrite.CoalIntCount));
750 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
752 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
753 if (!(readl(host->vaddr + SA5_DOORBELL)
754 & CFGTBL_ChangeReq))
755 break;
756 /* delay and try again */
757 udelay(1000);
759 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
760 if (i >= MAX_IOCTL_CONFIG_WAIT)
761 return -EAGAIN;
762 return 0;
764 case CCISS_GETNODENAME:
766 NodeName_type NodeName;
767 int i;
769 if (!arg)
770 return -EINVAL;
771 for (i = 0; i < 16; i++)
772 NodeName[i] =
773 readb(&host->cfgtable->ServerName[i]);
774 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
775 return -EFAULT;
776 return 0;
778 case CCISS_SETNODENAME:
780 NodeName_type NodeName;
781 unsigned long flags;
782 int i;
784 if (!arg)
785 return -EINVAL;
786 if (!capable(CAP_SYS_ADMIN))
787 return -EPERM;
789 if (copy_from_user
790 (NodeName, argp, sizeof(NodeName_type)))
791 return -EFAULT;
793 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
795 /* Update the field, and then ring the doorbell */
796 for (i = 0; i < 16; i++)
797 writeb(NodeName[i],
798 &host->cfgtable->ServerName[i]);
800 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
802 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
803 if (!(readl(host->vaddr + SA5_DOORBELL)
804 & CFGTBL_ChangeReq))
805 break;
806 /* delay and try again */
807 udelay(1000);
809 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
810 if (i >= MAX_IOCTL_CONFIG_WAIT)
811 return -EAGAIN;
812 return 0;
815 case CCISS_GETHEARTBEAT:
817 Heartbeat_type heartbeat;
819 if (!arg)
820 return -EINVAL;
821 heartbeat = readl(&host->cfgtable->HeartBeat);
822 if (copy_to_user
823 (argp, &heartbeat, sizeof(Heartbeat_type)))
824 return -EFAULT;
825 return 0;
827 case CCISS_GETBUSTYPES:
829 BusTypes_type BusTypes;
831 if (!arg)
832 return -EINVAL;
833 BusTypes = readl(&host->cfgtable->BusTypes);
834 if (copy_to_user
835 (argp, &BusTypes, sizeof(BusTypes_type)))
836 return -EFAULT;
837 return 0;
839 case CCISS_GETFIRMVER:
841 FirmwareVer_type firmware;
843 if (!arg)
844 return -EINVAL;
845 memcpy(firmware, host->firm_ver, 4);
847 if (copy_to_user
848 (argp, firmware, sizeof(FirmwareVer_type)))
849 return -EFAULT;
850 return 0;
852 case CCISS_GETDRIVVER:
854 DriverVer_type DriverVer = DRIVER_VERSION;
856 if (!arg)
857 return -EINVAL;
859 if (copy_to_user
860 (argp, &DriverVer, sizeof(DriverVer_type)))
861 return -EFAULT;
862 return 0;
865 case CCISS_REVALIDVOLS:
866 return rebuild_lun_table(host, NULL);
868 case CCISS_GETLUNINFO:{
869 LogvolInfo_struct luninfo;
871 luninfo.LunID = drv->LunID;
872 luninfo.num_opens = drv->usage_count;
873 luninfo.num_parts = 0;
874 if (copy_to_user(argp, &luninfo,
875 sizeof(LogvolInfo_struct)))
876 return -EFAULT;
877 return 0;
879 case CCISS_DEREGDISK:
880 return rebuild_lun_table(host, disk);
882 case CCISS_REGNEWD:
883 return rebuild_lun_table(host, NULL);
885 case CCISS_PASSTHRU:
887 IOCTL_Command_struct iocommand;
888 CommandList_struct *c;
889 char *buff = NULL;
890 u64bit temp64;
891 unsigned long flags;
892 DECLARE_COMPLETION_ONSTACK(wait);
894 if (!arg)
895 return -EINVAL;
897 if (!capable(CAP_SYS_RAWIO))
898 return -EPERM;
900 if (copy_from_user
901 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
902 return -EFAULT;
903 if ((iocommand.buf_size < 1) &&
904 (iocommand.Request.Type.Direction != XFER_NONE)) {
905 return -EINVAL;
907 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
908 /* Check kmalloc limits */
909 if (iocommand.buf_size > 128000)
910 return -EINVAL;
911 #endif
912 if (iocommand.buf_size > 0) {
913 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
914 if (buff == NULL)
915 return -EFAULT;
917 if (iocommand.Request.Type.Direction == XFER_WRITE) {
918 /* Copy the data into the buffer we created */
919 if (copy_from_user
920 (buff, iocommand.buf, iocommand.buf_size)) {
921 kfree(buff);
922 return -EFAULT;
924 } else {
925 memset(buff, 0, iocommand.buf_size);
927 if ((c = cmd_alloc(host, 0)) == NULL) {
928 kfree(buff);
929 return -ENOMEM;
931 // Fill in the command type
932 c->cmd_type = CMD_IOCTL_PEND;
933 // Fill in Command Header
934 c->Header.ReplyQueue = 0; // unused in simple mode
935 if (iocommand.buf_size > 0) // buffer to fill
937 c->Header.SGList = 1;
938 c->Header.SGTotal = 1;
939 } else // no buffers to fill
941 c->Header.SGList = 0;
942 c->Header.SGTotal = 0;
944 c->Header.LUN = iocommand.LUN_info;
945 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
947 // Fill in Request block
948 c->Request = iocommand.Request;
950 // Fill in the scatter gather information
951 if (iocommand.buf_size > 0) {
952 temp64.val = pci_map_single(host->pdev, buff,
953 iocommand.buf_size,
954 PCI_DMA_BIDIRECTIONAL);
955 c->SG[0].Addr.lower = temp64.val32.lower;
956 c->SG[0].Addr.upper = temp64.val32.upper;
957 c->SG[0].Len = iocommand.buf_size;
958 c->SG[0].Ext = 0; // we are not chaining
960 c->waiting = &wait;
962 /* Put the request on the tail of the request queue */
963 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
964 addQ(&host->reqQ, c);
965 host->Qdepth++;
966 start_io(host);
967 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
969 wait_for_completion(&wait);
971 /* unlock the buffers from DMA */
972 temp64.val32.lower = c->SG[0].Addr.lower;
973 temp64.val32.upper = c->SG[0].Addr.upper;
974 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
975 iocommand.buf_size,
976 PCI_DMA_BIDIRECTIONAL);
978 /* Copy the error information out */
979 iocommand.error_info = *(c->err_info);
980 if (copy_to_user
981 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
982 kfree(buff);
983 cmd_free(host, c, 0);
984 return -EFAULT;
987 if (iocommand.Request.Type.Direction == XFER_READ) {
988 /* Copy the data out of the buffer we created */
989 if (copy_to_user
990 (iocommand.buf, buff, iocommand.buf_size)) {
991 kfree(buff);
992 cmd_free(host, c, 0);
993 return -EFAULT;
996 kfree(buff);
997 cmd_free(host, c, 0);
998 return 0;
1000 case CCISS_BIG_PASSTHRU:{
1001 BIG_IOCTL_Command_struct *ioc;
1002 CommandList_struct *c;
1003 unsigned char **buff = NULL;
1004 int *buff_size = NULL;
1005 u64bit temp64;
1006 unsigned long flags;
1007 BYTE sg_used = 0;
1008 int status = 0;
1009 int i;
1010 DECLARE_COMPLETION_ONSTACK(wait);
1011 __u32 left;
1012 __u32 sz;
1013 BYTE __user *data_ptr;
1015 if (!arg)
1016 return -EINVAL;
1017 if (!capable(CAP_SYS_RAWIO))
1018 return -EPERM;
1019 ioc = (BIG_IOCTL_Command_struct *)
1020 kmalloc(sizeof(*ioc), GFP_KERNEL);
1021 if (!ioc) {
1022 status = -ENOMEM;
1023 goto cleanup1;
1025 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1026 status = -EFAULT;
1027 goto cleanup1;
1029 if ((ioc->buf_size < 1) &&
1030 (ioc->Request.Type.Direction != XFER_NONE)) {
1031 status = -EINVAL;
1032 goto cleanup1;
1034 /* Check kmalloc limits using all SGs */
1035 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1036 status = -EINVAL;
1037 goto cleanup1;
1039 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1040 status = -EINVAL;
1041 goto cleanup1;
1043 buff =
1044 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1045 if (!buff) {
1046 status = -ENOMEM;
1047 goto cleanup1;
1049 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1050 GFP_KERNEL);
1051 if (!buff_size) {
1052 status = -ENOMEM;
1053 goto cleanup1;
1055 left = ioc->buf_size;
1056 data_ptr = ioc->buf;
1057 while (left) {
1058 sz = (left >
1059 ioc->malloc_size) ? ioc->
1060 malloc_size : left;
1061 buff_size[sg_used] = sz;
1062 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1063 if (buff[sg_used] == NULL) {
1064 status = -ENOMEM;
1065 goto cleanup1;
1067 if (ioc->Request.Type.Direction == XFER_WRITE) {
1068 if (copy_from_user
1069 (buff[sg_used], data_ptr, sz)) {
1070 status = -ENOMEM;
1071 goto cleanup1;
1073 } else {
1074 memset(buff[sg_used], 0, sz);
1076 left -= sz;
1077 data_ptr += sz;
1078 sg_used++;
1080 if ((c = cmd_alloc(host, 0)) == NULL) {
1081 status = -ENOMEM;
1082 goto cleanup1;
1084 c->cmd_type = CMD_IOCTL_PEND;
1085 c->Header.ReplyQueue = 0;
1087 if (ioc->buf_size > 0) {
1088 c->Header.SGList = sg_used;
1089 c->Header.SGTotal = sg_used;
1090 } else {
1091 c->Header.SGList = 0;
1092 c->Header.SGTotal = 0;
1094 c->Header.LUN = ioc->LUN_info;
1095 c->Header.Tag.lower = c->busaddr;
1097 c->Request = ioc->Request;
1098 if (ioc->buf_size > 0) {
1099 int i;
1100 for (i = 0; i < sg_used; i++) {
1101 temp64.val =
1102 pci_map_single(host->pdev, buff[i],
1103 buff_size[i],
1104 PCI_DMA_BIDIRECTIONAL);
1105 c->SG[i].Addr.lower =
1106 temp64.val32.lower;
1107 c->SG[i].Addr.upper =
1108 temp64.val32.upper;
1109 c->SG[i].Len = buff_size[i];
1110 c->SG[i].Ext = 0; /* we are not chaining */
1113 c->waiting = &wait;
1114 /* Put the request on the tail of the request queue */
1115 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1116 addQ(&host->reqQ, c);
1117 host->Qdepth++;
1118 start_io(host);
1119 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1120 wait_for_completion(&wait);
1121 /* unlock the buffers from DMA */
1122 for (i = 0; i < sg_used; i++) {
1123 temp64.val32.lower = c->SG[i].Addr.lower;
1124 temp64.val32.upper = c->SG[i].Addr.upper;
1125 pci_unmap_single(host->pdev,
1126 (dma_addr_t) temp64.val, buff_size[i],
1127 PCI_DMA_BIDIRECTIONAL);
1129 /* Copy the error information out */
1130 ioc->error_info = *(c->err_info);
1131 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1132 cmd_free(host, c, 0);
1133 status = -EFAULT;
1134 goto cleanup1;
1136 if (ioc->Request.Type.Direction == XFER_READ) {
1137 /* Copy the data out of the buffer we created */
1138 BYTE __user *ptr = ioc->buf;
1139 for (i = 0; i < sg_used; i++) {
1140 if (copy_to_user
1141 (ptr, buff[i], buff_size[i])) {
1142 cmd_free(host, c, 0);
1143 status = -EFAULT;
1144 goto cleanup1;
1146 ptr += buff_size[i];
1149 cmd_free(host, c, 0);
1150 status = 0;
1151 cleanup1:
1152 if (buff) {
1153 for (i = 0; i < sg_used; i++)
1154 kfree(buff[i]);
1155 kfree(buff);
1157 kfree(buff_size);
1158 kfree(ioc);
1159 return status;
1162 /* scsi_cmd_ioctl handles these, below, though some are not */
1163 /* very meaningful for cciss. SG_IO is the main one people want. */
1165 case SG_GET_VERSION_NUM:
1166 case SG_SET_TIMEOUT:
1167 case SG_GET_TIMEOUT:
1168 case SG_GET_RESERVED_SIZE:
1169 case SG_SET_RESERVED_SIZE:
1170 case SG_EMULATED_HOST:
1171 case SG_IO:
1172 case SCSI_IOCTL_SEND_COMMAND:
1173 return scsi_cmd_ioctl(filep, disk->queue, disk, cmd, argp);
1175 /* scsi_cmd_ioctl would normally handle these, below, but */
1176 /* they aren't a good fit for cciss, as CD-ROMs are */
1177 /* not supported, and we don't have any bus/target/lun */
1178 /* which we present to the kernel. */
1180 case CDROM_SEND_PACKET:
1181 case CDROMCLOSETRAY:
1182 case CDROMEJECT:
1183 case SCSI_IOCTL_GET_IDLUN:
1184 case SCSI_IOCTL_GET_BUS_NUMBER:
1185 default:
1186 return -ENOTTY;
1190 static void cciss_check_queues(ctlr_info_t *h)
1192 int start_queue = h->next_to_run;
1193 int i;
1195 /* check to see if we have maxed out the number of commands that can
1196 * be placed on the queue. If so then exit. We do this check here
1197 * in case the interrupt we serviced was from an ioctl and did not
1198 * free any new commands.
