2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/if_vlan.h>
37 #include <linux/delay.h>
38 #include <linux/crc32.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/mii.h>
45 #define DRV_NAME "skge"
46 #define DRV_VERSION "1.6"
47 #define PFX DRV_NAME " "
49 #define DEFAULT_TX_RING_SIZE 128
50 #define DEFAULT_RX_RING_SIZE 512
51 #define MAX_TX_RING_SIZE 1024
52 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
53 #define MAX_RX_RING_SIZE 4096
54 #define RX_COPY_THRESHOLD 128
55 #define RX_BUF_SIZE 1536
56 #define PHY_RETRIES 1000
57 #define ETH_JUMBO_MTU 9000
58 #define TX_WATCHDOG (5 * HZ)
59 #define NAPI_WEIGHT 64
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION
);
67 static const u32 default_msg
68 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
71 static int debug
= -1; /* defaults above */
72 module_param(debug
, int, 0);
73 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
75 static const struct pci_device_id skge_id_table
[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
), },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
86 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015, },
89 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
91 static int skge_up(struct net_device
*dev
);
92 static int skge_down(struct net_device
*dev
);
93 static void skge_phy_reset(struct skge_port
*skge
);
94 static void skge_tx_clean(struct skge_port
*skge
);
95 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
96 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
97 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
98 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
99 static void yukon_init(struct skge_hw
*hw
, int port
);
100 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
101 static void genesis_link_up(struct skge_port
*skge
);
103 /* Avoid conditionals by using array */
104 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
105 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
106 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
107 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
109 static int skge_get_regs_len(struct net_device
*dev
)
115 * Returns copy of whole control register region
116 * Note: skip RAM address register because accessing it will
119 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
122 const struct skge_port
*skge
= netdev_priv(dev
);
123 const void __iomem
*io
= skge
->hw
->regs
;
126 memset(p
, 0, regs
->len
);
127 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
129 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
130 regs
->len
- B3_RI_WTO_R1
);
133 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
134 static int wol_supported(const struct skge_hw
*hw
)
136 return !((hw
->chip_id
== CHIP_ID_GENESIS
||
137 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)));
140 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
142 struct skge_port
*skge
= netdev_priv(dev
);
144 wol
->supported
= wol_supported(skge
->hw
) ? WAKE_MAGIC
: 0;
145 wol
->wolopts
= skge
->wol
? WAKE_MAGIC
: 0;
148 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
150 struct skge_port
*skge
= netdev_priv(dev
);
151 struct skge_hw
*hw
= skge
->hw
;
153 if (wol
->wolopts
!= WAKE_MAGIC
&& wol
->wolopts
!= 0)
156 if (wol
->wolopts
== WAKE_MAGIC
&& !wol_supported(hw
))
159 skge
->wol
= wol
->wolopts
== WAKE_MAGIC
;
162 memcpy_toio(hw
->regs
+ WOL_MAC_ADDR
, dev
->dev_addr
, ETH_ALEN
);
164 skge_write16(hw
, WOL_CTRL_STAT
,
165 WOL_CTL_ENA_PME_ON_MAGIC_PKT
|
166 WOL_CTL_ENA_MAGIC_PKT_UNIT
);
168 skge_write16(hw
, WOL_CTRL_STAT
, WOL_CTL_DEFAULT
);
173 /* Determine supported/advertised modes based on hardware.
174 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
176 static u32
skge_supported_modes(const struct skge_hw
*hw
)
181 supported
= SUPPORTED_10baseT_Half
182 | SUPPORTED_10baseT_Full
183 | SUPPORTED_100baseT_Half
184 | SUPPORTED_100baseT_Full
185 | SUPPORTED_1000baseT_Half
186 | SUPPORTED_1000baseT_Full
187 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
189 if (hw
->chip_id
== CHIP_ID_GENESIS
)
190 supported
&= ~(SUPPORTED_10baseT_Half
191 | SUPPORTED_10baseT_Full
192 | SUPPORTED_100baseT_Half
193 | SUPPORTED_100baseT_Full
);
195 else if (hw
->chip_id
== CHIP_ID_YUKON
)
196 supported
&= ~SUPPORTED_1000baseT_Half
;
198 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_FIBRE
204 static int skge_get_settings(struct net_device
*dev
,
205 struct ethtool_cmd
*ecmd
)
207 struct skge_port
*skge
= netdev_priv(dev
);
208 struct skge_hw
*hw
= skge
->hw
;
210 ecmd
->transceiver
= XCVR_INTERNAL
;
211 ecmd
->supported
= skge_supported_modes(hw
);
214 ecmd
->port
= PORT_TP
;
215 ecmd
->phy_address
= hw
->phy_addr
;
217 ecmd
->port
= PORT_FIBRE
;
219 ecmd
->advertising
= skge
->advertising
;
220 ecmd
->autoneg
= skge
->autoneg
;
221 ecmd
->speed
= skge
->speed
;
222 ecmd
->duplex
= skge
->duplex
;
226 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
228 struct skge_port
*skge
= netdev_priv(dev
);
229 const struct skge_hw
*hw
= skge
->hw
;
230 u32 supported
= skge_supported_modes(hw
);
232 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
233 ecmd
->advertising
= supported
;
239 switch (ecmd
->speed
) {
241 if (ecmd
->duplex
== DUPLEX_FULL
)
242 setting
= SUPPORTED_1000baseT_Full
;
243 else if (ecmd
->duplex
== DUPLEX_HALF
)
244 setting
= SUPPORTED_1000baseT_Half
;
249 if (ecmd
->duplex
== DUPLEX_FULL
)
250 setting
= SUPPORTED_100baseT_Full
;
251 else if (ecmd
->duplex
== DUPLEX_HALF
)
252 setting
= SUPPORTED_100baseT_Half
;
258 if (ecmd
->duplex
== DUPLEX_FULL
)
259 setting
= SUPPORTED_10baseT_Full
;
260 else if (ecmd
->duplex
== DUPLEX_HALF
)
261 setting
= SUPPORTED_10baseT_Half
;
269 if ((setting
& supported
) == 0)
272 skge
->speed
= ecmd
->speed
;
273 skge
->duplex
= ecmd
->duplex
;
276 skge
->autoneg
= ecmd
->autoneg
;
277 skge
->advertising
= ecmd
->advertising
;
279 if (netif_running(dev
))
280 skge_phy_reset(skge
);
285 static void skge_get_drvinfo(struct net_device
*dev
,
286 struct ethtool_drvinfo
*info
)
288 struct skge_port
*skge
= netdev_priv(dev
);
290 strcpy(info
->driver
, DRV_NAME
);
291 strcpy(info
->version
, DRV_VERSION
);
292 strcpy(info
->fw_version
, "N/A");
293 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
296 static const struct skge_stat
{
297 char name
[ETH_GSTRING_LEN
];
301 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
302 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
304 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
305 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
306 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
307 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
308 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
309 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
310 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
311 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
313 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
314 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
315 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
316 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
317 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
318 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
320 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
321 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
322 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
323 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
324 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
327 static int skge_get_stats_count(struct net_device
*dev
)
329 return ARRAY_SIZE(skge_stats
);
332 static void skge_get_ethtool_stats(struct net_device
*dev
,
333 struct ethtool_stats
*stats
, u64
*data
)
335 struct skge_port
*skge
= netdev_priv(dev
);
337 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
338 genesis_get_stats(skge
, data
);
340 yukon_get_stats(skge
, data
);
343 /* Use hardware MIB variables for critical path statistics and
344 * transmit feedback not reported at interrupt.
345 * Other errors are accounted for in interrupt handler.
