2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
33 #include <trace/events/kmem.h>
37 * 1. slub_lock (Global Semaphore)
39 * 3. slab_lock(page) (Only on some arches and for debugging)
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
88 * Overloading of page flags that are otherwise used for LRU management.
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
114 static inline int kmem_cache_debug(struct kmem_cache
*s
)
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
124 * Issues still to be resolved:
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 * - Variable sizing of the per node arrays
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 #define MIN_PARTIAL 5
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
148 #define MAX_PARTIAL 10
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161 * Set of flags that will prevent slab merging
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
171 #define OO_MASK ((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON 0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178 static int kmem_size
= sizeof(struct kmem_cache
);
181 static struct notifier_block slab_notifier
;
185 DOWN
, /* No slab functionality available */
186 PARTIAL
, /* Kmem_cache_node works */
187 UP
, /* Everything works but does not show up in sysfs */
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock
);
193 static LIST_HEAD(slab_caches
);
196 * Tracking user of a slab.
198 #define TRACK_ADDRS_COUNT 16
200 unsigned long addr
; /* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
204 int cpu
; /* Was running on cpu */
205 int pid
; /* Pid context */
206 unsigned long when
; /* When did the operation occur */
209 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
212 static int sysfs_slab_add(struct kmem_cache
*);
213 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
214 static void sysfs_slab_remove(struct kmem_cache
*);
217 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
220 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
228 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
230 #ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 int slab_is_available(void)
241 return slab_state
>= UP
;
244 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
246 return s
->node
[node
];
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache
*s
,
251 struct page
*page
, const void *object
)
258 base
= page_address(page
);
259 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
260 (object
- base
) % s
->size
) {
267 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
269 return *(void **)(object
+ s
->offset
);
272 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
279 p
= get_freepointer(s
, object
);
284 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
286 *(void **)(object
+ s
->offset
) = fp
;
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
297 return (p
- addr
) / s
->size
;
300 static inline size_t slab_ksize(const struct kmem_cache
*s
)
302 #ifdef CONFIG_SLUB_DEBUG
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
307 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
316 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
319 * Else we can use all the padding etc for the allocation
324 static inline int order_objects(int order
, unsigned long size
, int reserved
)
326 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
329 static inline struct kmem_cache_order_objects
oo_make(int order
,
330 unsigned long size
, int reserved
)
332 struct kmem_cache_order_objects x
= {
333 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
339 static inline int oo_order(struct kmem_cache_order_objects x
)
341 return x
.x
>> OO_SHIFT
;
344 static inline int oo_objects(struct kmem_cache_order_objects x
)
346 return x
.x
& OO_MASK
;
350 * Per slab locking using the pagelock
352 static __always_inline
void slab_lock(struct page
*page
)
354 bit_spin_lock(PG_locked
, &page
->flags
);
357 static __always_inline
void slab_unlock(struct page
*page
)
359 __bit_spin_unlock(PG_locked
, &page
->flags
);
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
364 void *freelist_old
, unsigned long counters_old
,
365 void *freelist_new
, unsigned long counters_new
,
368 VM_BUG_ON(!irqs_disabled());
369 #ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s
->flags
& __CMPXCHG_DOUBLE
) {
371 if (cmpxchg_double(&page
->freelist
,
372 freelist_old
, counters_old
,
373 freelist_new
, counters_new
))
379 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
380 page
->freelist
= freelist_new
;
381 page
->counters
= counters_new
;
389 stat(s
, CMPXCHG_DOUBLE_FAIL
);
391 #ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
398 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
399 void *freelist_old
, unsigned long counters_old
,
400 void *freelist_new
, unsigned long counters_new
,
403 #ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s
->flags
& __CMPXCHG_DOUBLE
) {
405 if (cmpxchg_double(&page
->freelist
,
406 freelist_old
, counters_old
,
407 freelist_new
, counters_new
))
414 local_irq_save(flags
);
416 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
417 page
->freelist
= freelist_new
;
418 page
->counters
= counters_new
;
420 local_irq_restore(flags
);
424 local_irq_restore(flags
);
428 stat(s
, CMPXCHG_DOUBLE_FAIL
);
430 #ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
437 #ifdef CONFIG_SLUB_DEBUG
439 * Determine a map of object in use on a page.
441 * Node listlock must be held to guarantee that the page does
442 * not vanish from under us.
444 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
447 void *addr
= page_address(page
);
449 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
450 set_bit(slab_index(p
, s
, addr
), map
);
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
459 static int slub_debug
;
462 static char *slub_debug_slabs
;
463 static int disable_higher_order_debug
;
468 static void print_section(char *text
, u8
*addr
, unsigned int length
)
476 for (i
= 0; i
< length
; i
++) {
478 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
481 printk(KERN_CONT
" %02x", addr
[i
]);
483 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
485 printk(KERN_CONT
" %s\n", ascii
);
492 printk(KERN_CONT
" ");
496 printk(KERN_CONT
" %s\n", ascii
);
500 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
501 enum track_item alloc
)
506 p
= object
+ s
->offset
+ sizeof(void *);
508 p
= object
+ s
->inuse
;
513 static void set_track(struct kmem_cache
*s
, void *object
,
514 enum track_item alloc
, unsigned long addr
)
516 struct track
*p
= get_track(s
, object
, alloc
);
519 #ifdef CONFIG_STACKTRACE
520 struct stack_trace trace
;
523 trace
.nr_entries
= 0;
524 trace
.max_entries
= TRACK_ADDRS_COUNT
;
525 trace
.entries
= p
->addrs
;
527 save_stack_trace(&trace
);
529 /* See rant in lockdep.c */
530 if (trace
.nr_entries
!= 0 &&
531 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
534 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
538 p
->cpu
= smp_processor_id();
539 p
->pid
= current
->pid
;
542 memset(p
, 0, sizeof(struct track
));
545 static void init_tracking(struct kmem_cache
*s
, void *object
)
547 if (!(s
->flags
& SLAB_STORE_USER
))
550 set_track(s
, object
, TRACK_FREE
, 0UL);
551 set_track(s
, object
, TRACK_ALLOC
, 0UL);
554 static void print_track(const char *s
, struct track
*t
)
559 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
561 #ifdef CONFIG_STACKTRACE
564 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
566 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
573 static void print_tracking(struct kmem_cache
*s
, void *object
)
575 if (!(s
->flags
& SLAB_STORE_USER
))
578 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
579 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
582 static void print_page_info(struct page
*page
)
584 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
589 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
595 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
597 printk(KERN_ERR
"========================================"
598 "=====================================\n");
599 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
600 printk(KERN_ERR
"----------------------------------------"
601 "-------------------------------------\n\n");
604 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
610 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
612 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
615 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
617 unsigned int off
; /* Offset of last byte */
618 u8
*addr
= page_address(page
);
620 print_tracking(s
, p
);
622 print_page_info(page
);
624 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
625 p
, p
- addr
, get_freepointer(s
, p
));
628 print_section("Bytes b4", p
- 16, 16);
630 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
632 if (s
->flags
& SLAB_RED_ZONE
)
633 print_section("Redzone", p
+ s
->objsize
,
634 s
->inuse
- s
->objsize
);
637 off
= s
->offset
+ sizeof(void *);
641 if (s
->flags
& SLAB_STORE_USER
)
642 off
+= 2 * sizeof(struct track
);
645 /* Beginning of the filler is the free pointer */
646 print_section("Padding", p
+ off
, s
->size
- off
);
651 static void object_err(struct kmem_cache
*s
, struct page
*page
,
652 u8
*object
, char *reason
)
654 slab_bug(s
, "%s", reason
);
655 print_trailer(s
, page
, object
);
658 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
664 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
666 slab_bug(s
, "%s", buf
);
667 print_page_info(page
);
671 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
675 if (s
->flags
& __OBJECT_POISON
) {
676 memset(p
, POISON_FREE
, s
->objsize
- 1);
677 p
[s
->objsize
- 1] = POISON_END
;
680 if (s
->flags
& SLAB_RED_ZONE
)
681 memset(p
+ s
->objsize
, val
, s
->inuse
- s
->objsize
);
684 static u8
*check_bytes8(u8
*start
, u8 value
, unsigned int bytes
)
695 static u8
*check_bytes(u8
*start
, u8 value
, unsigned int bytes
)
698 unsigned int words
, prefix
;
701 return check_bytes8(start
, value
, bytes
);
703 value64
= value
| value
<< 8 | value
<< 16 | value
<< 24;
704 value64
= (value64
& 0xffffffff) | value64
<< 32;
705 prefix
= 8 - ((unsigned long)start
) % 8;
708 u8
*r
= check_bytes8(start
, value
, prefix
);
718 if (*(u64
*)start
!= value64
)
719 return check_bytes8(start
, value
, 8);
724 return check_bytes8(start
, value
, bytes
% 8);
727 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
728 void *from
, void *to
)
730 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
731 memset(from
, data
, to
- from
);
734 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
735 u8
*object
, char *what
,
736 u8
*start
, unsigned int value
, unsigned int bytes
)
741 fault
= check_bytes(start
, value
, bytes
);
746 while (end
> fault
&& end
[-1] == value
)
749 slab_bug(s
, "%s overwritten", what
);
750 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
751 fault
, end
- 1, fault
[0], value
);
752 print_trailer(s
, page
, object
);
754 restore_bytes(s
, what
, value
, fault
, end
);
762 * Bytes of the object to be managed.
763 * If the freepointer may overlay the object then the free
764 * pointer is the first word of the object.
766 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
769 * object + s->objsize
770 * Padding to reach word boundary. This is also used for Redzoning.
771 * Padding is extended by another word if Redzoning is enabled and
774 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
775 * 0xcc (RED_ACTIVE) for objects in use.
778 * Meta data starts here.
780 * A. Free pointer (if we cannot overwrite object on free)
781 * B. Tracking data for SLAB_STORE_USER
782 * C. Padding to reach required alignment boundary or at mininum
783 * one word if debugging is on to be able to detect writes
784 * before the word boundary.
786 * Padding is done using 0x5a (POISON_INUSE)
789 * Nothing is used beyond s->size.
791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
792 * ignored. And therefore no slab options that rely on these boundaries
793 * may be used with merged slabcaches.
