sata_mv: ensure empty request queue for FBS-NCQ EH
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / sata_mv.c
blobfb81f0c7a8c2555d6e015c930a3373563f24cabc
1 /*
2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 * sata_mv TODO list:
28 * --> Errata workaround for NCQ device errors.
30 * --> More errata workarounds for PCI-X.
32 * --> Complete a full errata audit for all chipsets to identify others.
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
36 * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
38 * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
40 * --> Develop a low-power-consumption strategy, and implement it.
42 * --> [Experiment, low priority] Investigate interrupt coalescing.
43 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
44 * the overhead reduced by interrupt mitigation is quite often not
45 * worth the latency cost.
47 * --> [Experiment, Marvell value added] Is it possible to use target
48 * mode to cross-connect two Linux boxes with Marvell cards? If so,
49 * creating LibATA target mode support would be very interesting.
51 * Target mode, for those without docs, is the ability to directly
52 * connect two SATA ports.
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <linux/bitops.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_cmnd.h>
71 #include <scsi/scsi_device.h>
72 #include <linux/libata.h>
74 #define DRV_NAME "sata_mv"
75 #define DRV_VERSION "1.21"
77 enum {
78 /* BAR's are enumerated in terms of pci_resource_start() terms */
79 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
80 MV_IO_BAR = 2, /* offset 0x18: IO space */
81 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
83 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
84 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
86 MV_PCI_REG_BASE = 0,
87 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
88 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
89 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
90 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
91 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
92 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
94 MV_SATAHC0_REG_BASE = 0x20000,
95 MV_FLASH_CTL_OFS = 0x1046c,
96 MV_GPIO_PORT_CTL_OFS = 0x104f0,
97 MV_RESET_CFG_OFS = 0x180d8,
99 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
100 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
101 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
102 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
104 MV_MAX_Q_DEPTH = 32,
105 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
107 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
108 * CRPB needs alignment on a 256B boundary. Size == 256B
109 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
111 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
112 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
113 MV_MAX_SG_CT = 256,
114 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
116 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
117 MV_PORT_HC_SHIFT = 2,
118 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
119 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
120 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
122 /* Host Flags */
123 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
124 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
125 /* SoC integrated controllers, no PCI interface */
126 MV_FLAG_SOC = (1 << 28),
128 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
129 ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
130 ATA_FLAG_PIO_POLLING,
132 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
134 MV_GENIIE_FLAGS = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
135 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
136 ATA_FLAG_NCQ | ATA_FLAG_AN,
138 CRQB_FLAG_READ = (1 << 0),
139 CRQB_TAG_SHIFT = 1,
140 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
141 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
142 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
143 CRQB_CMD_ADDR_SHIFT = 8,
144 CRQB_CMD_CS = (0x2 << 11),
145 CRQB_CMD_LAST = (1 << 15),
147 CRPB_FLAG_STATUS_SHIFT = 8,
148 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
149 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
151 EPRD_FLAG_END_OF_TBL = (1 << 31),
153 /* PCI interface registers */
155 PCI_COMMAND_OFS = 0xc00,
156 PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
158 PCI_MAIN_CMD_STS_OFS = 0xd30,
159 STOP_PCI_MASTER = (1 << 2),
160 PCI_MASTER_EMPTY = (1 << 3),
161 GLOB_SFT_RST = (1 << 4),
163 MV_PCI_MODE_OFS = 0xd00,
164 MV_PCI_MODE_MASK = 0x30,
166 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
167 MV_PCI_DISC_TIMER = 0xd04,
168 MV_PCI_MSI_TRIGGER = 0xc38,
169 MV_PCI_SERR_MASK = 0xc28,
170 MV_PCI_XBAR_TMOUT_OFS = 0x1d04,
171 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
172 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
173 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
174 MV_PCI_ERR_COMMAND = 0x1d50,
176 PCI_IRQ_CAUSE_OFS = 0x1d58,
177 PCI_IRQ_MASK_OFS = 0x1d5c,
178 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
180 PCIE_IRQ_CAUSE_OFS = 0x1900,
181 PCIE_IRQ_MASK_OFS = 0x1910,
182 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
184 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
185 PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
186 PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
187 SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
188 SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
189 ERR_IRQ = (1 << 0), /* shift by port # */
190 DONE_IRQ = (1 << 1), /* shift by port # */
191 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
192 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
193 PCI_ERR = (1 << 18),
194 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
195 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
196 PORTS_0_3_COAL_DONE = (1 << 8),
197 PORTS_4_7_COAL_DONE = (1 << 17),
198 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
199 GPIO_INT = (1 << 22),
200 SELF_INT = (1 << 23),
201 TWSI_INT = (1 << 24),
202 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
203 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
204 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
206 /* SATAHC registers */
207 HC_CFG_OFS = 0,
209 HC_IRQ_CAUSE_OFS = 0x14,
210 DMA_IRQ = (1 << 0), /* shift by port # */
211 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
212 DEV_IRQ = (1 << 8), /* shift by port # */
214 /* Shadow block registers */
215 SHD_BLK_OFS = 0x100,
216 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
218 /* SATA registers */
219 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
220 SATA_ACTIVE_OFS = 0x350,
221 SATA_FIS_IRQ_CAUSE_OFS = 0x364,
222 SATA_FIS_IRQ_AN = (1 << 9), /* async notification */
224 LTMODE_OFS = 0x30c,
225 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
227 PHY_MODE3 = 0x310,
228 PHY_MODE4 = 0x314,
229 PHY_MODE2 = 0x330,
230 SATA_IFCTL_OFS = 0x344,
231 SATA_TESTCTL_OFS = 0x348,
232 SATA_IFSTAT_OFS = 0x34c,
233 VENDOR_UNIQUE_FIS_OFS = 0x35c,
235 FISCFG_OFS = 0x360,
236 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
237 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
239 MV5_PHY_MODE = 0x74,
240 MV5_LTMODE_OFS = 0x30,
241 MV5_PHY_CTL_OFS = 0x0C,
242 SATA_INTERFACE_CFG_OFS = 0x050,
244 MV_M2_PREAMP_MASK = 0x7e0,
246 /* Port registers */
247 EDMA_CFG_OFS = 0,
248 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
249 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
250 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
251 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
252 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
253 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
254 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
256 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
257 EDMA_ERR_IRQ_MASK_OFS = 0xc,
258 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
259 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
260 EDMA_ERR_DEV = (1 << 2), /* device error */
261 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
262 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
263 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
264 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
265 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
266 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
267 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
268 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
269 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
270 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
271 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
273 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
274 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
275 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
276 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
277 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
279 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
281 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
282 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
283 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
284 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
285 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
286 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
288 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
290 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
291 EDMA_ERR_OVERRUN_5 = (1 << 5),
292 EDMA_ERR_UNDERRUN_5 = (1 << 6),
294 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
295 EDMA_ERR_LNK_CTRL_RX_1 |
296 EDMA_ERR_LNK_CTRL_RX_3 |
297 EDMA_ERR_LNK_CTRL_TX,
299 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
300 EDMA_ERR_PRD_PAR |
301 EDMA_ERR_DEV_DCON |
302 EDMA_ERR_DEV_CON |
303 EDMA_ERR_SERR |
304 EDMA_ERR_SELF_DIS |
305 EDMA_ERR_CRQB_PAR |
306 EDMA_ERR_CRPB_PAR |
307 EDMA_ERR_INTRL_PAR |
308 EDMA_ERR_IORDY |
309 EDMA_ERR_LNK_CTRL_RX_2 |
310 EDMA_ERR_LNK_DATA_RX |
311 EDMA_ERR_LNK_DATA_TX |
312 EDMA_ERR_TRANS_PROTO,
314 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
315 EDMA_ERR_PRD_PAR |
316 EDMA_ERR_DEV_DCON |
317 EDMA_ERR_DEV_CON |
318 EDMA_ERR_OVERRUN_5 |
319 EDMA_ERR_UNDERRUN_5 |
320 EDMA_ERR_SELF_DIS_5 |
321 EDMA_ERR_CRQB_PAR |
322 EDMA_ERR_CRPB_PAR |
323 EDMA_ERR_INTRL_PAR |
324 EDMA_ERR_IORDY,
326 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
327 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
329 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
330 EDMA_REQ_Q_PTR_SHIFT = 5,
332 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
333 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
334 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
335 EDMA_RSP_Q_PTR_SHIFT = 3,
337 EDMA_CMD_OFS = 0x28, /* EDMA command register */
338 EDMA_EN = (1 << 0), /* enable EDMA */
339 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
340 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
342 EDMA_STATUS_OFS = 0x30, /* EDMA engine status */
343 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
344 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
346 EDMA_IORDY_TMOUT_OFS = 0x34,
347 EDMA_ARB_CFG_OFS = 0x38,
349 EDMA_HALTCOND_OFS = 0x60, /* GenIIe halt conditions */
351 GEN_II_NCQ_MAX_SECTORS = 256, /* max sects/io on Gen2 w/NCQ */
353 /* Host private flags (hp_flags) */
354 MV_HP_FLAG_MSI = (1 << 0),
355 MV_HP_ERRATA_50XXB0 = (1 << 1),
356 MV_HP_ERRATA_50XXB2 = (1 << 2),
357 MV_HP_ERRATA_60X1B2 = (1 << 3),
358 MV_HP_ERRATA_60X1C0 = (1 << 4),
359 MV_HP_ERRATA_XX42A0 = (1 << 5),
360 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
361 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
362 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
363 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
364 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
366 /* Port private flags (pp_flags) */
367 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
368 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
369 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
370 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
373 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
374 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
375 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
376 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
377 #define HAS_PCI(host) (!((host)->ports[0]->flags & MV_FLAG_SOC))
379 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
380 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
382 enum {
383 /* DMA boundary 0xffff is required by the s/g splitting
384 * we need on /length/ in mv_fill-sg().
386 MV_DMA_BOUNDARY = 0xffffU,
388 /* mask of register bits containing lower 32 bits
389 * of EDMA request queue DMA address
391 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
393 /* ditto, for response queue */
394 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
397 enum chip_type {
398 chip_504x,
399 chip_508x,
400 chip_5080,
401 chip_604x,
402 chip_608x,
403 chip_6042,
404 chip_7042,
405 chip_soc,
408 /* Command ReQuest Block: 32B */
409 struct mv_crqb {
410 __le32 sg_addr;
411 __le32 sg_addr_hi;
412 __le16 ctrl_flags;
413 __le16 ata_cmd[11];
416 struct mv_crqb_iie {
417 __le32 addr;
418 __le32 addr_hi;
419 __le32 flags;
420 __le32 len;
421 __le32 ata_cmd[4];
424 /* Command ResPonse Block: 8B */
425 struct mv_crpb {
426 __le16 id;
427 __le16 flags;
428 __le32 tmstmp;
431 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
432 struct mv_sg {
433 __le32 addr;
434 __le32 flags_size;
435 __le32 addr_hi;
436 __le32 reserved;
439 struct mv_port_priv {
440 struct mv_crqb *crqb;
441 dma_addr_t crqb_dma;
442 struct mv_crpb *crpb;
443 dma_addr_t crpb_dma;
444 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
445 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
447 unsigned int req_idx;
448 unsigned int resp_idx;
450 u32 pp_flags;
451 unsigned int delayed_eh_pmp_map;
454 struct mv_port_signal {
455 u32 amps;
456 u32 pre;
459 struct mv_host_priv {
460 u32 hp_flags;
461 u32 main_irq_mask;
462 struct mv_port_signal signal[8];
463 const struct mv_hw_ops *ops;
464 int n_ports;
465 void __iomem *base;
466 void __iomem *main_irq_cause_addr;
467 void __iomem *main_irq_mask_addr;
468 u32 irq_cause_ofs;
469 u32 irq_mask_ofs;
470 u32 unmask_all_irqs;
472 * These consistent DMA memory pools give us guaranteed
473 * alignment for hardware-accessed data structures,
474 * and less memory waste in accomplishing the alignment.