347 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
349 struct skge_port
*skge
= netdev_priv(dev
);
350 u64 data
[ARRAY_SIZE(skge_stats
)];
352 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
353 genesis_get_stats(skge
, data
);
355 yukon_get_stats(skge
, data
);
357 skge
->net_stats
.tx_bytes
= data
[0];
358 skge
->net_stats
.rx_bytes
= data
[1];
359 skge
->net_stats
.tx_packets
= data
[2] + data
[4] + data
[6];
360 skge
->net_stats
.rx_packets
= data
[3] + data
[5] + data
[7];
361 skge
->net_stats
.multicast
= data
[3] + data
[5];
362 skge
->net_stats
.collisions
= data
[10];
363 skge
->net_stats
.tx_aborted_errors
= data
[12];
365 return &skge
->net_stats
;
368 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
374 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
375 memcpy(data
+ i
* ETH_GSTRING_LEN
,
376 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
381 static void skge_get_ring_param(struct net_device
*dev
,
382 struct ethtool_ringparam
*p
)
384 struct skge_port
*skge
= netdev_priv(dev
);
386 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
387 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
388 p
->rx_mini_max_pending
= 0;
389 p
->rx_jumbo_max_pending
= 0;
391 p
->rx_pending
= skge
->rx_ring
.count
;
392 p
->tx_pending
= skge
->tx_ring
.count
;
393 p
->rx_mini_pending
= 0;
394 p
->rx_jumbo_pending
= 0;
397 static int skge_set_ring_param(struct net_device
*dev
,
398 struct ethtool_ringparam
*p
)
400 struct skge_port
*skge
= netdev_priv(dev
);
403 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
404 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
407 skge
->rx_ring
.count
= p
->rx_pending
;
408 skge
->tx_ring
.count
= p
->tx_pending
;
410 if (netif_running(dev
)) {
420 static u32
skge_get_msglevel(struct net_device
*netdev
)
422 struct skge_port
*skge
= netdev_priv(netdev
);
423 return skge
->msg_enable
;
426 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
428 struct skge_port
*skge
= netdev_priv(netdev
);
429 skge
->msg_enable
= value
;
432 static int skge_nway_reset(struct net_device
*dev
)
434 struct skge_port
*skge
= netdev_priv(dev
);
436 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
439 skge_phy_reset(skge
);
443 static int skge_set_sg(struct net_device
*dev
, u32 data
)
445 struct skge_port
*skge
= netdev_priv(dev
);
446 struct skge_hw
*hw
= skge
->hw
;
448 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
450 return ethtool_op_set_sg(dev
, data
);
453 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
455 struct skge_port
*skge
= netdev_priv(dev
);
456 struct skge_hw
*hw
= skge
->hw
;
458 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
461 return ethtool_op_set_tx_csum(dev
, data
);
464 static u32
skge_get_rx_csum(struct net_device
*dev
)
466 struct skge_port
*skge
= netdev_priv(dev
);
468 return skge
->rx_csum
;
471 /* Only Yukon supports checksum offload. */
472 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
474 struct skge_port
*skge
= netdev_priv(dev
);
476 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
479 skge
->rx_csum
= data
;
483 static void skge_get_pauseparam(struct net_device
*dev
,
484 struct ethtool_pauseparam
*ecmd
)
486 struct skge_port
*skge
= netdev_priv(dev
);
488 ecmd
->tx_pause
= (skge
->flow_control
== FLOW_MODE_LOC_SEND
)
489 || (skge
->flow_control
== FLOW_MODE_SYMMETRIC
);
490 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_REM_SEND
)
491 || (skge
->flow_control
== FLOW_MODE_SYMMETRIC
);
493 ecmd
->autoneg
= skge
->autoneg
;
496 static int skge_set_pauseparam(struct net_device
*dev
,
497 struct ethtool_pauseparam
*ecmd
)
499 struct skge_port
*skge
= netdev_priv(dev
);
501 skge
->autoneg
= ecmd
->autoneg
;
502 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
503 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
504 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
505 skge
->flow_control
= FLOW_MODE_REM_SEND
;
506 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
507 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
509 skge
->flow_control
= FLOW_MODE_NONE
;
511 if (netif_running(dev
))
512 skge_phy_reset(skge
);
516 /* Chip internal frequency for clock calculations */
517 static inline u32
hwkhz(const struct skge_hw
*hw
)
519 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
522 /* Chip HZ to microseconds */
523 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
525 return (ticks
* 1000) / hwkhz(hw
);
528 /* Microseconds to chip HZ */
529 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
531 return hwkhz(hw
) * usec
/ 1000;
534 static int skge_get_coalesce(struct net_device
*dev
,
535 struct ethtool_coalesce
*ecmd
)
537 struct skge_port
*skge
= netdev_priv(dev
);
538 struct skge_hw
*hw
= skge
->hw
;
539 int port
= skge
->port
;
541 ecmd
->rx_coalesce_usecs
= 0;
542 ecmd
->tx_coalesce_usecs
= 0;
544 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
545 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
546 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
548 if (msk
& rxirqmask
[port
])
549 ecmd
->rx_coalesce_usecs
= delay
;
550 if (msk
& txirqmask
[port
])
551 ecmd
->tx_coalesce_usecs
= delay
;
557 /* Note: interrupt timer is per board, but can turn on/off per port */
558 static int skge_set_coalesce(struct net_device
*dev
,
559 struct ethtool_coalesce
*ecmd
)
561 struct skge_port
*skge
= netdev_priv(dev
);
562 struct skge_hw
*hw
= skge
->hw
;
563 int port
= skge
->port
;
564 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
567 if (ecmd
->rx_coalesce_usecs
== 0)
568 msk
&= ~rxirqmask
[port
];
569 else if (ecmd
->rx_coalesce_usecs
< 25 ||
570 ecmd
->rx_coalesce_usecs
> 33333)
573 msk
|= rxirqmask
[port
];
574 delay
= ecmd
->rx_coalesce_usecs
;
577 if (ecmd
->tx_coalesce_usecs
== 0)
578 msk
&= ~txirqmask
[port
];
579 else if (ecmd
->tx_coalesce_usecs
< 25 ||
580 ecmd
->tx_coalesce_usecs
> 33333)
583 msk
|= txirqmask
[port
];
584 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
587 skge_write32(hw
, B2_IRQM_MSK
, msk
);
589 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
591 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
592 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
597 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
598 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
600 struct skge_hw
*hw
= skge
->hw
;
601 int port
= skge
->port
;
603 mutex_lock(&hw
->phy_mutex
);
604 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
607 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
608 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
609 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
610 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
614 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
615 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
617 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
618 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
623 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
624 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
625 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
627 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
633 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
634 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
635 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
636 PHY_M_LED_MO_10(MO_LED_OFF
) |
637 PHY_M_LED_MO_100(MO_LED_OFF
) |
638 PHY_M_LED_MO_1000(MO_LED_OFF
) |
639 PHY_M_LED_MO_RX(MO_LED_OFF
));
642 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
643 PHY_M_LED_PULS_DUR(PULS_170MS
) |
644 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
648 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
649 PHY_M_LED_MO_RX(MO_LED_OFF
) |
650 (skge
->speed
== SPEED_100
?
651 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
654 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
655 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
656 PHY_M_LED_MO_DUP(MO_LED_ON
) |
657 PHY_M_LED_MO_10(MO_LED_ON
) |
658 PHY_M_LED_MO_100(MO_LED_ON
) |
659 PHY_M_LED_MO_1000(MO_LED_ON
) |
660 PHY_M_LED_MO_RX(MO_LED_ON
));
663 mutex_unlock(&hw
->phy_mutex
);
666 /* blink LED's for finding board */
667 static int skge_phys_id(struct net_device
*dev
, u32 data
)
669 struct skge_port
*skge
= netdev_priv(dev
);
671 enum led_mode mode
= LED_MODE_TST
;
673 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
674 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
679 skge_led(skge
, mode
);
680 mode
^= LED_MODE_TST
;
682 if (msleep_interruptible(BLINK_MS
))
687 /* back to regular LED state */
688 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
693 static struct ethtool_ops skge_ethtool_ops
= {
694 .get_settings
= skge_get_settings
,
695 .set_settings
= skge_set_settings
,
696 .get_drvinfo
= skge_get_drvinfo
,
697 .get_regs_len
= skge_get_regs_len
,
698 .get_regs
= skge_get_regs
,
699 .get_wol
= skge_get_wol
,
700 .set_wol
= skge_set_wol
,
701 .get_msglevel
= skge_get_msglevel
,
702 .set_msglevel
= skge_set_msglevel
,
703 .nway_reset
= skge_nway_reset
,
704 .get_link
= ethtool_op_get_link
,
705 .get_ringparam
= skge_get_ring_param
,
706 .set_ringparam
= skge_set_ring_param
,
707 .get_pauseparam
= skge_get_pauseparam
,
708 .set_pauseparam
= skge_set_pauseparam
,
709 .get_coalesce
= skge_get_coalesce
,
710 .set_coalesce
= skge_set_coalesce
,
711 .get_sg
= ethtool_op_get_sg
,
712 .set_sg
= skge_set_sg
,
713 .get_tx_csum
= ethtool_op_get_tx_csum
,
714 .set_tx_csum
= skge_set_tx_csum
,
715 .get_rx_csum
= skge_get_rx_csum
,
716 .set_rx_csum
= skge_set_rx_csum
,
717 .get_strings
= skge_get_strings
,
718 .phys_id
= skge_phys_id
,
719 .get_stats_count
= skge_get_stats_count
,
720 .get_ethtool_stats
= skge_get_ethtool_stats
,
721 .get_perm_addr
= ethtool_op_get_perm_addr
,
725 * Allocate ring elements and chain them together
726 * One-to-one association of board descriptors with ring elements
728 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
730 struct skge_tx_desc
*d
;
731 struct skge_element
*e
;
734 ring
->start
= kcalloc(sizeof(*e
), ring
->count
, GFP_KERNEL
);
738 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
740 if (i
== ring
->count
- 1) {
741 e
->next
= ring
->start
;
742 d
->next_offset
= base
;
745 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
748 ring
->to_use
= ring
->to_clean
= ring
->start
;
753 /* Allocate and setup a new buffer for receiving */
754 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
755 struct sk_buff
*skb
, unsigned int bufsize
)
757 struct skge_rx_desc
*rd
= e
->desc
;
760 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
764 rd
->dma_hi
= map
>> 32;
766 rd
->csum1_start
= ETH_HLEN
;
767 rd
->csum2_start
= ETH_HLEN
;
773 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
774 pci_unmap_addr_set(e
, mapaddr
, map
);
775 pci_unmap_len_set(e
, maplen
, bufsize
);
778 /* Resume receiving using existing skb,
779 * Note: DMA address is not changed by chip.
780 * MTU not changed while receiver active.
782 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
784 struct skge_rx_desc
*rd
= e
->desc
;
787 rd
->csum2_start
= ETH_HLEN
;
791 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
795 /* Free all buffers in receive ring, assumes receiver stopped */
796 static void skge_rx_clean(struct skge_port
*skge
)
798 struct skge_hw
*hw
= skge
->hw
;
799 struct skge_ring
*ring
= &skge
->rx_ring
;
800 struct skge_element
*e
;
804 struct skge_rx_desc
*rd
= e
->desc
;
807 pci_unmap_single(hw
->pdev
,
808 pci_unmap_addr(e
, mapaddr
),
809 pci_unmap_len(e
, maplen
),
811 dev_kfree_skb(e
->skb
);
814 } while ((e
= e
->next
) != ring
->start
);
818 /* Allocate buffers for receive ring
819 * For receive: to_clean is next received frame.