796 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
798 unsigned long off
= s
->inuse
; /* The end of info */
801 /* Freepointer is placed after the object. */
802 off
+= sizeof(void *);
804 if (s
->flags
& SLAB_STORE_USER
)
805 /* We also have user information there */
806 off
+= 2 * sizeof(struct track
);
811 return check_bytes_and_report(s
, page
, p
, "Object padding",
812 p
+ off
, POISON_INUSE
, s
->size
- off
);
815 /* Check the pad bytes at the end of a slab page */
816 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
824 if (!(s
->flags
& SLAB_POISON
))
827 start
= page_address(page
);
828 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
829 end
= start
+ length
;
830 remainder
= length
% s
->size
;
834 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
837 while (end
> fault
&& end
[-1] == POISON_INUSE
)
840 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
841 print_section("Padding", end
- remainder
, remainder
);
843 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
847 static int check_object(struct kmem_cache
*s
, struct page
*page
,
848 void *object
, u8 val
)
851 u8
*endobject
= object
+ s
->objsize
;
853 if (s
->flags
& SLAB_RED_ZONE
) {
854 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
855 endobject
, val
, s
->inuse
- s
->objsize
))
858 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
859 check_bytes_and_report(s
, page
, p
, "Alignment padding",
860 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
864 if (s
->flags
& SLAB_POISON
) {
865 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
866 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
867 POISON_FREE
, s
->objsize
- 1) ||
868 !check_bytes_and_report(s
, page
, p
, "Poison",
869 p
+ s
->objsize
- 1, POISON_END
, 1)))
872 * check_pad_bytes cleans up on its own.
874 check_pad_bytes(s
, page
, p
);
877 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
879 * Object and freepointer overlap. Cannot check
880 * freepointer while object is allocated.
884 /* Check free pointer validity */
885 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
886 object_err(s
, page
, p
, "Freepointer corrupt");
888 * No choice but to zap it and thus lose the remainder
889 * of the free objects in this slab. May cause
890 * another error because the object count is now wrong.
892 set_freepointer(s
, p
, NULL
);
898 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
902 VM_BUG_ON(!irqs_disabled());
904 if (!PageSlab(page
)) {
905 slab_err(s
, page
, "Not a valid slab page");
909 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
910 if (page
->objects
> maxobj
) {
911 slab_err(s
, page
, "objects %u > max %u",
912 s
->name
, page
->objects
, maxobj
);
915 if (page
->inuse
> page
->objects
) {
916 slab_err(s
, page
, "inuse %u > max %u",
917 s
->name
, page
->inuse
, page
->objects
);
920 /* Slab_pad_check fixes things up after itself */
921 slab_pad_check(s
, page
);
926 * Determine if a certain object on a page is on the freelist. Must hold the
927 * slab lock to guarantee that the chains are in a consistent state.
929 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
934 unsigned long max_objects
;
937 while (fp
&& nr
<= page
->objects
) {
940 if (!check_valid_pointer(s
, page
, fp
)) {
942 object_err(s
, page
, object
,
943 "Freechain corrupt");
944 set_freepointer(s
, object
, NULL
);
947 slab_err(s
, page
, "Freepointer corrupt");
948 page
->freelist
= NULL
;
949 page
->inuse
= page
->objects
;
950 slab_fix(s
, "Freelist cleared");
956 fp
= get_freepointer(s
, object
);
960 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
961 if (max_objects
> MAX_OBJS_PER_PAGE
)
962 max_objects
= MAX_OBJS_PER_PAGE
;
964 if (page
->objects
!= max_objects
) {
965 slab_err(s
, page
, "Wrong number of objects. Found %d but "
966 "should be %d", page
->objects
, max_objects
);
967 page
->objects
= max_objects
;
968 slab_fix(s
, "Number of objects adjusted.");
970 if (page
->inuse
!= page
->objects
- nr
) {
971 slab_err(s
, page
, "Wrong object count. Counter is %d but "
972 "counted were %d", page
->inuse
, page
->objects
- nr
);
973 page
->inuse
= page
->objects
- nr
;
974 slab_fix(s
, "Object count adjusted.");
976 return search
== NULL
;
979 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
982 if (s
->flags
& SLAB_TRACE
) {
983 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
985 alloc
? "alloc" : "free",
990 print_section("Object", (void *)object
, s
->objsize
);
997 * Hooks for other subsystems that check memory allocations. In a typical
998 * production configuration these hooks all should produce no code at all.
1000 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1002 flags
&= gfp_allowed_mask
;
1003 lockdep_trace_alloc(flags
);
1004 might_sleep_if(flags
& __GFP_WAIT
);
1006 return should_failslab(s
->objsize
, flags
, s
->flags
);
1009 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
1011 flags
&= gfp_allowed_mask
;
1012 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
1013 kmemleak_alloc_recursive(object
, s
->objsize
, 1, s
->flags
, flags
);
1016 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
1018 kmemleak_free_recursive(x
, s
->flags
);
1021 * Trouble is that we may no longer disable interupts in the fast path
1022 * So in order to make the debug calls that expect irqs to be
1023 * disabled we need to disable interrupts temporarily.
1025 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1027 unsigned long flags
;
1029 local_irq_save(flags
);
1030 kmemcheck_slab_free(s
, x
, s
->objsize
);
1031 debug_check_no_locks_freed(x
, s
->objsize
);
1032 local_irq_restore(flags
);
1035 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1036 debug_check_no_obj_freed(x
, s
->objsize
);
1040 * Tracking of fully allocated slabs for debugging purposes.
1042 * list_lock must be held.
1044 static void add_full(struct kmem_cache
*s
,
1045 struct kmem_cache_node
*n
, struct page
*page
)
1047 if (!(s
->flags
& SLAB_STORE_USER
))
1050 list_add(&page
->lru
, &n
->full
);
1054 * list_lock must be held.
1056 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
1058 if (!(s
->flags
& SLAB_STORE_USER
))
1061 list_del(&page
->lru
);
1064 /* Tracking of the number of slabs for debugging purposes */
1065 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1067 struct kmem_cache_node
*n
= get_node(s
, node
);
1069 return atomic_long_read(&n
->nr_slabs
);
1072 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1074 return atomic_long_read(&n
->nr_slabs
);
1077 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1079 struct kmem_cache_node
*n
= get_node(s
, node
);
1082 * May be called early in order to allocate a slab for the
1083 * kmem_cache_node structure. Solve the chicken-egg
1084 * dilemma by deferring the increment of the count during
1085 * bootstrap (see early_kmem_cache_node_alloc).
1088 atomic_long_inc(&n
->nr_slabs
);
1089 atomic_long_add(objects
, &n
->total_objects
);
1092 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1094 struct kmem_cache_node
*n
= get_node(s
, node
);
1096 atomic_long_dec(&n
->nr_slabs
);
1097 atomic_long_sub(objects
, &n
->total_objects
);
1100 /* Object debug checks for alloc/free paths */
1101 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1104 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1107 init_object(s
, object
, SLUB_RED_INACTIVE
);
1108 init_tracking(s
, object
);
1111 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
1112 void *object
, unsigned long addr
)
1114 if (!check_slab(s
, page
))
1117 if (!check_valid_pointer(s
, page
, object
)) {
1118 object_err(s
, page
, object
, "Freelist Pointer check fails");
1122 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1125 /* Success perform special debug activities for allocs */
1126 if (s
->flags
& SLAB_STORE_USER
)
1127 set_track(s
, object
, TRACK_ALLOC
, addr
);
1128 trace(s
, page
, object
, 1);
1129 init_object(s
, object
, SLUB_RED_ACTIVE
);
1133 if (PageSlab(page
)) {
1135 * If this is a slab page then lets do the best we can
1136 * to avoid issues in the future. Marking all objects
1137 * as used avoids touching the remaining objects.
1139 slab_fix(s
, "Marking all objects used");
1140 page
->inuse
= page
->objects
;
1141 page
->freelist
= NULL
;
1146 static noinline
int free_debug_processing(struct kmem_cache
*s
,
1147 struct page
*page
, void *object
, unsigned long addr
)
1149 unsigned long flags
;
1152 local_irq_save(flags
);
1155 if (!check_slab(s
, page
))
1158 if (!check_valid_pointer(s
, page
, object
)) {
1159 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1163 if (on_freelist(s
, page
, object
)) {
1164 object_err(s
, page
, object
, "Object already free");
1168 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1171 if (unlikely(s
!= page
->slab
)) {
1172 if (!PageSlab(page
)) {
1173 slab_err(s
, page
, "Attempt to free object(0x%p) "
1174 "outside of slab", object
);
1175 } else if (!page
->slab
) {
1177 "SLUB <none>: no slab for object 0x%p.\n",
1181 object_err(s
, page
, object
,
1182 "page slab pointer corrupt.");
1186 if (s
->flags
& SLAB_STORE_USER
)
1187 set_track(s
, object
, TRACK_FREE
, addr
);
1188 trace(s
, page
, object
, 0);
1189 init_object(s
, object
, SLUB_RED_INACTIVE
);
1193 local_irq_restore(flags
);
1197 slab_fix(s
, "Object at 0x%p not freed", object
);
1201 static int __init
setup_slub_debug(char *str
)
1203 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1204 if (*str
++ != '=' || !*str
)
1206 * No options specified. Switch on full debugging.
1212 * No options but restriction on slabs. This means full
1213 * debugging for slabs matching a pattern.
1217 if (tolower(*str
) == 'o') {
1219 * Avoid enabling debugging on caches if its minimum order
1220 * would increase as a result.
1222 disable_higher_order_debug
= 1;
1229 * Switch off all debugging measures.
1234 * Determine which debug features should be switched on
1236 for (; *str
&& *str
!= ','; str
++) {
1237 switch (tolower(*str
)) {
1239 slub_debug
|= SLAB_DEBUG_FREE
;
1242 slub_debug
|= SLAB_RED_ZONE
;
1245 slub_debug
|= SLAB_POISON
;
1248 slub_debug
|= SLAB_STORE_USER
;
1251 slub_debug
|= SLAB_TRACE
;
1254 slub_debug
|= SLAB_FAILSLAB
;
1257 printk(KERN_ERR
"slub_debug option '%c' "
1258 "unknown. skipped\n", *str
);
1264 slub_debug_slabs
= str
+ 1;
1269 __setup("slub_debug", setup_slub_debug
);
1271 static unsigned long kmem_cache_flags(unsigned long objsize
,
1272 unsigned long flags
, const char *name
,
1273 void (*ctor
)(void *))
1276 * Enable debugging if selected on the kernel commandline.
1278 if (slub_debug
&& (!slub_debug_slabs
||
1279 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1280 flags
|= slub_debug
;
1285 static inline void setup_object_debug(struct kmem_cache
*s
,
1286 struct page
*page
, void *object
) {}
1288 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1289 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1291 static inline int free_debug_processing(struct kmem_cache
*s
,
1292 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1294 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1296 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1297 void *object
, u8 val
) { return 1; }
1298 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1299 struct page
*page
) {}
1300 static inline void remove_full(struct kmem_cache
*s
, struct page
*page
) {}
1301 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1302 unsigned long flags
, const char *name
,
1303 void (*ctor
)(void *))
1307 #define slub_debug 0
1309 #define disable_higher_order_debug 0
1311 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1313 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1315 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1317 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1320 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1323 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1326 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1328 #endif /* CONFIG_SLUB_DEBUG */
1331 * Slab allocation and freeing
1333 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1334 struct kmem_cache_order_objects oo
)
1336 int order
= oo_order(oo
);
1338 flags
|= __GFP_NOTRACK
;
1340 if (node
== NUMA_NO_NODE
)
1341 return alloc_pages(flags
, order
);
1343 return alloc_pages_exact_node(node
, flags
, order
);
1346 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1349 struct kmem_cache_order_objects oo
= s
->oo
;
1352 flags
&= gfp_allowed_mask
;
1354 if (flags
& __GFP_WAIT
)
1357 flags
|= s
->allocflags
;
1360 * Let the initial higher-order allocation fail under memory pressure
1361 * so we fall-back to the minimum order allocation.