476 struct dma_pool *crqb_pool;
477 struct dma_pool *crpb_pool;
478 struct dma_pool *sg_tbl_pool;
481 struct mv_hw_ops {
482 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
483 unsigned int port);
484 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
485 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
486 void __iomem *mmio);
487 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
488 unsigned int n_hc);
489 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
490 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
493 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
494 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
495 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
496 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
497 static int mv_port_start(struct ata_port *ap);
498 static void mv_port_stop(struct ata_port *ap);
499 static int mv_qc_defer(struct ata_queued_cmd *qc);
500 static void mv_qc_prep(struct ata_queued_cmd *qc);
501 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
502 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
503 static int mv_hardreset(struct ata_link *link, unsigned int *class,
504 unsigned long deadline);
505 static void mv_eh_freeze(struct ata_port *ap);
506 static void mv_eh_thaw(struct ata_port *ap);
507 static void mv6_dev_config(struct ata_device *dev);
509 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
510 unsigned int port);
511 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
512 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
513 void __iomem *mmio);
514 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
515 unsigned int n_hc);
516 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
517 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
519 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
520 unsigned int port);
521 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
522 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
523 void __iomem *mmio);
524 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
525 unsigned int n_hc);
526 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
527 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
528 void __iomem *mmio);
529 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
530 void __iomem *mmio);
531 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
532 void __iomem *mmio, unsigned int n_hc);
533 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
534 void __iomem *mmio);
535 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
536 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
537 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
538 unsigned int port_no);
539 static int mv_stop_edma(struct ata_port *ap);
540 static int mv_stop_edma_engine(void __iomem *port_mmio);
541 static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
543 static void mv_pmp_select(struct ata_port *ap, int pmp);
544 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
545 unsigned long deadline);
546 static int mv_softreset(struct ata_link *link, unsigned int *class,
547 unsigned long deadline);
548 static void mv_pmp_error_handler(struct ata_port *ap);
549 static void mv_process_crpb_entries(struct ata_port *ap,
550 struct mv_port_priv *pp);
552 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
553 * because we have to allow room for worst case splitting of
554 * PRDs for 64K boundaries in mv_fill_sg().
556 static struct scsi_host_template mv5_sht = {
557 ATA_BASE_SHT(DRV_NAME),
558 .sg_tablesize = MV_MAX_SG_CT / 2,
559 .dma_boundary = MV_DMA_BOUNDARY,
562 static struct scsi_host_template mv6_sht = {
563 ATA_NCQ_SHT(DRV_NAME),
564 .can_queue = MV_MAX_Q_DEPTH - 1,
565 .sg_tablesize = MV_MAX_SG_CT / 2,
566 .dma_boundary = MV_DMA_BOUNDARY,
569 static struct ata_port_operations mv5_ops = {
570 .inherits = &ata_sff_port_ops,
572 .qc_defer = mv_qc_defer,
573 .qc_prep = mv_qc_prep,
574 .qc_issue = mv_qc_issue,
576 .freeze = mv_eh_freeze,
577 .thaw = mv_eh_thaw,
578 .hardreset = mv_hardreset,
579 .error_handler = ata_std_error_handler, /* avoid SFF EH */
580 .post_internal_cmd = ATA_OP_NULL,
582 .scr_read = mv5_scr_read,
583 .scr_write = mv5_scr_write,
585 .port_start = mv_port_start,
586 .port_stop = mv_port_stop,
589 static struct ata_port_operations mv6_ops = {
590 .inherits = &mv5_ops,
591 .dev_config = mv6_dev_config,
592 .scr_read = mv_scr_read,
593 .scr_write = mv_scr_write,
595 .pmp_hardreset = mv_pmp_hardreset,
596 .pmp_softreset = mv_softreset,
597 .softreset = mv_softreset,
598 .error_handler = mv_pmp_error_handler,
601 static struct ata_port_operations mv_iie_ops = {
602 .inherits = &mv6_ops,
603 .dev_config = ATA_OP_NULL,
604 .qc_prep = mv_qc_prep_iie,
607 static const struct ata_port_info mv_port_info[] = {
608 { /* chip_504x */
609 .flags = MV_COMMON_FLAGS,
610 .pio_mask = 0x1f, /* pio0-4 */
611 .udma_mask = ATA_UDMA6,
612 .port_ops = &mv5_ops,
614 { /* chip_508x */
615 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
616 .pio_mask = 0x1f, /* pio0-4 */
617 .udma_mask = ATA_UDMA6,
618 .port_ops = &mv5_ops,
620 { /* chip_5080 */
621 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
622 .pio_mask = 0x1f, /* pio0-4 */
623 .udma_mask = ATA_UDMA6,
624 .port_ops = &mv5_ops,
626 { /* chip_604x */
627 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
628 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
629 ATA_FLAG_NCQ,
630 .pio_mask = 0x1f, /* pio0-4 */
631 .udma_mask = ATA_UDMA6,
632 .port_ops = &mv6_ops,
634 { /* chip_608x */
635 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
636 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
637 ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
638 .pio_mask = 0x1f, /* pio0-4 */
639 .udma_mask = ATA_UDMA6,
640 .port_ops = &mv6_ops,
642 { /* chip_6042 */
643 .flags = MV_GENIIE_FLAGS,
644 .pio_mask = 0x1f, /* pio0-4 */
645 .udma_mask = ATA_UDMA6,
646 .port_ops = &mv_iie_ops,
648 { /* chip_7042 */
649 .flags = MV_GENIIE_FLAGS,
650 .pio_mask = 0x1f, /* pio0-4 */
651 .udma_mask = ATA_UDMA6,
652 .port_ops = &mv_iie_ops,
654 { /* chip_soc */
655 .flags = MV_GENIIE_FLAGS | MV_FLAG_SOC,
656 .pio_mask = 0x1f, /* pio0-4 */
657 .udma_mask = ATA_UDMA6,
658 .port_ops = &mv_iie_ops,
662 static const struct pci_device_id mv_pci_tbl[] = {
663 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
664 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
665 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
666 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
667 /* RocketRAID 1740/174x have different identifiers */
668 { PCI_VDEVICE(TTI, 0x1740), chip_508x },
669 { PCI_VDEVICE(TTI, 0x1742), chip_508x },
671 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
672 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
673 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
674 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
675 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
677 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
679 /* Adaptec 1430SA */
680 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
682 /* Marvell 7042 support */
683 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
685 /* Highpoint RocketRAID PCIe series */
686 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
687 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
689 { } /* terminate list */
692 static const struct mv_hw_ops mv5xxx_ops = {
693 .phy_errata = mv5_phy_errata,
694 .enable_leds = mv5_enable_leds,
695 .read_preamp = mv5_read_preamp,
696 .reset_hc = mv5_reset_hc,
697 .reset_flash = mv5_reset_flash,
698 .reset_bus = mv5_reset_bus,
701 static const struct mv_hw_ops mv6xxx_ops = {
702 .phy_errata = mv6_phy_errata,
703 .enable_leds = mv6_enable_leds,
704 .read_preamp = mv6_read_preamp,
705 .reset_hc = mv6_reset_hc,
706 .reset_flash = mv6_reset_flash,
707 .reset_bus = mv_reset_pci_bus,
710 static const struct mv_hw_ops mv_soc_ops = {
711 .phy_errata = mv6_phy_errata,
712 .enable_leds = mv_soc_enable_leds,
713 .read_preamp = mv_soc_read_preamp,
714 .reset_hc = mv_soc_reset_hc,
715 .reset_flash = mv_soc_reset_flash,
716 .reset_bus = mv_soc_reset_bus,
720 * Functions
723 static inline void writelfl(unsigned long data, void __iomem *addr)
725 writel(data, addr);
726 (void) readl(addr); /* flush to avoid PCI posted write */
729 static inline unsigned int mv_hc_from_port(unsigned int port)
731 return port >> MV_PORT_HC_SHIFT;
734 static inline unsigned int mv_hardport_from_port(unsigned int port)
736 return port & MV_PORT_MASK;
740 * Consolidate some rather tricky bit shift calculations.
741 * This is hot-path stuff, so not a function.
742 * Simple code, with two return values, so macro rather than inline.
744 * port is the sole input, in range 0..7.
745 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
746 * hardport is the other output, in range 0..3.
748 * Note that port and hardport may be the same variable in some cases.
750 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
752 shift = mv_hc_from_port(port) * HC_SHIFT; \
753 hardport = mv_hardport_from_port(port); \
754 shift += hardport * 2; \
757 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
759 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
762 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
763 unsigned int port)
765 return mv_hc_base(base, mv_hc_from_port(port));
768 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
770 return mv_hc_base_from_port(base, port) +
771 MV_SATAHC_ARBTR_REG_SZ +
772 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
775 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
777 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
778 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
780 return hc_mmio + ofs;
783 static inline void __iomem *mv_host_base(struct ata_host *host)
785 struct mv_host_priv *hpriv = host->private_data;
786 return hpriv->base;
789 static inline void __iomem *mv_ap_base(struct ata_port *ap)
791 return mv_port_base(mv_host_base(ap->host), ap->port_no);
794 static inline int mv_get_hc_count(unsigned long port_flags)
796 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
799 static void mv_set_edma_ptrs(void __iomem *port_mmio,
800 struct mv_host_priv *hpriv,
801 struct mv_port_priv *pp)
803 u32 index;
806 * initialize request queue
808 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
809 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
811 WARN_ON(pp->crqb_dma & 0x3ff);
812 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
813 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
814 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
816 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
817 writelfl((pp->crqb_dma & 0xffffffff) | index,
818 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
819 else
820 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
823 * initialize response queue
825 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
826 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
828 WARN_ON(pp->crpb_dma & 0xff);
829 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
831 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
832 writelfl((pp->crpb_dma & 0xffffffff) | index,
833 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
834 else
835 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
837 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
838 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
841 static void mv_set_main_irq_mask(struct ata_host *host,
842 u32 disable_bits, u32 enable_bits)
844 struct mv_host_priv *hpriv = host->private_data;
845 u32 old_mask, new_mask;
847 old_mask = hpriv->main_irq_mask;
848 new_mask = (old_mask & ~disable_bits) | enable_bits;
849 if (new_mask != old_mask) {
850 hpriv->main_irq_mask = new_mask;
851 writelfl(new_mask, hpriv->main_irq_mask_addr);
855 static void mv_enable_port_irqs(struct ata_port *ap,
856 unsigned int port_bits)
858 unsigned int shift, hardport, port = ap->port_no;
859 u32 disable_bits, enable_bits;
861 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
863 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
864 enable_bits = port_bits << shift;
865 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
869 * mv_start_dma - Enable eDMA engine
870 * @base: port base address
871 * @pp: port private data
873 * Verify the local cache of the eDMA state is accurate with a
874 * WARN_ON.
876 * LOCKING:
877 * Inherited from caller.