821 static int skge_rx_fill(struct skge_port
*skge
)
823 struct skge_ring
*ring
= &skge
->rx_ring
;
824 struct skge_element
*e
;
830 skb
= alloc_skb(skge
->rx_buf_size
+ NET_IP_ALIGN
, GFP_KERNEL
);
834 skb_reserve(skb
, NET_IP_ALIGN
);
835 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
836 } while ( (e
= e
->next
) != ring
->start
);
838 ring
->to_clean
= ring
->start
;
842 static void skge_link_up(struct skge_port
*skge
)
844 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
845 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
847 netif_carrier_on(skge
->netdev
);
848 netif_wake_queue(skge
->netdev
);
850 if (netif_msg_link(skge
))
852 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
853 skge
->netdev
->name
, skge
->speed
,
854 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
855 (skge
->flow_control
== FLOW_MODE_NONE
) ? "none" :
856 (skge
->flow_control
== FLOW_MODE_LOC_SEND
) ? "tx only" :
857 (skge
->flow_control
== FLOW_MODE_REM_SEND
) ? "rx only" :
858 (skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ? "tx and rx" :
862 static void skge_link_down(struct skge_port
*skge
)
864 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
865 netif_carrier_off(skge
->netdev
);
866 netif_stop_queue(skge
->netdev
);
868 if (netif_msg_link(skge
))
869 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
872 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
876 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
877 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
879 for (i
= 0; i
< PHY_RETRIES
; i
++) {
880 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
887 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
892 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
895 if (__xm_phy_read(hw
, port
, reg
, &v
))
896 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
897 hw
->dev
[port
]->name
);
901 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
905 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
906 for (i
= 0; i
< PHY_RETRIES
; i
++) {
907 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
914 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
915 for (i
= 0; i
< PHY_RETRIES
; i
++) {
916 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
923 static void genesis_init(struct skge_hw
*hw
)
925 /* set blink source counter */
926 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
927 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
929 /* configure mac arbiter */
930 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
932 /* configure mac arbiter timeout values */
933 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
934 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
935 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
936 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
938 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
939 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
940 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
941 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
943 /* configure packet arbiter timeout */
944 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
945 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
946 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
947 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
948 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
951 static void genesis_reset(struct skge_hw
*hw
, int port
)
953 const u8 zero
[8] = { 0 };
955 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
957 /* reset the statistics module */
958 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
959 xm_write16(hw
, port
, XM_IMSK
, 0xffff); /* disable XMAC IRQs */
960 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
961 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
962 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
964 /* disable Broadcom PHY IRQ */
965 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
967 xm_outhash(hw
, port
, XM_HSM
, zero
);
971 /* Convert mode to MII values */
972 static const u16 phy_pause_map
[] = {
973 [FLOW_MODE_NONE
] = 0,
974 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
975 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
976 [FLOW_MODE_REM_SEND
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
980 /* Check status of Broadcom phy link */
981 static void bcom_check_link(struct skge_hw
*hw
, int port
)
983 struct net_device
*dev
= hw
->dev
[port
];
984 struct skge_port
*skge
= netdev_priv(dev
);
987 /* read twice because of latch */
988 (void) xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
989 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
991 if ((status
& PHY_ST_LSYNC
) == 0) {
992 u16 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
993 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
994 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
995 /* dummy read to ensure writing */
996 (void) xm_read16(hw
, port
, XM_MMU_CMD
);
998 if (netif_carrier_ok(dev
))
999 skge_link_down(skge
);
1001 if (skge
->autoneg
== AUTONEG_ENABLE
&&
1002 (status
& PHY_ST_AN_OVER
)) {
1003 u16 lpa
= xm_phy_read(hw
, port
, PHY_BCOM_AUNE_LP
);
1004 u16 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1006 if (lpa
& PHY_B_AN_RF
) {
1007 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1012 /* Check Duplex mismatch */
1013 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1014 case PHY_B_RES_1000FD
:
1015 skge
->duplex
= DUPLEX_FULL
;
1017 case PHY_B_RES_1000HD
:
1018 skge
->duplex
= DUPLEX_HALF
;
1021 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1027 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1028 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1029 case PHY_B_AS_PAUSE_MSK
:
1030 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
1033 skge
->flow_control
= FLOW_MODE_REM_SEND
;
1036 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
1039 skge
->flow_control
= FLOW_MODE_NONE
;
1042 skge
->speed
= SPEED_1000
;
1045 if (!netif_carrier_ok(dev
))
1046 genesis_link_up(skge
);
1050 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1051 * Phy on for 100 or 10Mbit operation
1053 static void bcom_phy_init(struct skge_port
*skge
, int jumbo
)
1055 struct skge_hw
*hw
= skge
->hw
;
1056 int port
= skge
->port
;
1058 u16 id1
, r
, ext
, ctl
;
1060 /* magic workaround patterns for Broadcom */
1061 static const struct {
1065 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1066 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1067 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1068 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1070 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1071 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1074 /* read Id from external PHY (all have the same address) */
1075 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1077 /* Optimize MDIO transfer by suppressing preamble. */
1078 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1080 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1083 case PHY_BCOM_ID1_C0
:
1085 * Workaround BCOM Errata for the C0 type.
1086 * Write magic patterns to reserved registers.
1088 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1089 xm_phy_write(hw
, port
,
1090 C0hack
[i
].reg
, C0hack
[i
].val
);
1093 case PHY_BCOM_ID1_A1
:
1095 * Workaround BCOM Errata for the A1 type.
1096 * Write magic patterns to reserved registers.
1098 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1099 xm_phy_write(hw
, port
,
1100 A1hack
[i
].reg
, A1hack
[i
].val
);
1105 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1106 * Disable Power Management after reset.
1108 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1109 r
|= PHY_B_AC_DIS_PM
;
1110 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1113 xm_read16(hw
, port
, XM_ISRC
);
1115 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1116 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1118 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1120 * Workaround BCOM Errata #1 for the C5 type.
1121 * 1000Base-T Link Acquisition Failure in Slave Mode
1122 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1124 u16 adv
= PHY_B_1000C_RD
;
1125 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1126 adv
|= PHY_B_1000C_AHD
;
1127 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1128 adv
|= PHY_B_1000C_AFD
;
1129 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1131 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1133 if (skge
->duplex
== DUPLEX_FULL
)
1134 ctl
|= PHY_CT_DUP_MD
;
1135 /* Force to slave */
1136 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1139 /* Set autonegotiation pause parameters */
1140 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1141 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1143 /* Handle Jumbo frames */
1145 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1146 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1148 ext
|= PHY_B_PEC_HIGH_LA
;
1152 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1153 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1155 /* Use link status change interrupt */
1156 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1158 bcom_check_link(hw
, port
);
1161 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1163 struct net_device
*dev
= hw
->dev
[port
];
1164 struct skge_port
*skge
= netdev_priv(dev
);
1165 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1168 const u8 zero
[6] = { 0 };
1170 for (i
= 0; i
< 10; i
++) {
1171 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1173 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1178 printk(KERN_WARNING PFX
"%s: genesis reset failed\n", dev
->name
);
1181 /* Unreset the XMAC. */
1182 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1185 * Perform additional initialization for external PHYs,
1186 * namely for the 1000baseTX cards that use the XMAC's
1189 /* Take external Phy out of reset */
1190 r
= skge_read32(hw
, B2_GP_IO
);
1192 r
|= GP_DIR_0
|GP_IO_0
;
1194 r
|= GP_DIR_2
|GP_IO_2
;
1196 skge_write32(hw
, B2_GP_IO
, r
);
1199 /* Enable GMII interface */
1200 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1202 bcom_phy_init(skge
, jumbo
);
1204 /* Set Station Address */
1205 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1207 /* We don't use match addresses so clear */
1208 for (i
= 1; i
< 16; i
++)
1209 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1211 /* Clear MIB counters */
1212 xm_write16(hw
, port
, XM_STAT_CMD
,
1213 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1214 /* Clear two times according to Errata #3 */
1215 xm_write16(hw
, port
, XM_STAT_CMD
,
1216 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1218 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1219 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1221 /* We don't need the FCS appended to the packet. */
1222 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1224 r
|= XM_RX_BIG_PK_OK
;
1226 if (skge
->duplex
== DUPLEX_HALF
) {
1228 * If in manual half duplex mode the other side might be in
1229 * full duplex mode, so ignore if a carrier extension is not seen
1230 * on frames received
1232 r
|= XM_RX_DIS_CEXT
;
1234 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1237 /* We want short frames padded to 60 bytes. */
1238 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1241 * Bump up the transmit threshold. This helps hold off transmit
1242 * underruns when we're blasting traffic from both ports at once.
1244 xm_write16(hw
, port
, XM_TX_THR
, 512);
1247 * Enable the reception of all error frames. This is is
1248 * a necessary evil due to the design of the XMAC. The
1249 * XMAC's receive FIFO is only 8K in size, however jumbo
1250 * frames can be up to 9000 bytes in length. When bad
1251 * frame filtering is enabled, the XMAC's RX FIFO operates
1252 * in 'store and forward' mode. For this to work, the
1253 * entire frame has to fit into the FIFO, but that means
1254 * that jumbo frames larger than 8192 bytes will be
1255 * truncated. Disabling all bad frame filtering causes
1256 * the RX FIFO to operate in streaming mode, in which
1257 * case the XMAC will start transferring frames out of the
1258 * RX FIFO as soon as the FIFO threshold is reached.
1260 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1264 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1265 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1266 * and 'Octets Rx OK Hi Cnt Ov'.
1268 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1271 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1272 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1273 * and 'Octets Tx OK Hi Cnt Ov'.
1275 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1277 /* Configure MAC arbiter */
1278 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1280 /* configure timeout values */
1281 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1282 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1283 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1284 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1286 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1287 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1288 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1289 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1291 /* Configure Rx MAC FIFO */
1292 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1293 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1294 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1296 /* Configure Tx MAC FIFO */
1297 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1298 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1299 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1302 /* Enable frame flushing if jumbo frames used */
1303 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1305 /* enable timeout timers if normal frames */
1306 skge_write16(hw
, B3_PA_CTRL
,
1307 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1311 static void genesis_stop(struct skge_port
*skge
)
1313 struct skge_hw
*hw
= skge
->hw
;
1314 int port
= skge
->port
;
1317 genesis_reset(hw
, port
);
1319 /* Clear Tx packet arbiter timeout IRQ */
1320 skge_write16(hw
, B3_PA_CTRL
,
1321 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1324 * If the transfer sticks at the MAC the STOP command will not
1325 * terminate if we don't flush the XMAC's transmit FIFO !