1363 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1365 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1366 if (unlikely(!page
)) {
1369 * Allocation may have failed due to fragmentation.
1370 * Try a lower order alloc if possible
1372 page
= alloc_slab_page(flags
, node
, oo
);
1375 stat(s
, ORDER_FALLBACK
);
1378 if (flags
& __GFP_WAIT
)
1379 local_irq_disable();
1384 if (kmemcheck_enabled
1385 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1386 int pages
= 1 << oo_order(oo
);
1388 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1391 * Objects from caches that have a constructor don't get
1392 * cleared when they're allocated, so we need to do it here.
1395 kmemcheck_mark_uninitialized_pages(page
, pages
);
1397 kmemcheck_mark_unallocated_pages(page
, pages
);
1400 page
->objects
= oo_objects(oo
);
1401 mod_zone_page_state(page_zone(page
),
1402 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1403 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1409 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1412 setup_object_debug(s
, page
, object
);
1413 if (unlikely(s
->ctor
))
1417 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1424 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1426 page
= allocate_slab(s
,
1427 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1431 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1433 page
->flags
|= 1 << PG_slab
;
1435 start
= page_address(page
);
1437 if (unlikely(s
->flags
& SLAB_POISON
))
1438 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1441 for_each_object(p
, s
, start
, page
->objects
) {
1442 setup_object(s
, page
, last
);
1443 set_freepointer(s
, last
, p
);
1446 setup_object(s
, page
, last
);
1447 set_freepointer(s
, last
, NULL
);
1449 page
->freelist
= start
;
1456 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1458 int order
= compound_order(page
);
1459 int pages
= 1 << order
;
1461 if (kmem_cache_debug(s
)) {
1464 slab_pad_check(s
, page
);
1465 for_each_object(p
, s
, page_address(page
),
1467 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1470 kmemcheck_free_shadow(page
, compound_order(page
));
1472 mod_zone_page_state(page_zone(page
),
1473 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1474 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1477 __ClearPageSlab(page
);
1478 reset_page_mapcount(page
);
1479 if (current
->reclaim_state
)
1480 current
->reclaim_state
->reclaimed_slab
+= pages
;
1481 __free_pages(page
, order
);
1484 #define need_reserve_slab_rcu \
1485 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1487 static void rcu_free_slab(struct rcu_head
*h
)
1491 if (need_reserve_slab_rcu
)
1492 page
= virt_to_head_page(h
);
1494 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1496 __free_slab(page
->slab
, page
);
1499 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1501 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1502 struct rcu_head
*head
;
1504 if (need_reserve_slab_rcu
) {
1505 int order
= compound_order(page
);
1506 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1508 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1509 head
= page_address(page
) + offset
;
1512 * RCU free overloads the RCU head over the LRU
1514 head
= (void *)&page
->lru
;
1517 call_rcu(head
, rcu_free_slab
);
1519 __free_slab(s
, page
);
1522 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1524 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1529 * Management of partially allocated slabs.
1531 * list_lock must be held.
1533 static inline void add_partial(struct kmem_cache_node
*n
,
1534 struct page
*page
, int tail
)
1538 list_add_tail(&page
->lru
, &n
->partial
);
1540 list_add(&page
->lru
, &n
->partial
);
1544 * list_lock must be held.
1546 static inline void remove_partial(struct kmem_cache_node
*n
,
1549 list_del(&page
->lru
);
1554 * Lock slab, remove from the partial list and put the object into the
1557 * Must hold list_lock.
1559 static inline int acquire_slab(struct kmem_cache
*s
,
1560 struct kmem_cache_node
*n
, struct page
*page
)
1563 unsigned long counters
;
1567 * Zap the freelist and set the frozen bit.
1568 * The old freelist is the list of objects for the
1569 * per cpu allocation list.
1572 freelist
= page
->freelist
;
1573 counters
= page
->counters
;
1574 new.counters
= counters
;
1575 new.inuse
= page
->objects
;
1577 VM_BUG_ON(new.frozen
);
1580 } while (!__cmpxchg_double_slab(s
, page
,
1583 "lock and freeze"));
1585 remove_partial(n
, page
);
1588 /* Populate the per cpu freelist */
1589 this_cpu_write(s
->cpu_slab
->freelist
, freelist
);
1590 this_cpu_write(s
->cpu_slab
->page
, page
);
1591 this_cpu_write(s
->cpu_slab
->node
, page_to_nid(page
));
1595 * Slab page came from the wrong list. No object to allocate
1596 * from. Put it onto the correct list and continue partial
1599 printk(KERN_ERR
"SLUB: %s : Page without available objects on"
1600 " partial list\n", s
->name
);
1606 * Try to allocate a partial slab from a specific node.
1608 static struct page
*get_partial_node(struct kmem_cache
*s
,
1609 struct kmem_cache_node
*n
)
1614 * Racy check. If we mistakenly see no partial slabs then we
1615 * just allocate an empty slab. If we mistakenly try to get a
1616 * partial slab and there is none available then get_partials()
1619 if (!n
|| !n
->nr_partial
)
1622 spin_lock(&n
->list_lock
);
1623 list_for_each_entry(page
, &n
->partial
, lru
)
1624 if (acquire_slab(s
, n
, page
))
1628 spin_unlock(&n
->list_lock
);
1633 * Get a page from somewhere. Search in increasing NUMA distances.
1635 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1638 struct zonelist
*zonelist
;
1641 enum zone_type high_zoneidx
= gfp_zone(flags
);
1645 * The defrag ratio allows a configuration of the tradeoffs between
1646 * inter node defragmentation and node local allocations. A lower
1647 * defrag_ratio increases the tendency to do local allocations
1648 * instead of attempting to obtain partial slabs from other nodes.
1650 * If the defrag_ratio is set to 0 then kmalloc() always
1651 * returns node local objects. If the ratio is higher then kmalloc()
1652 * may return off node objects because partial slabs are obtained
1653 * from other nodes and filled up.
1655 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1656 * defrag_ratio = 1000) then every (well almost) allocation will
1657 * first attempt to defrag slab caches on other nodes. This means
1658 * scanning over all nodes to look for partial slabs which may be
1659 * expensive if we do it every time we are trying to find a slab
1660 * with available objects.
1662 if (!s
->remote_node_defrag_ratio
||
1663 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1667 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1668 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1669 struct kmem_cache_node
*n
;
1671 n
= get_node(s
, zone_to_nid(zone
));
1673 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1674 n
->nr_partial
> s
->min_partial
) {
1675 page
= get_partial_node(s
, n
);
1688 * Get a partial page, lock it and return it.
1690 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1693 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1695 page
= get_partial_node(s
, get_node(s
, searchnode
));
1696 if (page
|| node
!= NUMA_NO_NODE
)
1699 return get_any_partial(s
, flags
);
1702 #ifdef CONFIG_PREEMPT
1704 * Calculate the next globally unique transaction for disambiguiation
1705 * during cmpxchg. The transactions start with the cpu number and are then
1706 * incremented by CONFIG_NR_CPUS.
1708 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1711 * No preemption supported therefore also no need to check for
1717 static inline unsigned long next_tid(unsigned long tid
)
1719 return tid
+ TID_STEP
;
1722 static inline unsigned int tid_to_cpu(unsigned long tid
)
1724 return tid
% TID_STEP
;
1727 static inline unsigned long tid_to_event(unsigned long tid
)
1729 return tid
/ TID_STEP
;
1732 static inline unsigned int init_tid(int cpu
)
1737 static inline void note_cmpxchg_failure(const char *n
,
1738 const struct kmem_cache
*s
, unsigned long tid
)
1740 #ifdef SLUB_DEBUG_CMPXCHG
1741 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1743 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1745 #ifdef CONFIG_PREEMPT
1746 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1747 printk("due to cpu change %d -> %d\n",
1748 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1751 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1752 printk("due to cpu running other code. Event %ld->%ld\n",
1753 tid_to_event(tid
), tid_to_event(actual_tid
));
1755 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1756 actual_tid
, tid
, next_tid(tid
));
1758 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1761 void init_kmem_cache_cpus(struct kmem_cache
*s
)
1765 for_each_possible_cpu(cpu
)
1766 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1769 * Remove the cpu slab
1773 * Remove the cpu slab
1775 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1777 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1778 struct page
*page
= c
->page
;
1779 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1781 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1788 if (page
->freelist
) {
1789 stat(s
, DEACTIVATE_REMOTE_FREES
);
1793 c
->tid
= next_tid(c
->tid
);
1795 freelist
= c
->freelist
;
1799 * Stage one: Free all available per cpu objects back
1800 * to the page freelist while it is still frozen. Leave the
1803 * There is no need to take the list->lock because the page
1806 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1808 unsigned long counters
;
1811 prior
= page
->freelist
;
1812 counters
= page
->counters
;
1813 set_freepointer(s
, freelist
, prior
);
1814 new.counters
= counters
;
1816 VM_BUG_ON(!new.frozen
);
1818 } while (!__cmpxchg_double_slab(s
, page
,
1820 freelist
, new.counters
,
1821 "drain percpu freelist"));
1823 freelist
= nextfree
;
1827 * Stage two: Ensure that the page is unfrozen while the
1828 * list presence reflects the actual number of objects
1831 * We setup the list membership and then perform a cmpxchg
1832 * with the count. If there is a mismatch then the page
1833 * is not unfrozen but the page is on the wrong list.
1835 * Then we restart the process which may have to remove
1836 * the page from the list that we just put it on again
1837 * because the number of objects in the slab may have
1842 old
.freelist
= page
->freelist
;
1843 old
.counters
= page
->counters
;
1844 VM_BUG_ON(!old
.frozen
);
1846 /* Determine target state of the slab */
1847 new.counters
= old
.counters
;
1850 set_freepointer(s
, freelist
, old
.freelist
);
1851 new.freelist
= freelist
;
1853 new.freelist
= old
.freelist
;
1857 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1859 else if (new.freelist
) {
1864 * Taking the spinlock removes the possiblity
1865 * that acquire_slab() will see a slab page that
1868 spin_lock(&n
->list_lock
);
1872 if (kmem_cache_debug(s
) && !lock
) {
1875 * This also ensures that the scanning of full
1876 * slabs from diagnostic functions will not see
1879 spin_lock(&n
->list_lock
);
1887 remove_partial(n
, page
);
1889 else if (l
== M_FULL
)
1891 remove_full(s
, page
);
1893 if (m
== M_PARTIAL
) {
1895 add_partial(n
, page
, tail
);
1896 stat(s
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1898 } else if (m
== M_FULL
) {
1900 stat(s
, DEACTIVATE_FULL
);
1901 add_full(s
, n
, page
);
1907 if (!__cmpxchg_double_slab(s
, page
,
1908 old
.freelist
, old
.counters
,
1909 new.freelist
, new.counters
,
1914 spin_unlock(&n
->list_lock
);
1917 stat(s
, DEACTIVATE_EMPTY
);
1918 discard_slab(s
, page
);
1923 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1925 stat(s
, CPUSLAB_FLUSH
);
1926 deactivate_slab(s
, c
);
1932 * Called from IPI handler with interrupts disabled.