879 static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
880 struct mv_port_priv *pp, u8 protocol)
882 int want_ncq = (protocol == ATA_PROT_NCQ);
884 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
885 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
886 if (want_ncq != using_ncq)
887 mv_stop_edma(ap);
889 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
890 struct mv_host_priv *hpriv = ap->host->private_data;
891 int hardport = mv_hardport_from_port(ap->port_no);
892 void __iomem *hc_mmio = mv_hc_base_from_port(
893 mv_host_base(ap->host), hardport);
894 u32 hc_irq_cause, ipending;
896 /* clear EDMA event indicators, if any */
897 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
899 /* clear EDMA interrupt indicator, if any */
900 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
901 ipending = (DEV_IRQ | DMA_IRQ) << hardport;
902 if (hc_irq_cause & ipending) {
903 writelfl(hc_irq_cause & ~ipending,
904 hc_mmio + HC_IRQ_CAUSE_OFS);
907 mv_edma_cfg(ap, want_ncq);
909 /* clear FIS IRQ Cause */
910 if (IS_GEN_IIE(hpriv))
911 writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
913 mv_set_edma_ptrs(port_mmio, hpriv, pp);
914 mv_enable_port_irqs(ap, DONE_IRQ|ERR_IRQ);
916 writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
917 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
921 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
923 void __iomem *port_mmio = mv_ap_base(ap);
924 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
925 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
926 int i;
929 * Wait for the EDMA engine to finish transactions in progress.
930 * No idea what a good "timeout" value might be, but measurements
931 * indicate that it often requires hundreds of microseconds
932 * with two drives in-use. So we use the 15msec value above
933 * as a rough guess at what even more drives might require.
935 for (i = 0; i < timeout; ++i) {
936 u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
937 if ((edma_stat & empty_idle) == empty_idle)
938 break;
939 udelay(per_loop);
941 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
945 * mv_stop_edma_engine - Disable eDMA engine
946 * @port_mmio: io base address
948 * LOCKING:
949 * Inherited from caller.
951 static int mv_stop_edma_engine(void __iomem *port_mmio)
953 int i;
955 /* Disable eDMA. The disable bit auto clears. */
956 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
958 /* Wait for the chip to confirm eDMA is off. */
959 for (i = 10000; i > 0; i--) {
960 u32 reg = readl(port_mmio + EDMA_CMD_OFS);
961 if (!(reg & EDMA_EN))
962 return 0;
963 udelay(10);
965 return -EIO;
968 static int mv_stop_edma(struct ata_port *ap)
970 void __iomem *port_mmio = mv_ap_base(ap);
971 struct mv_port_priv *pp = ap->private_data;
973 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
974 return 0;
975 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
976 mv_wait_for_edma_empty_idle(ap);
977 if (mv_stop_edma_engine(port_mmio)) {
978 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
979 return -EIO;
981 return 0;
984 #ifdef ATA_DEBUG
985 static void mv_dump_mem(void __iomem *start, unsigned bytes)
987 int b, w;
988 for (b = 0; b < bytes; ) {
989 DPRINTK("%p: ", start + b);
990 for (w = 0; b < bytes && w < 4; w++) {
991 printk("%08x ", readl(start + b));
992 b += sizeof(u32);
994 printk("\n");
997 #endif
999 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1001 #ifdef ATA_DEBUG
1002 int b, w;
1003 u32 dw;
1004 for (b = 0; b < bytes; ) {
1005 DPRINTK("%02x: ", b);
1006 for (w = 0; b < bytes && w < 4; w++) {
1007 (void) pci_read_config_dword(pdev, b, &dw);
1008 printk("%08x ", dw);
1009 b += sizeof(u32);
1011 printk("\n");
1013 #endif
1015 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1016 struct pci_dev *pdev)
1018 #ifdef ATA_DEBUG
1019 void __iomem *hc_base = mv_hc_base(mmio_base,
1020 port >> MV_PORT_HC_SHIFT);
1021 void __iomem *port_base;
1022 int start_port, num_ports, p, start_hc, num_hcs, hc;
1024 if (0 > port) {
1025 start_hc = start_port = 0;
1026 num_ports = 8; /* shld be benign for 4 port devs */
1027 num_hcs = 2;
1028 } else {
1029 start_hc = port >> MV_PORT_HC_SHIFT;
1030 start_port = port;
1031 num_ports = num_hcs = 1;
1033 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1034 num_ports > 1 ? num_ports - 1 : start_port);
1036 if (NULL != pdev) {
1037 DPRINTK("PCI config space regs:\n");
1038 mv_dump_pci_cfg(pdev, 0x68);
1040 DPRINTK("PCI regs:\n");
1041 mv_dump_mem(mmio_base+0xc00, 0x3c);
1042 mv_dump_mem(mmio_base+0xd00, 0x34);
1043 mv_dump_mem(mmio_base+0xf00, 0x4);
1044 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1045 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1046 hc_base = mv_hc_base(mmio_base, hc);
1047 DPRINTK("HC regs (HC %i):\n", hc);
1048 mv_dump_mem(hc_base, 0x1c);
1050 for (p = start_port; p < start_port + num_ports; p++) {
1051 port_base = mv_port_base(mmio_base, p);
1052 DPRINTK("EDMA regs (port %i):\n", p);
1053 mv_dump_mem(port_base, 0x54);
1054 DPRINTK("SATA regs (port %i):\n", p);
1055 mv_dump_mem(port_base+0x300, 0x60);
1057 #endif
1060 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1062 unsigned int ofs;
1064 switch (sc_reg_in) {
1065 case SCR_STATUS:
1066 case SCR_CONTROL:
1067 case SCR_ERROR:
1068 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1069 break;
1070 case SCR_ACTIVE:
1071 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
1072 break;
1073 default:
1074 ofs = 0xffffffffU;
1075 break;
1077 return ofs;
1080 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
1082 unsigned int ofs = mv_scr_offset(sc_reg_in);
1084 if (ofs != 0xffffffffU) {
1085 *val = readl(mv_ap_base(ap) + ofs);
1086 return 0;
1087 } else
1088 return -EINVAL;
1091 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1093 unsigned int ofs = mv_scr_offset(sc_reg_in);
1095 if (ofs != 0xffffffffU) {
1096 writelfl(val, mv_ap_base(ap) + ofs);
1097 return 0;
1098 } else
1099 return -EINVAL;
1102 static void mv6_dev_config(struct ata_device *adev)
1105 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1107 * Gen-II does not support NCQ over a port multiplier
1108 * (no FIS-based switching).
1110 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1111 * See mv_qc_prep() for more info.
1113 if (adev->flags & ATA_DFLAG_NCQ) {
1114 if (sata_pmp_attached(adev->link->ap)) {
1115 adev->flags &= ~ATA_DFLAG_NCQ;
1116 ata_dev_printk(adev, KERN_INFO,
1117 "NCQ disabled for command-based switching\n");
1118 } else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
1119 adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
1120 ata_dev_printk(adev, KERN_INFO,
1121 "max_sectors limited to %u for NCQ\n",
1122 adev->max_sectors);
1127 static int mv_qc_defer(struct ata_queued_cmd *qc)
1129 struct ata_link *link = qc->dev->link;
1130 struct ata_port *ap = link->ap;
1131 struct mv_port_priv *pp = ap->private_data;
1134 * Don't allow new commands if we're in a delayed EH state
1135 * for NCQ and/or FIS-based switching.
1137 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1138 return ATA_DEFER_PORT;
1140 * If the port is completely idle, then allow the new qc.
1142 if (ap->nr_active_links == 0)
1143 return 0;
1145 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1147 * The port is operating in host queuing mode (EDMA).
1148 * It can accomodate a new qc if the qc protocol
1149 * is compatible with the current host queue mode.
1151 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1153 * The host queue (EDMA) is in NCQ mode.
1154 * If the new qc is also an NCQ command,
1155 * then allow the new qc.
1157 if (qc->tf.protocol == ATA_PROT_NCQ)
1158 return 0;
1159 } else {
1161 * The host queue (EDMA) is in non-NCQ, DMA mode.
1162 * If the new qc is also a non-NCQ, DMA command,
1163 * then allow the new qc.
1165 if (qc->tf.protocol == ATA_PROT_DMA)
1166 return 0;
1169 return ATA_DEFER_PORT;
1172 static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
1174 u32 new_fiscfg, old_fiscfg;
1175 u32 new_ltmode, old_ltmode;
1176 u32 new_haltcond, old_haltcond;
1178 old_fiscfg = readl(port_mmio + FISCFG_OFS);
1179 old_ltmode = readl(port_mmio + LTMODE_OFS);
1180 old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
1182 new_fiscfg = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1183 new_ltmode = old_ltmode & ~LTMODE_BIT8;
1184 new_haltcond = old_haltcond | EDMA_ERR_DEV;
1186 if (want_fbs) {
1187 new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
1188 new_ltmode = old_ltmode | LTMODE_BIT8;
1189 if (want_ncq)
1190 new_haltcond &= ~EDMA_ERR_DEV;
1191 else
1192 new_fiscfg |= FISCFG_WAIT_DEV_ERR;
1195 if (new_fiscfg != old_fiscfg)
1196 writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
1197 if (new_ltmode != old_ltmode)
1198 writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1199 if (new_haltcond != old_haltcond)
1200 writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
1203 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1205 struct mv_host_priv *hpriv = ap->host->private_data;
1206 u32 old, new;
1208 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1209 old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1210 if (want_ncq)
1211 new = old | (1 << 22);
1212 else
1213 new = old & ~(1 << 22);
1214 if (new != old)
1215 writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1218 static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1220 u32 cfg;
1221 struct mv_port_priv *pp = ap->private_data;
1222 struct mv_host_priv *hpriv = ap->host->private_data;
1223 void __iomem *port_mmio = mv_ap_base(ap);
1225 /* set up non-NCQ EDMA configuration */
1226 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1227 pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
1229 if (IS_GEN_I(hpriv))
1230 cfg |= (1 << 8); /* enab config burst size mask */
1232 else if (IS_GEN_II(hpriv)) {
1233 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1234 mv_60x1_errata_sata25(ap, want_ncq);
1236 } else if (IS_GEN_IIE(hpriv)) {
1237 int want_fbs = sata_pmp_attached(ap);
1239 * Possible future enhancement:
1241 * The chip can use FBS with non-NCQ, if we allow it,
1242 * But first we need to have the error handling in place
1243 * for this mode (datasheet section 7.3.15.4.2.3).
1244 * So disallow non-NCQ FBS for now.
1246 want_fbs &= want_ncq;
1248 mv_config_fbs(port_mmio, want_ncq, want_fbs);
1250 if (want_fbs) {
1251 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1252 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1255 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1256 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1257 if (HAS_PCI(ap->host))
1258 cfg |= (1 << 18); /* enab early completion */
1259 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1260 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1263 if (want_ncq) {
1264 cfg |= EDMA_CFG_NCQ;
1265 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1266 } else
1267 pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1269 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1272 static void mv_port_free_dma_mem(struct ata_port *ap)
1274 struct mv_host_priv *hpriv = ap->host->private_data;
1275 struct mv_port_priv *pp = ap->private_data;
1276 int tag;
1278 if (pp->crqb) {
1279 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1280 pp->crqb = NULL;
1282 if (pp->crpb) {
1283 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1284 pp->crpb = NULL;
1287 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1288 * For later hardware, we have one unique sg_tbl per NCQ tag.
1290 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1291 if (pp->sg_tbl[tag]) {
1292 if (tag == 0 || !IS_GEN_I(hpriv))
1293 dma_pool_free(hpriv->sg_tbl_pool,
1294 pp->sg_tbl[tag],
1295 pp->sg_tbl_dma[tag]);
1296 pp->sg_tbl[tag] = NULL;
1302 * mv_port_start - Port specific init/start routine.
1303 * @ap: ATA channel to manipulate
1305 * Allocate and point to DMA memory, init port private memory,
1306 * zero indices.
1308 * LOCKING:
1309 * Inherited from caller.