1327 xm_write32(hw
, port
, XM_MODE
,
1328 xm_read32(hw
, port
, XM_MODE
)|XM_MD_FTF
);
1332 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1334 /* For external PHYs there must be special handling */
1335 reg
= skge_read32(hw
, B2_GP_IO
);
1343 skge_write32(hw
, B2_GP_IO
, reg
);
1344 skge_read32(hw
, B2_GP_IO
);
1346 xm_write16(hw
, port
, XM_MMU_CMD
,
1347 xm_read16(hw
, port
, XM_MMU_CMD
)
1348 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1350 xm_read16(hw
, port
, XM_MMU_CMD
);
1354 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1356 struct skge_hw
*hw
= skge
->hw
;
1357 int port
= skge
->port
;
1359 unsigned long timeout
= jiffies
+ HZ
;
1361 xm_write16(hw
, port
,
1362 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1364 /* wait for update to complete */
1365 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1366 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1367 if (time_after(jiffies
, timeout
))
1372 /* special case for 64 bit octet counter */
1373 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1374 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1375 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1376 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1378 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1379 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1382 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1384 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1385 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1387 if (netif_msg_intr(skge
))
1388 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1389 skge
->netdev
->name
, status
);
1391 if (status
& XM_IS_TXF_UR
) {
1392 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1393 ++skge
->net_stats
.tx_fifo_errors
;
1395 if (status
& XM_IS_RXF_OV
) {
1396 xm_write32(hw
, port
, XM_MODE
, XM_MD_FRF
);
1397 ++skge
->net_stats
.rx_fifo_errors
;
1401 static void genesis_link_up(struct skge_port
*skge
)
1403 struct skge_hw
*hw
= skge
->hw
;
1404 int port
= skge
->port
;
1408 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1411 * enabling pause frame reception is required for 1000BT
1412 * because the XMAC is not reset if the link is going down
1414 if (skge
->flow_control
== FLOW_MODE_NONE
||
1415 skge
->flow_control
== FLOW_MODE_LOC_SEND
)
1416 /* Disable Pause Frame Reception */
1417 cmd
|= XM_MMU_IGN_PF
;
1419 /* Enable Pause Frame Reception */
1420 cmd
&= ~XM_MMU_IGN_PF
;
1422 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1424 mode
= xm_read32(hw
, port
, XM_MODE
);
1425 if (skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1426 skge
->flow_control
== FLOW_MODE_LOC_SEND
) {
1428 * Configure Pause Frame Generation
1429 * Use internal and external Pause Frame Generation.
1430 * Sending pause frames is edge triggered.
1431 * Send a Pause frame with the maximum pause time if
1432 * internal oder external FIFO full condition occurs.
1433 * Send a zero pause time frame to re-start transmission.
1435 /* XM_PAUSE_DA = '010000C28001' (default) */
1436 /* XM_MAC_PTIME = 0xffff (maximum) */
1437 /* remember this value is defined in big endian (!) */
1438 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1440 mode
|= XM_PAUSE_MODE
;
1441 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1444 * disable pause frame generation is required for 1000BT
1445 * because the XMAC is not reset if the link is going down
1447 /* Disable Pause Mode in Mode Register */
1448 mode
&= ~XM_PAUSE_MODE
;
1450 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1453 xm_write32(hw
, port
, XM_MODE
, mode
);
1456 /* disable GP0 interrupt bit for external Phy */
1457 msk
|= XM_IS_INP_ASS
;
1459 xm_write16(hw
, port
, XM_IMSK
, msk
);
1460 xm_read16(hw
, port
, XM_ISRC
);
1462 /* get MMU Command Reg. */
1463 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1464 if (skge
->duplex
== DUPLEX_FULL
)
1465 cmd
|= XM_MMU_GMII_FD
;
1468 * Workaround BCOM Errata (#10523) for all BCom Phys
1469 * Enable Power Management after link up
1471 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1472 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1473 & ~PHY_B_AC_DIS_PM
);
1474 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1477 xm_write16(hw
, port
, XM_MMU_CMD
,
1478 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1483 static inline void bcom_phy_intr(struct skge_port
*skge
)
1485 struct skge_hw
*hw
= skge
->hw
;
1486 int port
= skge
->port
;
1489 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1490 if (netif_msg_intr(skge
))
1491 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1492 skge
->netdev
->name
, isrc
);
1494 if (isrc
& PHY_B_IS_PSE
)
1495 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1496 hw
->dev
[port
]->name
);
1498 /* Workaround BCom Errata:
1499 * enable and disable loopback mode if "NO HCD" occurs.
1501 if (isrc
& PHY_B_IS_NO_HDCL
) {
1502 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1503 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1504 ctrl
| PHY_CT_LOOP
);
1505 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1506 ctrl
& ~PHY_CT_LOOP
);
1509 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1510 bcom_check_link(hw
, port
);
1514 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1518 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1519 gma_write16(hw
, port
, GM_SMI_CTRL
,
1520 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1521 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1524 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1528 printk(KERN_WARNING PFX
"%s: phy write timeout\n",
1529 hw
->dev
[port
]->name
);
1533 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1537 gma_write16(hw
, port
, GM_SMI_CTRL
,
1538 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1539 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1541 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1543 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1549 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1553 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1556 if (__gm_phy_read(hw
, port
, reg
, &v
))
1557 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1558 hw
->dev
[port
]->name
);
1562 /* Marvell Phy Initialization */
1563 static void yukon_init(struct skge_hw
*hw
, int port
)
1565 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1566 u16 ctrl
, ct1000
, adv
;
1568 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1569 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1571 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1572 PHY_M_EC_MAC_S_MSK
);
1573 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1575 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1577 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1580 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1581 if (skge
->autoneg
== AUTONEG_DISABLE
)
1582 ctrl
&= ~PHY_CT_ANE
;
1584 ctrl
|= PHY_CT_RESET
;
1585 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1591 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1593 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1594 ct1000
|= PHY_M_1000C_AFD
;
1595 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1596 ct1000
|= PHY_M_1000C_AHD
;
1597 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1598 adv
|= PHY_M_AN_100_FD
;
1599 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1600 adv
|= PHY_M_AN_100_HD
;
1601 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1602 adv
|= PHY_M_AN_10_FD
;
1603 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1604 adv
|= PHY_M_AN_10_HD
;
1605 } else /* special defines for FIBER (88E1011S only) */
1606 adv
|= PHY_M_AN_1000X_AHD
| PHY_M_AN_1000X_AFD
;
1608 /* Set Flow-control capabilities */
1609 adv
|= phy_pause_map
[skge
->flow_control
];
1611 /* Restart Auto-negotiation */
1612 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1614 /* forced speed/duplex settings */
1615 ct1000
= PHY_M_1000C_MSE
;
1617 if (skge
->duplex
== DUPLEX_FULL
)
1618 ctrl
|= PHY_CT_DUP_MD
;
1620 switch (skge
->speed
) {
1622 ctrl
|= PHY_CT_SP1000
;
1625 ctrl
|= PHY_CT_SP100
;
1629 ctrl
|= PHY_CT_RESET
;
1632 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
1634 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
1635 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1637 /* Enable phy interrupt on autonegotiation complete (or link up) */
1638 if (skge
->autoneg
== AUTONEG_ENABLE
)
1639 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
1641 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
1644 static void yukon_reset(struct skge_hw
*hw
, int port
)
1646 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
1647 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
1648 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
1649 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
1650 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
1652 gma_write16(hw
, port
, GM_RX_CTRL
,
1653 gma_read16(hw
, port
, GM_RX_CTRL
)
1654 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
1657 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1658 static int is_yukon_lite_a0(struct skge_hw
*hw
)
1663 if (hw
->chip_id
!= CHIP_ID_YUKON
)
1666 reg
= skge_read32(hw
, B2_FAR
);
1667 skge_write8(hw
, B2_FAR
+ 3, 0xff);
1668 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
1669 skge_write32(hw
, B2_FAR
, reg
);
1673 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
1675 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1678 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
1680 /* WA code for COMA mode -- set PHY reset */
1681 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1682 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
1683 reg
= skge_read32(hw
, B2_GP_IO
);
1684 reg
|= GP_DIR_9
| GP_IO_9
;
1685 skge_write32(hw
, B2_GP_IO
, reg
);
1689 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
1690 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
1692 /* WA code for COMA mode -- clear PHY reset */
1693 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1694 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
1695 reg
= skge_read32(hw
, B2_GP_IO
);
1698 skge_write32(hw
, B2_GP_IO
, reg
);
1701 /* Set hardware config mode */
1702 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
1703 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
1704 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
1706 /* Clear GMC reset */
1707 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
1708 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
1709 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
1711 if (skge
->autoneg
== AUTONEG_DISABLE
) {
1712 reg
= GM_GPCR_AU_ALL_DIS
;
1713 gma_write16(hw
, port
, GM_GP_CTRL
,
1714 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
1716 switch (skge
->speed
) {
1718 reg
&= ~GM_GPCR_SPEED_100
;
1719 reg
|= GM_GPCR_SPEED_1000
;
1722 reg
&= ~GM_GPCR_SPEED_1000
;
1723 reg
|= GM_GPCR_SPEED_100
;
1726 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
1730 if (skge
->duplex
== DUPLEX_FULL
)
1731 reg
|= GM_GPCR_DUP_FULL
;
1733 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
1735 switch (skge
->flow_control
) {
1736 case FLOW_MODE_NONE
:
1737 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
1738 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
1740 case FLOW_MODE_LOC_SEND
:
1741 /* disable Rx flow-control */
1742 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
1745 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
1746 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
1748 yukon_init(hw
, port
);
1751 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
1752 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
1754 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
1755 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
1756 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
1758 /* transmit control */
1759 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
1761 /* receive control reg: unicast + multicast + no FCS */
1762 gma_write16(hw
, port
, GM_RX_CTRL
,
1763 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
1765 /* transmit flow control */
1766 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
1768 /* transmit parameter */
1769 gma_write16(hw
, port
, GM_TX_PARAM
,
1770 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
1771 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
1772 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
1774 /* serial mode register */
1775 reg
= GM_SMOD_VLAN_ENA
| IPG_DATA_VAL(IPG_DATA_DEF
);
1776 if (hw
->dev
[port
]->mtu
> 1500)
1777 reg
|= GM_SMOD_JUMBO_ENA
;
1779 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
1781 /* physical address: used for pause frames */
1782 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
1783 /* virtual address for data */
1784 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
1786 /* enable interrupt mask for counter overflows */
1787 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
1788 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
1789 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
1791 /* Initialize Mac Fifo */
1793 /* Configure Rx MAC FIFO */
1794 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
1795 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
1797 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1798 if (is_yukon_lite_a0(hw
))
1799 reg
&= ~GMF_RX_F_FL_ON
;
1801 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
1802 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
1804 * because Pause Packet Truncation in GMAC is not working
1805 * we have to increase the Flush Threshold to 64 bytes
1806 * in order to flush pause packets in Rx FIFO on Yukon-1
1808 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
1810 /* Configure Tx MAC FIFO */