1934 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1936 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
1938 if (likely(c
&& c
->page
))
1942 static void flush_cpu_slab(void *d
)
1944 struct kmem_cache
*s
= d
;
1946 __flush_cpu_slab(s
, smp_processor_id());
1949 static void flush_all(struct kmem_cache
*s
)
1951 on_each_cpu(flush_cpu_slab
, s
, 1);
1955 * Check if the objects in a per cpu structure fit numa
1956 * locality expectations.
1958 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1961 if (node
!= NUMA_NO_NODE
&& c
->node
!= node
)
1967 static int count_free(struct page
*page
)
1969 return page
->objects
- page
->inuse
;
1972 static unsigned long count_partial(struct kmem_cache_node
*n
,
1973 int (*get_count
)(struct page
*))
1975 unsigned long flags
;
1976 unsigned long x
= 0;
1979 spin_lock_irqsave(&n
->list_lock
, flags
);
1980 list_for_each_entry(page
, &n
->partial
, lru
)
1981 x
+= get_count(page
);
1982 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1986 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1988 #ifdef CONFIG_SLUB_DEBUG
1989 return atomic_long_read(&n
->total_objects
);
1995 static noinline
void
1996 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2001 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2003 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
2004 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
2005 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
2007 if (oo_order(s
->min
) > get_order(s
->objsize
))
2008 printk(KERN_WARNING
" %s debugging increased min order, use "
2009 "slub_debug=O to disable.\n", s
->name
);
2011 for_each_online_node(node
) {
2012 struct kmem_cache_node
*n
= get_node(s
, node
);
2013 unsigned long nr_slabs
;
2014 unsigned long nr_objs
;
2015 unsigned long nr_free
;
2020 nr_free
= count_partial(n
, count_free
);
2021 nr_slabs
= node_nr_slabs(n
);
2022 nr_objs
= node_nr_objs(n
);
2025 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2026 node
, nr_slabs
, nr_objs
, nr_free
);
2031 * Slow path. The lockless freelist is empty or we need to perform
2034 * Interrupts are disabled.
2036 * Processing is still very fast if new objects have been freed to the
2037 * regular freelist. In that case we simply take over the regular freelist
2038 * as the lockless freelist and zap the regular freelist.
2040 * If that is not working then we fall back to the partial lists. We take the
2041 * first element of the freelist as the object to allocate now and move the
2042 * rest of the freelist to the lockless freelist.
2044 * And if we were unable to get a new slab from the partial slab lists then
2045 * we need to allocate a new slab. This is the slowest path since it involves
2046 * a call to the page allocator and the setup of a new slab.
2048 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2049 unsigned long addr
, struct kmem_cache_cpu
*c
)
2053 unsigned long flags
;
2055 unsigned long counters
;
2057 local_irq_save(flags
);
2058 #ifdef CONFIG_PREEMPT
2060 * We may have been preempted and rescheduled on a different
2061 * cpu before disabling interrupts. Need to reload cpu area
2064 c
= this_cpu_ptr(s
->cpu_slab
);
2067 /* We handle __GFP_ZERO in the caller */
2068 gfpflags
&= ~__GFP_ZERO
;
2074 if (unlikely(!node_match(c
, node
))) {
2075 stat(s
, ALLOC_NODE_MISMATCH
);
2076 deactivate_slab(s
, c
);
2080 stat(s
, ALLOC_SLOWPATH
);
2083 object
= page
->freelist
;
2084 counters
= page
->counters
;
2085 new.counters
= counters
;
2086 VM_BUG_ON(!new.frozen
);
2089 * If there is no object left then we use this loop to
2090 * deactivate the slab which is simple since no objects
2091 * are left in the slab and therefore we do not need to
2092 * put the page back onto the partial list.
2094 * If there are objects left then we retrieve them
2095 * and use them to refill the per cpu queue.
2098 new.inuse
= page
->objects
;
2099 new.frozen
= object
!= NULL
;
2101 } while (!__cmpxchg_double_slab(s
, page
,
2106 if (unlikely(!object
)) {
2108 stat(s
, DEACTIVATE_BYPASS
);
2112 stat(s
, ALLOC_REFILL
);
2115 VM_BUG_ON(!page
->frozen
);
2116 c
->freelist
= get_freepointer(s
, object
);
2117 c
->tid
= next_tid(c
->tid
);
2118 local_irq_restore(flags
);
2122 page
= get_partial(s
, gfpflags
, node
);
2124 stat(s
, ALLOC_FROM_PARTIAL
);
2125 object
= c
->freelist
;
2127 if (kmem_cache_debug(s
))
2132 page
= new_slab(s
, gfpflags
, node
);
2135 c
= __this_cpu_ptr(s
->cpu_slab
);
2140 * No other reference to the page yet so we can
2141 * muck around with it freely without cmpxchg
2143 object
= page
->freelist
;
2144 page
->freelist
= NULL
;
2145 page
->inuse
= page
->objects
;
2147 stat(s
, ALLOC_SLAB
);
2148 c
->node
= page_to_nid(page
);
2151 if (kmem_cache_debug(s
))
2155 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2156 slab_out_of_memory(s
, gfpflags
, node
);
2157 local_irq_restore(flags
);
2161 if (!object
|| !alloc_debug_processing(s
, page
, object
, addr
))
2164 c
->freelist
= get_freepointer(s
, object
);
2165 deactivate_slab(s
, c
);
2167 c
->node
= NUMA_NO_NODE
;
2168 local_irq_restore(flags
);
2173 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2174 * have the fastpath folded into their functions. So no function call
2175 * overhead for requests that can be satisfied on the fastpath.
2177 * The fastpath works by first checking if the lockless freelist can be used.
2178 * If not then __slab_alloc is called for slow processing.
2180 * Otherwise we can simply pick the next object from the lockless free list.
2182 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2183 gfp_t gfpflags
, int node
, unsigned long addr
)
2186 struct kmem_cache_cpu
*c
;
2189 if (slab_pre_alloc_hook(s
, gfpflags
))
2195 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2196 * enabled. We may switch back and forth between cpus while
2197 * reading from one cpu area. That does not matter as long
2198 * as we end up on the original cpu again when doing the cmpxchg.
2200 c
= __this_cpu_ptr(s
->cpu_slab
);
2203 * The transaction ids are globally unique per cpu and per operation on
2204 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2205 * occurs on the right processor and that there was no operation on the
2206 * linked list in between.
2211 object
= c
->freelist
;
2212 if (unlikely(!object
|| !node_match(c
, node
)))
2214 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2218 * The cmpxchg will only match if there was no additional
2219 * operation and if we are on the right processor.
2221 * The cmpxchg does the following atomically (without lock semantics!)
2222 * 1. Relocate first pointer to the current per cpu area.
2223 * 2. Verify that tid and freelist have not been changed
2224 * 3. If they were not changed replace tid and freelist
2226 * Since this is without lock semantics the protection is only against
2227 * code executing on this cpu *not* from access by other cpus.
2229 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2230 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2232 get_freepointer_safe(s
, object
), next_tid(tid
)))) {
2234 note_cmpxchg_failure("slab_alloc", s
, tid
);
2237 stat(s
, ALLOC_FASTPATH
);
2240 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2241 memset(object
, 0, s
->objsize
);
2243 slab_post_alloc_hook(s
, gfpflags
, object
);
2248 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2250 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2252 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
2256 EXPORT_SYMBOL(kmem_cache_alloc
);
2258 #ifdef CONFIG_TRACING
2259 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2261 void *ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
);
2262 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2265 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2267 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2269 void *ret
= kmalloc_order(size
, flags
, order
);
2270 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2273 EXPORT_SYMBOL(kmalloc_order_trace
);
2277 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2279 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2281 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2282 s
->objsize
, s
->size
, gfpflags
, node
);
2286 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2288 #ifdef CONFIG_TRACING
2289 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2291 int node
, size_t size
)
2293 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
2295 trace_kmalloc_node(_RET_IP_
, ret
,
2296 size
, s
->size
, gfpflags
, node
);
2299 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2304 * Slow patch handling. This may still be called frequently since objects
2305 * have a longer lifetime than the cpu slabs in most processing loads.
2307 * So we still attempt to reduce cache line usage. Just take the slab
2308 * lock and free the item. If there is no additional partial page
2309 * handling required then we can return immediately.
2311 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2312 void *x
, unsigned long addr
)
2315 void **object
= (void *)x
;
2319 unsigned long counters
;
2320 struct kmem_cache_node
*n
= NULL
;
2321 unsigned long uninitialized_var(flags
);
2323 stat(s
, FREE_SLOWPATH
);
2325 if (kmem_cache_debug(s
) && !free_debug_processing(s
, page
, x
, addr
))
2329 prior
= page
->freelist
;
2330 counters
= page
->counters
;
2331 set_freepointer(s
, object
, prior
);
2332 new.counters
= counters
;
2333 was_frozen
= new.frozen
;
2335 if ((!new.inuse
|| !prior
) && !was_frozen
&& !n
) {
2336 n
= get_node(s
, page_to_nid(page
));
2338 * Speculatively acquire the list_lock.
2339 * If the cmpxchg does not succeed then we may
2340 * drop the list_lock without any processing.
2342 * Otherwise the list_lock will synchronize with
2343 * other processors updating the list of slabs.
2345 spin_lock_irqsave(&n
->list_lock
, flags
);
2349 } while (!cmpxchg_double_slab(s
, page
,
2351 object
, new.counters
,
2356 * The list lock was not taken therefore no list
2357 * activity can be necessary.
2360 stat(s
, FREE_FROZEN
);
2365 * was_frozen may have been set after we acquired the list_lock in
2366 * an earlier loop. So we need to check it here again.
2369 stat(s
, FREE_FROZEN
);
2371 if (unlikely(!inuse
&& n
->nr_partial
> s
->min_partial
))
2375 * Objects left in the slab. If it was not on the partial list before
2378 if (unlikely(!prior
)) {
2379 remove_full(s
, page
);
2380 add_partial(n
, page
, 1);
2381 stat(s
, FREE_ADD_PARTIAL
);
2384 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2390 * Slab on the partial list.
2392 remove_partial(n
, page
);
2393 stat(s
, FREE_REMOVE_PARTIAL
);
2395 /* Slab must be on the full list */
2396 remove_full(s
, page
);
2398 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2400 discard_slab(s
, page
);
2404 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2405 * can perform fastpath freeing without additional function calls.