1311 static int mv_port_start(struct ata_port *ap)
1313 struct device *dev = ap->host->dev;
1314 struct mv_host_priv *hpriv = ap->host->private_data;
1315 struct mv_port_priv *pp;
1316 int tag;
1318 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1319 if (!pp)
1320 return -ENOMEM;
1321 ap->private_data = pp;
1323 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1324 if (!pp->crqb)
1325 return -ENOMEM;
1326 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1328 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1329 if (!pp->crpb)
1330 goto out_port_free_dma_mem;
1331 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1334 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1335 * For later hardware, we need one unique sg_tbl per NCQ tag.
1337 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1338 if (tag == 0 || !IS_GEN_I(hpriv)) {
1339 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1340 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1341 if (!pp->sg_tbl[tag])
1342 goto out_port_free_dma_mem;
1343 } else {
1344 pp->sg_tbl[tag] = pp->sg_tbl[0];
1345 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1348 return 0;
1350 out_port_free_dma_mem:
1351 mv_port_free_dma_mem(ap);
1352 return -ENOMEM;
1356 * mv_port_stop - Port specific cleanup/stop routine.
1357 * @ap: ATA channel to manipulate
1359 * Stop DMA, cleanup port memory.
1361 * LOCKING:
1362 * This routine uses the host lock to protect the DMA stop.
1364 static void mv_port_stop(struct ata_port *ap)
1366 mv_stop_edma(ap);
1367 mv_enable_port_irqs(ap, 0);
1368 mv_port_free_dma_mem(ap);
1372 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1373 * @qc: queued command whose SG list to source from
1375 * Populate the SG list and mark the last entry.
1377 * LOCKING:
1378 * Inherited from caller.
1380 static void mv_fill_sg(struct ata_queued_cmd *qc)
1382 struct mv_port_priv *pp = qc->ap->private_data;
1383 struct scatterlist *sg;
1384 struct mv_sg *mv_sg, *last_sg = NULL;
1385 unsigned int si;
1387 mv_sg = pp->sg_tbl[qc->tag];
1388 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1389 dma_addr_t addr = sg_dma_address(sg);
1390 u32 sg_len = sg_dma_len(sg);
1392 while (sg_len) {
1393 u32 offset = addr & 0xffff;
1394 u32 len = sg_len;
1396 if ((offset + sg_len > 0x10000))
1397 len = 0x10000 - offset;
1399 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1400 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1401 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1403 sg_len -= len;
1404 addr += len;
1406 last_sg = mv_sg;
1407 mv_sg++;
1411 if (likely(last_sg))
1412 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1415 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1417 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1418 (last ? CRQB_CMD_LAST : 0);
1419 *cmdw = cpu_to_le16(tmp);
1423 * mv_qc_prep - Host specific command preparation.
1424 * @qc: queued command to prepare
1426 * This routine simply redirects to the general purpose routine
1427 * if command is not DMA. Else, it handles prep of the CRQB
1428 * (command request block), does some sanity checking, and calls
1429 * the SG load routine.
1431 * LOCKING:
1432 * Inherited from caller.
1434 static void mv_qc_prep(struct ata_queued_cmd *qc)
1436 struct ata_port *ap = qc->ap;
1437 struct mv_port_priv *pp = ap->private_data;
1438 __le16 *cw;
1439 struct ata_taskfile *tf;
1440 u16 flags = 0;
1441 unsigned in_index;
1443 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1444 (qc->tf.protocol != ATA_PROT_NCQ))
1445 return;
1447 /* Fill in command request block
1449 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1450 flags |= CRQB_FLAG_READ;
1451 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1452 flags |= qc->tag << CRQB_TAG_SHIFT;
1453 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1455 /* get current queue index from software */
1456 in_index = pp->req_idx;
1458 pp->crqb[in_index].sg_addr =
1459 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1460 pp->crqb[in_index].sg_addr_hi =
1461 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1462 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1464 cw = &pp->crqb[in_index].ata_cmd[0];
1465 tf = &qc->tf;
1467 /* Sadly, the CRQB cannot accomodate all registers--there are
1468 * only 11 bytes...so we must pick and choose required
1469 * registers based on the command. So, we drop feature and
1470 * hob_feature for [RW] DMA commands, but they are needed for
1471 * NCQ. NCQ will drop hob_nsect.
1473 switch (tf->command) {
1474 case ATA_CMD_READ:
1475 case ATA_CMD_READ_EXT:
1476 case ATA_CMD_WRITE:
1477 case ATA_CMD_WRITE_EXT:
1478 case ATA_CMD_WRITE_FUA_EXT:
1479 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1480 break;
1481 case ATA_CMD_FPDMA_READ:
1482 case ATA_CMD_FPDMA_WRITE:
1483 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1484 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1485 break;
1486 default:
1487 /* The only other commands EDMA supports in non-queued and
1488 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1489 * of which are defined/used by Linux. If we get here, this
1490 * driver needs work.
1492 * FIXME: modify libata to give qc_prep a return value and
1493 * return error here.
1495 BUG_ON(tf->command);
1496 break;
1498 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1499 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1500 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1501 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1502 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1503 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1504 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1505 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1506 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1508 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1509 return;
1510 mv_fill_sg(qc);
1514 * mv_qc_prep_iie - Host specific command preparation.
1515 * @qc: queued command to prepare
1517 * This routine simply redirects to the general purpose routine
1518 * if command is not DMA. Else, it handles prep of the CRQB
1519 * (command request block), does some sanity checking, and calls
1520 * the SG load routine.
1522 * LOCKING:
1523 * Inherited from caller.
1525 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1527 struct ata_port *ap = qc->ap;
1528 struct mv_port_priv *pp = ap->private_data;
1529 struct mv_crqb_iie *crqb;
1530 struct ata_taskfile *tf;
1531 unsigned in_index;
1532 u32 flags = 0;
1534 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1535 (qc->tf.protocol != ATA_PROT_NCQ))
1536 return;
1538 /* Fill in Gen IIE command request block */
1539 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1540 flags |= CRQB_FLAG_READ;
1542 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1543 flags |= qc->tag << CRQB_TAG_SHIFT;
1544 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1545 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1547 /* get current queue index from software */
1548 in_index = pp->req_idx;
1550 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1551 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1552 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1553 crqb->flags = cpu_to_le32(flags);
1555 tf = &qc->tf;
1556 crqb->ata_cmd[0] = cpu_to_le32(
1557 (tf->command << 16) |
1558 (tf->feature << 24)
1560 crqb->ata_cmd[1] = cpu_to_le32(
1561 (tf->lbal << 0) |
1562 (tf->lbam << 8) |
1563 (tf->lbah << 16) |
1564 (tf->device << 24)
1566 crqb->ata_cmd[2] = cpu_to_le32(
1567 (tf->hob_lbal << 0) |
1568 (tf->hob_lbam << 8) |
1569 (tf->hob_lbah << 16) |
1570 (tf->hob_feature << 24)
1572 crqb->ata_cmd[3] = cpu_to_le32(
1573 (tf->nsect << 0) |
1574 (tf->hob_nsect << 8)
1577 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1578 return;
1579 mv_fill_sg(qc);
1583 * mv_qc_issue - Initiate a command to the host
1584 * @qc: queued command to start
1586 * This routine simply redirects to the general purpose routine
1587 * if command is not DMA. Else, it sanity checks our local
1588 * caches of the request producer/consumer indices then enables
1589 * DMA and bumps the request producer index.
1591 * LOCKING:
1592 * Inherited from caller.
1594 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1596 struct ata_port *ap = qc->ap;
1597 void __iomem *port_mmio = mv_ap_base(ap);
1598 struct mv_port_priv *pp = ap->private_data;
1599 u32 in_index;
1601 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1602 (qc->tf.protocol != ATA_PROT_NCQ)) {
1604 * We're about to send a non-EDMA capable command to the
1605 * port. Turn off EDMA so there won't be problems accessing
1606 * shadow block, etc registers.
1608 mv_stop_edma(ap);
1609 mv_enable_port_irqs(ap, ERR_IRQ);
1610 mv_pmp_select(ap, qc->dev->link->pmp);
1611 return ata_sff_qc_issue(qc);
1614 mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1616 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1617 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1619 /* and write the request in pointer to kick the EDMA to life */
1620 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1621 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1623 return 0;
1626 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1628 struct mv_port_priv *pp = ap->private_data;
1629 struct ata_queued_cmd *qc;
1631 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1632 return NULL;
1633 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1634 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1635 qc = NULL;
1636 return qc;
1639 static void mv_pmp_error_handler(struct ata_port *ap)
1641 unsigned int pmp, pmp_map;
1642 struct mv_port_priv *pp = ap->private_data;
1644 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
1646 * Perform NCQ error analysis on failed PMPs
1647 * before we freeze the port entirely.
1649 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1651 pmp_map = pp->delayed_eh_pmp_map;
1652 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
1653 for (pmp = 0; pmp_map != 0; pmp++) {
1654 unsigned int this_pmp = (1 << pmp);
1655 if (pmp_map & this_pmp) {
1656 struct ata_link *link = &ap->pmp_link[pmp];
1657 pmp_map &= ~this_pmp;
1658 ata_eh_analyze_ncq_error(link);
1661 ata_port_freeze(ap);
1663 sata_pmp_error_handler(ap);
1666 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
1668 void __iomem *port_mmio = mv_ap_base(ap);
1670 return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
1673 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
1675 struct ata_eh_info *ehi;
1676 unsigned int pmp;
1679 * Initialize EH info for PMPs which saw device errors
1681 ehi = &ap->link.eh_info;
1682 for (pmp = 0; pmp_map != 0; pmp++) {
1683 unsigned int this_pmp = (1 << pmp);
1684 if (pmp_map & this_pmp) {
1685 struct ata_link *link = &ap->pmp_link[pmp];
1687 pmp_map &= ~this_pmp;
1688 ehi = &link->eh_info;
1689 ata_ehi_clear_desc(ehi);
1690 ata_ehi_push_desc(ehi, "dev err");
1691 ehi->err_mask |= AC_ERR_DEV;
1692 ehi->action |= ATA_EH_RESET;
1693 ata_link_abort(link);
1698 static int mv_req_q_empty(struct ata_port *ap)
1700 void __iomem *port_mmio = mv_ap_base(ap);
1701 u32 in_ptr, out_ptr;
1703 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
1704 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1705 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1706 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1707 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
1710 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
1712 struct mv_port_priv *pp = ap->private_data;
1713 int failed_links;
1714 unsigned int old_map, new_map;
1717 * Device error during FBS+NCQ operation:
1719 * Set a port flag to prevent further I/O being enqueued.
1720 * Leave the EDMA running to drain outstanding commands from this port.
1721 * Perform the post-mortem/EH only when all responses are complete.
1722 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1724 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
1725 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
1726 pp->delayed_eh_pmp_map = 0;
1728 old_map = pp->delayed_eh_pmp_map;
1729 new_map = old_map | mv_get_err_pmp_map(ap);
1731 if (old_map != new_map) {
1732 pp->delayed_eh_pmp_map = new_map;
1733 mv_pmp_eh_prep(ap, new_map & ~old_map);
1735 failed_links = hweight16(new_map);
1737 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
1738 "failed_links=%d nr_active_links=%d\n",
1739 __func__, pp->delayed_eh_pmp_map,
1740 ap->qc_active, failed_links,
1741 ap->nr_active_links);
1743 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
1744 mv_process_crpb_entries(ap, pp);
1745 mv_stop_edma(ap);
1746 mv_eh_freeze(ap);
1747 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
1748 return 1; /* handled */
1750 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
1751 return 1; /* handled */
1754 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
1757 * Possible future enhancement:
1759 * FBS+non-NCQ operation is not yet implemented.
1760 * See related notes in mv_edma_cfg().