1811 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
1812 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
1815 /* Go into power down mode */
1816 static void yukon_suspend(struct skge_hw
*hw
, int port
)
1820 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
1821 ctrl
|= PHY_M_PC_POL_R_DIS
;
1822 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
1824 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1825 ctrl
|= PHY_CT_RESET
;
1826 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1828 /* switch IEEE compatible power down mode on */
1829 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1830 ctrl
|= PHY_CT_PDOWN
;
1831 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1834 static void yukon_stop(struct skge_port
*skge
)
1836 struct skge_hw
*hw
= skge
->hw
;
1837 int port
= skge
->port
;
1839 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1840 yukon_reset(hw
, port
);
1842 gma_write16(hw
, port
, GM_GP_CTRL
,
1843 gma_read16(hw
, port
, GM_GP_CTRL
)
1844 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
1845 gma_read16(hw
, port
, GM_GP_CTRL
);
1847 yukon_suspend(hw
, port
);
1849 /* set GPHY Control reset */
1850 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
1851 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
1854 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
1856 struct skge_hw
*hw
= skge
->hw
;
1857 int port
= skge
->port
;
1860 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
1861 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
1862 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
1863 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
1865 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1866 data
[i
] = gma_read32(hw
, port
,
1867 skge_stats
[i
].gma_offset
);
1870 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
1872 struct net_device
*dev
= hw
->dev
[port
];
1873 struct skge_port
*skge
= netdev_priv(dev
);
1874 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
1876 if (netif_msg_intr(skge
))
1877 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1880 if (status
& GM_IS_RX_FF_OR
) {
1881 ++skge
->net_stats
.rx_fifo_errors
;
1882 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
1885 if (status
& GM_IS_TX_FF_UR
) {
1886 ++skge
->net_stats
.tx_fifo_errors
;
1887 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
1892 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
1894 switch (aux
& PHY_M_PS_SPEED_MSK
) {
1895 case PHY_M_PS_SPEED_1000
:
1897 case PHY_M_PS_SPEED_100
:
1904 static void yukon_link_up(struct skge_port
*skge
)
1906 struct skge_hw
*hw
= skge
->hw
;
1907 int port
= skge
->port
;
1910 /* Enable Transmit FIFO Underrun */
1911 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
1913 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
1914 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
1915 reg
|= GM_GPCR_DUP_FULL
;
1918 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
1919 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
1921 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
1925 static void yukon_link_down(struct skge_port
*skge
)
1927 struct skge_hw
*hw
= skge
->hw
;
1928 int port
= skge
->port
;
1931 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);
1933 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
1934 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
1935 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
1937 if (skge
->flow_control
== FLOW_MODE_REM_SEND
) {
1938 /* restore Asymmetric Pause bit */
1939 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
1940 gm_phy_read(hw
, port
,
1946 yukon_reset(hw
, port
);
1947 skge_link_down(skge
);
1949 yukon_init(hw
, port
);
1952 static void yukon_phy_intr(struct skge_port
*skge
)
1954 struct skge_hw
*hw
= skge
->hw
;
1955 int port
= skge
->port
;
1956 const char *reason
= NULL
;
1957 u16 istatus
, phystat
;
1959 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
1960 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
1962 if (netif_msg_intr(skge
))
1963 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
1964 skge
->netdev
->name
, istatus
, phystat
);
1966 if (istatus
& PHY_M_IS_AN_COMPL
) {
1967 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
1969 reason
= "remote fault";
1973 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
1974 reason
= "master/slave fault";
1978 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
1979 reason
= "speed/duplex";
1983 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
1984 ? DUPLEX_FULL
: DUPLEX_HALF
;
1985 skge
->speed
= yukon_speed(hw
, phystat
);
1987 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1988 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
1989 case PHY_M_PS_PAUSE_MSK
:
1990 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
1992 case PHY_M_PS_RX_P_EN
:
1993 skge
->flow_control
= FLOW_MODE_REM_SEND
;
1995 case PHY_M_PS_TX_P_EN
:
1996 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
1999 skge
->flow_control
= FLOW_MODE_NONE
;
2002 if (skge
->flow_control
== FLOW_MODE_NONE
||
2003 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2004 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2006 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2007 yukon_link_up(skge
);
2011 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2012 skge
->speed
= yukon_speed(hw
, phystat
);
2014 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2015 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2016 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2017 if (phystat
& PHY_M_PS_LINK_UP
)
2018 yukon_link_up(skge
);
2020 yukon_link_down(skge
);
2024 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2025 skge
->netdev
->name
, reason
);
2027 /* XXX restart autonegotiation? */
2030 static void skge_phy_reset(struct skge_port
*skge
)
2032 struct skge_hw
*hw
= skge
->hw
;
2033 int port
= skge
->port
;
2035 netif_stop_queue(skge
->netdev
);
2036 netif_carrier_off(skge
->netdev
);
2038 mutex_lock(&hw
->phy_mutex
);
2039 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2040 genesis_reset(hw
, port
);
2041 genesis_mac_init(hw
, port
);
2043 yukon_reset(hw
, port
);
2044 yukon_init(hw
, port
);
2046 mutex_unlock(&hw
->phy_mutex
);
2049 /* Basic MII support */
2050 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2052 struct mii_ioctl_data
*data
= if_mii(ifr
);
2053 struct skge_port
*skge
= netdev_priv(dev
);
2054 struct skge_hw
*hw
= skge
->hw
;
2055 int err
= -EOPNOTSUPP
;
2057 if (!netif_running(dev
))
2058 return -ENODEV
; /* Phy still in reset */
2062 data
->phy_id
= hw
->phy_addr
;
2067 mutex_lock(&hw
->phy_mutex
);
2068 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2069 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2071 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2072 mutex_unlock(&hw
->phy_mutex
);
2073 data
->val_out
= val
;
2078 if (!capable(CAP_NET_ADMIN
))
2081 mutex_lock(&hw
->phy_mutex
);
2082 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2083 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2086 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2088 mutex_unlock(&hw
->phy_mutex
);
2094 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2100 end
= start
+ len
- 1;
2102 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2103 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2104 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2105 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2106 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2108 if (q
== Q_R1
|| q
== Q_R2
) {
2109 /* Set thresholds on receive queue's */
2110 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2112 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2115 /* Enable store & forward on Tx queue's because
2116 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2118 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2121 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2124 /* Setup Bus Memory Interface */
2125 static void skge_qset(struct skge_port
*skge
, u16 q
,
2126 const struct skge_element
*e
)
2128 struct skge_hw
*hw
= skge
->hw
;
2129 u32 watermark
= 0x600;
2130 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2132 /* optimization to reduce window on 32bit/33mhz */
2133 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2136 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2137 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2138 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2139 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2142 static int skge_up(struct net_device
*dev
)
2144 struct skge_port
*skge
= netdev_priv(dev
);
2145 struct skge_hw
*hw
= skge
->hw
;
2146 int port
= skge
->port
;
2147 u32 chunk
, ram_addr
;
2148 size_t rx_size
, tx_size
;
2151 if (netif_msg_ifup(skge
))
2152 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2154 if (dev
->mtu
> RX_BUF_SIZE
)
2155 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2157 skge
->rx_buf_size
= RX_BUF_SIZE
;
2160 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2161 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2162 skge
->mem_size
= tx_size
+ rx_size
;
2163 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2167 BUG_ON(skge
->dma
& 7);
2169 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2170 printk(KERN_ERR PFX
"pci_alloc_consistent region crosses 4G boundary\n");
2175 memset(skge
->mem
, 0, skge
->mem_size
);
2177 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2181 err
= skge_rx_fill(skge
);
2185 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2186 skge
->dma
+ rx_size
);
2190 /* Initialize MAC */
2191 mutex_lock(&hw
->phy_mutex
);
2192 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2193 genesis_mac_init(hw
, port
);
2195 yukon_mac_init(hw
, port
);
2196 mutex_unlock(&hw
->phy_mutex
);
2198 /* Configure RAMbuffers */
2199 chunk
= hw
->ram_size
/ ((hw
->ports
+ 1)*2);
2200 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2202 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2203 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2205 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2206 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2207 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2209 /* Start receiver BMU */
2211 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2212 skge_led(skge
, LED_MODE_ON
);
2217 skge_rx_clean(skge
);
2218 kfree(skge
->rx_ring
.start
);
2220 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2226 static int skge_down(struct net_device
*dev
)
2228 struct skge_port
*skge
= netdev_priv(dev
);
2229 struct skge_hw
*hw
= skge
->hw
;
2230 int port
= skge
->port
;
2232 if (skge
->mem
== NULL
)
2235 if (netif_msg_ifdown(skge
))
2236 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2238 netif_stop_queue(dev
);
2240 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2241 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2246 /* Stop transmitter */
2247 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2248 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2249 RB_RST_SET
|RB_DIS_OP_MD
);
2252 /* Disable Force Sync bit and Enable Alloc bit */
2253 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2254 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2256 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2257 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2258 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2260 /* Reset PCI FIFO */
2261 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2262 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2264 /* Reset the RAM Buffer async Tx queue */
2265 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2267 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2268 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2269 RB_RST_SET
|RB_DIS_OP_MD
);
2270 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2272 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2273 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2274 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2276 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2277 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2280 skge_led(skge
, LED_MODE_OFF
);
2282 skge_tx_clean(skge
);
2283 skge_rx_clean(skge
);
2285 kfree(skge
->rx_ring
.start
);
2286 kfree(skge
->tx_ring
.start
);
2287 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2292 static inline int skge_avail(const struct skge_ring
*ring
)
2294 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2295 + (ring
->to_clean
- ring
->to_use
) - 1;
2298 static int skge_xmit_frame(struct sk_buff
*skb
, struct net_device
*dev
)
2300 struct skge_port
*skge
= netdev_priv(dev
);
2301 struct skge_hw
*hw
= skge
->hw
;
2302 struct skge_element
*e
;
2303 struct skge_tx_desc
*td
;
2307 unsigned long flags
;
2309 if (skb_padto(skb
, ETH_ZLEN
))
2310 return NETDEV_TX_OK
;
2312 if (!spin_trylock_irqsave(&skge
->tx_lock
, flags
))
2313 /* Collision - tell upper layer to requeue */
2314 return NETDEV_TX_LOCKED
;
2316 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1)) {
2317 if (!netif_queue_stopped(dev
)) {
2318 netif_stop_queue(dev
);
2320 printk(KERN_WARNING PFX
"%s: ring full when queue awake!\n",
2323 spin_unlock_irqrestore(&skge
->tx_lock
, flags
);
2324 return NETDEV_TX_BUSY
;
2327 e
= skge
->tx_ring
.to_use
;
2329 BUG_ON(td
->control
& BMU_OWN
);
2331 len
= skb_headlen(skb
);
2332 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2333 pci_unmap_addr_set(e
, mapaddr
, map
);
2334 pci_unmap_len_set(e
, maplen
, len
);
2337 td
->dma_hi
= map
>> 32;
2339 if (skb
->ip_summed
== CHECKSUM_HW
) {
2340 int offset
= skb
->h
.raw
- skb
->data
;
2342 /* This seems backwards, but it is what the sk98lin
2343 * does. Looks like hardware is wrong?