1200 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1201 return;
1203 /* We have room on the queue for more commands. Now we need to queue
1204 * them up. We will also keep track of the next queue to run so
1205 * that every queue gets a chance to be started first.
1207 for (i = 0; i < h->highest_lun + 1; i++) {
1208 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1209 /* make sure the disk has been added and the drive is real
1210 * because this can be called from the middle of init_one.
1212 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1213 continue;
1214 blk_start_queue(h->gendisk[curr_queue]->queue);
1216 /* check to see if we have maxed out the number of commands
1217 * that can be placed on the queue.
1219 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1220 if (curr_queue == start_queue) {
1221 h->next_to_run =
1222 (start_queue + 1) % (h->highest_lun + 1);
1223 break;
1224 } else {
1225 h->next_to_run = curr_queue;
1226 break;
1228 } else {
1229 curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
1234 static void cciss_softirq_done(struct request *rq)
1236 CommandList_struct *cmd = rq->completion_data;
1237 ctlr_info_t *h = hba[cmd->ctlr];
1238 unsigned long flags;
1239 u64bit temp64;
1240 int i, ddir;
1242 if (cmd->Request.Type.Direction == XFER_READ)
1243 ddir = PCI_DMA_FROMDEVICE;
1244 else
1245 ddir = PCI_DMA_TODEVICE;
1247 /* command did not need to be retried */
1248 /* unmap the DMA mapping for all the scatter gather elements */
1249 for (i = 0; i < cmd->Header.SGList; i++) {
1250 temp64.val32.lower = cmd->SG[i].Addr.lower;
1251 temp64.val32.upper = cmd->SG[i].Addr.upper;
1252 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1255 #ifdef CCISS_DEBUG
1256 printk("Done with %p\n", rq);
1257 #endif /* CCISS_DEBUG */
1259 if (blk_end_request(rq, (rq->errors == 0) ? 0 : -EIO, blk_rq_bytes(rq)))
1260 BUG();
1262 spin_lock_irqsave(&h->lock, flags);
1263 cmd_free(h, cmd, 1);
1264 cciss_check_queues(h);
1265 spin_unlock_irqrestore(&h->lock, flags);
1268 /* This function will check the usage_count of the drive to be updated/added.
1269 * If the usage_count is zero then the drive information will be updated and
1270 * the disk will be re-registered with the kernel. If not then it will be
1271 * left alone for the next reboot. The exception to this is disk 0 which
1272 * will always be left registered with the kernel since it is also the
1273 * controller node. Any changes to disk 0 will show up on the next
1274 * reboot.
1276 static void cciss_update_drive_info(int ctlr, int drv_index)
1278 ctlr_info_t *h = hba[ctlr];
1279 struct gendisk *disk;
1280 InquiryData_struct *inq_buff = NULL;
1281 unsigned int block_size;
1282 sector_t total_size;
1283 unsigned long flags = 0;
1284 int ret = 0;
1286 /* if the disk already exists then deregister it before proceeding */
1287 if (h->drv[drv_index].raid_level != -1) {
1288 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1289 h->drv[drv_index].busy_configuring = 1;
1290 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1291 ret = deregister_disk(h->gendisk[drv_index],
1292 &h->drv[drv_index], 0);
1293 h->drv[drv_index].busy_configuring = 0;
1296 /* If the disk is in use return */
1297 if (ret)
1298 return;
1300 /* Get information about the disk and modify the driver structure */
1301 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1302 if (inq_buff == NULL)
1303 goto mem_msg;
1305 /* testing to see if 16-byte CDBs are already being used */
1306 if (h->cciss_read == CCISS_READ_16) {
1307 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1308 &total_size, &block_size);
1309 goto geo_inq;
1312 cciss_read_capacity(ctlr, drv_index, 1,
1313 &total_size, &block_size);
1315 /* if read_capacity returns all F's this volume is >2TB in size */
1316 /* so we switch to 16-byte CDB's for all read/write ops */
1317 if (total_size == 0xFFFFFFFFULL) {
1318 cciss_read_capacity_16(ctlr, drv_index, 1,
1319 &total_size, &block_size);
1320 h->cciss_read = CCISS_READ_16;
1321 h->cciss_write = CCISS_WRITE_16;
1322 } else {
1323 h->cciss_read = CCISS_READ_10;
1324 h->cciss_write = CCISS_WRITE_10;
1326 geo_inq:
1327 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1328 inq_buff, &h->drv[drv_index]);
1330 ++h->num_luns;
1331 disk = h->gendisk[drv_index];
1332 set_capacity(disk, h->drv[drv_index].nr_blocks);
1334 /* if it's the controller it's already added */
1335 if (drv_index) {
1336 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1337 sprintf(disk->disk_name, "cciss/c%dd%d", ctlr, drv_index);
1338 disk->major = h->major;
1339 disk->first_minor = drv_index << NWD_SHIFT;
1340 disk->fops = &cciss_fops;
1341 disk->private_data = &h->drv[drv_index];
1343 /* Set up queue information */
1344 disk->queue->backing_dev_info.ra_pages = READ_AHEAD;
1345 blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1347 /* This is a hardware imposed limit. */
1348 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1350 /* This is a limit in the driver and could be eliminated. */
1351 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1353 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1355 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1357 disk->queue->queuedata = hba[ctlr];
1359 blk_queue_hardsect_size(disk->queue,
1360 hba[ctlr]->drv[drv_index].block_size);
1362 h->drv[drv_index].queue = disk->queue;
1363 add_disk(disk);
1366 freeret:
1367 kfree(inq_buff);
1368 return;
1369 mem_msg:
1370 printk(KERN_ERR "cciss: out of memory\n");
1371 goto freeret;
1374 /* This function will find the first index of the controllers drive array
1375 * that has a -1 for the raid_level and will return that index. This is
1376 * where new drives will be added. If the index to be returned is greater
1377 * than the highest_lun index for the controller then highest_lun is set
1378 * to this new index. If there are no available indexes then -1 is returned.
1380 static int cciss_find_free_drive_index(int ctlr)
1382 int i;
1384 for (i = 0; i < CISS_MAX_LUN; i++) {
1385 if (hba[ctlr]->drv[i].raid_level == -1) {
1386 if (i > hba[ctlr]->highest_lun)
1387 hba[ctlr]->highest_lun = i;
1388 return i;
1391 return -1;
1394 /* This function will add and remove logical drives from the Logical
1395 * drive array of the controller and maintain persistency of ordering
1396 * so that mount points are preserved until the next reboot. This allows
1397 * for the removal of logical drives in the middle of the drive array
1398 * without a re-ordering of those drives.
1399 * INPUT
1400 * h = The controller to perform the operations on
1401 * del_disk = The disk to remove if specified. If the value given
1402 * is NULL then no disk is removed.
1404 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1406 int ctlr = h->ctlr;
1407 int num_luns;
1408 ReportLunData_struct *ld_buff = NULL;
1409 drive_info_struct *drv = NULL;
1410 int return_code;
1411 int listlength = 0;
1412 int i;
1413 int drv_found;
1414 int drv_index = 0;
1415 __u32 lunid = 0;
1416 unsigned long flags;
1418 /* Set busy_configuring flag for this operation */
1419 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1420 if (h->busy_configuring) {
1421 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1422 return -EBUSY;
1424 h->busy_configuring = 1;
1426 /* if del_disk is NULL then we are being called to add a new disk
1427 * and update the logical drive table. If it is not NULL then
1428 * we will check if the disk is in use or not.
1430 if (del_disk != NULL) {
1431 drv = get_drv(del_disk);
1432 drv->busy_configuring = 1;
1433 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1434 return_code = deregister_disk(del_disk, drv, 1);
1435 drv->busy_configuring = 0;
1436 h->busy_configuring = 0;
1437 return return_code;
1438 } else {
1439 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1440 if (!capable(CAP_SYS_RAWIO))
1441 return -EPERM;
1443 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1444 if (ld_buff == NULL)
1445 goto mem_msg;
1447 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1448 sizeof(ReportLunData_struct), 0,
1449 0, 0, TYPE_CMD);
1451 if (return_code == IO_OK) {
1452 listlength =
1453 be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1454 } else { /* reading number of logical volumes failed */
1455 printk(KERN_WARNING "cciss: report logical volume"
1456 " command failed\n");
1457 listlength = 0;
1458 goto freeret;
1461 num_luns = listlength / 8; /* 8 bytes per entry */
1462 if (num_luns > CISS_MAX_LUN) {
1463 num_luns = CISS_MAX_LUN;
1464 printk(KERN_WARNING "cciss: more luns configured"
1465 " on controller than can be handled by"
1466 " this driver.\n");
1469 /* Compare controller drive array to drivers drive array.
1470 * Check for updates in the drive information and any new drives
1471 * on the controller.
1473 for (i = 0; i < num_luns; i++) {
1474 int j;
1476 drv_found = 0;
1478 lunid = (0xff &
1479 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1480 lunid |= (0xff &
1481 (unsigned int)(ld_buff->LUN[i][2])) << 16;
1482 lunid |= (0xff &
1483 (unsigned int)(ld_buff->LUN[i][1])) << 8;
1484 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
1486 /* Find if the LUN is already in the drive array
1487 * of the controller. If so then update its info
1488 * if not is use. If it does not exist then find
1489 * the first free index and add it.