1762 * Device error during FBS+non-NCQ operation:
1764 * We need to snapshot the shadow registers for each failed command.
1765 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1767 return 0; /* not handled */
1770 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
1772 struct mv_port_priv *pp = ap->private_data;
1774 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1775 return 0; /* EDMA was not active: not handled */
1776 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
1777 return 0; /* FBS was not active: not handled */
1779 if (!(edma_err_cause & EDMA_ERR_DEV))
1780 return 0; /* non DEV error: not handled */
1781 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
1782 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
1783 return 0; /* other problems: not handled */
1785 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1787 * EDMA should NOT have self-disabled for this case.
1788 * If it did, then something is wrong elsewhere,
1789 * and we cannot handle it here.
1791 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1792 ata_port_printk(ap, KERN_WARNING,
1793 "%s: err_cause=0x%x pp_flags=0x%x\n",
1794 __func__, edma_err_cause, pp->pp_flags);
1795 return 0; /* not handled */
1797 return mv_handle_fbs_ncq_dev_err(ap);
1798 } else {
1800 * EDMA should have self-disabled for this case.
1801 * If it did not, then something is wrong elsewhere,
1802 * and we cannot handle it here.
1804 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
1805 ata_port_printk(ap, KERN_WARNING,
1806 "%s: err_cause=0x%x pp_flags=0x%x\n",
1807 __func__, edma_err_cause, pp->pp_flags);
1808 return 0; /* not handled */
1810 return mv_handle_fbs_non_ncq_dev_err(ap);
1812 return 0; /* not handled */
1815 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
1817 struct ata_eh_info *ehi = &ap->link.eh_info;
1818 char *when = "idle";
1820 ata_ehi_clear_desc(ehi);
1821 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
1822 when = "disabled";
1823 } else if (edma_was_enabled) {
1824 when = "EDMA enabled";
1825 } else {
1826 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1827 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1828 when = "polling";
1830 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
1831 ehi->err_mask |= AC_ERR_OTHER;
1832 ehi->action |= ATA_EH_RESET;
1833 ata_port_freeze(ap);
1837 * mv_err_intr - Handle error interrupts on the port
1838 * @ap: ATA channel to manipulate
1839 * @qc: affected command (non-NCQ), or NULL
1841 * Most cases require a full reset of the chip's state machine,
1842 * which also performs a COMRESET.
1843 * Also, if the port disabled DMA, update our cached copy to match.
1845 * LOCKING:
1846 * Inherited from caller.
1848 static void mv_err_intr(struct ata_port *ap)
1850 void __iomem *port_mmio = mv_ap_base(ap);
1851 u32 edma_err_cause, eh_freeze_mask, serr = 0;
1852 u32 fis_cause = 0;
1853 struct mv_port_priv *pp = ap->private_data;
1854 struct mv_host_priv *hpriv = ap->host->private_data;
1855 unsigned int action = 0, err_mask = 0;
1856 struct ata_eh_info *ehi = &ap->link.eh_info;
1857 struct ata_queued_cmd *qc;
1858 int abort = 0;
1861 * Read and clear the SError and err_cause bits.
1862 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1863 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1865 sata_scr_read(&ap->link, SCR_ERROR, &serr);
1866 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1868 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1869 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1870 fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1871 writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1873 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1875 if (edma_err_cause & EDMA_ERR_DEV) {
1877 * Device errors during FIS-based switching operation
1878 * require special handling.
1880 if (mv_handle_dev_err(ap, edma_err_cause))
1881 return;
1884 qc = mv_get_active_qc(ap);
1885 ata_ehi_clear_desc(ehi);
1886 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
1887 edma_err_cause, pp->pp_flags);
1889 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1890 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
1891 if (fis_cause & SATA_FIS_IRQ_AN) {
1892 u32 ec = edma_err_cause &
1893 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
1894 sata_async_notification(ap);
1895 if (!ec)
1896 return; /* Just an AN; no need for the nukes */
1897 ata_ehi_push_desc(ehi, "SDB notify");
1901 * All generations share these EDMA error cause bits:
1903 if (edma_err_cause & EDMA_ERR_DEV) {
1904 err_mask |= AC_ERR_DEV;
1905 action |= ATA_EH_RESET;
1906 ata_ehi_push_desc(ehi, "dev error");
1908 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1909 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1910 EDMA_ERR_INTRL_PAR)) {
1911 err_mask |= AC_ERR_ATA_BUS;
1912 action |= ATA_EH_RESET;
1913 ata_ehi_push_desc(ehi, "parity error");
1915 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1916 ata_ehi_hotplugged(ehi);
1917 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1918 "dev disconnect" : "dev connect");
1919 action |= ATA_EH_RESET;
1923 * Gen-I has a different SELF_DIS bit,
1924 * different FREEZE bits, and no SERR bit:
1926 if (IS_GEN_I(hpriv)) {
1927 eh_freeze_mask = EDMA_EH_FREEZE_5;
1928 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1929 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1930 ata_ehi_push_desc(ehi, "EDMA self-disable");
1932 } else {
1933 eh_freeze_mask = EDMA_EH_FREEZE;
1934 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1935 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1936 ata_ehi_push_desc(ehi, "EDMA self-disable");
1938 if (edma_err_cause & EDMA_ERR_SERR) {
1939 ata_ehi_push_desc(ehi, "SError=%08x", serr);
1940 err_mask |= AC_ERR_ATA_BUS;
1941 action |= ATA_EH_RESET;
1945 if (!err_mask) {
1946 err_mask = AC_ERR_OTHER;
1947 action |= ATA_EH_RESET;
1950 ehi->serror |= serr;
1951 ehi->action |= action;
1953 if (qc)
1954 qc->err_mask |= err_mask;
1955 else
1956 ehi->err_mask |= err_mask;
1958 if (err_mask == AC_ERR_DEV) {
1960 * Cannot do ata_port_freeze() here,
1961 * because it would kill PIO access,
1962 * which is needed for further diagnosis.
1964 mv_eh_freeze(ap);
1965 abort = 1;
1966 } else if (edma_err_cause & eh_freeze_mask) {
1968 * Note to self: ata_port_freeze() calls ata_port_abort()
1970 ata_port_freeze(ap);
1971 } else {
1972 abort = 1;
1975 if (abort) {
1976 if (qc)
1977 ata_link_abort(qc->dev->link);
1978 else
1979 ata_port_abort(ap);
1983 static void mv_process_crpb_response(struct ata_port *ap,
1984 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1986 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
1988 if (qc) {
1989 u8 ata_status;
1990 u16 edma_status = le16_to_cpu(response->flags);
1992 * edma_status from a response queue entry:
1993 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1994 * MSB is saved ATA status from command completion.
1996 if (!ncq_enabled) {
1997 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
1998 if (err_cause) {
2000 * Error will be seen/handled by mv_err_intr().
2001 * So do nothing at all here.
2003 return;
2006 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2007 if (!ac_err_mask(ata_status))
2008 ata_qc_complete(qc);
2009 /* else: leave it for mv_err_intr() */
2010 } else {
2011 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2012 __func__, tag);
2016 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2018 void __iomem *port_mmio = mv_ap_base(ap);
2019 struct mv_host_priv *hpriv = ap->host->private_data;
2020 u32 in_index;
2021 bool work_done = false;
2022 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2024 /* Get the hardware queue position index */
2025 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
2026 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2028 /* Process new responses from since the last time we looked */
2029 while (in_index != pp->resp_idx) {
2030 unsigned int tag;
2031 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2033 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2035 if (IS_GEN_I(hpriv)) {
2036 /* 50xx: no NCQ, only one command active at a time */
2037 tag = ap->link.active_tag;
2038 } else {
2039 /* Gen II/IIE: get command tag from CRPB entry */
2040 tag = le16_to_cpu(response->id) & 0x1f;
2042 mv_process_crpb_response(ap, response, tag, ncq_enabled);
2043 work_done = true;
2046 /* Update the software queue position index in hardware */
2047 if (work_done)
2048 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2049 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2050 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
2053 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2055 struct mv_port_priv *pp;
2056 int edma_was_enabled;
2058 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2059 mv_unexpected_intr(ap, 0);
2060 return;
2063 * Grab a snapshot of the EDMA_EN flag setting,
2064 * so that we have a consistent view for this port,
2065 * even if something we call of our routines changes it.
2067 pp = ap->private_data;
2068 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2070 * Process completed CRPB response(s) before other events.
2072 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2073 mv_process_crpb_entries(ap, pp);
2074 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2075 mv_handle_fbs_ncq_dev_err(ap);
2078 * Handle chip-reported errors, or continue on to handle PIO.
2080 if (unlikely(port_cause & ERR_IRQ)) {
2081 mv_err_intr(ap);
2082 } else if (!edma_was_enabled) {
2083 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2084 if (qc)
2085 ata_sff_host_intr(ap, qc);
2086 else
2087 mv_unexpected_intr(ap, edma_was_enabled);
2092 * mv_host_intr - Handle all interrupts on the given host controller
2093 * @host: host specific structure
2094 * @main_irq_cause: Main interrupt cause register for the chip.
2096 * LOCKING:
2097 * Inherited from caller.
2099 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2101 struct mv_host_priv *hpriv = host->private_data;
2102 void __iomem *mmio = hpriv->base, *hc_mmio;
2103 unsigned int handled = 0, port;
2105 for (port = 0; port < hpriv->n_ports; port++) {
2106 struct ata_port *ap = host->ports[port];
2107 unsigned int p, shift, hardport, port_cause;
2109 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2111 * Each hc within the host has its own hc_irq_cause register,
2112 * where the interrupting ports bits get ack'd.
2114 if (hardport == 0) { /* first port on this hc ? */
2115 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2116 u32 port_mask, ack_irqs;
2118 * Skip this entire hc if nothing pending for any ports
2120 if (!hc_cause) {
2121 port += MV_PORTS_PER_HC - 1;
2122 continue;
2125 * We don't need/want to read the hc_irq_cause register,
2126 * because doing so hurts performance, and
2127 * main_irq_cause already gives us everything we need.
2129 * But we do have to *write* to the hc_irq_cause to ack
2130 * the ports that we are handling this time through.
2132 * This requires that we create a bitmap for those
2133 * ports which interrupted us, and use that bitmap
2134 * to ack (only) those ports via hc_irq_cause.
2136 ack_irqs = 0;
2137 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2138 if ((port + p) >= hpriv->n_ports)
2139 break;
2140 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2141 if (hc_cause & port_mask)
2142 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2144 hc_mmio = mv_hc_base_from_port(mmio, port);
2145 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
2146 handled = 1;
2149 * Handle interrupts signalled for this port:
2151 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2152 if (port_cause)
2153 mv_port_intr(ap, port_cause);
2155 return handled;
2158 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2160 struct mv_host_priv *hpriv = host->private_data;
2161 struct ata_port *ap;
2162 struct ata_queued_cmd *qc;
2163 struct ata_eh_info *ehi;
2164 unsigned int i, err_mask, printed = 0;
2165 u32 err_cause;
2167 err_cause = readl(mmio + hpriv->irq_cause_ofs);
2169 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2170 err_cause);
2172 DPRINTK("All regs @ PCI error\n");
2173 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2175 writelfl(0, mmio + hpriv->irq_cause_ofs);
2177 for (i = 0; i < host->n_ports; i++) {
2178 ap = host->ports[i];
2179 if (!ata_link_offline(&ap->link)) {
2180 ehi = &ap->link.eh_info;
2181 ata_ehi_clear_desc(ehi);
2182 if (!printed++)
2183 ata_ehi_push_desc(ehi,
2184 "PCI err cause 0x%08x", err_cause);
2185 err_mask = AC_ERR_HOST_BUS;
2186 ehi->action = ATA_EH_RESET;
2187 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2188 if (qc)
2189 qc->err_mask |= err_mask;
2190 else
2191 ehi->err_mask |= err_mask;
2193 ata_port_freeze(ap);
2196 return 1; /* handled */
2200 * mv_interrupt - Main interrupt event handler
2201 * @irq: unused
2202 * @dev_instance: private data; in this case the host structure
2204 * Read the read only register to determine if any host
2205 * controllers have pending interrupts. If so, call lower level
2206 * routine to handle. Also check for PCI errors which are only
2207 * reported here.