2345 if (skb
->h
.ipiph
->protocol
== IPPROTO_UDP
2346 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2347 control
= BMU_TCP_CHECK
;
2349 control
= BMU_UDP_CHECK
;
2352 td
->csum_start
= offset
;
2353 td
->csum_write
= offset
+ skb
->csum
;
2355 control
= BMU_CHECK
;
2357 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2358 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2360 struct skge_tx_desc
*tf
= td
;
2362 control
|= BMU_STFWD
;
2363 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2364 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2366 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2367 frag
->size
, PCI_DMA_TODEVICE
);
2372 BUG_ON(tf
->control
& BMU_OWN
);
2375 tf
->dma_hi
= (u64
) map
>> 32;
2376 pci_unmap_addr_set(e
, mapaddr
, map
);
2377 pci_unmap_len_set(e
, maplen
, frag
->size
);
2379 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2381 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2383 /* Make sure all the descriptors written */
2385 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2388 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2390 if (unlikely(netif_msg_tx_queued(skge
)))
2391 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2392 dev
->name
, e
- skge
->tx_ring
.start
, skb
->len
);
2394 skge
->tx_ring
.to_use
= e
->next
;
2395 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2396 pr_debug("%s: transmit queue full\n", dev
->name
);
2397 netif_stop_queue(dev
);
2400 spin_unlock_irqrestore(&skge
->tx_lock
, flags
);
2402 dev
->trans_start
= jiffies
;
2404 return NETDEV_TX_OK
;
2408 /* Free resources associated with this reing element */
2409 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2412 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2416 /* skb header vs. fragment */
2417 if (control
& BMU_STF
)
2418 pci_unmap_single(pdev
, pci_unmap_addr(e
, mapaddr
),
2419 pci_unmap_len(e
, maplen
),
2422 pci_unmap_page(pdev
, pci_unmap_addr(e
, mapaddr
),
2423 pci_unmap_len(e
, maplen
),
2426 if (control
& BMU_EOF
) {
2427 if (unlikely(netif_msg_tx_done(skge
)))
2428 printk(KERN_DEBUG PFX
"%s: tx done slot %td\n",
2429 skge
->netdev
->name
, e
- skge
->tx_ring
.start
);
2431 dev_kfree_skb_any(e
->skb
);
2436 /* Free all buffers in transmit ring */
2437 static void skge_tx_clean(struct skge_port
*skge
)
2439 struct skge_element
*e
;
2440 unsigned long flags
;
2442 spin_lock_irqsave(&skge
->tx_lock
, flags
);
2443 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2444 struct skge_tx_desc
*td
= e
->desc
;
2445 skge_tx_free(skge
, e
, td
->control
);
2449 skge
->tx_ring
.to_clean
= e
;
2450 netif_wake_queue(skge
->netdev
);
2451 spin_unlock_irqrestore(&skge
->tx_lock
, flags
);
2454 static void skge_tx_timeout(struct net_device
*dev
)
2456 struct skge_port
*skge
= netdev_priv(dev
);
2458 if (netif_msg_timer(skge
))
2459 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2461 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2462 skge_tx_clean(skge
);
2465 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2469 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2472 if (!netif_running(dev
)) {
2488 static void genesis_set_multicast(struct net_device
*dev
)
2490 struct skge_port
*skge
= netdev_priv(dev
);
2491 struct skge_hw
*hw
= skge
->hw
;
2492 int port
= skge
->port
;
2493 int i
, count
= dev
->mc_count
;
2494 struct dev_mc_list
*list
= dev
->mc_list
;
2498 mode
= xm_read32(hw
, port
, XM_MODE
);
2499 mode
|= XM_MD_ENA_HASH
;
2500 if (dev
->flags
& IFF_PROMISC
)
2501 mode
|= XM_MD_ENA_PROM
;
2503 mode
&= ~XM_MD_ENA_PROM
;
2505 if (dev
->flags
& IFF_ALLMULTI
)
2506 memset(filter
, 0xff, sizeof(filter
));
2508 memset(filter
, 0, sizeof(filter
));
2509 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
) {
2511 crc
= ether_crc_le(ETH_ALEN
, list
->dmi_addr
);
2513 filter
[bit
/8] |= 1 << (bit
%8);
2517 xm_write32(hw
, port
, XM_MODE
, mode
);
2518 xm_outhash(hw
, port
, XM_HSM
, filter
);
2521 static void yukon_set_multicast(struct net_device
*dev
)
2523 struct skge_port
*skge
= netdev_priv(dev
);
2524 struct skge_hw
*hw
= skge
->hw
;
2525 int port
= skge
->port
;
2526 struct dev_mc_list
*list
= dev
->mc_list
;
2530 memset(filter
, 0, sizeof(filter
));
2532 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2533 reg
|= GM_RXCR_UCF_ENA
;
2535 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2536 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2537 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2538 memset(filter
, 0xff, sizeof(filter
));
2539 else if (dev
->mc_count
== 0) /* no multicast */
2540 reg
&= ~GM_RXCR_MCF_ENA
;
2543 reg
|= GM_RXCR_MCF_ENA
;
2545 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
) {
2546 u32 bit
= ether_crc(ETH_ALEN
, list
->dmi_addr
) & 0x3f;
2547 filter
[bit
/8] |= 1 << (bit
%8);
2552 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2553 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2554 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2555 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2556 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2557 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2558 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2559 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2561 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
2564 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
2566 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2567 return status
>> XMR_FS_LEN_SHIFT
;
2569 return status
>> GMR_FS_LEN_SHIFT
;
2572 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
2574 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2575 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
2577 return (status
& GMR_FS_ANY_ERR
) ||
2578 (status
& GMR_FS_RX_OK
) == 0;
2582 /* Get receive buffer from descriptor.
2583 * Handles copy of small buffers and reallocation failures
2585 static inline struct sk_buff
*skge_rx_get(struct skge_port
*skge
,
2586 struct skge_element
*e
,
2587 u32 control
, u32 status
, u16 csum
)
2589 struct sk_buff
*skb
;
2590 u16 len
= control
& BMU_BBC
;
2592 if (unlikely(netif_msg_rx_status(skge
)))
2593 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
2594 skge
->netdev
->name
, e
- skge
->rx_ring
.start
,
2597 if (len
> skge
->rx_buf_size
)
2600 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
2603 if (bad_phy_status(skge
->hw
, status
))
2606 if (phy_length(skge
->hw
, status
) != len
)
2609 if (len
< RX_COPY_THRESHOLD
) {
2610 skb
= alloc_skb(len
+ 2, GFP_ATOMIC
);
2614 skb_reserve(skb
, 2);
2615 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
2616 pci_unmap_addr(e
, mapaddr
),
2617 len
, PCI_DMA_FROMDEVICE
);
2618 memcpy(skb
->data
, e
->skb
->data
, len
);
2619 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
2620 pci_unmap_addr(e
, mapaddr
),
2621 len
, PCI_DMA_FROMDEVICE
);
2622 skge_rx_reuse(e
, skge
->rx_buf_size
);
2624 struct sk_buff
*nskb
;
2625 nskb
= alloc_skb(skge
->rx_buf_size
+ NET_IP_ALIGN
, GFP_ATOMIC
);
2629 skb_reserve(nskb
, NET_IP_ALIGN
);
2630 pci_unmap_single(skge
->hw
->pdev
,
2631 pci_unmap_addr(e
, mapaddr
),
2632 pci_unmap_len(e
, maplen
),
2633 PCI_DMA_FROMDEVICE
);
2635 prefetch(skb
->data
);
2636 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
2640 skb
->dev
= skge
->netdev
;
2641 if (skge
->rx_csum
) {
2643 skb
->ip_summed
= CHECKSUM_HW
;
2646 skb
->protocol
= eth_type_trans(skb
, skge
->netdev
);
2651 if (netif_msg_rx_err(skge
))
2652 printk(KERN_DEBUG PFX
"%s: rx err, slot %td control 0x%x status 0x%x\n",
2653 skge
->netdev
->name
, e
- skge
->rx_ring
.start
,
2656 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
2657 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
2658 skge
->net_stats
.rx_length_errors
++;
2659 if (status
& XMR_FS_FRA_ERR
)
2660 skge
->net_stats
.rx_frame_errors
++;
2661 if (status
& XMR_FS_FCS_ERR
)
2662 skge
->net_stats
.rx_crc_errors
++;
2664 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
2665 skge
->net_stats
.rx_length_errors
++;
2666 if (status
& GMR_FS_FRAGMENT
)
2667 skge
->net_stats
.rx_frame_errors
++;
2668 if (status
& GMR_FS_CRC_ERR
)
2669 skge
->net_stats
.rx_crc_errors
++;
2673 skge_rx_reuse(e
, skge
->rx_buf_size
);
2677 /* Free all buffers in Tx ring which are no longer owned by device */
2678 static void skge_txirq(struct net_device
*dev
)
2680 struct skge_port
*skge
= netdev_priv(dev
);
2681 struct skge_ring
*ring
= &skge
->tx_ring
;
2682 struct skge_element
*e
;
2686 spin_lock(&skge
->tx_lock
);
2687 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
2688 struct skge_tx_desc
*td
= e
->desc
;
2690 if (td
->control
& BMU_OWN
)
2693 skge_tx_free(skge
, e
, td
->control
);
2695 skge
->tx_ring
.to_clean
= e
;
2697 if (netif_queue_stopped(skge
->netdev
)
2698 && skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)
2699 netif_wake_queue(skge
->netdev
);
2701 spin_unlock(&skge
->tx_lock
);
2704 static int skge_poll(struct net_device
*dev
, int *budget
)
2706 struct skge_port
*skge
= netdev_priv(dev
);
2707 struct skge_hw
*hw
= skge
->hw
;
2708 struct skge_ring
*ring
= &skge
->rx_ring
;
2709 struct skge_element
*e
;
2710 int to_do
= min(dev
->quota
, *budget
);
2713 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
2714 struct skge_rx_desc
*rd
= e
->desc
;
2715 struct sk_buff
*skb
;
2719 control
= rd
->control
;
2720 if (control
& BMU_OWN
)
2723 skb
= skge_rx_get(skge
, e
, control
, rd
->status
, rd
->csum2
);
2725 dev
->last_rx
= jiffies
;
2726 netif_receive_skb(skb
);
2733 /* restart receiver */
2735 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2737 *budget
-= work_done
;
2738 dev
->quota
-= work_done
;
2740 if (work_done
>= to_do
)
2741 return 1; /* not done */
2743 netif_rx_complete(dev
);
2745 spin_lock_irq(&hw
->hw_lock
);
2746 hw
->intr_mask
|= rxirqmask
[skge
->port
];
2747 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2749 spin_unlock_irq(&hw
->hw_lock
);
2754 /* Parity errors seem to happen when Genesis is connected to a switch
2755 * with no other ports present. Heartbeat error??