1491 for (j = 0; j <= h->highest_lun; j++) {
1492 if (h->drv[j].LunID == lunid) {
1493 drv_index = j;
1494 drv_found = 1;
1498 /* check if the drive was found already in the array */
1499 if (!drv_found) {
1500 drv_index = cciss_find_free_drive_index(ctlr);
1501 if (drv_index == -1)
1502 goto freeret;
1504 /*Check if the gendisk needs to be allocated */
1505 if (!h->gendisk[drv_index]){
1506 h->gendisk[drv_index] = alloc_disk(1 << NWD_SHIFT);
1507 if (!h->gendisk[drv_index]){
1508 printk(KERN_ERR "cciss: could not allocate new disk %d\n", drv_index);
1509 goto mem_msg;
1513 h->drv[drv_index].LunID = lunid;
1514 cciss_update_drive_info(ctlr, drv_index);
1515 } /* end for */
1516 } /* end else */
1518 freeret:
1519 kfree(ld_buff);
1520 h->busy_configuring = 0;
1521 /* We return -1 here to tell the ACU that we have registered/updated
1522 * all of the drives that we can and to keep it from calling us
1523 * additional times.
1525 return -1;
1526 mem_msg:
1527 printk(KERN_ERR "cciss: out of memory\n");
1528 goto freeret;
1531 /* This function will deregister the disk and it's queue from the
1532 * kernel. It must be called with the controller lock held and the
1533 * drv structures busy_configuring flag set. It's parameters are:
1535 * disk = This is the disk to be deregistered
1536 * drv = This is the drive_info_struct associated with the disk to be
1537 * deregistered. It contains information about the disk used
1538 * by the driver.
1539 * clear_all = This flag determines whether or not the disk information
1540 * is going to be completely cleared out and the highest_lun
1541 * reset. Sometimes we want to clear out information about
1542 * the disk in preparation for re-adding it. In this case
1543 * the highest_lun should be left unchanged and the LunID
1544 * should not be cleared.
1546 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1547 int clear_all)
1549 int i;
1550 ctlr_info_t *h = get_host(disk);
1552 if (!capable(CAP_SYS_RAWIO))
1553 return -EPERM;
1555 /* make sure logical volume is NOT is use */
1556 if (clear_all || (h->gendisk[0] == disk)) {
1557 if (drv->usage_count > 1)
1558 return -EBUSY;
1559 } else if (drv->usage_count > 0)
1560 return -EBUSY;
1562 /* invalidate the devices and deregister the disk. If it is disk
1563 * zero do not deregister it but just zero out it's values. This
1564 * allows us to delete disk zero but keep the controller registered.
1566 if (h->gendisk[0] != disk) {
1567 struct request_queue *q = disk->queue;
1568 if (disk->flags & GENHD_FL_UP)
1569 del_gendisk(disk);
1570 if (q) {
1571 blk_cleanup_queue(q);
1572 /* Set drv->queue to NULL so that we do not try
1573 * to call blk_start_queue on this queue in the
1574 * interrupt handler
1576 drv->queue = NULL;
1578 /* If clear_all is set then we are deleting the logical
1579 * drive, not just refreshing its info. For drives
1580 * other than disk 0 we will call put_disk. We do not
1581 * do this for disk 0 as we need it to be able to
1582 * configure the controller.
1584 if (clear_all){
1585 /* This isn't pretty, but we need to find the
1586 * disk in our array and NULL our the pointer.
1587 * This is so that we will call alloc_disk if
1588 * this index is used again later.
1590 for (i=0; i < CISS_MAX_LUN; i++){
1591 if(h->gendisk[i] == disk){
1592 h->gendisk[i] = NULL;
1593 break;
1596 put_disk(disk);
1598 } else {
1599 set_capacity(disk, 0);
1602 --h->num_luns;
1603 /* zero out the disk size info */
1604 drv->nr_blocks = 0;
1605 drv->block_size = 0;
1606 drv->heads = 0;
1607 drv->sectors = 0;
1608 drv->cylinders = 0;
1609 drv->raid_level = -1; /* This can be used as a flag variable to
1610 * indicate that this element of the drive
1611 * array is free.
1614 if (clear_all) {
1615 /* check to see if it was the last disk */
1616 if (drv == h->drv + h->highest_lun) {
1617 /* if so, find the new hightest lun */
1618 int i, newhighest = -1;
1619 for (i = 0; i < h->highest_lun; i++) {
1620 /* if the disk has size > 0, it is available */
1621 if (h->drv[i].heads)
1622 newhighest = i;
1624 h->highest_lun = newhighest;
1627 drv->LunID = 0;
1629 return 0;
1632 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1633 1: address logical volume log_unit,
1634 2: periph device address is scsi3addr */
1635 unsigned int log_unit, __u8 page_code,
1636 unsigned char *scsi3addr, int cmd_type)
1638 ctlr_info_t *h = hba[ctlr];
1639 u64bit buff_dma_handle;
1640 int status = IO_OK;
1642 c->cmd_type = CMD_IOCTL_PEND;
1643 c->Header.ReplyQueue = 0;
1644 if (buff != NULL) {
1645 c->Header.SGList = 1;
1646 c->Header.SGTotal = 1;
1647 } else {
1648 c->Header.SGList = 0;
1649 c->Header.SGTotal = 0;
1651 c->Header.Tag.lower = c->busaddr;
1653 c->Request.Type.Type = cmd_type;
1654 if (cmd_type == TYPE_CMD) {
1655 switch (cmd) {
1656 case CISS_INQUIRY:
1657 /* If the logical unit number is 0 then, this is going
1658 to controller so It's a physical command
1659 mode = 0 target = 0. So we have nothing to write.
1660 otherwise, if use_unit_num == 1,
1661 mode = 1(volume set addressing) target = LUNID
1662 otherwise, if use_unit_num == 2,
1663 mode = 0(periph dev addr) target = scsi3addr */
1664 if (use_unit_num == 1) {
1665 c->Header.LUN.LogDev.VolId =
1666 h->drv[log_unit].LunID;
1667 c->Header.LUN.LogDev.Mode = 1;
1668 } else if (use_unit_num == 2) {
1669 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1671 c->Header.LUN.LogDev.Mode = 0;
1673 /* are we trying to read a vital product page */
1674 if (page_code != 0) {
1675 c->Request.CDB[1] = 0x01;
1676 c->Request.CDB[2] = page_code;
1678 c->Request.CDBLen = 6;
1679 c->Request.Type.Attribute = ATTR_SIMPLE;
1680 c->Request.Type.Direction = XFER_READ;
1681 c->Request.Timeout = 0;
1682 c->Request.CDB[0] = CISS_INQUIRY;
1683 c->Request.CDB[4] = size & 0xFF;
1684 break;
1685 case CISS_REPORT_LOG:
1686 case CISS_REPORT_PHYS:
1687 /* Talking to controller so It's a physical command
1688 mode = 00 target = 0. Nothing to write.
1690 c->Request.CDBLen = 12;
1691 c->Request.Type.Attribute = ATTR_SIMPLE;
1692 c->Request.Type.Direction = XFER_READ;
1693 c->Request.Timeout = 0;
1694 c->Request.CDB[0] = cmd;
1695 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1696 c->Request.CDB[7] = (size >> 16) & 0xFF;
1697 c->Request.CDB[8] = (size >> 8) & 0xFF;
1698 c->Request.CDB[9] = size & 0xFF;
1699 break;
1701 case CCISS_READ_CAPACITY:
1702 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1703 c->Header.LUN.LogDev.Mode = 1;
1704 c->Request.CDBLen = 10;
1705 c->Request.Type.Attribute = ATTR_SIMPLE;
1706 c->Request.Type.Direction = XFER_READ;
1707 c->Request.Timeout = 0;
1708 c->Request.CDB[0] = cmd;
1709 break;
1710 case CCISS_READ_CAPACITY_16:
1711 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1712 c->Header.LUN.LogDev.Mode = 1;
1713 c->Request.CDBLen = 16;
1714 c->Request.Type.Attribute = ATTR_SIMPLE;
1715 c->Request.Type.Direction = XFER_READ;
1716 c->Request.Timeout = 0;
1717 c->Request.CDB[0] = cmd;
1718 c->Request.CDB[1] = 0x10;
1719 c->Request.CDB[10] = (size >> 24) & 0xFF;
1720 c->Request.CDB[11] = (size >> 16) & 0xFF;
1721 c->Request.CDB[12] = (size >> 8) & 0xFF;
1722 c->Request.CDB[13] = size & 0xFF;
1723 c->Request.Timeout = 0;
1724 c->Request.CDB[0] = cmd;
1725 break;
1726 case CCISS_CACHE_FLUSH:
1727 c->Request.CDBLen = 12;
1728 c->Request.Type.Attribute = ATTR_SIMPLE;
1729 c->Request.Type.Direction = XFER_WRITE;
1730 c->Request.Timeout = 0;
1731 c->Request.CDB[0] = BMIC_WRITE;
1732 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1733 break;
1734 default:
1735 printk(KERN_WARNING
1736 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1737 return IO_ERROR;
1739 } else if (cmd_type == TYPE_MSG) {
1740 switch (cmd) {
1741 case 0: /* ABORT message */
1742 c->Request.CDBLen = 12;
1743 c->Request.Type.Attribute = ATTR_SIMPLE;
1744 c->Request.Type.Direction = XFER_WRITE;
1745 c->Request.Timeout = 0;
1746 c->Request.CDB[0] = cmd; /* abort */
1747 c->Request.CDB[1] = 0; /* abort a command */
1748 /* buff contains the tag of the command to abort */
1749 memcpy(&c->Request.CDB[4], buff, 8);
1750 break;
1751 case 1: /* RESET message */
1752 c->Request.CDBLen = 12;
1753 c->Request.Type.Attribute = ATTR_SIMPLE;
1754 c->Request.Type.Direction = XFER_WRITE;
1755 c->Request.Timeout = 0;
1756 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1757 c->Request.CDB[0] = cmd; /* reset */
1758 c->Request.CDB[1] = 0x04; /* reset a LUN */
1759 break;
1760 case 3: /* No-Op message */
1761 c->Request.CDBLen = 1;
1762 c->Request.Type.Attribute = ATTR_SIMPLE;
1763 c->Request.Type.Direction = XFER_WRITE;
1764 c->Request.Timeout = 0;
1765 c->Request.CDB[0] = cmd;
1766 break;
1767 default:
1768 printk(KERN_WARNING
1769 "cciss%d: unknown message type %d\n", ctlr, cmd);
1770 return IO_ERROR;
1772 } else {
1773 printk(KERN_WARNING
1774 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1775 return IO_ERROR;
1777 /* Fill in the scatter gather information */
1778 if (size > 0) {
1779 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1780 buff, size,
1781 PCI_DMA_BIDIRECTIONAL);
1782 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1783 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1784 c->SG[0].Len = size;
1785 c->SG[0].Ext = 0; /* we are not chaining */
1787 return status;
1790 static int sendcmd_withirq(__u8 cmd,
1791 int ctlr,
1792 void *buff,
1793 size_t size,
1794 unsigned int use_unit_num,
1795 unsigned int log_unit, __u8 page_code, int cmd_type)
1797 ctlr_info_t *h = hba[ctlr];
1798 CommandList_struct *c;
1799 u64bit buff_dma_handle;
1800 unsigned long flags;
1801 int return_status;
1802 DECLARE_COMPLETION_ONSTACK(wait);
1804 if ((c = cmd_alloc(h, 0)) == NULL)
1805 return -ENOMEM;
1806 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1807 log_unit, page_code, NULL, cmd_type);
1808 if (return_status != IO_OK) {