2407 * The fastpath is only possible if we are freeing to the current cpu slab
2408 * of this processor. This typically the case if we have just allocated
2411 * If fastpath is not possible then fall back to __slab_free where we deal
2412 * with all sorts of special processing.
2414 static __always_inline
void slab_free(struct kmem_cache
*s
,
2415 struct page
*page
, void *x
, unsigned long addr
)
2417 void **object
= (void *)x
;
2418 struct kmem_cache_cpu
*c
;
2421 slab_free_hook(s
, x
);
2426 * Determine the currently cpus per cpu slab.
2427 * The cpu may change afterward. However that does not matter since
2428 * data is retrieved via this pointer. If we are on the same cpu
2429 * during the cmpxchg then the free will succedd.
2431 c
= __this_cpu_ptr(s
->cpu_slab
);
2436 if (likely(page
== c
->page
)) {
2437 set_freepointer(s
, object
, c
->freelist
);
2439 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2440 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2442 object
, next_tid(tid
)))) {
2444 note_cmpxchg_failure("slab_free", s
, tid
);
2447 stat(s
, FREE_FASTPATH
);
2449 __slab_free(s
, page
, x
, addr
);
2453 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2457 page
= virt_to_head_page(x
);
2459 slab_free(s
, page
, x
, _RET_IP_
);
2461 trace_kmem_cache_free(_RET_IP_
, x
);
2463 EXPORT_SYMBOL(kmem_cache_free
);
2466 * Object placement in a slab is made very easy because we always start at
2467 * offset 0. If we tune the size of the object to the alignment then we can
2468 * get the required alignment by putting one properly sized object after
2471 * Notice that the allocation order determines the sizes of the per cpu
2472 * caches. Each processor has always one slab available for allocations.
2473 * Increasing the allocation order reduces the number of times that slabs
2474 * must be moved on and off the partial lists and is therefore a factor in
2479 * Mininum / Maximum order of slab pages. This influences locking overhead
2480 * and slab fragmentation. A higher order reduces the number of partial slabs
2481 * and increases the number of allocations possible without having to
2482 * take the list_lock.
2484 static int slub_min_order
;
2485 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2486 static int slub_min_objects
;
2489 * Merge control. If this is set then no merging of slab caches will occur.
2490 * (Could be removed. This was introduced to pacify the merge skeptics.)
2492 static int slub_nomerge
;
2495 * Calculate the order of allocation given an slab object size.
2497 * The order of allocation has significant impact on performance and other
2498 * system components. Generally order 0 allocations should be preferred since
2499 * order 0 does not cause fragmentation in the page allocator. Larger objects
2500 * be problematic to put into order 0 slabs because there may be too much
2501 * unused space left. We go to a higher order if more than 1/16th of the slab
2504 * In order to reach satisfactory performance we must ensure that a minimum
2505 * number of objects is in one slab. Otherwise we may generate too much
2506 * activity on the partial lists which requires taking the list_lock. This is
2507 * less a concern for large slabs though which are rarely used.
2509 * slub_max_order specifies the order where we begin to stop considering the
2510 * number of objects in a slab as critical. If we reach slub_max_order then
2511 * we try to keep the page order as low as possible. So we accept more waste
2512 * of space in favor of a small page order.
2514 * Higher order allocations also allow the placement of more objects in a
2515 * slab and thereby reduce object handling overhead. If the user has
2516 * requested a higher mininum order then we start with that one instead of
2517 * the smallest order which will fit the object.
2519 static inline int slab_order(int size
, int min_objects
,
2520 int max_order
, int fract_leftover
, int reserved
)
2524 int min_order
= slub_min_order
;
2526 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2527 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2529 for (order
= max(min_order
,
2530 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2531 order
<= max_order
; order
++) {
2533 unsigned long slab_size
= PAGE_SIZE
<< order
;
2535 if (slab_size
< min_objects
* size
+ reserved
)
2538 rem
= (slab_size
- reserved
) % size
;
2540 if (rem
<= slab_size
/ fract_leftover
)
2548 static inline int calculate_order(int size
, int reserved
)
2556 * Attempt to find best configuration for a slab. This
2557 * works by first attempting to generate a layout with
2558 * the best configuration and backing off gradually.
2560 * First we reduce the acceptable waste in a slab. Then
2561 * we reduce the minimum objects required in a slab.
2563 min_objects
= slub_min_objects
;
2565 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2566 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2567 min_objects
= min(min_objects
, max_objects
);
2569 while (min_objects
> 1) {
2571 while (fraction
>= 4) {
2572 order
= slab_order(size
, min_objects
,
2573 slub_max_order
, fraction
, reserved
);
2574 if (order
<= slub_max_order
)
2582 * We were unable to place multiple objects in a slab. Now
2583 * lets see if we can place a single object there.
2585 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2586 if (order
<= slub_max_order
)
2590 * Doh this slab cannot be placed using slub_max_order.
2592 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2593 if (order
< MAX_ORDER
)
2599 * Figure out what the alignment of the objects will be.
2601 static unsigned long calculate_alignment(unsigned long flags
,
2602 unsigned long align
, unsigned long size
)
2605 * If the user wants hardware cache aligned objects then follow that
2606 * suggestion if the object is sufficiently large.
2608 * The hardware cache alignment cannot override the specified
2609 * alignment though. If that is greater then use it.
2611 if (flags
& SLAB_HWCACHE_ALIGN
) {
2612 unsigned long ralign
= cache_line_size();
2613 while (size
<= ralign
/ 2)
2615 align
= max(align
, ralign
);
2618 if (align
< ARCH_SLAB_MINALIGN
)
2619 align
= ARCH_SLAB_MINALIGN
;
2621 return ALIGN(align
, sizeof(void *));
2625 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2628 spin_lock_init(&n
->list_lock
);
2629 INIT_LIST_HEAD(&n
->partial
);
2630 #ifdef CONFIG_SLUB_DEBUG
2631 atomic_long_set(&n
->nr_slabs
, 0);
2632 atomic_long_set(&n
->total_objects
, 0);
2633 INIT_LIST_HEAD(&n
->full
);
2637 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2639 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2640 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2643 * Must align to double word boundary for the double cmpxchg
2644 * instructions to work; see __pcpu_double_call_return_bool().
2646 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2647 2 * sizeof(void *));
2652 init_kmem_cache_cpus(s
);
2657 static struct kmem_cache
*kmem_cache_node
;
2660 * No kmalloc_node yet so do it by hand. We know that this is the first
2661 * slab on the node for this slabcache. There are no concurrent accesses
2664 * Note that this function only works on the kmalloc_node_cache
2665 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2666 * memory on a fresh node that has no slab structures yet.
2668 static void early_kmem_cache_node_alloc(int node
)
2671 struct kmem_cache_node
*n
;
2673 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2675 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2678 if (page_to_nid(page
) != node
) {
2679 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2681 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2682 "in order to be able to continue\n");
2687 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2690 kmem_cache_node
->node
[node
] = n
;
2691 #ifdef CONFIG_SLUB_DEBUG
2692 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2693 init_tracking(kmem_cache_node
, n
);
2695 init_kmem_cache_node(n
, kmem_cache_node
);
2696 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2698 add_partial(n
, page
, 0);
2701 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2705 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2706 struct kmem_cache_node
*n
= s
->node
[node
];
2709 kmem_cache_free(kmem_cache_node
, n
);
2711 s
->node
[node
] = NULL
;
2715 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2719 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2720 struct kmem_cache_node
*n
;
2722 if (slab_state
== DOWN
) {
2723 early_kmem_cache_node_alloc(node
);
2726 n
= kmem_cache_alloc_node(kmem_cache_node
,
2730 free_kmem_cache_nodes(s
);
2735 init_kmem_cache_node(n
, s
);
2740 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2742 if (min
< MIN_PARTIAL
)
2744 else if (min
> MAX_PARTIAL
)
2746 s
->min_partial
= min
;
2750 * calculate_sizes() determines the order and the distribution of data within
2753 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2755 unsigned long flags
= s
->flags
;
2756 unsigned long size
= s
->objsize
;
2757 unsigned long align
= s
->align
;
2761 * Round up object size to the next word boundary. We can only
2762 * place the free pointer at word boundaries and this determines
2763 * the possible location of the free pointer.
2765 size
= ALIGN(size
, sizeof(void *));
2767 #ifdef CONFIG_SLUB_DEBUG
2769 * Determine if we can poison the object itself. If the user of
2770 * the slab may touch the object after free or before allocation
2771 * then we should never poison the object itself.
2773 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2775 s
->flags
|= __OBJECT_POISON
;
2777 s
->flags
&= ~__OBJECT_POISON
;
2781 * If we are Redzoning then check if there is some space between the
2782 * end of the object and the free pointer. If not then add an
2783 * additional word to have some bytes to store Redzone information.
2785 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2786 size
+= sizeof(void *);
2790 * With that we have determined the number of bytes in actual use
2791 * by the object. This is the potential offset to the free pointer.
2795 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2798 * Relocate free pointer after the object if it is not
2799 * permitted to overwrite the first word of the object on
2802 * This is the case if we do RCU, have a constructor or
2803 * destructor or are poisoning the objects.
2806 size
+= sizeof(void *);
2809 #ifdef CONFIG_SLUB_DEBUG
2810 if (flags
& SLAB_STORE_USER
)
2812 * Need to store information about allocs and frees after
2815 size
+= 2 * sizeof(struct track
);
2817 if (flags
& SLAB_RED_ZONE
)
2819 * Add some empty padding so that we can catch
2820 * overwrites from earlier objects rather than let
2821 * tracking information or the free pointer be
2822 * corrupted if a user writes before the start
2825 size
+= sizeof(void *);
2829 * Determine the alignment based on various parameters that the
2830 * user specified and the dynamic determination of cache line size
2833 align
= calculate_alignment(flags
, align
, s
->objsize
);
2837 * SLUB stores one object immediately after another beginning from
2838 * offset 0. In order to align the objects we have to simply size
2839 * each object to conform to the alignment.
2841 size
= ALIGN(size
, align
);
2843 if (forced_order
>= 0)
2844 order
= forced_order
;
2846 order
= calculate_order(size
, s
->reserved
);
2853 s
->allocflags
|= __GFP_COMP
;
2855 if (s
->flags
& SLAB_CACHE_DMA
)
2856 s
->allocflags
|= SLUB_DMA
;
2858 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2859 s
->allocflags
|= __GFP_RECLAIMABLE
;
2862 * Determine the number of objects per slab
2864 s
->oo
= oo_make(order
, size
, s
->reserved
);
2865 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
2866 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2869 return !!oo_objects(s
->oo
);
2873 static int kmem_cache_open(struct kmem_cache
*s
,
2874 const char *name
, size_t size
,
2875 size_t align
, unsigned long flags
,
2876 void (*ctor
)(void *))
2878 memset(s
, 0, kmem_size
);
2883 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2886 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
2887 s
->reserved
= sizeof(struct rcu_head
);
2889 if (!calculate_sizes(s
, -1))
2891 if (disable_higher_order_debug
) {
2893 * Disable debugging flags that store metadata if the min slab
2896 if (get_order(s
->size
) > get_order(s
->objsize
)) {
2897 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
2899 if (!calculate_sizes(s
, -1))
2904 #ifdef CONFIG_CMPXCHG_DOUBLE
2905 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
2906 /* Enable fast mode */
2907 s
->flags
|= __CMPXCHG_DOUBLE
;
2911 * The larger the object size is, the more pages we want on the partial
2912 * list to avoid pounding the page allocator excessively.