2209 * LOCKING:
2210 * This routine holds the host lock while processing pending
2211 * interrupts.
2213 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2215 struct ata_host *host = dev_instance;
2216 struct mv_host_priv *hpriv = host->private_data;
2217 unsigned int handled = 0;
2218 u32 main_irq_cause, pending_irqs;
2220 spin_lock(&host->lock);
2221 main_irq_cause = readl(hpriv->main_irq_cause_addr);
2222 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2224 * Deal with cases where we either have nothing pending, or have read
2225 * a bogus register value which can indicate HW removal or PCI fault.
2227 if (pending_irqs && main_irq_cause != 0xffffffffU) {
2228 if (unlikely((pending_irqs & PCI_ERR) && HAS_PCI(host)))
2229 handled = mv_pci_error(host, hpriv->base);
2230 else
2231 handled = mv_host_intr(host, pending_irqs);
2233 spin_unlock(&host->lock);
2234 return IRQ_RETVAL(handled);
2237 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2239 unsigned int ofs;
2241 switch (sc_reg_in) {
2242 case SCR_STATUS:
2243 case SCR_ERROR:
2244 case SCR_CONTROL:
2245 ofs = sc_reg_in * sizeof(u32);
2246 break;
2247 default:
2248 ofs = 0xffffffffU;
2249 break;
2251 return ofs;
2254 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
2256 struct mv_host_priv *hpriv = ap->host->private_data;
2257 void __iomem *mmio = hpriv->base;
2258 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2259 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2261 if (ofs != 0xffffffffU) {
2262 *val = readl(addr + ofs);
2263 return 0;
2264 } else
2265 return -EINVAL;
2268 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
2270 struct mv_host_priv *hpriv = ap->host->private_data;
2271 void __iomem *mmio = hpriv->base;
2272 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2273 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2275 if (ofs != 0xffffffffU) {
2276 writelfl(val, addr + ofs);
2277 return 0;
2278 } else
2279 return -EINVAL;
2282 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2284 struct pci_dev *pdev = to_pci_dev(host->dev);
2285 int early_5080;
2287 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2289 if (!early_5080) {
2290 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2291 tmp |= (1 << 0);
2292 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2295 mv_reset_pci_bus(host, mmio);
2298 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2300 writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
2303 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2304 void __iomem *mmio)
2306 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2307 u32 tmp;
2309 tmp = readl(phy_mmio + MV5_PHY_MODE);
2311 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
2312 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
2315 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2317 u32 tmp;
2319 writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
2321 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2323 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2324 tmp |= ~(1 << 0);
2325 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2328 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2329 unsigned int port)
2331 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2332 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2333 u32 tmp;
2334 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2336 if (fix_apm_sq) {
2337 tmp = readl(phy_mmio + MV5_LTMODE_OFS);
2338 tmp |= (1 << 19);
2339 writel(tmp, phy_mmio + MV5_LTMODE_OFS);
2341 tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
2342 tmp &= ~0x3;
2343 tmp |= 0x1;
2344 writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
2347 tmp = readl(phy_mmio + MV5_PHY_MODE);
2348 tmp &= ~mask;
2349 tmp |= hpriv->signal[port].pre;
2350 tmp |= hpriv->signal[port].amps;
2351 writel(tmp, phy_mmio + MV5_PHY_MODE);
2355 #undef ZERO
2356 #define ZERO(reg) writel(0, port_mmio + (reg))
2357 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
2358 unsigned int port)
2360 void __iomem *port_mmio = mv_port_base(mmio, port);
2362 mv_reset_channel(hpriv, mmio, port);
2364 ZERO(0x028); /* command */
2365 writel(0x11f, port_mmio + EDMA_CFG_OFS);
2366 ZERO(0x004); /* timer */
2367 ZERO(0x008); /* irq err cause */
2368 ZERO(0x00c); /* irq err mask */
2369 ZERO(0x010); /* rq bah */
2370 ZERO(0x014); /* rq inp */
2371 ZERO(0x018); /* rq outp */
2372 ZERO(0x01c); /* respq bah */
2373 ZERO(0x024); /* respq outp */
2374 ZERO(0x020); /* respq inp */
2375 ZERO(0x02c); /* test control */
2376 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2378 #undef ZERO
2380 #define ZERO(reg) writel(0, hc_mmio + (reg))
2381 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2382 unsigned int hc)
2384 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2385 u32 tmp;
2387 ZERO(0x00c);
2388 ZERO(0x010);
2389 ZERO(0x014);
2390 ZERO(0x018);
2392 tmp = readl(hc_mmio + 0x20);
2393 tmp &= 0x1c1c1c1c;
2394 tmp |= 0x03030303;
2395 writel(tmp, hc_mmio + 0x20);
2397 #undef ZERO
2399 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2400 unsigned int n_hc)
2402 unsigned int hc, port;
2404 for (hc = 0; hc < n_hc; hc++) {
2405 for (port = 0; port < MV_PORTS_PER_HC; port++)
2406 mv5_reset_hc_port(hpriv, mmio,
2407 (hc * MV_PORTS_PER_HC) + port);
2409 mv5_reset_one_hc(hpriv, mmio, hc);
2412 return 0;
2415 #undef ZERO
2416 #define ZERO(reg) writel(0, mmio + (reg))
2417 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2419 struct mv_host_priv *hpriv = host->private_data;
2420 u32 tmp;
2422 tmp = readl(mmio + MV_PCI_MODE_OFS);
2423 tmp &= 0xff00ffff;
2424 writel(tmp, mmio + MV_PCI_MODE_OFS);
2426 ZERO(MV_PCI_DISC_TIMER);
2427 ZERO(MV_PCI_MSI_TRIGGER);
2428 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
2429 ZERO(MV_PCI_SERR_MASK);
2430 ZERO(hpriv->irq_cause_ofs);
2431 ZERO(hpriv->irq_mask_ofs);
2432 ZERO(MV_PCI_ERR_LOW_ADDRESS);
2433 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2434 ZERO(MV_PCI_ERR_ATTRIBUTE);
2435 ZERO(MV_PCI_ERR_COMMAND);
2437 #undef ZERO
2439 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2441 u32 tmp;
2443 mv5_reset_flash(hpriv, mmio);
2445 tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
2446 tmp &= 0x3;
2447 tmp |= (1 << 5) | (1 << 6);
2448 writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
2452 * mv6_reset_hc - Perform the 6xxx global soft reset
2453 * @mmio: base address of the HBA
2455 * This routine only applies to 6xxx parts.
2457 * LOCKING:
2458 * Inherited from caller.
2460 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2461 unsigned int n_hc)
2463 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2464 int i, rc = 0;
2465 u32 t;
2467 /* Following procedure defined in PCI "main command and status
2468 * register" table.
2470 t = readl(reg);
2471 writel(t | STOP_PCI_MASTER, reg);
2473 for (i = 0; i < 1000; i++) {
2474 udelay(1);
2475 t = readl(reg);
2476 if (PCI_MASTER_EMPTY & t)
2477 break;
2479 if (!(PCI_MASTER_EMPTY & t)) {
2480 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2481 rc = 1;
2482 goto done;
2485 /* set reset */
2486 i = 5;
2487 do {
2488 writel(t | GLOB_SFT_RST, reg);
2489 t = readl(reg);
2490 udelay(1);
2491 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
2493 if (!(GLOB_SFT_RST & t)) {
2494 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2495 rc = 1;
2496 goto done;
2499 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2500 i = 5;
2501 do {
2502 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2503 t = readl(reg);
2504 udelay(1);
2505 } while ((GLOB_SFT_RST & t) && (i-- > 0));
2507 if (GLOB_SFT_RST & t) {
2508 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2509 rc = 1;
2511 done:
2512 return rc;
2515 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2516 void __iomem *mmio)
2518 void __iomem *port_mmio;
2519 u32 tmp;
2521 tmp = readl(mmio + MV_RESET_CFG_OFS);
2522 if ((tmp & (1 << 0)) == 0) {
2523 hpriv->signal[idx].amps = 0x7 << 8;
2524 hpriv->signal[idx].pre = 0x1 << 5;
2525 return;
2528 port_mmio = mv_port_base(mmio, idx);
2529 tmp = readl(port_mmio + PHY_MODE2);
2531 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2532 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2535 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2537 writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
2540 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2541 unsigned int port)
2543 void __iomem *port_mmio = mv_port_base(mmio, port);
2545 u32 hp_flags = hpriv->hp_flags;
2546 int fix_phy_mode2 =
2547 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2548 int fix_phy_mode4 =
2549 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2550 u32 m2, tmp;
2552 if (fix_phy_mode2) {
2553 m2 = readl(port_mmio + PHY_MODE2);
2554 m2 &= ~(1 << 16);
2555 m2 |= (1 << 31);
2556 writel(m2, port_mmio + PHY_MODE2);
2558 udelay(200);
2560 m2 = readl(port_mmio + PHY_MODE2);
2561 m2 &= ~((1 << 16) | (1 << 31));
2562 writel(m2, port_mmio + PHY_MODE2);
2564 udelay(200);
2567 /* who knows what this magic does */
2568 tmp = readl(port_mmio + PHY_MODE3);
2569 tmp &= ~0x7F800000;
2570 tmp |= 0x2A800000;
2571 writel(tmp, port_mmio + PHY_MODE3);
2573 if (fix_phy_mode4) {
2574 u32 m4;
2576 m4 = readl(port_mmio + PHY_MODE4);
2578 if (hp_flags & MV_HP_ERRATA_60X1B2)
2579 tmp = readl(port_mmio + PHY_MODE3);
2581 /* workaround for errata FEr SATA#10 (part 1) */
2582 m4 = (m4 & ~(1 << 1)) | (1 << 0);
2584 writel(m4, port_mmio + PHY_MODE4);
2586 if (hp_flags & MV_HP_ERRATA_60X1B2)
2587 writel(tmp, port_mmio + PHY_MODE3);
2590 /* Revert values of pre-emphasis and signal amps to the saved ones */
2591 m2 = readl(port_mmio + PHY_MODE2);
2593 m2 &= ~MV_M2_PREAMP_MASK;
2594 m2 |= hpriv->signal[port].amps;
2595 m2 |= hpriv->signal[port].pre;
2596 m2 &= ~(1 << 16);
2598 /* according to mvSata 3.6.1, some IIE values are fixed */
2599 if (IS_GEN_IIE(hpriv)) {
2600 m2 &= ~0xC30FF01F;
2601 m2 |= 0x0000900F;
2604 writel(m2, port_mmio + PHY_MODE2);
2607 /* TODO: use the generic LED interface to configure the SATA Presence */
2608 /* & Acitivy LEDs on the board */
2609 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2610 void __iomem *mmio)
2612 return;
2615 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2616 void __iomem *mmio)
2618 void __iomem *port_mmio;
2619 u32 tmp;
2621 port_mmio = mv_port_base(mmio, idx);
2622 tmp = readl(port_mmio + PHY_MODE2);
2624 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2625 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2628 #undef ZERO
2629 #define ZERO(reg) writel(0, port_mmio + (reg))
2630 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2631 void __iomem *mmio, unsigned int port)
2633 void __iomem *port_mmio = mv_port_base(mmio, port);
2635 mv_reset_channel(hpriv, mmio, port);
2637 ZERO(0x028); /* command */
2638 writel(0x101f, port_mmio + EDMA_CFG_OFS);
2639 ZERO(0x004); /* timer */
2640 ZERO(0x008); /* irq err cause */
2641 ZERO(0x00c); /* irq err mask */
2642 ZERO(0x010); /* rq bah */
2643 ZERO(0x014); /* rq inp */
2644 ZERO(0x018); /* rq outp */
2645 ZERO(0x01c); /* respq bah */
2646 ZERO(0x024); /* respq outp */
2647 ZERO(0x020); /* respq inp */
2648 ZERO(0x02c); /* test control */
2649 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2652 #undef ZERO
2654 #define ZERO(reg) writel(0, hc_mmio + (reg))
2655 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2656 void __iomem *mmio)
2658 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2660 ZERO(0x00c);
2661 ZERO(0x010);
2662 ZERO(0x014);
2666 #undef ZERO
2668 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2669 void __iomem *mmio, unsigned int n_hc)
2671 unsigned int port;
2673 for (port = 0; port < hpriv->n_ports; port++)
2674 mv_soc_reset_hc_port(hpriv, mmio, port);
2676 mv_soc_reset_one_hc(hpriv, mmio);
2678 return 0;
2681 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2682 void __iomem *mmio)
2684 return;
2687 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2689 return;
2692 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
2694 u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
2696 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
2697 if (want_gen2i)
2698 ifcfg |= (1 << 7); /* enable gen2i speed */
2699 writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
2702 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2703 unsigned int port_no)
2705 void __iomem *port_mmio = mv_port_base(mmio, port_no);
2708 * The datasheet warns against setting EDMA_RESET when EDMA is active
2709 * (but doesn't say what the problem might be). So we first try
2710 * to disable the EDMA engine before doing the EDMA_RESET operation.