1809 cmd_free(h, c, 0);
1810 return return_status;
1812 resend_cmd2:
1813 c->waiting = &wait;
1815 /* Put the request on the tail of the queue and send it */
1816 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1817 addQ(&h->reqQ, c);
1818 h->Qdepth++;
1819 start_io(h);
1820 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1822 wait_for_completion(&wait);
1824 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
1825 switch (c->err_info->CommandStatus) {
1826 case CMD_TARGET_STATUS:
1827 printk(KERN_WARNING "cciss: cmd %p has "
1828 " completed with errors\n", c);
1829 if (c->err_info->ScsiStatus) {
1830 printk(KERN_WARNING "cciss: cmd %p "
1831 "has SCSI Status = %x\n",
1832 c, c->err_info->ScsiStatus);
1835 break;
1836 case CMD_DATA_UNDERRUN:
1837 case CMD_DATA_OVERRUN:
1838 /* expected for inquire and report lun commands */
1839 break;
1840 case CMD_INVALID:
1841 printk(KERN_WARNING "cciss: Cmd %p is "
1842 "reported invalid\n", c);
1843 return_status = IO_ERROR;
1844 break;
1845 case CMD_PROTOCOL_ERR:
1846 printk(KERN_WARNING "cciss: cmd %p has "
1847 "protocol error \n", c);
1848 return_status = IO_ERROR;
1849 break;
1850 case CMD_HARDWARE_ERR:
1851 printk(KERN_WARNING "cciss: cmd %p had "
1852 " hardware error\n", c);
1853 return_status = IO_ERROR;
1854 break;
1855 case CMD_CONNECTION_LOST:
1856 printk(KERN_WARNING "cciss: cmd %p had "
1857 "connection lost\n", c);
1858 return_status = IO_ERROR;
1859 break;
1860 case CMD_ABORTED:
1861 printk(KERN_WARNING "cciss: cmd %p was "
1862 "aborted\n", c);
1863 return_status = IO_ERROR;
1864 break;
1865 case CMD_ABORT_FAILED:
1866 printk(KERN_WARNING "cciss: cmd %p reports "
1867 "abort failed\n", c);
1868 return_status = IO_ERROR;
1869 break;
1870 case CMD_UNSOLICITED_ABORT:
1871 printk(KERN_WARNING
1872 "cciss%d: unsolicited abort %p\n", ctlr, c);
1873 if (c->retry_count < MAX_CMD_RETRIES) {
1874 printk(KERN_WARNING
1875 "cciss%d: retrying %p\n", ctlr, c);
1876 c->retry_count++;
1877 /* erase the old error information */
1878 memset(c->err_info, 0,
1879 sizeof(ErrorInfo_struct));
1880 return_status = IO_OK;
1881 INIT_COMPLETION(wait);
1882 goto resend_cmd2;
1884 return_status = IO_ERROR;
1885 break;
1886 default:
1887 printk(KERN_WARNING "cciss: cmd %p returned "
1888 "unknown status %x\n", c,
1889 c->err_info->CommandStatus);
1890 return_status = IO_ERROR;
1893 /* unlock the buffers from DMA */
1894 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
1895 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
1896 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
1897 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
1898 cmd_free(h, c, 0);
1899 return return_status;
1902 static void cciss_geometry_inquiry(int ctlr, int logvol,
1903 int withirq, sector_t total_size,
1904 unsigned int block_size,
1905 InquiryData_struct *inq_buff,
1906 drive_info_struct *drv)
1908 int return_code;
1909 unsigned long t;
1911 memset(inq_buff, 0, sizeof(InquiryData_struct));
1912 if (withirq)
1913 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1914 inq_buff, sizeof(*inq_buff), 1,
1915 logvol, 0xC1, TYPE_CMD);
1916 else
1917 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1918 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
1919 TYPE_CMD);
1920 if (return_code == IO_OK) {
1921 if (inq_buff->data_byte[8] == 0xFF) {
1922 printk(KERN_WARNING
1923 "cciss: reading geometry failed, volume "
1924 "does not support reading geometry\n");
1925 drv->heads = 255;
1926 drv->sectors = 32; // Sectors per track
1927 drv->cylinders = total_size + 1;
1928 drv->raid_level = RAID_UNKNOWN;
1929 } else {
1930 drv->heads = inq_buff->data_byte[6];
1931 drv->sectors = inq_buff->data_byte[7];
1932 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
1933 drv->cylinders += inq_buff->data_byte[5];
1934 drv->raid_level = inq_buff->data_byte[8];
1936 drv->block_size = block_size;
1937 drv->nr_blocks = total_size + 1;
1938 t = drv->heads * drv->sectors;
1939 if (t > 1) {
1940 sector_t real_size = total_size + 1;
1941 unsigned long rem = sector_div(real_size, t);
1942 if (rem)
1943 real_size++;
1944 drv->cylinders = real_size;
1946 } else { /* Get geometry failed */
1947 printk(KERN_WARNING "cciss: reading geometry failed\n");
1949 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
1950 drv->heads, drv->sectors, drv->cylinders);
1953 static void
1954 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
1955 unsigned int *block_size)
1957 ReadCapdata_struct *buf;
1958 int return_code;
1960 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
1961 if (!buf) {
1962 printk(KERN_WARNING "cciss: out of memory\n");
1963 return;
1966 if (withirq)
1967 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
1968 ctlr, buf, sizeof(ReadCapdata_struct),
1969 1, logvol, 0, TYPE_CMD);
1970 else
1971 return_code = sendcmd(CCISS_READ_CAPACITY,
1972 ctlr, buf, sizeof(ReadCapdata_struct),
1973 1, logvol, 0, NULL, TYPE_CMD);
1974 if (return_code == IO_OK) {
1975 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
1976 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
1977 } else { /* read capacity command failed */
1978 printk(KERN_WARNING "cciss: read capacity failed\n");
1979 *total_size = 0;
1980 *block_size = BLOCK_SIZE;
1982 if (*total_size != 0)
1983 printk(KERN_INFO " blocks= %llu block_size= %d\n",
1984 (unsigned long long)*total_size+1, *block_size);
1985 kfree(buf);
1988 static void
1989 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
1991 ReadCapdata_struct_16 *buf;
1992 int return_code;
1994 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
1995 if (!buf) {
1996 printk(KERN_WARNING "cciss: out of memory\n");
1997 return;
2000 if (withirq) {
2001 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2002 ctlr, buf, sizeof(ReadCapdata_struct_16),
2003 1, logvol, 0, TYPE_CMD);
2005 else {
2006 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2007 ctlr, buf, sizeof(ReadCapdata_struct_16),
2008 1, logvol, 0, NULL, TYPE_CMD);
2010 if (return_code == IO_OK) {
2011 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2012 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2013 } else { /* read capacity command failed */
2014 printk(KERN_WARNING "cciss: read capacity failed\n");
2015 *total_size = 0;
2016 *block_size = BLOCK_SIZE;
2018 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2019 (unsigned long long)*total_size+1, *block_size);
2020 kfree(buf);
2023 static int cciss_revalidate(struct gendisk *disk)
2025 ctlr_info_t *h = get_host(disk);
2026 drive_info_struct *drv = get_drv(disk);
2027 int logvol;
2028 int FOUND = 0;
2029 unsigned int block_size;
2030 sector_t total_size;
2031 InquiryData_struct *inq_buff = NULL;
2033 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2034 if (h->drv[logvol].LunID == drv->LunID) {
2035 FOUND = 1;
2036 break;
2040 if (!FOUND)
2041 return 1;
2043 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2044 if (inq_buff == NULL) {
2045 printk(KERN_WARNING "cciss: out of memory\n");
2046 return 1;
2048 if (h->cciss_read == CCISS_READ_10) {
2049 cciss_read_capacity(h->ctlr, logvol, 1,
2050 &total_size, &block_size);
2051 } else {
2052 cciss_read_capacity_16(h->ctlr, logvol, 1,
2053 &total_size, &block_size);
2055 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2056 inq_buff, drv);
2058 blk_queue_hardsect_size(drv->queue, drv->block_size);
2059 set_capacity(disk, drv->nr_blocks);
2061 kfree(inq_buff);
2062 return 0;
2066 * Wait polling for a command to complete.
2067 * The memory mapped FIFO is polled for the completion.
2068 * Used only at init time, interrupts from the HBA are disabled.
2070 static unsigned long pollcomplete(int ctlr)
2072 unsigned long done;
2073 int i;
2075 /* Wait (up to 20 seconds) for a command to complete */
2077 for (i = 20 * HZ; i > 0; i--) {
2078 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2079 if (done == FIFO_EMPTY)
2080 schedule_timeout_uninterruptible(1);
2081 else
2082 return done;
2084 /* Invalid address to tell caller we ran out of time */
2085 return 1;
2088 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2090 /* We get in here if sendcmd() is polling for completions
2091 and gets some command back that it wasn't expecting --
2092 something other than that which it just sent down.
2093 Ordinarily, that shouldn't happen, but it can happen when
2094 the scsi tape stuff gets into error handling mode, and
2095 starts using sendcmd() to try to abort commands and
2096 reset tape drives. In that case, sendcmd may pick up
2097 completions of commands that were sent to logical drives
2098 through the block i/o system, or cciss ioctls completing, etc.
2099 In that case, we need to save those completions for later
2100 processing by the interrupt handler.
2103 #ifdef CONFIG_CISS_SCSI_TAPE
2104 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2106 /* If it's not the scsi tape stuff doing error handling, (abort */
2107 /* or reset) then we don't expect anything weird. */
2108 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2109 #endif
2110 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2111 "Invalid command list address returned! (%lx)\n",
2112 ctlr, complete);
2113 /* not much we can do. */
2114 #ifdef CONFIG_CISS_SCSI_TAPE
2115 return 1;
2118 /* We've sent down an abort or reset, but something else
2119 has completed */
2120 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2121 /* Uh oh. No room to save it for later... */
2122 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2123 "reject list overflow, command lost!\n", ctlr);
2124 return 1;
2126 /* Save it for later */
2127 srl->complete[srl->ncompletions] = complete;
2128 srl->ncompletions++;
2129 #endif
2130 return 0;
2134 * Send a command to the controller, and wait for it to complete.
2135 * Only used at init time.