2914 set_min_partial(s
, ilog2(s
->size
));
2917 s
->remote_node_defrag_ratio
= 1000;
2919 if (!init_kmem_cache_nodes(s
))
2922 if (alloc_kmem_cache_cpus(s
))
2925 free_kmem_cache_nodes(s
);
2927 if (flags
& SLAB_PANIC
)
2928 panic("Cannot create slab %s size=%lu realsize=%u "
2929 "order=%u offset=%u flags=%lx\n",
2930 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2936 * Determine the size of a slab object
2938 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2942 EXPORT_SYMBOL(kmem_cache_size
);
2944 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2947 #ifdef CONFIG_SLUB_DEBUG
2948 void *addr
= page_address(page
);
2950 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
2951 sizeof(long), GFP_ATOMIC
);
2954 slab_err(s
, page
, "%s", text
);
2957 get_map(s
, page
, map
);
2958 for_each_object(p
, s
, addr
, page
->objects
) {
2960 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2961 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2963 print_tracking(s
, p
);
2972 * Attempt to free all partial slabs on a node.
2974 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2976 unsigned long flags
;
2977 struct page
*page
, *h
;
2979 spin_lock_irqsave(&n
->list_lock
, flags
);
2980 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2982 remove_partial(n
, page
);
2983 discard_slab(s
, page
);
2985 list_slab_objects(s
, page
,
2986 "Objects remaining on kmem_cache_close()");
2989 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2993 * Release all resources used by a slab cache.
2995 static inline int kmem_cache_close(struct kmem_cache
*s
)
3000 free_percpu(s
->cpu_slab
);
3001 /* Attempt to free all objects */
3002 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3003 struct kmem_cache_node
*n
= get_node(s
, node
);
3006 if (n
->nr_partial
|| slabs_node(s
, node
))
3009 free_kmem_cache_nodes(s
);
3014 * Close a cache and release the kmem_cache structure
3015 * (must be used for caches created using kmem_cache_create)
3017 void kmem_cache_destroy(struct kmem_cache
*s
)
3019 down_write(&slub_lock
);
3023 if (kmem_cache_close(s
)) {
3024 printk(KERN_ERR
"SLUB %s: %s called for cache that "
3025 "still has objects.\n", s
->name
, __func__
);
3028 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
3030 sysfs_slab_remove(s
);
3032 up_write(&slub_lock
);
3034 EXPORT_SYMBOL(kmem_cache_destroy
);
3036 /********************************************************************
3038 *******************************************************************/
3040 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
3041 EXPORT_SYMBOL(kmalloc_caches
);
3043 static struct kmem_cache
*kmem_cache
;
3045 #ifdef CONFIG_ZONE_DMA
3046 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
3049 static int __init
setup_slub_min_order(char *str
)
3051 get_option(&str
, &slub_min_order
);
3056 __setup("slub_min_order=", setup_slub_min_order
);
3058 static int __init
setup_slub_max_order(char *str
)
3060 get_option(&str
, &slub_max_order
);
3061 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3066 __setup("slub_max_order=", setup_slub_max_order
);
3068 static int __init
setup_slub_min_objects(char *str
)
3070 get_option(&str
, &slub_min_objects
);
3075 __setup("slub_min_objects=", setup_slub_min_objects
);
3077 static int __init
setup_slub_nomerge(char *str
)
3083 __setup("slub_nomerge", setup_slub_nomerge
);
3085 static struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
3086 int size
, unsigned int flags
)
3088 struct kmem_cache
*s
;
3090 s
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3093 * This function is called with IRQs disabled during early-boot on
3094 * single CPU so there's no need to take slub_lock here.
3096 if (!kmem_cache_open(s
, name
, size
, ARCH_KMALLOC_MINALIGN
,
3100 list_add(&s
->list
, &slab_caches
);
3104 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
3109 * Conversion table for small slabs sizes / 8 to the index in the
3110 * kmalloc array. This is necessary for slabs < 192 since we have non power
3111 * of two cache sizes there. The size of larger slabs can be determined using
3114 static s8 size_index
[24] = {
3141 static inline int size_index_elem(size_t bytes
)
3143 return (bytes
- 1) / 8;
3146 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
3152 return ZERO_SIZE_PTR
;
3154 index
= size_index
[size_index_elem(size
)];
3156 index
= fls(size
- 1);
3158 #ifdef CONFIG_ZONE_DMA
3159 if (unlikely((flags
& SLUB_DMA
)))
3160 return kmalloc_dma_caches
[index
];
3163 return kmalloc_caches
[index
];
3166 void *__kmalloc(size_t size
, gfp_t flags
)
3168 struct kmem_cache
*s
;
3171 if (unlikely(size
> SLUB_MAX_SIZE
))
3172 return kmalloc_large(size
, flags
);
3174 s
= get_slab(size
, flags
);
3176 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3179 ret
= slab_alloc(s
, flags
, NUMA_NO_NODE
, _RET_IP_
);
3181 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3185 EXPORT_SYMBOL(__kmalloc
);
3188 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3193 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3194 page
= alloc_pages_node(node
, flags
, get_order(size
));
3196 ptr
= page_address(page
);
3198 kmemleak_alloc(ptr
, size
, 1, flags
);
3202 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3204 struct kmem_cache
*s
;
3207 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3208 ret
= kmalloc_large_node(size
, flags
, node
);
3210 trace_kmalloc_node(_RET_IP_
, ret
,
3211 size
, PAGE_SIZE
<< get_order(size
),
3217 s
= get_slab(size
, flags
);
3219 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3222 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
3224 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3228 EXPORT_SYMBOL(__kmalloc_node
);
3231 size_t ksize(const void *object
)
3235 if (unlikely(object
== ZERO_SIZE_PTR
))
3238 page
= virt_to_head_page(object
);
3240 if (unlikely(!PageSlab(page
))) {
3241 WARN_ON(!PageCompound(page
));
3242 return PAGE_SIZE
<< compound_order(page
);
3245 return slab_ksize(page
->slab
);
3247 EXPORT_SYMBOL(ksize
);
3249 #ifdef CONFIG_SLUB_DEBUG
3250 bool verify_mem_not_deleted(const void *x
)
3253 void *object
= (void *)x
;
3254 unsigned long flags
;
3257 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3260 local_irq_save(flags
);
3262 page
= virt_to_head_page(x
);
3263 if (unlikely(!PageSlab(page
))) {
3264 /* maybe it was from stack? */
3270 if (on_freelist(page
->slab
, page
, object
)) {
3271 object_err(page
->slab
, page
, object
, "Object is on free-list");
3279 local_irq_restore(flags
);
3282 EXPORT_SYMBOL(verify_mem_not_deleted
);
3285 void kfree(const void *x
)
3288 void *object
= (void *)x
;
3290 trace_kfree(_RET_IP_
, x
);
3292 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3295 page
= virt_to_head_page(x
);
3296 if (unlikely(!PageSlab(page
))) {
3297 BUG_ON(!PageCompound(page
));
3302 slab_free(page
->slab
, page
, object
, _RET_IP_
);
3304 EXPORT_SYMBOL(kfree
);
3307 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3308 * the remaining slabs by the number of items in use. The slabs with the
3309 * most items in use come first. New allocations will then fill those up
3310 * and thus they can be removed from the partial lists.
3312 * The slabs with the least items are placed last. This results in them
3313 * being allocated from last increasing the chance that the last objects
3314 * are freed in them.
3316 int kmem_cache_shrink(struct kmem_cache
*s
)
3320 struct kmem_cache_node
*n
;
3323 int objects
= oo_objects(s
->max
);
3324 struct list_head
*slabs_by_inuse
=
3325 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3326 unsigned long flags
;
3328 if (!slabs_by_inuse
)
3332 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3333 n
= get_node(s
, node
);
3338 for (i
= 0; i
< objects
; i
++)
3339 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3341 spin_lock_irqsave(&n
->list_lock
, flags
);
3344 * Build lists indexed by the items in use in each slab.
3346 * Note that concurrent frees may occur while we hold the
3347 * list_lock. page->inuse here is the upper limit.
3349 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3351 remove_partial(n
, page
);
3352 discard_slab(s
, page
);
3354 list_move(&page
->lru
,
3355 slabs_by_inuse
+ page
->inuse
);
3360 * Rebuild the partial list with the slabs filled up most
3361 * first and the least used slabs at the end.
3363 for (i
= objects
- 1; i
>= 0; i
--)
3364 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3366 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3369 kfree(slabs_by_inuse
);
3372 EXPORT_SYMBOL(kmem_cache_shrink
);
3374 #if defined(CONFIG_MEMORY_HOTPLUG)
3375 static int slab_mem_going_offline_callback(void *arg
)
3377 struct kmem_cache
*s
;
3379 down_read(&slub_lock
);
3380 list_for_each_entry(s
, &slab_caches
, list
)
3381 kmem_cache_shrink(s
);
3382 up_read(&slub_lock
);
3387 static void slab_mem_offline_callback(void *arg
)
3389 struct kmem_cache_node
*n
;
3390 struct kmem_cache
*s
;
3391 struct memory_notify
*marg
= arg
;
3394 offline_node
= marg
->status_change_nid
;
3397 * If the node still has available memory. we need kmem_cache_node
3400 if (offline_node
< 0)
3403 down_read(&slub_lock
);
3404 list_for_each_entry(s
, &slab_caches
, list
) {
3405 n
= get_node(s
, offline_node
);
3408 * if n->nr_slabs > 0, slabs still exist on the node
3409 * that is going down. We were unable to free them,
3410 * and offline_pages() function shouldn't call this
3411 * callback. So, we must fail.
3413 BUG_ON(slabs_node(s
, offline_node
));
3415 s
->node
[offline_node
] = NULL
;
3416 kmem_cache_free(kmem_cache_node
, n
);
3419 up_read(&slub_lock
);
3422 static int slab_mem_going_online_callback(void *arg
)
3424 struct kmem_cache_node
*n
;
3425 struct kmem_cache
*s
;
3426 struct memory_notify
*marg
= arg
;
3427 int nid
= marg
->status_change_nid
;
3431 * If the node's memory is already available, then kmem_cache_node is
3432 * already created. Nothing to do.