2712 mv_stop_edma_engine(port_mmio);
2713 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2715 if (!IS_GEN_I(hpriv)) {
2716 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2717 mv_setup_ifcfg(port_mmio, 1);
2720 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2721 * link, and physical layers. It resets all SATA interface registers
2722 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2724 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2725 udelay(25); /* allow reset propagation */
2726 writelfl(0, port_mmio + EDMA_CMD_OFS);
2728 hpriv->ops->phy_errata(hpriv, mmio, port_no);
2730 if (IS_GEN_I(hpriv))
2731 mdelay(1);
2734 static void mv_pmp_select(struct ata_port *ap, int pmp)
2736 if (sata_pmp_supported(ap)) {
2737 void __iomem *port_mmio = mv_ap_base(ap);
2738 u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2739 int old = reg & 0xf;
2741 if (old != pmp) {
2742 reg = (reg & ~0xf) | pmp;
2743 writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2748 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2749 unsigned long deadline)
2751 mv_pmp_select(link->ap, sata_srst_pmp(link));
2752 return sata_std_hardreset(link, class, deadline);
2755 static int mv_softreset(struct ata_link *link, unsigned int *class,
2756 unsigned long deadline)
2758 mv_pmp_select(link->ap, sata_srst_pmp(link));
2759 return ata_sff_softreset(link, class, deadline);
2762 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2763 unsigned long deadline)
2765 struct ata_port *ap = link->ap;
2766 struct mv_host_priv *hpriv = ap->host->private_data;
2767 struct mv_port_priv *pp = ap->private_data;
2768 void __iomem *mmio = hpriv->base;
2769 int rc, attempts = 0, extra = 0;
2770 u32 sstatus;
2771 bool online;
2773 mv_reset_channel(hpriv, mmio, ap->port_no);
2774 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2776 /* Workaround for errata FEr SATA#10 (part 2) */
2777 do {
2778 const unsigned long *timing =
2779 sata_ehc_deb_timing(&link->eh_context);
2781 rc = sata_link_hardreset(link, timing, deadline + extra,
2782 &online, NULL);
2783 rc = online ? -EAGAIN : rc;
2784 if (rc)
2785 return rc;
2786 sata_scr_read(link, SCR_STATUS, &sstatus);
2787 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2788 /* Force 1.5gb/s link speed and try again */
2789 mv_setup_ifcfg(mv_ap_base(ap), 0);
2790 if (time_after(jiffies + HZ, deadline))
2791 extra = HZ; /* only extend it once, max */
2793 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2795 return rc;
2798 static void mv_eh_freeze(struct ata_port *ap)
2800 mv_stop_edma(ap);
2801 mv_enable_port_irqs(ap, 0);
2804 static void mv_eh_thaw(struct ata_port *ap)
2806 struct mv_host_priv *hpriv = ap->host->private_data;
2807 unsigned int port = ap->port_no;
2808 unsigned int hardport = mv_hardport_from_port(port);
2809 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2810 void __iomem *port_mmio = mv_ap_base(ap);
2811 u32 hc_irq_cause;
2813 /* clear EDMA errors on this port */
2814 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2816 /* clear pending irq events */
2817 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2818 hc_irq_cause &= ~((DEV_IRQ | DMA_IRQ) << hardport);
2819 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2821 mv_enable_port_irqs(ap, ERR_IRQ);
2825 * mv_port_init - Perform some early initialization on a single port.
2826 * @port: libata data structure storing shadow register addresses
2827 * @port_mmio: base address of the port
2829 * Initialize shadow register mmio addresses, clear outstanding
2830 * interrupts on the port, and unmask interrupts for the future
2831 * start of the port.
2833 * LOCKING:
2834 * Inherited from caller.
2836 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2838 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2839 unsigned serr_ofs;
2841 /* PIO related setup
2843 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2844 port->error_addr =
2845 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2846 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2847 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2848 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2849 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2850 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2851 port->status_addr =
2852 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2853 /* special case: control/altstatus doesn't have ATA_REG_ address */
2854 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2856 /* unused: */
2857 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2859 /* Clear any currently outstanding port interrupt conditions */
2860 serr_ofs = mv_scr_offset(SCR_ERROR);
2861 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2862 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2864 /* unmask all non-transient EDMA error interrupts */
2865 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2867 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2868 readl(port_mmio + EDMA_CFG_OFS),
2869 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2870 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2873 static unsigned int mv_in_pcix_mode(struct ata_host *host)
2875 struct mv_host_priv *hpriv = host->private_data;
2876 void __iomem *mmio = hpriv->base;
2877 u32 reg;
2879 if (!HAS_PCI(host) || !IS_PCIE(hpriv))
2880 return 0; /* not PCI-X capable */
2881 reg = readl(mmio + MV_PCI_MODE_OFS);
2882 if ((reg & MV_PCI_MODE_MASK) == 0)
2883 return 0; /* conventional PCI mode */
2884 return 1; /* chip is in PCI-X mode */
2887 static int mv_pci_cut_through_okay(struct ata_host *host)
2889 struct mv_host_priv *hpriv = host->private_data;
2890 void __iomem *mmio = hpriv->base;
2891 u32 reg;
2893 if (!mv_in_pcix_mode(host)) {
2894 reg = readl(mmio + PCI_COMMAND_OFS);
2895 if (reg & PCI_COMMAND_MRDTRIG)
2896 return 0; /* not okay */
2898 return 1; /* okay */
2901 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2903 struct pci_dev *pdev = to_pci_dev(host->dev);
2904 struct mv_host_priv *hpriv = host->private_data;
2905 u32 hp_flags = hpriv->hp_flags;
2907 switch (board_idx) {
2908 case chip_5080:
2909 hpriv->ops = &mv5xxx_ops;
2910 hp_flags |= MV_HP_GEN_I;
2912 switch (pdev->revision) {
2913 case 0x1:
2914 hp_flags |= MV_HP_ERRATA_50XXB0;
2915 break;
2916 case 0x3:
2917 hp_flags |= MV_HP_ERRATA_50XXB2;
2918 break;
2919 default:
2920 dev_printk(KERN_WARNING, &pdev->dev,
2921 "Applying 50XXB2 workarounds to unknown rev\n");
2922 hp_flags |= MV_HP_ERRATA_50XXB2;
2923 break;
2925 break;
2927 case chip_504x:
2928 case chip_508x:
2929 hpriv->ops = &mv5xxx_ops;
2930 hp_flags |= MV_HP_GEN_I;
2932 switch (pdev->revision) {
2933 case 0x0:
2934 hp_flags |= MV_HP_ERRATA_50XXB0;
2935 break;
2936 case 0x3:
2937 hp_flags |= MV_HP_ERRATA_50XXB2;
2938 break;
2939 default:
2940 dev_printk(KERN_WARNING, &pdev->dev,
2941 "Applying B2 workarounds to unknown rev\n");
2942 hp_flags |= MV_HP_ERRATA_50XXB2;
2943 break;
2945 break;
2947 case chip_604x:
2948 case chip_608x:
2949 hpriv->ops = &mv6xxx_ops;
2950 hp_flags |= MV_HP_GEN_II;
2952 switch (pdev->revision) {
2953 case 0x7:
2954 hp_flags |= MV_HP_ERRATA_60X1B2;
2955 break;
2956 case 0x9:
2957 hp_flags |= MV_HP_ERRATA_60X1C0;
2958 break;
2959 default:
2960 dev_printk(KERN_WARNING, &pdev->dev,
2961 "Applying B2 workarounds to unknown rev\n");
2962 hp_flags |= MV_HP_ERRATA_60X1B2;
2963 break;
2965 break;
2967 case chip_7042:
2968 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
2969 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2970 (pdev->device == 0x2300 || pdev->device == 0x2310))
2973 * Highpoint RocketRAID PCIe 23xx series cards:
2975 * Unconfigured drives are treated as "Legacy"
2976 * by the BIOS, and it overwrites sector 8 with
2977 * a "Lgcy" metadata block prior to Linux boot.
2979 * Configured drives (RAID or JBOD) leave sector 8
2980 * alone, but instead overwrite a high numbered
2981 * sector for the RAID metadata. This sector can
2982 * be determined exactly, by truncating the physical
2983 * drive capacity to a nice even GB value.
2985 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2987 * Warn the user, lest they think we're just buggy.
2989 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2990 " BIOS CORRUPTS DATA on all attached drives,"
2991 " regardless of if/how they are configured."
2992 " BEWARE!\n");
2993 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
2994 " use sectors 8-9 on \"Legacy\" drives,"
2995 " and avoid the final two gigabytes on"
2996 " all RocketRAID BIOS initialized drives.\n");
2998 /* drop through */
2999 case chip_6042:
3000 hpriv->ops = &mv6xxx_ops;
3001 hp_flags |= MV_HP_GEN_IIE;
3002 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3003 hp_flags |= MV_HP_CUT_THROUGH;
3005 switch (pdev->revision) {
3006 case 0x0:
3007 hp_flags |= MV_HP_ERRATA_XX42A0;
3008 break;
3009 case 0x1:
3010 hp_flags |= MV_HP_ERRATA_60X1C0;
3011 break;
3012 default:
3013 dev_printk(KERN_WARNING, &pdev->dev,
3014 "Applying 60X1C0 workarounds to unknown rev\n");
3015 hp_flags |= MV_HP_ERRATA_60X1C0;
3016 break;
3018 break;
3019 case chip_soc:
3020 hpriv->ops = &mv_soc_ops;
3021 hp_flags |= MV_HP_ERRATA_60X1C0;
3022 break;
3024 default:
3025 dev_printk(KERN_ERR, host->dev,
3026 "BUG: invalid board index %u\n", board_idx);
3027 return 1;
3030 hpriv->hp_flags = hp_flags;
3031 if (hp_flags & MV_HP_PCIE) {
3032 hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
3033 hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
3034 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3035 } else {
3036 hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
3037 hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
3038 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3041 return 0;
3045 * mv_init_host - Perform some early initialization of the host.