2137 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2138 1: address logical volume log_unit,
2139 2: periph device address is scsi3addr */
2140 unsigned int log_unit,
2141 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2143 CommandList_struct *c;
2144 int i;
2145 unsigned long complete;
2146 ctlr_info_t *info_p = hba[ctlr];
2147 u64bit buff_dma_handle;
2148 int status, done = 0;
2150 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2151 printk(KERN_WARNING "cciss: unable to get memory");
2152 return IO_ERROR;
2154 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2155 log_unit, page_code, scsi3addr, cmd_type);
2156 if (status != IO_OK) {
2157 cmd_free(info_p, c, 1);
2158 return status;
2160 resend_cmd1:
2162 * Disable interrupt
2164 #ifdef CCISS_DEBUG
2165 printk(KERN_DEBUG "cciss: turning intr off\n");
2166 #endif /* CCISS_DEBUG */
2167 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2169 /* Make sure there is room in the command FIFO */
2170 /* Actually it should be completely empty at this time */
2171 /* unless we are in here doing error handling for the scsi */
2172 /* tape side of the driver. */
2173 for (i = 200000; i > 0; i--) {
2174 /* if fifo isn't full go */
2175 if (!(info_p->access.fifo_full(info_p))) {
2177 break;
2179 udelay(10);
2180 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2181 " waiting!\n", ctlr);
2184 * Send the cmd
2186 info_p->access.submit_command(info_p, c);
2187 done = 0;
2188 do {
2189 complete = pollcomplete(ctlr);
2191 #ifdef CCISS_DEBUG
2192 printk(KERN_DEBUG "cciss: command completed\n");
2193 #endif /* CCISS_DEBUG */
2195 if (complete == 1) {
2196 printk(KERN_WARNING
2197 "cciss cciss%d: SendCmd Timeout out, "
2198 "No command list address returned!\n", ctlr);
2199 status = IO_ERROR;
2200 done = 1;
2201 break;
2204 /* This will need to change for direct lookup completions */
2205 if ((complete & CISS_ERROR_BIT)
2206 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2207 /* if data overrun or underun on Report command
2208 ignore it
2210 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2211 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2212 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2213 ((c->err_info->CommandStatus ==
2214 CMD_DATA_OVERRUN) ||
2215 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2216 )) {
2217 complete = c->busaddr;
2218 } else {
2219 if (c->err_info->CommandStatus ==
2220 CMD_UNSOLICITED_ABORT) {
2221 printk(KERN_WARNING "cciss%d: "
2222 "unsolicited abort %p\n",
2223 ctlr, c);
2224 if (c->retry_count < MAX_CMD_RETRIES) {
2225 printk(KERN_WARNING
2226 "cciss%d: retrying %p\n",
2227 ctlr, c);
2228 c->retry_count++;
2229 /* erase the old error */
2230 /* information */
2231 memset(c->err_info, 0,
2232 sizeof
2233 (ErrorInfo_struct));
2234 goto resend_cmd1;
2235 } else {
2236 printk(KERN_WARNING
2237 "cciss%d: retried %p too "
2238 "many times\n", ctlr, c);
2239 status = IO_ERROR;
2240 goto cleanup1;
2242 } else if (c->err_info->CommandStatus ==
2243 CMD_UNABORTABLE) {
2244 printk(KERN_WARNING
2245 "cciss%d: command could not be aborted.\n",
2246 ctlr);
2247 status = IO_ERROR;
2248 goto cleanup1;
2250 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2251 " Error %x \n", ctlr,
2252 c->err_info->CommandStatus);
2253 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2254 " offensive info\n"
2255 " size %x\n num %x value %x\n",
2256 ctlr,
2257 c->err_info->MoreErrInfo.Invalid_Cmd.
2258 offense_size,
2259 c->err_info->MoreErrInfo.Invalid_Cmd.
2260 offense_num,
2261 c->err_info->MoreErrInfo.Invalid_Cmd.
2262 offense_value);
2263 status = IO_ERROR;
2264 goto cleanup1;
2267 /* This will need changing for direct lookup completions */
2268 if (complete != c->busaddr) {
2269 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2270 BUG(); /* we are pretty much hosed if we get here. */
2272 continue;
2273 } else
2274 done = 1;
2275 } while (!done);
2277 cleanup1:
2278 /* unlock the data buffer from DMA */
2279 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2280 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2281 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2282 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2283 #ifdef CONFIG_CISS_SCSI_TAPE
2284 /* if we saved some commands for later, process them now. */
2285 if (info_p->scsi_rejects.ncompletions > 0)
2286 do_cciss_intr(0, info_p);
2287 #endif
2288 cmd_free(info_p, c, 1);
2289 return status;
2293 * Map (physical) PCI mem into (virtual) kernel space
2295 static void __iomem *remap_pci_mem(ulong base, ulong size)
2297 ulong page_base = ((ulong) base) & PAGE_MASK;
2298 ulong page_offs = ((ulong) base) - page_base;
2299 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2301 return page_remapped ? (page_remapped + page_offs) : NULL;
2305 * Takes jobs of the Q and sends them to the hardware, then puts it on
2306 * the Q to wait for completion.
2308 static void start_io(ctlr_info_t *h)
2310 CommandList_struct *c;
2312 while ((c = h->reqQ) != NULL) {
2313 /* can't do anything if fifo is full */
2314 if ((h->access.fifo_full(h))) {
2315 printk(KERN_WARNING "cciss: fifo full\n");
2316 break;
2319 /* Get the first entry from the Request Q */
2320 removeQ(&(h->reqQ), c);
2321 h->Qdepth--;
2323 /* Tell the controller execute command */
2324 h->access.submit_command(h, c);
2326 /* Put job onto the completed Q */
2327 addQ(&(h->cmpQ), c);
2331 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2332 /* Zeros out the error record and then resends the command back */
2333 /* to the controller */
2334 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2336 /* erase the old error information */
2337 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2339 /* add it to software queue and then send it to the controller */
2340 addQ(&(h->reqQ), c);
2341 h->Qdepth++;
2342 if (h->Qdepth > h->maxQsinceinit)
2343 h->maxQsinceinit = h->Qdepth;
2345 start_io(h);
2348 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2349 unsigned int msg_byte, unsigned int host_byte,
2350 unsigned int driver_byte)
2352 /* inverse of macros in scsi.h */
2353 return (scsi_status_byte & 0xff) |
2354 ((msg_byte & 0xff) << 8) |
2355 ((host_byte & 0xff) << 16) |
2356 ((driver_byte & 0xff) << 24);
2359 static inline int evaluate_target_status(CommandList_struct *cmd)
2361 unsigned char sense_key;
2362 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2363 int error_value;
2365 /* If we get in here, it means we got "target status", that is, scsi status */
2366 status_byte = cmd->err_info->ScsiStatus;
2367 driver_byte = DRIVER_OK;
2368 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2370 if (blk_pc_request(cmd->rq))
2371 host_byte = DID_PASSTHROUGH;
2372 else
2373 host_byte = DID_OK;
2375 error_value = make_status_bytes(status_byte, msg_byte,
2376 host_byte, driver_byte);
2378 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2379 if (!blk_pc_request(cmd->rq))
2380 printk(KERN_WARNING "cciss: cmd %p "
2381 "has SCSI Status 0x%x\n",
2382 cmd, cmd->err_info->ScsiStatus);
2383 return error_value;
2386 /* check the sense key */
2387 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2388 /* no status or recovered error */
2389 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2390 error_value = 0;
2392 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2393 if (error_value != 0)
2394 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2395 " sense key = 0x%x\n", cmd, sense_key);
2396 return error_value;
2399 /* SG_IO or similar, copy sense data back */
2400 if (cmd->rq->sense) {
2401 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2402 cmd->rq->sense_len = cmd->err_info->SenseLen;
2403 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2404 cmd->rq->sense_len);
2405 } else
2406 cmd->rq->sense_len = 0;
2408 return error_value;
2411 /* checks the status of the job and calls complete buffers to mark all
2412 * buffers for the completed job. Note that this function does not need
2413 * to hold the hba/queue lock.
2415 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2416 int timeout)
2418 int retry_cmd = 0;
2419 struct request *rq = cmd->rq;
2421 rq->errors = 0;
2423 if (timeout)
2424 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2426 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2427 goto after_error_processing;
2429 switch (cmd->err_info->CommandStatus) {
2430 case CMD_TARGET_STATUS:
2431 rq->errors = evaluate_target_status(cmd);
2432 break;
2433 case CMD_DATA_UNDERRUN:
2434 if (blk_fs_request(cmd->rq)) {
2435 printk(KERN_WARNING "cciss: cmd %p has"
2436 " completed with data underrun "
2437 "reported\n", cmd);
2438 cmd->rq->data_len = cmd->err_info->ResidualCnt;
2440 break;
2441 case CMD_DATA_OVERRUN:
2442 if (blk_fs_request(cmd->rq))
2443 printk(KERN_WARNING "cciss: cmd %p has"
2444 " completed with data overrun "
2445 "reported\n", cmd);
2446 break;
2447 case CMD_INVALID:
2448 printk(KERN_WARNING "cciss: cmd %p is "
2449 "reported invalid\n", cmd);
2450 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2451 cmd->err_info->CommandStatus, DRIVER_OK,
2452 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2453 break;
2454 case CMD_PROTOCOL_ERR:
2455 printk(KERN_WARNING "cciss: cmd %p has "
2456 "protocol error \n", cmd);
2457 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2458 cmd->err_info->CommandStatus, DRIVER_OK,
2459 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2460 break;
2461 case CMD_HARDWARE_ERR:
2462 printk(KERN_WARNING "cciss: cmd %p had "
2463 " hardware error\n", cmd);
2464 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2465 cmd->err_info->CommandStatus, DRIVER_OK,
2466 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2467 break;
2468 case CMD_CONNECTION_LOST:
2469 printk(KERN_WARNING "cciss: cmd %p had "
2470 "connection lost\n", cmd);
2471 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2472 cmd->err_info->CommandStatus, DRIVER_OK,
2473 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2474 break;
2475 case CMD_ABORTED:
2476 printk(KERN_WARNING "cciss: cmd %p was "
2477 "aborted\n", cmd);
2478 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2479 cmd->err_info->CommandStatus, DRIVER_OK,
2480 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2481 break;
2482 case CMD_ABORT_FAILED:
2483 printk(KERN_WARNING "cciss: cmd %p reports "
2484 "abort failed\n", cmd);
2485 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2486 cmd->err_info->CommandStatus, DRIVER_OK,
2487 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2488 break;
2489 case CMD_UNSOLICITED_ABORT:
2490 printk(KERN_WARNING "cciss%d: unsolicited "
2491 "abort %p\n", h->ctlr, cmd);
2492 if (cmd->retry_count < MAX_CMD_RETRIES) {
2493 retry_cmd = 1;
2494 printk(KERN_WARNING
2495 "cciss%d: retrying %p\n", h->ctlr, cmd);
2496 cmd->retry_count++;
2497 } else
2498 printk(KERN_WARNING
2499 "cciss%d: %p retried too "
2500 "many times\n", h->ctlr, cmd);
2501 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2502 cmd->err_info->CommandStatus, DRIVER_OK,
2503 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2504 break;
2505 case CMD_TIMEOUT:
2506 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2507 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2508 cmd->err_info->CommandStatus, DRIVER_OK,
2509 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2510 break;
2511 default:
2512 printk(KERN_WARNING "cciss: cmd %p returned "
2513 "unknown status %x\n", cmd,
2514 cmd->err_info->CommandStatus);
2515 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2516 cmd->err_info->CommandStatus, DRIVER_OK,
2517 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2520 after_error_processing:
2522 /* We need to return this command */
2523 if (retry_cmd) {
2524 resend_cciss_cmd(h, cmd);
2525 return;
2527 cmd->rq->completion_data = cmd;
2528 blk_complete_request(cmd->rq);
2532 * Get a request and submit it to the controller.
2534 static void do_cciss_request(struct request_queue *q)
2536 ctlr_info_t *h = q->queuedata;
2537 CommandList_struct *c;
2538 sector_t start_blk;
2539 int seg;
2540 struct request *creq;
2541 u64bit temp64;
2542 struct scatterlist tmp_sg[MAXSGENTRIES];
2543 drive_info_struct *drv;
2544 int i, dir;
2546 /* We call start_io here in case there is a command waiting on the
2547 * queue that has not been sent.