3438 * We are bringing a node online. No memory is available yet. We must
3439 * allocate a kmem_cache_node structure in order to bring the node
3442 down_read(&slub_lock
);
3443 list_for_each_entry(s
, &slab_caches
, list
) {
3445 * XXX: kmem_cache_alloc_node will fallback to other nodes
3446 * since memory is not yet available from the node that
3449 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3454 init_kmem_cache_node(n
, s
);
3458 up_read(&slub_lock
);
3462 static int slab_memory_callback(struct notifier_block
*self
,
3463 unsigned long action
, void *arg
)
3468 case MEM_GOING_ONLINE
:
3469 ret
= slab_mem_going_online_callback(arg
);
3471 case MEM_GOING_OFFLINE
:
3472 ret
= slab_mem_going_offline_callback(arg
);
3475 case MEM_CANCEL_ONLINE
:
3476 slab_mem_offline_callback(arg
);
3479 case MEM_CANCEL_OFFLINE
:
3483 ret
= notifier_from_errno(ret
);
3489 #endif /* CONFIG_MEMORY_HOTPLUG */
3491 /********************************************************************
3492 * Basic setup of slabs
3493 *******************************************************************/
3496 * Used for early kmem_cache structures that were allocated using
3497 * the page allocator
3500 static void __init
kmem_cache_bootstrap_fixup(struct kmem_cache
*s
)
3504 list_add(&s
->list
, &slab_caches
);
3507 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3508 struct kmem_cache_node
*n
= get_node(s
, node
);
3512 list_for_each_entry(p
, &n
->partial
, lru
)
3515 #ifdef CONFIG_SLUB_DEBUG
3516 list_for_each_entry(p
, &n
->full
, lru
)
3523 void __init
kmem_cache_init(void)
3527 struct kmem_cache
*temp_kmem_cache
;
3529 struct kmem_cache
*temp_kmem_cache_node
;
3530 unsigned long kmalloc_size
;
3532 kmem_size
= offsetof(struct kmem_cache
, node
) +
3533 nr_node_ids
* sizeof(struct kmem_cache_node
*);
3535 /* Allocate two kmem_caches from the page allocator */
3536 kmalloc_size
= ALIGN(kmem_size
, cache_line_size());
3537 order
= get_order(2 * kmalloc_size
);
3538 kmem_cache
= (void *)__get_free_pages(GFP_NOWAIT
, order
);
3541 * Must first have the slab cache available for the allocations of the
3542 * struct kmem_cache_node's. There is special bootstrap code in
3543 * kmem_cache_open for slab_state == DOWN.
3545 kmem_cache_node
= (void *)kmem_cache
+ kmalloc_size
;
3547 kmem_cache_open(kmem_cache_node
, "kmem_cache_node",
3548 sizeof(struct kmem_cache_node
),
3549 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3551 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3553 /* Able to allocate the per node structures */
3554 slab_state
= PARTIAL
;
3556 temp_kmem_cache
= kmem_cache
;
3557 kmem_cache_open(kmem_cache
, "kmem_cache", kmem_size
,
3558 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3559 kmem_cache
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3560 memcpy(kmem_cache
, temp_kmem_cache
, kmem_size
);
3563 * Allocate kmem_cache_node properly from the kmem_cache slab.
3564 * kmem_cache_node is separately allocated so no need to
3565 * update any list pointers.
3567 temp_kmem_cache_node
= kmem_cache_node
;
3569 kmem_cache_node
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3570 memcpy(kmem_cache_node
, temp_kmem_cache_node
, kmem_size
);
3572 kmem_cache_bootstrap_fixup(kmem_cache_node
);
3575 kmem_cache_bootstrap_fixup(kmem_cache
);
3577 /* Free temporary boot structure */
3578 free_pages((unsigned long)temp_kmem_cache
, order
);
3580 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3583 * Patch up the size_index table if we have strange large alignment
3584 * requirements for the kmalloc array. This is only the case for
3585 * MIPS it seems. The standard arches will not generate any code here.
3587 * Largest permitted alignment is 256 bytes due to the way we
3588 * handle the index determination for the smaller caches.
3590 * Make sure that nothing crazy happens if someone starts tinkering
3591 * around with ARCH_KMALLOC_MINALIGN
3593 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3594 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3596 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3597 int elem
= size_index_elem(i
);
3598 if (elem
>= ARRAY_SIZE(size_index
))
3600 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3603 if (KMALLOC_MIN_SIZE
== 64) {
3605 * The 96 byte size cache is not used if the alignment
3608 for (i
= 64 + 8; i
<= 96; i
+= 8)
3609 size_index
[size_index_elem(i
)] = 7;
3610 } else if (KMALLOC_MIN_SIZE
== 128) {
3612 * The 192 byte sized cache is not used if the alignment
3613 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3616 for (i
= 128 + 8; i
<= 192; i
+= 8)
3617 size_index
[size_index_elem(i
)] = 8;
3620 /* Caches that are not of the two-to-the-power-of size */
3621 if (KMALLOC_MIN_SIZE
<= 32) {
3622 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3626 if (KMALLOC_MIN_SIZE
<= 64) {
3627 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3631 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3632 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3638 /* Provide the correct kmalloc names now that the caches are up */
3639 if (KMALLOC_MIN_SIZE
<= 32) {
3640 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3641 BUG_ON(!kmalloc_caches
[1]->name
);
3644 if (KMALLOC_MIN_SIZE
<= 64) {
3645 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3646 BUG_ON(!kmalloc_caches
[2]->name
);
3649 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3650 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3653 kmalloc_caches
[i
]->name
= s
;
3657 register_cpu_notifier(&slab_notifier
);
3660 #ifdef CONFIG_ZONE_DMA
3661 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3662 struct kmem_cache
*s
= kmalloc_caches
[i
];
3665 char *name
= kasprintf(GFP_NOWAIT
,
3666 "dma-kmalloc-%d", s
->objsize
);
3669 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3670 s
->objsize
, SLAB_CACHE_DMA
);
3675 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3676 " CPUs=%d, Nodes=%d\n",
3677 caches
, cache_line_size(),
3678 slub_min_order
, slub_max_order
, slub_min_objects
,
3679 nr_cpu_ids
, nr_node_ids
);
3682 void __init
kmem_cache_init_late(void)
3687 * Find a mergeable slab cache
3689 static int slab_unmergeable(struct kmem_cache
*s
)
3691 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3698 * We may have set a slab to be unmergeable during bootstrap.
3700 if (s
->refcount
< 0)
3706 static struct kmem_cache
*find_mergeable(size_t size
,
3707 size_t align
, unsigned long flags
, const char *name
,
3708 void (*ctor
)(void *))
3710 struct kmem_cache
*s
;
3712 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3718 size
= ALIGN(size
, sizeof(void *));
3719 align
= calculate_alignment(flags
, align
, size
);
3720 size
= ALIGN(size
, align
);
3721 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3723 list_for_each_entry(s
, &slab_caches
, list
) {
3724 if (slab_unmergeable(s
))
3730 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3733 * Check if alignment is compatible.
3734 * Courtesy of Adrian Drzewiecki
3736 if ((s
->size
& ~(align
- 1)) != s
->size
)
3739 if (s
->size
- size
>= sizeof(void *))
3747 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3748 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3750 struct kmem_cache
*s
;
3756 down_write(&slub_lock
);
3757 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3761 * Adjust the object sizes so that we clear
3762 * the complete object on kzalloc.
3764 s
->objsize
= max(s
->objsize
, (int)size
);
3765 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3767 if (sysfs_slab_alias(s
, name
)) {
3771 up_write(&slub_lock
);
3775 n
= kstrdup(name
, GFP_KERNEL
);
3779 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3781 if (kmem_cache_open(s
, n
,
3782 size
, align
, flags
, ctor
)) {
3783 list_add(&s
->list
, &slab_caches
);
3784 if (sysfs_slab_add(s
)) {
3790 up_write(&slub_lock
);
3797 up_write(&slub_lock
);
3799 if (flags
& SLAB_PANIC
)
3800 panic("Cannot create slabcache %s\n", name
);
3805 EXPORT_SYMBOL(kmem_cache_create
);
3809 * Use the cpu notifier to insure that the cpu slabs are flushed when
3812 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3813 unsigned long action
, void *hcpu
)
3815 long cpu
= (long)hcpu
;
3816 struct kmem_cache
*s
;
3817 unsigned long flags
;
3820 case CPU_UP_CANCELED
:
3821 case CPU_UP_CANCELED_FROZEN
:
3823 case CPU_DEAD_FROZEN
:
3824 down_read(&slub_lock
);
3825 list_for_each_entry(s
, &slab_caches
, list
) {
3826 local_irq_save(flags
);
3827 __flush_cpu_slab(s
, cpu
);
3828 local_irq_restore(flags
);
3830 up_read(&slub_lock
);
3838 static struct notifier_block __cpuinitdata slab_notifier
= {
3839 .notifier_call
= slab_cpuup_callback
3844 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3846 struct kmem_cache
*s
;
3849 if (unlikely(size
> SLUB_MAX_SIZE
))
3850 return kmalloc_large(size
, gfpflags
);
3852 s
= get_slab(size
, gfpflags
);
3854 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3857 ret
= slab_alloc(s
, gfpflags
, NUMA_NO_NODE
, caller
);
3859 /* Honor the call site pointer we received. */
3860 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3866 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3867 int node
, unsigned long caller
)
3869 struct kmem_cache
*s
;
3872 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3873 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3875 trace_kmalloc_node(caller
, ret
,
3876 size
, PAGE_SIZE
<< get_order(size
),
3882 s
= get_slab(size
, gfpflags
);
3884 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3887 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3889 /* Honor the call site pointer we received. */
3890 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3897 static int count_inuse(struct page
*page
)
3902 static int count_total(struct page
*page
)
3904 return page
->objects
;
3908 #ifdef CONFIG_SLUB_DEBUG
3909 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3913 void *addr
= page_address(page
);
3915 if (!check_slab(s
, page
) ||
3916 !on_freelist(s
, page
, NULL
))
3919 /* Now we know that a valid freelist exists */
3920 bitmap_zero(map
, page
->objects
);
3922 get_map(s
, page
, map
);
3923 for_each_object(p
, s
, addr
, page
->objects
) {
3924 if (test_bit(slab_index(p
, s
, addr
), map
))
3925 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
3929 for_each_object(p
, s
, addr
, page
->objects
)
3930 if (!test_bit(slab_index(p
, s
, addr
), map
))
3931 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
3936 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3940 validate_slab(s
, page
, map
);
3944 static int validate_slab_node(struct kmem_cache
*s
,
3945 struct kmem_cache_node
*n
, unsigned long *map
)
3947 unsigned long count
= 0;
3949 unsigned long flags
;
3951 spin_lock_irqsave(&n
->list_lock
, flags
);
3953 list_for_each_entry(page
, &n
->partial
, lru
) {
3954 validate_slab_slab(s
, page
, map
);
3957 if (count
!= n
->nr_partial
)
3958 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3959 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3961 if (!(s
->flags
& SLAB_STORE_USER
))
3964 list_for_each_entry(page
, &n
->full
, lru
) {
3965 validate_slab_slab(s
, page
, map
);
3968 if (count
!= atomic_long_read(&n
->nr_slabs
))
3969 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3970 "counter=%ld\n", s
->name
, count
,
3971 atomic_long_read(&n
->nr_slabs
));
3974 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3978 static long validate_slab_cache(struct kmem_cache
*s
)
3981 unsigned long count
= 0;
3982 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3983 sizeof(unsigned long), GFP_KERNEL
);
3989 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3990 struct kmem_cache_node
*n
= get_node(s
, node
);
3992 count
+= validate_slab_node(s
, n
, map
);
3998 * Generate lists of code addresses where slabcache objects are allocated
4003 unsigned long count
;
4010 DECLARE_BITMAP(cpus
, NR_CPUS
);
4016 unsigned long count
;
4017 struct location
*loc
;
4020 static void free_loc_track(struct loc_track
*t
)
4023 free_pages((unsigned long)t
->loc
,
4024 get_order(sizeof(struct location
) * t
->max
));
4027 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4032 order
= get_order(sizeof(struct location
) * max
);
4034 l
= (void *)__get_free_pages(flags
, order
);
4039 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4047 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4048 const struct track
*track
)
4050 long start
, end
, pos
;
4052 unsigned long caddr
;
4053 unsigned long age
= jiffies
- track
->when
;
4059 pos
= start
+ (end
- start
+ 1) / 2;
4062 * There is nothing at "end". If we end up there
4063 * we need to add something to before end.