3046 * @host: ATA host to initialize
3047 * @board_idx: controller index
3049 * If possible, do an early global reset of the host. Then do
3050 * our port init and clear/unmask all/relevant host interrupts.
3052 * LOCKING:
3053 * Inherited from caller.
3055 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3057 int rc = 0, n_hc, port, hc;
3058 struct mv_host_priv *hpriv = host->private_data;
3059 void __iomem *mmio = hpriv->base;
3061 rc = mv_chip_id(host, board_idx);
3062 if (rc)
3063 goto done;
3065 if (HAS_PCI(host)) {
3066 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3067 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
3068 } else {
3069 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3070 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
3073 /* global interrupt mask: 0 == mask everything */
3074 mv_set_main_irq_mask(host, ~0, 0);
3076 n_hc = mv_get_hc_count(host->ports[0]->flags);
3078 for (port = 0; port < host->n_ports; port++)
3079 hpriv->ops->read_preamp(hpriv, port, mmio);
3081 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3082 if (rc)
3083 goto done;
3085 hpriv->ops->reset_flash(hpriv, mmio);
3086 hpriv->ops->reset_bus(host, mmio);
3087 hpriv->ops->enable_leds(hpriv, mmio);
3089 for (port = 0; port < host->n_ports; port++) {
3090 struct ata_port *ap = host->ports[port];
3091 void __iomem *port_mmio = mv_port_base(mmio, port);
3093 mv_port_init(&ap->ioaddr, port_mmio);
3095 #ifdef CONFIG_PCI
3096 if (HAS_PCI(host)) {
3097 unsigned int offset = port_mmio - mmio;
3098 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3099 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3101 #endif
3104 for (hc = 0; hc < n_hc; hc++) {
3105 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3107 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3108 "(before clear)=0x%08x\n", hc,
3109 readl(hc_mmio + HC_CFG_OFS),
3110 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3112 /* Clear any currently outstanding hc interrupt conditions */
3113 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
3116 if (HAS_PCI(host)) {
3117 /* Clear any currently outstanding host interrupt conditions */
3118 writelfl(0, mmio + hpriv->irq_cause_ofs);
3120 /* and unmask interrupt generation for host regs */
3121 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3124 * enable only global host interrupts for now.
3125 * The per-port interrupts get done later as ports are set up.
3127 mv_set_main_irq_mask(host, 0, PCI_ERR);
3129 done:
3130 return rc;
3133 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3135 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3136 MV_CRQB_Q_SZ, 0);
3137 if (!hpriv->crqb_pool)
3138 return -ENOMEM;
3140 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3141 MV_CRPB_Q_SZ, 0);
3142 if (!hpriv->crpb_pool)
3143 return -ENOMEM;
3145 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3146 MV_SG_TBL_SZ, 0);
3147 if (!hpriv->sg_tbl_pool)
3148 return -ENOMEM;
3150 return 0;
3153 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3154 struct mbus_dram_target_info *dram)
3156 int i;
3158 for (i = 0; i < 4; i++) {
3159 writel(0, hpriv->base + WINDOW_CTRL(i));
3160 writel(0, hpriv->base + WINDOW_BASE(i));
3163 for (i = 0; i < dram->num_cs; i++) {
3164 struct mbus_dram_window *cs = dram->cs + i;
3166 writel(((cs->size - 1) & 0xffff0000) |
3167 (cs->mbus_attr << 8) |
3168 (dram->mbus_dram_target_id << 4) | 1,
3169 hpriv->base + WINDOW_CTRL(i));
3170 writel(cs->base, hpriv->base + WINDOW_BASE(i));
3175 * mv_platform_probe - handle a positive probe of an soc Marvell
3176 * host
3177 * @pdev: platform device found
3179 * LOCKING:
3180 * Inherited from caller.
3182 static int mv_platform_probe(struct platform_device *pdev)
3184 static int printed_version;
3185 const struct mv_sata_platform_data *mv_platform_data;
3186 const struct ata_port_info *ppi[] =
3187 { &mv_port_info[chip_soc], NULL };
3188 struct ata_host *host;
3189 struct mv_host_priv *hpriv;
3190 struct resource *res;
3191 int n_ports, rc;
3193 if (!printed_version++)
3194 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3197 * Simple resource validation ..
3199 if (unlikely(pdev->num_resources != 2)) {
3200 dev_err(&pdev->dev, "invalid number of resources\n");
3201 return -EINVAL;
3205 * Get the register base first
3207 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3208 if (res == NULL)
3209 return -EINVAL;
3211 /* allocate host */
3212 mv_platform_data = pdev->dev.platform_data;
3213 n_ports = mv_platform_data->n_ports;
3215 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3216 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3218 if (!host || !hpriv)
3219 return -ENOMEM;
3220 host->private_data = hpriv;
3221 hpriv->n_ports = n_ports;
3223 host->iomap = NULL;
3224 hpriv->base = devm_ioremap(&pdev->dev, res->start,
3225 res->end - res->start + 1);
3226 hpriv->base -= MV_SATAHC0_REG_BASE;
3229 * (Re-)program MBUS remapping windows if we are asked to.
3231 if (mv_platform_data->dram != NULL)
3232 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3234 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3235 if (rc)
3236 return rc;
3238 /* initialize adapter */
3239 rc = mv_init_host(host, chip_soc);
3240 if (rc)
3241 return rc;
3243 dev_printk(KERN_INFO, &pdev->dev,
3244 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3245 host->n_ports);
3247 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3248 IRQF_SHARED, &mv6_sht);
3253 * mv_platform_remove - unplug a platform interface
3254 * @pdev: platform device
3256 * A platform bus SATA device has been unplugged. Perform the needed
3257 * cleanup. Also called on module unload for any active devices.
3259 static int __devexit mv_platform_remove(struct platform_device *pdev)
3261 struct device *dev = &pdev->dev;
3262 struct ata_host *host = dev_get_drvdata(dev);
3264 ata_host_detach(host);
3265 return 0;
3268 static struct platform_driver mv_platform_driver = {
3269 .probe = mv_platform_probe,
3270 .remove = __devexit_p(mv_platform_remove),
3271 .driver = {
3272 .name = DRV_NAME,
3273 .owner = THIS_MODULE,
3278 #ifdef CONFIG_PCI
3279 static int mv_pci_init_one(struct pci_dev *pdev,
3280 const struct pci_device_id *ent);
3283 static struct pci_driver mv_pci_driver = {
3284 .name = DRV_NAME,
3285 .id_table = mv_pci_tbl,
3286 .probe = mv_pci_init_one,
3287 .remove = ata_pci_remove_one,
3291 * module options
3293 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
3296 /* move to PCI layer or libata core? */
3297 static int pci_go_64(struct pci_dev *pdev)
3299 int rc;
3301 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3302 rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3303 if (rc) {
3304 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3305 if (rc) {
3306 dev_printk(KERN_ERR, &pdev->dev,
3307 "64-bit DMA enable failed\n");
3308 return rc;
3311 } else {
3312 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3313 if (rc) {
3314 dev_printk(KERN_ERR, &pdev->dev,
3315 "32-bit DMA enable failed\n");
3316 return rc;
3318 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3319 if (rc) {
3320 dev_printk(KERN_ERR, &pdev->dev,
3321 "32-bit consistent DMA enable failed\n");
3322 return rc;
3326 return rc;
3330 * mv_print_info - Dump key info to kernel log for perusal.
3331 * @host: ATA host to print info about
3333 * FIXME: complete this.
3335 * LOCKING:
3336 * Inherited from caller.
3338 static void mv_print_info(struct ata_host *host)
3340 struct pci_dev *pdev = to_pci_dev(host->dev);
3341 struct mv_host_priv *hpriv = host->private_data;
3342 u8 scc;
3343 const char *scc_s, *gen;
3345 /* Use this to determine the HW stepping of the chip so we know
3346 * what errata to workaround
3348 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
3349 if (scc == 0)
3350 scc_s = "SCSI";
3351 else if (scc == 0x01)
3352 scc_s = "RAID";
3353 else
3354 scc_s = "?";
3356 if (IS_GEN_I(hpriv))
3357 gen = "I";
3358 else if (IS_GEN_II(hpriv))
3359 gen = "II";
3360 else if (IS_GEN_IIE(hpriv))
3361 gen = "IIE";
3362 else
3363 gen = "?";
3365 dev_printk(KERN_INFO, &pdev->dev,
3366 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3367 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
3368 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
3372 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
3373 * @pdev: PCI device found
3374 * @ent: PCI device ID entry for the matched host
3376 * LOCKING:
3377 * Inherited from caller.
3379 static int mv_pci_init_one(struct pci_dev *pdev,
3380 const struct pci_device_id *ent)
3382 static int printed_version;
3383 unsigned int board_idx = (unsigned int)ent->driver_data;
3384 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
3385 struct ata_host *host;
3386 struct mv_host_priv *hpriv;
3387 int n_ports, rc;
3389 if (!printed_version++)
3390 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3392 /* allocate host */
3393 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
3395 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3396 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3397 if (!host || !hpriv)
3398 return -ENOMEM;
3399 host->private_data = hpriv;
3400 hpriv->n_ports = n_ports;
3402 /* acquire resources */
3403 rc = pcim_enable_device(pdev);
3404 if (rc)
3405 return rc;
3407 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3408 if (rc == -EBUSY)
3409 pcim_pin_device(pdev);
3410 if (rc)
3411 return rc;
3412 host->iomap = pcim_iomap_table(pdev);
3413 hpriv->base = host->iomap[MV_PRIMARY_BAR];
3415 rc = pci_go_64(pdev);
3416 if (rc)
3417 return rc;
3419 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3420 if (rc)
3421 return rc;
3423 /* initialize adapter */
3424 rc = mv_init_host(host, board_idx);
3425 if (rc)
3426 return rc;
3428 /* Enable interrupts */
3429 if (msi && pci_enable_msi(pdev))
3430 pci_intx(pdev, 1);
3432 mv_dump_pci_cfg(pdev, 0x68);
3433 mv_print_info(host);
3435 pci_set_master(pdev);
3436 pci_try_set_mwi(pdev);
3437 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3438 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3440 #endif
3442 static int mv_platform_probe(struct platform_device *pdev);
3443 static int __devexit mv_platform_remove(struct platform_device *pdev);
3445 static int __init mv_init(void)
3447 int rc = -ENODEV;
3448 #ifdef CONFIG_PCI
3449 rc = pci_register_driver(&mv_pci_driver);
3450 if (rc < 0)
3451 return rc;
3452 #endif
3453 rc = platform_driver_register(&mv_platform_driver);
3455 #ifdef CONFIG_PCI
3456 if (rc < 0)
3457 pci_unregister_driver(&mv_pci_driver);
3458 #endif
3459 return rc;
3462 static void __exit mv_exit(void)
3464 #ifdef CONFIG_PCI
3465 pci_unregister_driver(&mv_pci_driver);
3466 #endif
3467 platform_driver_unregister(&mv_platform_driver);
3470 MODULE_AUTHOR("Brett Russ");
3471 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3472 MODULE_LICENSE("GPL");
3473 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3474 MODULE_VERSION(DRV_VERSION);
3475 MODULE_ALIAS("platform:" DRV_NAME);
3477 #ifdef CONFIG_PCI
3478 module_param(msi, int, 0444);
3479 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3480 #endif
3482 module_init(mv_init);
3483 module_exit(mv_exit);