2549 if (blk_queue_plugged(q))
2550 goto startio;
2552 queue:
2553 creq = elv_next_request(q);
2554 if (!creq)
2555 goto startio;
2557 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2559 if ((c = cmd_alloc(h, 1)) == NULL)
2560 goto full;
2562 blkdev_dequeue_request(creq);
2564 spin_unlock_irq(q->queue_lock);
2566 c->cmd_type = CMD_RWREQ;
2567 c->rq = creq;
2569 /* fill in the request */
2570 drv = creq->rq_disk->private_data;
2571 c->Header.ReplyQueue = 0; // unused in simple mode
2572 /* got command from pool, so use the command block index instead */
2573 /* for direct lookups. */
2574 /* The first 2 bits are reserved for controller error reporting. */
2575 c->Header.Tag.lower = (c->cmdindex << 3);
2576 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2577 c->Header.LUN.LogDev.VolId = drv->LunID;
2578 c->Header.LUN.LogDev.Mode = 1;
2579 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2580 c->Request.Type.Type = TYPE_CMD; // It is a command.
2581 c->Request.Type.Attribute = ATTR_SIMPLE;
2582 c->Request.Type.Direction =
2583 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2584 c->Request.Timeout = 0; // Don't time out
2585 c->Request.CDB[0] =
2586 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2587 start_blk = creq->sector;
2588 #ifdef CCISS_DEBUG
2589 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2590 (int)creq->nr_sectors);
2591 #endif /* CCISS_DEBUG */
2593 sg_init_table(tmp_sg, MAXSGENTRIES);
2594 seg = blk_rq_map_sg(q, creq, tmp_sg);
2596 /* get the DMA records for the setup */
2597 if (c->Request.Type.Direction == XFER_READ)
2598 dir = PCI_DMA_FROMDEVICE;
2599 else
2600 dir = PCI_DMA_TODEVICE;
2602 for (i = 0; i < seg; i++) {
2603 c->SG[i].Len = tmp_sg[i].length;
2604 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
2605 tmp_sg[i].offset,
2606 tmp_sg[i].length, dir);
2607 c->SG[i].Addr.lower = temp64.val32.lower;
2608 c->SG[i].Addr.upper = temp64.val32.upper;
2609 c->SG[i].Ext = 0; // we are not chaining
2611 /* track how many SG entries we are using */
2612 if (seg > h->maxSG)
2613 h->maxSG = seg;
2615 #ifdef CCISS_DEBUG
2616 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
2617 creq->nr_sectors, seg);
2618 #endif /* CCISS_DEBUG */
2620 c->Header.SGList = c->Header.SGTotal = seg;
2621 if (likely(blk_fs_request(creq))) {
2622 if(h->cciss_read == CCISS_READ_10) {
2623 c->Request.CDB[1] = 0;
2624 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2625 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2626 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2627 c->Request.CDB[5] = start_blk & 0xff;
2628 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2629 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2630 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2631 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2632 } else {
2633 u32 upper32 = upper_32_bits(start_blk);
2635 c->Request.CDBLen = 16;
2636 c->Request.CDB[1]= 0;
2637 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
2638 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
2639 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
2640 c->Request.CDB[5]= upper32 & 0xff;
2641 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2642 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2643 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2644 c->Request.CDB[9]= start_blk & 0xff;
2645 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2646 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2647 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2648 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2649 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2651 } else if (blk_pc_request(creq)) {
2652 c->Request.CDBLen = creq->cmd_len;
2653 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
2654 } else {
2655 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
2656 BUG();
2659 spin_lock_irq(q->queue_lock);
2661 addQ(&(h->reqQ), c);
2662 h->Qdepth++;
2663 if (h->Qdepth > h->maxQsinceinit)
2664 h->maxQsinceinit = h->Qdepth;
2666 goto queue;
2667 full:
2668 blk_stop_queue(q);
2669 startio:
2670 /* We will already have the driver lock here so not need
2671 * to lock it.
2673 start_io(h);
2676 static inline unsigned long get_next_completion(ctlr_info_t *h)
2678 #ifdef CONFIG_CISS_SCSI_TAPE
2679 /* Any rejects from sendcmd() lying around? Process them first */
2680 if (h->scsi_rejects.ncompletions == 0)
2681 return h->access.command_completed(h);
2682 else {
2683 struct sendcmd_reject_list *srl;
2684 int n;
2685 srl = &h->scsi_rejects;
2686 n = --srl->ncompletions;
2687 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2688 printk("p");
2689 return srl->complete[n];
2691 #else
2692 return h->access.command_completed(h);
2693 #endif
2696 static inline int interrupt_pending(ctlr_info_t *h)
2698 #ifdef CONFIG_CISS_SCSI_TAPE
2699 return (h->access.intr_pending(h)
2700 || (h->scsi_rejects.ncompletions > 0));
2701 #else
2702 return h->access.intr_pending(h);
2703 #endif
2706 static inline long interrupt_not_for_us(ctlr_info_t *h)
2708 #ifdef CONFIG_CISS_SCSI_TAPE
2709 return (((h->access.intr_pending(h) == 0) ||
2710 (h->interrupts_enabled == 0))
2711 && (h->scsi_rejects.ncompletions == 0));
2712 #else
2713 return (((h->access.intr_pending(h) == 0) ||
2714 (h->interrupts_enabled == 0)));
2715 #endif
2718 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2720 ctlr_info_t *h = dev_id;
2721 CommandList_struct *c;
2722 unsigned long flags;
2723 __u32 a, a1, a2;
2725 if (interrupt_not_for_us(h))
2726 return IRQ_NONE;
2728 * If there are completed commands in the completion queue,
2729 * we had better do something about it.
2731 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2732 while (interrupt_pending(h)) {
2733 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2734 a1 = a;
2735 if ((a & 0x04)) {
2736 a2 = (a >> 3);
2737 if (a2 >= h->nr_cmds) {
2738 printk(KERN_WARNING
2739 "cciss: controller cciss%d failed, stopping.\n",
2740 h->ctlr);
2741 fail_all_cmds(h->ctlr);
2742 return IRQ_HANDLED;
2745 c = h->cmd_pool + a2;
2746 a = c->busaddr;
2748 } else {
2749 a &= ~3;
2750 if ((c = h->cmpQ) == NULL) {
2751 printk(KERN_WARNING
2752 "cciss: Completion of %08x ignored\n",
2753 a1);
2754 continue;
2756 while (c->busaddr != a) {
2757 c = c->next;
2758 if (c == h->cmpQ)
2759 break;
2763 * If we've found the command, take it off the
2764 * completion Q and free it
2766 if (c->busaddr == a) {
2767 removeQ(&h->cmpQ, c);
2768 if (c->cmd_type == CMD_RWREQ) {
2769 complete_command(h, c, 0);
2770 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2771 complete(c->waiting);
2773 # ifdef CONFIG_CISS_SCSI_TAPE
2774 else if (c->cmd_type == CMD_SCSI)
2775 complete_scsi_command(c, 0, a1);
2776 # endif
2777 continue;
2782 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2783 return IRQ_HANDLED;
2787 * We cannot read the structure directly, for portability we must use
2788 * the io functions.
2789 * This is for debug only.
2791 #ifdef CCISS_DEBUG
2792 static void print_cfg_table(CfgTable_struct *tb)
2794 int i;
2795 char temp_name[17];
2797 printk("Controller Configuration information\n");
2798 printk("------------------------------------\n");
2799 for (i = 0; i < 4; i++)
2800 temp_name[i] = readb(&(tb->Signature[i]));
2801 temp_name[4] = '\0';
2802 printk(" Signature = %s\n", temp_name);
2803 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
2804 printk(" Transport methods supported = 0x%x\n",
2805 readl(&(tb->TransportSupport)));
2806 printk(" Transport methods active = 0x%x\n",
2807 readl(&(tb->TransportActive)));
2808 printk(" Requested transport Method = 0x%x\n",
2809 readl(&(tb->HostWrite.TransportRequest)));
2810 printk(" Coalesce Interrupt Delay = 0x%x\n",
2811 readl(&(tb->HostWrite.CoalIntDelay)));
2812 printk(" Coalesce Interrupt Count = 0x%x\n",
2813 readl(&(tb->HostWrite.CoalIntCount)));
2814 printk(" Max outstanding commands = 0x%d\n",
2815 readl(&(tb->CmdsOutMax)));
2816 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
2817 for (i = 0; i < 16; i++)
2818 temp_name[i] = readb(&(tb->ServerName[i]));
2819 temp_name[16] = '\0';
2820 printk(" Server Name = %s\n", temp_name);
2821 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
2823 #endif /* CCISS_DEBUG */
2825 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
2827 int i, offset, mem_type, bar_type;
2828 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
2829 return 0;
2830 offset = 0;
2831 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2832 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
2833 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2834 offset += 4;
2835 else {
2836 mem_type = pci_resource_flags(pdev, i) &
2837 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2838 switch (mem_type) {
2839 case PCI_BASE_ADDRESS_MEM_TYPE_32:
2840 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2841 offset += 4; /* 32 bit */
2842 break;
2843 case PCI_BASE_ADDRESS_MEM_TYPE_64:
2844 offset += 8;
2845 break;
2846 default: /* reserved in PCI 2.2 */
2847 printk(KERN_WARNING
2848 "Base address is invalid\n");
2849 return -1;
2850 break;
2853 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2854 return i + 1;
2856 return -1;
2859 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
2860 * controllers that are capable. If not, we use IO-APIC mode.
2863 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
2864 struct pci_dev *pdev, __u32 board_id)
2866 #ifdef CONFIG_PCI_MSI
2867 int err;
2868 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
2869 {0, 2}, {0, 3}
2872 /* Some boards advertise MSI but don't really support it */
2873 if ((board_id == 0x40700E11) ||
2874 (board_id == 0x40800E11) ||
2875 (board_id == 0x40820E11) || (board_id == 0x40830E11))
2876 goto default_int_mode;
2878 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
2879 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
2880 if (!err) {
2881 c->intr[0] = cciss_msix_entries[0].vector;
2882 c->intr[1] = cciss_msix_entries[1].vector;
2883 c->intr[2] = cciss_msix_entries[2].vector;
2884 c->intr[3] = cciss_msix_entries[3].vector;
2885 c->msix_vector = 1;
2886 return;
2888 if (err > 0) {
2889 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
2890 "available\n", err);
2891 goto default_int_mode;
2892 } else {
2893 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
2894 err);
2895 goto default_int_mode;
2898 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
2899 if (!pci_enable_msi(pdev)) {
2900 c->msi_vector = 1;
2901 } else {
2902 printk(KERN_WARNING "cciss: MSI init failed\n");
2905 default_int_mode:
2906 #endif /* CONFIG_PCI_MSI */
2907 /* if we get here we're going to use the default interrupt mode */
2908 c->intr[SIMPLE_MODE_INT] = pdev->irq;
2909 return;
2912 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2914 ushort subsystem_vendor_id, subsystem_device_id, command;
2915 __u32 board_id, scratchpad = 0;
2916 __u64 cfg_offset;
2917 __u32 cfg_base_addr;
2918 __u64 cfg_base_addr_index;
2919 int i, err;
2921 /* check to see if controller has been disabled */
2922 /* BEFORE trying to enable it */
2923 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
2924 if (!(command & 0x02)) {
2925 printk(KERN_WARNING
2926 "cciss: controller appears to be disabled\n");
2927 return -ENODEV;
2930 err = pci_enable_device(pdev);
2931 if (err) {
2932 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
2933 return err;
2936 err = pci_request_regions(pdev, "cciss");
2937 if (err) {
2938 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
2939 "aborting\n");
2940 return err;
2943 subsystem_vendor_id = pdev->subsystem_vendor;
2944 subsystem_device_id = pdev->subsystem_device;
2945 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
2946 subsystem_vendor_id);
2948 #ifdef CCISS_DEBUG
2949 printk("command = %x\n", command);
2950 printk("irq = %x\n", pdev->irq);
2951 printk("board_id = %x\n", board_id);
2952 #endif /* CCISS_DEBUG */
2954 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
2955 * else we use the IO-APIC interrupt assigned to us by system ROM.