2757 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
2759 struct net_device
*dev
= hw
->dev
[port
];
2762 struct skge_port
*skge
= netdev_priv(dev
);
2763 ++skge
->net_stats
.tx_heartbeat_errors
;
2766 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2767 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
2770 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2771 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
2772 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
2773 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
2776 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
2778 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2779 genesis_mac_intr(hw
, port
);
2781 yukon_mac_intr(hw
, port
);
2784 /* Handle device specific framing and timeout interrupts */
2785 static void skge_error_irq(struct skge_hw
*hw
)
2787 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
2789 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2790 /* clear xmac errors */
2791 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
2792 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
2793 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
2794 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
2796 /* Timestamp (unused) overflow */
2797 if (hwstatus
& IS_IRQ_TIST_OV
)
2798 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
2801 if (hwstatus
& IS_RAM_RD_PAR
) {
2802 printk(KERN_ERR PFX
"Ram read data parity error\n");
2803 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
2806 if (hwstatus
& IS_RAM_WR_PAR
) {
2807 printk(KERN_ERR PFX
"Ram write data parity error\n");
2808 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
2811 if (hwstatus
& IS_M1_PAR_ERR
)
2812 skge_mac_parity(hw
, 0);
2814 if (hwstatus
& IS_M2_PAR_ERR
)
2815 skge_mac_parity(hw
, 1);
2817 if (hwstatus
& IS_R1_PAR_ERR
) {
2818 printk(KERN_ERR PFX
"%s: receive queue parity error\n",
2820 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
2823 if (hwstatus
& IS_R2_PAR_ERR
) {
2824 printk(KERN_ERR PFX
"%s: receive queue parity error\n",
2826 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
2829 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
2830 u16 pci_status
, pci_cmd
;
2832 pci_read_config_word(hw
->pdev
, PCI_COMMAND
, &pci_cmd
);
2833 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
2835 printk(KERN_ERR PFX
"%s: PCI error cmd=%#x status=%#x\n",
2836 pci_name(hw
->pdev
), pci_cmd
, pci_status
);
2838 /* Write the error bits back to clear them. */
2839 pci_status
&= PCI_STATUS_ERROR_BITS
;
2840 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
2841 pci_write_config_word(hw
->pdev
, PCI_COMMAND
,
2842 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
2843 pci_write_config_word(hw
->pdev
, PCI_STATUS
, pci_status
);
2844 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
2846 /* if error still set then just ignore it */
2847 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
2848 if (hwstatus
& IS_IRQ_STAT
) {
2849 printk(KERN_INFO PFX
"unable to clear error (so ignoring them)\n");
2850 hw
->intr_mask
&= ~IS_HW_ERR
;
2856 * Interrupt from PHY are handled in work queue
2857 * because accessing phy registers requires spin wait which might
2858 * cause excess interrupt latency.
2860 static void skge_extirq(void *arg
)
2862 struct skge_hw
*hw
= arg
;
2865 mutex_lock(&hw
->phy_mutex
);
2866 for (port
= 0; port
< hw
->ports
; port
++) {
2867 struct net_device
*dev
= hw
->dev
[port
];
2868 struct skge_port
*skge
= netdev_priv(dev
);
2870 if (netif_running(dev
)) {
2871 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
2872 yukon_phy_intr(skge
);
2874 bcom_phy_intr(skge
);
2877 mutex_unlock(&hw
->phy_mutex
);
2879 spin_lock_irq(&hw
->hw_lock
);
2880 hw
->intr_mask
|= IS_EXT_REG
;
2881 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2882 spin_unlock_irq(&hw
->hw_lock
);
2885 static irqreturn_t
skge_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
2887 struct skge_hw
*hw
= dev_id
;
2890 /* Reading this register masks IRQ */
2891 status
= skge_read32(hw
, B0_SP_ISRC
);
2895 spin_lock(&hw
->hw_lock
);
2896 status
&= hw
->intr_mask
;
2897 if (status
& IS_EXT_REG
) {
2898 hw
->intr_mask
&= ~IS_EXT_REG
;
2899 schedule_work(&hw
->phy_work
);
2902 if (status
& IS_XA1_F
) {
2903 skge_write8(hw
, Q_ADDR(Q_XA1
, Q_CSR
), CSR_IRQ_CL_F
);
2904 skge_txirq(hw
->dev
[0]);
2907 if (status
& IS_R1_F
) {
2908 skge_write8(hw
, Q_ADDR(Q_R1
, Q_CSR
), CSR_IRQ_CL_F
);
2909 hw
->intr_mask
&= ~IS_R1_F
;
2910 netif_rx_schedule(hw
->dev
[0]);
2913 if (status
& IS_PA_TO_TX1
)
2914 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
2916 if (status
& IS_PA_TO_RX1
) {
2917 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
2919 ++skge
->net_stats
.rx_over_errors
;
2920 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
2924 if (status
& IS_MAC1
)
2925 skge_mac_intr(hw
, 0);
2928 if (status
& IS_XA2_F
) {
2929 skge_write8(hw
, Q_ADDR(Q_XA2
, Q_CSR
), CSR_IRQ_CL_F
);
2930 skge_txirq(hw
->dev
[1]);
2933 if (status
& IS_R2_F
) {
2934 skge_write8(hw
, Q_ADDR(Q_R2
, Q_CSR
), CSR_IRQ_CL_F
);
2935 hw
->intr_mask
&= ~IS_R2_F
;
2936 netif_rx_schedule(hw
->dev
[1]);
2939 if (status
& IS_PA_TO_RX2
) {
2940 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
2941 ++skge
->net_stats
.rx_over_errors
;
2942 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
2945 if (status
& IS_PA_TO_TX2
)
2946 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
2948 if (status
& IS_MAC2
)
2949 skge_mac_intr(hw
, 1);
2952 if (status
& IS_HW_ERR
)
2955 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2956 spin_unlock(&hw
->hw_lock
);
2961 #ifdef CONFIG_NET_POLL_CONTROLLER
2962 static void skge_netpoll(struct net_device
*dev
)
2964 struct skge_port
*skge
= netdev_priv(dev
);
2966 disable_irq(dev
->irq
);
2967 skge_intr(dev
->irq
, skge
->hw
, NULL
);
2968 enable_irq(dev
->irq
);
2972 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
2974 struct skge_port
*skge
= netdev_priv(dev
);
2975 struct skge_hw
*hw
= skge
->hw
;
2976 unsigned port
= skge
->port
;
2977 const struct sockaddr
*addr
= p
;
2979 if (!is_valid_ether_addr(addr
->sa_data
))
2980 return -EADDRNOTAVAIL
;
2982 mutex_lock(&hw
->phy_mutex
);
2983 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
2984 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8,
2985 dev
->dev_addr
, ETH_ALEN
);
2986 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8,
2987 dev
->dev_addr
, ETH_ALEN
);
2989 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2990 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
2992 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
2993 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
2995 mutex_unlock(&hw
->phy_mutex
);
3000 static const struct {
3004 { CHIP_ID_GENESIS
, "Genesis" },
3005 { CHIP_ID_YUKON
, "Yukon" },
3006 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3007 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3010 static const char *skge_board_name(const struct skge_hw
*hw
)
3013 static char buf
[16];
3015 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3016 if (skge_chips
[i
].id
== hw
->chip_id
)
3017 return skge_chips
[i
].name
;
3019 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3025 * Setup the board data structure, but don't bring up
3028 static int skge_reset(struct skge_hw
*hw
)
3031 u16 ctst
, pci_status
;
3032 u8 t8
, mac_cfg
, pmd_type
, phy_type
;
3035 ctst
= skge_read16(hw
, B0_CTST
);
3038 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3039 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3041 /* clear PCI errors, if any */
3042 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3043 skge_write8(hw
, B2_TST_CTRL2
, 0);
3045 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3046 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3047 pci_status
| PCI_STATUS_ERROR_BITS
);
3048 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3049 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3051 /* restore CLK_RUN bits (for Yukon-Lite) */
3052 skge_write16(hw
, B0_CTST
,
3053 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3055 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3056 phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3057 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3058 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3060 switch (hw
->chip_id
) {
3061 case CHIP_ID_GENESIS
:
3064 hw
->phy_addr
= PHY_ADDR_BCOM
;
3067 printk(KERN_ERR PFX
"%s: unsupported phy type 0x%x\n",
3068 pci_name(hw
->pdev
), phy_type
);
3074 case CHIP_ID_YUKON_LITE
:
3075 case CHIP_ID_YUKON_LP
:
3076 if (phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3079 hw
->phy_addr
= PHY_ADDR_MARV
;
3083 printk(KERN_ERR PFX
"%s: unsupported chip type 0x%x\n",
3084 pci_name(hw
->pdev
), hw
->chip_id
);
3088 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3089 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3090 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3092 /* read the adapters RAM size */
3093 t8
= skge_read8(hw
, B2_E_0
);
3094 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3096 /* special case: 4 x 64k x 36, offset = 0x80000 */
3097 hw
->ram_size
= 0x100000;
3098 hw
->ram_offset
= 0x80000;
3100 hw
->ram_size
= t8
* 512;
3103 hw
->ram_size
= 0x20000;
3105 hw
->ram_size
= t8
* 4096;
3107 spin_lock_init(&hw
->hw_lock
);
3108 hw
->intr_mask
= IS_HW_ERR
| IS_EXT_REG
| IS_PORT_1
;
3110 hw
->intr_mask
|= IS_PORT_2
;
3112 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3115 /* switch power to VCC (WA for VAUX problem) */
3116 skge_write8(hw
, B0_POWER_CTRL
,