2957 cciss_interrupt_mode(c, pdev, board_id);
2960 * Memory base addr is first addr , the second points to the config
2961 * table
2964 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
2965 #ifdef CCISS_DEBUG
2966 printk("address 0 = %x\n", c->paddr);
2967 #endif /* CCISS_DEBUG */
2968 c->vaddr = remap_pci_mem(c->paddr, 0x250);
2970 /* Wait for the board to become ready. (PCI hotplug needs this.)
2971 * We poll for up to 120 secs, once per 100ms. */
2972 for (i = 0; i < 1200; i++) {
2973 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
2974 if (scratchpad == CCISS_FIRMWARE_READY)
2975 break;
2976 set_current_state(TASK_INTERRUPTIBLE);
2977 schedule_timeout(HZ / 10); /* wait 100ms */
2979 if (scratchpad != CCISS_FIRMWARE_READY) {
2980 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
2981 err = -ENODEV;
2982 goto err_out_free_res;
2985 /* get the address index number */
2986 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
2987 cfg_base_addr &= (__u32) 0x0000ffff;
2988 #ifdef CCISS_DEBUG
2989 printk("cfg base address = %x\n", cfg_base_addr);
2990 #endif /* CCISS_DEBUG */
2991 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
2992 #ifdef CCISS_DEBUG
2993 printk("cfg base address index = %x\n", cfg_base_addr_index);
2994 #endif /* CCISS_DEBUG */
2995 if (cfg_base_addr_index == -1) {
2996 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
2997 err = -ENODEV;
2998 goto err_out_free_res;
3001 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3002 #ifdef CCISS_DEBUG
3003 printk("cfg offset = %x\n", cfg_offset);
3004 #endif /* CCISS_DEBUG */
3005 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3006 cfg_base_addr_index) +
3007 cfg_offset, sizeof(CfgTable_struct));
3008 c->board_id = board_id;
3010 #ifdef CCISS_DEBUG
3011 print_cfg_table(c->cfgtable);
3012 #endif /* CCISS_DEBUG */
3014 for (i = 0; i < ARRAY_SIZE(products); i++) {
3015 if (board_id == products[i].board_id) {
3016 c->product_name = products[i].product_name;
3017 c->access = *(products[i].access);
3018 c->nr_cmds = products[i].nr_cmds;
3019 break;
3022 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3023 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3024 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3025 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3026 printk("Does not appear to be a valid CISS config table\n");
3027 err = -ENODEV;
3028 goto err_out_free_res;
3030 /* We didn't find the controller in our list. We know the
3031 * signature is valid. If it's an HP device let's try to
3032 * bind to the device and fire it up. Otherwise we bail.
3034 if (i == ARRAY_SIZE(products)) {
3035 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3036 c->product_name = products[i-1].product_name;
3037 c->access = *(products[i-1].access);
3038 c->nr_cmds = products[i-1].nr_cmds;
3039 printk(KERN_WARNING "cciss: This is an unknown "
3040 "Smart Array controller.\n"
3041 "cciss: Please update to the latest driver "
3042 "available from www.hp.com.\n");
3043 } else {
3044 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3045 " to access the Smart Array controller %08lx\n"
3046 , (unsigned long)board_id);
3047 err = -ENODEV;
3048 goto err_out_free_res;
3051 #ifdef CONFIG_X86
3053 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3054 __u32 prefetch;
3055 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3056 prefetch |= 0x100;
3057 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3059 #endif
3061 /* Disabling DMA prefetch and refetch for the P600.
3062 * An ASIC bug may result in accesses to invalid memory addresses.
3063 * We've disabled prefetch for some time now. Testing with XEN
3064 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3066 if(board_id == 0x3225103C) {
3067 __u32 dma_prefetch;
3068 __u32 dma_refetch;
3069 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3070 dma_prefetch |= 0x8000;
3071 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3072 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3073 dma_refetch |= 0x1;
3074 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3077 #ifdef CCISS_DEBUG
3078 printk("Trying to put board into Simple mode\n");
3079 #endif /* CCISS_DEBUG */
3080 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3081 /* Update the field, and then ring the doorbell */
3082 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3083 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3085 /* under certain very rare conditions, this can take awhile.
3086 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3087 * as we enter this code.) */
3088 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3089 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3090 break;
3091 /* delay and try again */
3092 set_current_state(TASK_INTERRUPTIBLE);
3093 schedule_timeout(10);
3096 #ifdef CCISS_DEBUG
3097 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3098 readl(c->vaddr + SA5_DOORBELL));
3099 #endif /* CCISS_DEBUG */
3100 #ifdef CCISS_DEBUG
3101 print_cfg_table(c->cfgtable);
3102 #endif /* CCISS_DEBUG */
3104 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3105 printk(KERN_WARNING "cciss: unable to get board into"
3106 " simple mode\n");
3107 err = -ENODEV;
3108 goto err_out_free_res;
3110 return 0;
3112 err_out_free_res:
3114 * Deliberately omit pci_disable_device(): it does something nasty to
3115 * Smart Array controllers that pci_enable_device does not undo
3117 pci_release_regions(pdev);
3118 return err;
3122 * Gets information about the local volumes attached to the controller.
3124 static void cciss_getgeometry(int cntl_num)
3126 ReportLunData_struct *ld_buff;
3127 InquiryData_struct *inq_buff;
3128 int return_code;
3129 int i;
3130 int listlength = 0;
3131 __u32 lunid = 0;
3132 unsigned block_size;
3133 sector_t total_size;
3135 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
3136 if (ld_buff == NULL) {
3137 printk(KERN_ERR "cciss: out of memory\n");
3138 return;
3140 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3141 if (inq_buff == NULL) {
3142 printk(KERN_ERR "cciss: out of memory\n");
3143 kfree(ld_buff);
3144 return;
3146 /* Get the firmware version */
3147 return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
3148 sizeof(InquiryData_struct), 0, 0, 0, NULL,
3149 TYPE_CMD);
3150 if (return_code == IO_OK) {
3151 hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
3152 hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
3153 hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
3154 hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
3155 } else { /* send command failed */
3157 printk(KERN_WARNING "cciss: unable to determine firmware"
3158 " version of controller\n");
3160 /* Get the number of logical volumes */
3161 return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
3162 sizeof(ReportLunData_struct), 0, 0, 0, NULL,
3163 TYPE_CMD);
3165 if (return_code == IO_OK) {
3166 #ifdef CCISS_DEBUG
3167 printk("LUN Data\n--------------------------\n");
3168 #endif /* CCISS_DEBUG */
3170 listlength |=
3171 (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
3172 listlength |=
3173 (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
3174 listlength |=
3175 (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
3176 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
3177 } else { /* reading number of logical volumes failed */
3179 printk(KERN_WARNING "cciss: report logical volume"
3180 " command failed\n");
3181 listlength = 0;
3183 hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
3184 if (hba[cntl_num]->num_luns > CISS_MAX_LUN) {
3185 printk(KERN_ERR
3186 "ciss: only %d number of logical volumes supported\n",
3187 CISS_MAX_LUN);
3188 hba[cntl_num]->num_luns = CISS_MAX_LUN;
3190 #ifdef CCISS_DEBUG
3191 printk(KERN_DEBUG "Length = %x %x %x %x = %d\n",
3192 ld_buff->LUNListLength[0], ld_buff->LUNListLength[1],
3193 ld_buff->LUNListLength[2], ld_buff->LUNListLength[3],
3194 hba[cntl_num]->num_luns);
3195 #endif /* CCISS_DEBUG */
3197 hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns - 1;
3198 for (i = 0; i < CISS_MAX_LUN; i++) {
3199 if (i < hba[cntl_num]->num_luns) {
3200 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
3201 << 24;
3202 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
3203 << 16;
3204 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
3205 << 8;
3206 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
3208 hba[cntl_num]->drv[i].LunID = lunid;
3210 #ifdef CCISS_DEBUG
3211 printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
3212 ld_buff->LUN[i][0], ld_buff->LUN[i][1],
3213 ld_buff->LUN[i][2], ld_buff->LUN[i][3],
3214 hba[cntl_num]->drv[i].LunID);
3215 #endif /* CCISS_DEBUG */
3217 /* testing to see if 16-byte CDBs are already being used */
3218 if(hba[cntl_num]->cciss_read == CCISS_READ_16) {
3219 cciss_read_capacity_16(cntl_num, i, 0,
3220 &total_size, &block_size);
3221 goto geo_inq;
3223 cciss_read_capacity(cntl_num, i, 0, &total_size, &block_size);
3225 /* If read_capacity returns all F's the logical is >2TB */
3226 /* so we switch to 16-byte CDBs for all read/write ops */
3227 if(total_size == 0xFFFFFFFFULL) {
3228 cciss_read_capacity_16(cntl_num, i, 0,
3229 &total_size, &block_size);
3230 hba[cntl_num]->cciss_read = CCISS_READ_16;
3231 hba[cntl_num]->cciss_write = CCISS_WRITE_16;
3232 } else {
3233 hba[cntl_num]->cciss_read = CCISS_READ_10;
3234 hba[cntl_num]->cciss_write = CCISS_WRITE_10;
3236 geo_inq:
3237 cciss_geometry_inquiry(cntl_num, i, 0, total_size,
3238 block_size, inq_buff,
3239 &hba[cntl_num]->drv[i]);
3240 } else {
3241 /* initialize raid_level to indicate a free space */
3242 hba[cntl_num]->drv[i].raid_level = -1;
3245 kfree(ld_buff);
3246 kfree(inq_buff);
3249 /* Function to find the first free pointer into our hba[] array */
3250 /* Returns -1 if no free entries are left. */
3251 static int alloc_cciss_hba(void)
3253 int i;
3255 for (i = 0; i < MAX_CTLR; i++) {
3256 if (!hba[i]) {
3257 ctlr_info_t *p;
3259 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3260 if (!p)
3261 goto Enomem;
3262 p->gendisk[0] = alloc_disk(1 << NWD_SHIFT);
3263 if (!p->gendisk[0]) {
3264 kfree(p);
3265 goto Enomem;
3267 hba[i] = p;
3268 return i;
3271 printk(KERN_WARNING "cciss: This driver supports a maximum"
3272 " of %d controllers.\n", MAX_CTLR);
3273 return -1;
3274 Enomem:
3275 printk(KERN_ERR "cciss: out of memory.\n");
3276 return -1;
3279 static void free_hba(int i)
3281 ctlr_info_t *p = hba[i];
3282 int n;
3284 hba[i] = NULL;
3285 for (n = 0; n < CISS_MAX_LUN; n++)
3286 put_disk(p->gendisk[n]);
3287 kfree(p);
3291 * This is it. Find all the controllers and register them. I really hate
3292 * stealing all these major device numbers.
3293 * returns the number of block devices registered.
3295 static int __devinit cciss_init_one(struct pci_dev *pdev,
3296 const struct pci_device_id *ent)
3298 int i;
3299 int j = 0;
3300 int rc;
3301 int dac;
3303 i = alloc_cciss_hba();
3304 if (i < 0)
3305 return -1;
3307 hba[i]->busy_initializing = 1;
3309 if (cciss_pci_init(hba[i], pdev) != 0)
3310 goto clean1;
3312 sprintf(hba[i]->devname, "cciss%d", i);
3313 hba[i]->ctlr = i;
3314 hba[i]->pdev = pdev;
3316 /* configure PCI DMA stuff */
3317 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3318 dac = 1;
3319 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3320 dac = 0;
3321 else {
3322 printk(KERN_ERR "cciss: no suitable DMA available\n");
3323 goto clean1;
3327 * register with the major number, or get a dynamic major number
3328 * by passing 0 as argument. This is done for greater than
3329 * 8 controller support.
3331 if (i < MAX_CTLR_ORIG)
3332 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3333 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3334 if (rc == -EBUSY || rc == -EINVAL) {
3335 printk(KERN_ERR
3336 "cciss: Unable to get major number %d for %s "
3337 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3338 goto clean1;
3339 } else {
3340 if (i >= MAX_CTLR_ORIG)
3341 hba[i]->major = rc;
3344 /* make sure the board interrupts are off */
3345 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3346 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3347 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3348 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3349 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3350 goto clean2;
3353 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3354 hba[i]->devname, pdev->device, pci_name(pdev),
3355 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3357 hba[i]->cmd_pool_bits =
3358 kmalloc(((hba[i]->nr_cmds + BITS_PER_LONG -
3359 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3360 hba[i]->cmd_pool = (CommandList_struct *)
3361 pci_alloc_consistent(hba[i]->pdev,
3362 hba[i]->nr_cmds * sizeof(CommandList_struct),
3363 &(hba[i]->cmd_pool_dhandle));
3364 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3365 pci_alloc_consistent(hba[i]->pdev,
3366 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3367 &(hba[i]->errinfo_pool_dhandle));
3368 if ((hba[i]->cmd_pool_bits == NULL)
3369 || (hba[i]->cmd_pool == NULL)
3370 || (hba[i]->errinfo_pool == NULL)) {
3371 printk(KERN_ERR "cciss: out of memory");
3372 goto clean4;
3374 #ifdef CONFIG_CISS_SCSI_TAPE
3375 hba[i]->scsi_rejects.complete =
3376 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3377 (hba[i]->nr_cmds + 5), GFP_KERNEL);
3378 if (hba[i]->scsi_rejects.complete == NULL) {
3379 printk(KERN_ERR "cciss: out of memory");
3380 goto clean4;
3382 #endif
3383 spin_lock_init(&hba[i]->lock);
3385 /* Initialize the pdev driver private data.
3386 have it point to hba[i]. */
3387 pci_set_drvdata(pdev, hba[i]);
3388 /* command and error info recs zeroed out before
3389 they are used */
3390 memset(hba[i]->cmd_pool_bits, 0,
3391 ((hba[i]->nr_cmds + BITS_PER_LONG -
3392 1) / BITS_PER_LONG) * sizeof(unsigned long));
3394 #ifdef CCISS_DEBUG
3395 printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n", i);
3396 #endif /* CCISS_DEBUG */
3398 cciss_getgeometry(i);
3400 cciss_scsi_setup(i);
3402 /* Turn the interrupts on so we can service requests */
3403 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3405 cciss_procinit(i);
3407 hba[i]->cciss_max_sectors = 2048;
3409 hba[i]->busy_initializing = 0;
3411 do {
3412 drive_info_struct *drv = &(hba[i]->drv[j]);
3413 struct gendisk *disk = hba[i]->gendisk[j];
3414 struct request_queue *q;
3416 /* Check if the disk was allocated already */
3417 if (!disk){
3418 hba[i]->gendisk[j] = alloc_disk(1 << NWD_SHIFT);
3419 disk = hba[i]->gendisk[j];
3422 /* Check that the disk was able to be allocated */
3423 if (!disk) {
3424 printk(KERN_ERR "cciss: unable to allocate memory for disk %d\n", j);
3425 goto clean4;
3428 q = blk_init_queue(do_cciss_request, &hba[i]->lock);
3429 if (!q) {
3430 printk(KERN_ERR
3431 "cciss: unable to allocate queue for disk %d\n",
3433 goto clean4;
3435 drv->queue = q;
3437 q->backing_dev_info.ra_pages = READ_AHEAD;
3438 blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
3440 /* This is a hardware imposed limit. */
3441 blk_queue_max_hw_segments(q, MAXSGENTRIES);
3443 /* This is a limit in the driver and could be eliminated. */
3444 blk_queue_max_phys_segments(q, MAXSGENTRIES);
3446 blk_queue_max_sectors(q, hba[i]->cciss_max_sectors);
3448 blk_queue_softirq_done(q, cciss_softirq_done);
3450 q->queuedata = hba[i];
3451 sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
3452 disk->major = hba[i]->major;
3453 disk->first_minor = j << NWD_SHIFT;
3454 disk->fops = &cciss_fops;
3455 disk->queue = q;
3456 disk->private_data = drv;
3457 disk->driverfs_dev = &pdev->dev;
3458 /* we must register the controller even if no disks exist */
3459 /* this is for the online array utilities */
3460 if (!drv->heads && j)
3461 continue;
3462 blk_queue_hardsect_size(q, drv->block_size);
3463 set_capacity(disk, drv->nr_blocks);
3464 add_disk(disk);
3465 j++;
3466 } while (j <= hba[i]->highest_lun);
3468 return 1;
3470 clean4:
3471 #ifdef CONFIG_CISS_SCSI_TAPE
3472 kfree(hba[i]->scsi_rejects.complete);
3473 #endif
3474 kfree(hba[i]->cmd_pool_bits);
3475 if (hba[i]->cmd_pool)
3476 pci_free_consistent(hba[i]->pdev,
3477 hba[i]->nr_cmds * sizeof(CommandList_struct),
3478 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3479 if (hba[i]->errinfo_pool)
3480 pci_free_consistent(hba[i]->pdev,
3481 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3482 hba[i]->errinfo_pool,
3483 hba[i]->errinfo_pool_dhandle);
3484 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3485 clean2:
3486 unregister_blkdev(hba[i]->major, hba[i]->devname);
3487 clean1:
3488 hba[i]->busy_initializing = 0;
3489 /* cleanup any queues that may have been initialized */
3490 for (j=0; j <= hba[i]->highest_lun; j++){
3491 drive_info_struct *drv = &(hba[i]->drv[j]);
3492 if (drv->queue)
3493 blk_cleanup_queue(drv->queue);
3496 * Deliberately omit pci_disable_device(): it does something nasty to
3497 * Smart Array controllers that pci_enable_device does not undo
3499 pci_release_regions(pdev);
3500 pci_set_drvdata(pdev, NULL);
3501 free_hba(i);
3502 return -1;
3505 static void cciss_shutdown(struct pci_dev *pdev)
3507 ctlr_info_t *tmp_ptr;
3508 int i;
3509 char flush_buf[4];
3510 int return_code;
3512 tmp_ptr = pci_get_drvdata(pdev);
3513 if (tmp_ptr == NULL)
3514 return;
3515 i = tmp_ptr->ctlr;
3516 if (hba[i] == NULL)
3517 return;
3519 /* Turn board interrupts off and send the flush cache command */
3520 /* sendcmd will turn off interrupt, and send the flush...
3521 * To write all data in the battery backed cache to disks */
3522 memset(flush_buf, 0, 4);
3523 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3524 TYPE_CMD);
3525 if (return_code == IO_OK) {
3526 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
3527 } else {
3528 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
3530 free_irq(hba[i]->intr[2], hba[i]);
3533 static void __devexit cciss_remove_one(struct pci_dev *pdev)
3535 ctlr_info_t *tmp_ptr;
3536 int i, j;
3538 if (pci_get_drvdata(pdev) == NULL) {
3539 printk(KERN_ERR "cciss: Unable to remove device \n");
3540 return;
3542 tmp_ptr = pci_get_drvdata(pdev);
3543 i = tmp_ptr->ctlr;
3544 if (hba[i] == NULL) {
3545 printk(KERN_ERR "cciss: device appears to "
3546 "already be removed \n");
3547 return;
3550 remove_proc_entry(hba[i]->devname, proc_cciss);
3551 unregister_blkdev(hba[i]->major, hba[i]->devname);
3553 /* remove it from the disk list */
3554 for (j = 0; j < CISS_MAX_LUN; j++) {
3555 struct gendisk *disk = hba[i]->gendisk[j];
3556 if (disk) {
3557 struct request_queue *q = disk->queue;
3559 if (disk->flags & GENHD_FL_UP)
3560 del_gendisk(disk);
3561 if (q)
3562 blk_cleanup_queue(q);
3566 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3568 cciss_shutdown(pdev);
3570 #ifdef CONFIG_PCI_MSI
3571 if (hba[i]->msix_vector)
3572 pci_disable_msix(hba[i]->pdev);
3573 else if (hba[i]->msi_vector)
3574 pci_disable_msi(hba[i]->pdev);
3575 #endif /* CONFIG_PCI_MSI */
3577 iounmap(hba[i]->vaddr);
3579 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3580 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3581 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3582 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3583 kfree(hba[i]->cmd_pool_bits);
3584 #ifdef CONFIG_CISS_SCSI_TAPE
3585 kfree(hba[i]->scsi_rejects.complete);
3586 #endif
3588 * Deliberately omit pci_disable_device(): it does something nasty to
3589 * Smart Array controllers that pci_enable_device does not undo
3591 pci_release_regions(pdev);
3592 pci_set_drvdata(pdev, NULL);
3593 free_hba(i);
3596 static struct pci_driver cciss_pci_driver = {
3597 .name = "cciss",
3598 .probe = cciss_init_one,
3599 .remove = __devexit_p(cciss_remove_one),
3600 .id_table = cciss_pci_device_id, /* id_table */
3601 .shutdown = cciss_shutdown,
3605 * This is it. Register the PCI driver information for the cards we control
3606 * the OS will call our registered routines when it finds one of our cards.
3608 static int __init cciss_init(void)
3610 printk(KERN_INFO DRIVER_NAME "\n");
3612 /* Register for our PCI devices */
3613 return pci_register_driver(&cciss_pci_driver);
3616 static void __exit cciss_cleanup(void)
3618 int i;
3620 pci_unregister_driver(&cciss_pci_driver);
3621 /* double check that all controller entrys have been removed */
3622 for (i = 0; i < MAX_CTLR; i++) {
3623 if (hba[i] != NULL) {
3624 printk(KERN_WARNING "cciss: had to remove"
3625 " controller %d\n", i);
3626 cciss_remove_one(hba[i]->pdev);
3629 remove_proc_entry("cciss", proc_root_driver);
3632 static void fail_all_cmds(unsigned long ctlr)
3634 /* If we get here, the board is apparently dead. */
3635 ctlr_info_t *h = hba[ctlr];
3636 CommandList_struct *c;
3637 unsigned long flags;
3639 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3640 h->alive = 0; /* the controller apparently died... */
3642 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3644 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3646 /* move everything off the request queue onto the completed queue */
3647 while ((c = h->reqQ) != NULL) {
3648 removeQ(&(h->reqQ), c);
3649 h->Qdepth--;
3650 addQ(&(h->cmpQ), c);
3653 /* Now, fail everything on the completed queue with a HW error */
3654 while ((c = h->cmpQ) != NULL) {
3655 removeQ(&h->cmpQ, c);
3656 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3657 if (c->cmd_type == CMD_RWREQ) {
3658 complete_command(h, c, 0);
3659 } else if (c->cmd_type == CMD_IOCTL_PEND)
3660 complete(c->waiting);
3661 #ifdef CONFIG_CISS_SCSI_TAPE
3662 else if (c->cmd_type == CMD_SCSI)
3663 complete_scsi_command(c, 0, 0);
3664 #endif
3666 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3667 return;
3670 module_init(cciss_init);
3671 module_exit(cciss_cleanup);