3117 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3119 /* avoid boards with stuck Hardware error bits */
3120 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3121 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3122 printk(KERN_WARNING PFX
"stuck hardware sensor bit\n");
3123 hw
->intr_mask
&= ~IS_HW_ERR
;
3126 /* Clear PHY COMA */
3127 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3128 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3129 reg
&= ~PCI_PHY_COMA
;
3130 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3131 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3134 for (i
= 0; i
< hw
->ports
; i
++) {
3135 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3136 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3140 /* turn off hardware timer (unused) */
3141 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3142 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3143 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3145 /* enable the Tx Arbiters */
3146 for (i
= 0; i
< hw
->ports
; i
++)
3147 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3149 /* Initialize ram interface */
3150 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3152 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3153 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3154 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3155 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3156 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3157 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3158 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3159 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3160 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3161 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3162 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3163 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3165 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3167 /* Set interrupt moderation for Transmit only
3168 * Receive interrupts avoided by NAPI
3170 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3171 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3172 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3174 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3176 mutex_lock(&hw
->phy_mutex
);
3177 for (i
= 0; i
< hw
->ports
; i
++) {
3178 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3179 genesis_reset(hw
, i
);
3183 mutex_unlock(&hw
->phy_mutex
);
3188 /* Initialize network device */
3189 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3192 struct skge_port
*skge
;
3193 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3196 printk(KERN_ERR
"skge etherdev alloc failed");
3200 SET_MODULE_OWNER(dev
);
3201 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3202 dev
->open
= skge_up
;
3203 dev
->stop
= skge_down
;
3204 dev
->do_ioctl
= skge_ioctl
;
3205 dev
->hard_start_xmit
= skge_xmit_frame
;
3206 dev
->get_stats
= skge_get_stats
;
3207 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3208 dev
->set_multicast_list
= genesis_set_multicast
;
3210 dev
->set_multicast_list
= yukon_set_multicast
;
3212 dev
->set_mac_address
= skge_set_mac_address
;
3213 dev
->change_mtu
= skge_change_mtu
;
3214 SET_ETHTOOL_OPS(dev
, &skge_ethtool_ops
);
3215 dev
->tx_timeout
= skge_tx_timeout
;
3216 dev
->watchdog_timeo
= TX_WATCHDOG
;
3217 dev
->poll
= skge_poll
;
3218 dev
->weight
= NAPI_WEIGHT
;
3219 #ifdef CONFIG_NET_POLL_CONTROLLER
3220 dev
->poll_controller
= skge_netpoll
;
3222 dev
->irq
= hw
->pdev
->irq
;
3223 dev
->features
= NETIF_F_LLTX
;
3225 dev
->features
|= NETIF_F_HIGHDMA
;
3227 skge
= netdev_priv(dev
);
3230 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3231 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3232 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3234 /* Auto speed and flow control */
3235 skge
->autoneg
= AUTONEG_ENABLE
;
3236 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
3239 skge
->advertising
= skge_supported_modes(hw
);
3241 hw
->dev
[port
] = dev
;
3245 spin_lock_init(&skge
->tx_lock
);
3247 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3248 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3252 /* read the mac address */
3253 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3254 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3256 /* device is off until link detection */
3257 netif_carrier_off(dev
);
3258 netif_stop_queue(dev
);
3263 static void __devinit
skge_show_addr(struct net_device
*dev
)
3265 const struct skge_port
*skge
= netdev_priv(dev
);
3267 if (netif_msg_probe(skge
))
3268 printk(KERN_INFO PFX
"%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3270 dev
->dev_addr
[0], dev
->dev_addr
[1], dev
->dev_addr
[2],
3271 dev
->dev_addr
[3], dev
->dev_addr
[4], dev
->dev_addr
[5]);
3274 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3275 const struct pci_device_id
*ent
)
3277 struct net_device
*dev
, *dev1
;
3279 int err
, using_dac
= 0;
3281 err
= pci_enable_device(pdev
);
3283 printk(KERN_ERR PFX
"%s cannot enable PCI device\n",
3288 err
= pci_request_regions(pdev
, DRV_NAME
);
3290 printk(KERN_ERR PFX
"%s cannot obtain PCI resources\n",
3292 goto err_out_disable_pdev
;
3295 pci_set_master(pdev
);
3297 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3299 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3300 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
3302 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3306 printk(KERN_ERR PFX
"%s no usable DMA configuration\n",
3308 goto err_out_free_regions
;
3312 /* byte swap descriptors in hardware */
3316 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3317 reg
|= PCI_REV_DESC
;
3318 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3323 hw
= kzalloc(sizeof(*hw
), GFP_KERNEL
);
3325 printk(KERN_ERR PFX
"%s: cannot allocate hardware struct\n",
3327 goto err_out_free_regions
;
3331 mutex_init(&hw
->phy_mutex
);
3332 INIT_WORK(&hw
->phy_work
, skge_extirq
, hw
);
3334 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3336 printk(KERN_ERR PFX
"%s: cannot map device registers\n",
3338 goto err_out_free_hw
;
3341 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, DRV_NAME
, hw
);
3343 printk(KERN_ERR PFX
"%s: cannot assign irq %d\n",
3344 pci_name(pdev
), pdev
->irq
);
3345 goto err_out_iounmap
;
3347 pci_set_drvdata(pdev
, hw
);
3349 err
= skge_reset(hw
);
3351 goto err_out_free_irq
;
3353 printk(KERN_INFO PFX DRV_VERSION
" addr 0x%llx irq %d chip %s rev %d\n",
3354 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3355 skge_board_name(hw
), hw
->chip_rev
);
3357 if ((dev
= skge_devinit(hw
, 0, using_dac
)) == NULL
)
3358 goto err_out_led_off
;
3360 if (!is_valid_ether_addr(dev
->dev_addr
)) {
3361 printk(KERN_ERR PFX
"%s: bad (zero?) ethernet address in rom\n",
3364 goto err_out_free_netdev
;
3368 err
= register_netdev(dev
);
3370 printk(KERN_ERR PFX
"%s: cannot register net device\n",
3372 goto err_out_free_netdev
;
3375 skge_show_addr(dev
);
3377 if (hw
->ports
> 1 && (dev1
= skge_devinit(hw
, 1, using_dac
))) {
3378 if (register_netdev(dev1
) == 0)
3379 skge_show_addr(dev1
);
3381 /* Failure to register second port need not be fatal */
3382 printk(KERN_WARNING PFX
"register of second port failed\n");
3390 err_out_free_netdev
:
3393 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3395 free_irq(pdev
->irq
, hw
);
3400 err_out_free_regions
:
3401 pci_release_regions(pdev
);
3402 err_out_disable_pdev
:
3403 pci_disable_device(pdev
);
3404 pci_set_drvdata(pdev
, NULL
);
3409 static void __devexit
skge_remove(struct pci_dev
*pdev
)
3411 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3412 struct net_device
*dev0
, *dev1
;
3417 if ((dev1
= hw
->dev
[1]))
3418 unregister_netdev(dev1
);
3420 unregister_netdev(dev0
);
3422 spin_lock_irq(&hw
->hw_lock
);
3424 skge_write32(hw
, B0_IMSK
, 0);
3425 spin_unlock_irq(&hw
->hw_lock
);
3427 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3428 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3430 flush_scheduled_work();
3432 free_irq(pdev
->irq
, hw
);
3433 pci_release_regions(pdev
);
3434 pci_disable_device(pdev
);
3441 pci_set_drvdata(pdev
, NULL
);
3445 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3447 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3450 for (i
= 0; i
< 2; i
++) {
3451 struct net_device
*dev
= hw
->dev
[i
];
3454 struct skge_port
*skge
= netdev_priv(dev
);
3455 if (netif_running(dev
)) {
3456 netif_carrier_off(dev
);
3458 netif_stop_queue(dev
);
3462 netif_device_detach(dev
);
3467 pci_save_state(pdev
);
3468 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), wol
);
3469 pci_disable_device(pdev
);
3470 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3475 static int skge_resume(struct pci_dev
*pdev
)
3477 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3480 pci_set_power_state(pdev
, PCI_D0
);
3481 pci_restore_state(pdev
);
3482 pci_enable_wake(pdev
, PCI_D0
, 0);
3486 for (i
= 0; i
< 2; i
++) {
3487 struct net_device
*dev
= hw
->dev
[i
];
3489 netif_device_attach(dev
);
3490 if (netif_running(dev
) && skge_up(dev
))
3498 static struct pci_driver skge_driver
= {
3500 .id_table
= skge_id_table
,
3501 .probe
= skge_probe
,
3502 .remove
= __devexit_p(skge_remove
),
3504 .suspend
= skge_suspend
,
3505 .resume
= skge_resume
,
3509 static int __init
skge_init_module(void)
3511 return pci_module_init(&skge_driver
);
3514 static void __exit
skge_cleanup_module(void)
3516 pci_unregister_driver(&skge_driver
);
3519 module_init(skge_init_module
);
3520 module_exit(skge_cleanup_module
);