4068 caddr
= t
->loc
[pos
].addr
;
4069 if (track
->addr
== caddr
) {
4075 if (age
< l
->min_time
)
4077 if (age
> l
->max_time
)
4080 if (track
->pid
< l
->min_pid
)
4081 l
->min_pid
= track
->pid
;
4082 if (track
->pid
> l
->max_pid
)
4083 l
->max_pid
= track
->pid
;
4085 cpumask_set_cpu(track
->cpu
,
4086 to_cpumask(l
->cpus
));
4088 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4092 if (track
->addr
< caddr
)
4099 * Not found. Insert new tracking element.
4101 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4107 (t
->count
- pos
) * sizeof(struct location
));
4110 l
->addr
= track
->addr
;
4114 l
->min_pid
= track
->pid
;
4115 l
->max_pid
= track
->pid
;
4116 cpumask_clear(to_cpumask(l
->cpus
));
4117 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4118 nodes_clear(l
->nodes
);
4119 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4123 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4124 struct page
*page
, enum track_item alloc
,
4127 void *addr
= page_address(page
);
4130 bitmap_zero(map
, page
->objects
);
4131 get_map(s
, page
, map
);
4133 for_each_object(p
, s
, addr
, page
->objects
)
4134 if (!test_bit(slab_index(p
, s
, addr
), map
))
4135 add_location(t
, s
, get_track(s
, p
, alloc
));
4138 static int list_locations(struct kmem_cache
*s
, char *buf
,
4139 enum track_item alloc
)
4143 struct loc_track t
= { 0, 0, NULL
};
4145 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4146 sizeof(unsigned long), GFP_KERNEL
);
4148 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4151 return sprintf(buf
, "Out of memory\n");
4153 /* Push back cpu slabs */
4156 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4157 struct kmem_cache_node
*n
= get_node(s
, node
);
4158 unsigned long flags
;
4161 if (!atomic_long_read(&n
->nr_slabs
))
4164 spin_lock_irqsave(&n
->list_lock
, flags
);
4165 list_for_each_entry(page
, &n
->partial
, lru
)
4166 process_slab(&t
, s
, page
, alloc
, map
);
4167 list_for_each_entry(page
, &n
->full
, lru
)
4168 process_slab(&t
, s
, page
, alloc
, map
);
4169 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4172 for (i
= 0; i
< t
.count
; i
++) {
4173 struct location
*l
= &t
.loc
[i
];
4175 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4177 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4180 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4182 len
+= sprintf(buf
+ len
, "<not-available>");
4184 if (l
->sum_time
!= l
->min_time
) {
4185 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4187 (long)div_u64(l
->sum_time
, l
->count
),
4190 len
+= sprintf(buf
+ len
, " age=%ld",
4193 if (l
->min_pid
!= l
->max_pid
)
4194 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4195 l
->min_pid
, l
->max_pid
);
4197 len
+= sprintf(buf
+ len
, " pid=%ld",
4200 if (num_online_cpus() > 1 &&
4201 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4202 len
< PAGE_SIZE
- 60) {
4203 len
+= sprintf(buf
+ len
, " cpus=");
4204 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4205 to_cpumask(l
->cpus
));
4208 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4209 len
< PAGE_SIZE
- 60) {
4210 len
+= sprintf(buf
+ len
, " nodes=");
4211 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4215 len
+= sprintf(buf
+ len
, "\n");
4221 len
+= sprintf(buf
, "No data\n");
4226 #ifdef SLUB_RESILIENCY_TEST
4227 static void resiliency_test(void)
4231 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
4233 printk(KERN_ERR
"SLUB resiliency testing\n");
4234 printk(KERN_ERR
"-----------------------\n");
4235 printk(KERN_ERR
"A. Corruption after allocation\n");
4237 p
= kzalloc(16, GFP_KERNEL
);
4239 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4240 " 0x12->0x%p\n\n", p
+ 16);
4242 validate_slab_cache(kmalloc_caches
[4]);
4244 /* Hmmm... The next two are dangerous */
4245 p
= kzalloc(32, GFP_KERNEL
);
4246 p
[32 + sizeof(void *)] = 0x34;
4247 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4248 " 0x34 -> -0x%p\n", p
);
4250 "If allocated object is overwritten then not detectable\n\n");
4252 validate_slab_cache(kmalloc_caches
[5]);
4253 p
= kzalloc(64, GFP_KERNEL
);
4254 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4256 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4259 "If allocated object is overwritten then not detectable\n\n");
4260 validate_slab_cache(kmalloc_caches
[6]);
4262 printk(KERN_ERR
"\nB. Corruption after free\n");
4263 p
= kzalloc(128, GFP_KERNEL
);
4266 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4267 validate_slab_cache(kmalloc_caches
[7]);
4269 p
= kzalloc(256, GFP_KERNEL
);
4272 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4274 validate_slab_cache(kmalloc_caches
[8]);
4276 p
= kzalloc(512, GFP_KERNEL
);
4279 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4280 validate_slab_cache(kmalloc_caches
[9]);
4284 static void resiliency_test(void) {};
4289 enum slab_stat_type
{
4290 SL_ALL
, /* All slabs */
4291 SL_PARTIAL
, /* Only partially allocated slabs */
4292 SL_CPU
, /* Only slabs used for cpu caches */
4293 SL_OBJECTS
, /* Determine allocated objects not slabs */
4294 SL_TOTAL
/* Determine object capacity not slabs */
4297 #define SO_ALL (1 << SL_ALL)
4298 #define SO_PARTIAL (1 << SL_PARTIAL)
4299 #define SO_CPU (1 << SL_CPU)
4300 #define SO_OBJECTS (1 << SL_OBJECTS)
4301 #define SO_TOTAL (1 << SL_TOTAL)
4303 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4304 char *buf
, unsigned long flags
)
4306 unsigned long total
= 0;
4309 unsigned long *nodes
;
4310 unsigned long *per_cpu
;
4312 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4315 per_cpu
= nodes
+ nr_node_ids
;
4317 if (flags
& SO_CPU
) {
4320 for_each_possible_cpu(cpu
) {
4321 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4323 if (!c
|| c
->node
< 0)
4327 if (flags
& SO_TOTAL
)
4328 x
= c
->page
->objects
;
4329 else if (flags
& SO_OBJECTS
)
4335 nodes
[c
->node
] += x
;
4341 lock_memory_hotplug();
4342 #ifdef CONFIG_SLUB_DEBUG
4343 if (flags
& SO_ALL
) {
4344 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4345 struct kmem_cache_node
*n
= get_node(s
, node
);
4347 if (flags
& SO_TOTAL
)
4348 x
= atomic_long_read(&n
->total_objects
);
4349 else if (flags
& SO_OBJECTS
)
4350 x
= atomic_long_read(&n
->total_objects
) -
4351 count_partial(n
, count_free
);
4354 x
= atomic_long_read(&n
->nr_slabs
);
4361 if (flags
& SO_PARTIAL
) {
4362 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4363 struct kmem_cache_node
*n
= get_node(s
, node
);
4365 if (flags
& SO_TOTAL
)
4366 x
= count_partial(n
, count_total
);
4367 else if (flags
& SO_OBJECTS
)
4368 x
= count_partial(n
, count_inuse
);
4375 x
= sprintf(buf
, "%lu", total
);
4377 for_each_node_state(node
, N_NORMAL_MEMORY
)
4379 x
+= sprintf(buf
+ x
, " N%d=%lu",
4382 unlock_memory_hotplug();
4384 return x
+ sprintf(buf
+ x
, "\n");
4387 #ifdef CONFIG_SLUB_DEBUG
4388 static int any_slab_objects(struct kmem_cache
*s
)
4392 for_each_online_node(node
) {
4393 struct kmem_cache_node
*n
= get_node(s
, node
);
4398 if (atomic_long_read(&n
->total_objects
))
4405 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4406 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4408 struct slab_attribute
{
4409 struct attribute attr
;
4410 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4411 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4414 #define SLAB_ATTR_RO(_name) \
4415 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4417 #define SLAB_ATTR(_name) \
4418 static struct slab_attribute _name##_attr = \
4419 __ATTR(_name, 0644, _name##_show, _name##_store)
4421 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4423 return sprintf(buf
, "%d\n", s
->size
);
4425 SLAB_ATTR_RO(slab_size
);
4427 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4429 return sprintf(buf
, "%d\n", s
->align
);
4431 SLAB_ATTR_RO(align
);
4433 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4435 return sprintf(buf
, "%d\n", s
->objsize
);
4437 SLAB_ATTR_RO(object_size
);
4439 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4441 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4443 SLAB_ATTR_RO(objs_per_slab
);
4445 static ssize_t
order_store(struct kmem_cache
*s
,
4446 const char *buf
, size_t length
)
4448 unsigned long order
;
4451 err
= strict_strtoul(buf
, 10, &order
);
4455 if (order
> slub_max_order
|| order
< slub_min_order
)
4458 calculate_sizes(s
, order
);
4462 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4464 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4468 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4470 return sprintf(buf
, "%lu\n", s
->min_partial
);
4473 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4479 err
= strict_strtoul(buf
, 10, &min
);
4483 set_min_partial(s
, min
);
4486 SLAB_ATTR(min_partial
);
4488 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4492 return sprintf(buf
, "%pS\n", s
->ctor
);
4496 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4498 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4500 SLAB_ATTR_RO(aliases
);
4502 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4504 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4506 SLAB_ATTR_RO(partial
);
4508 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4510 return show_slab_objects(s
, buf
, SO_CPU
);
4512 SLAB_ATTR_RO(cpu_slabs
);
4514 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4516 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4518 SLAB_ATTR_RO(objects
);
4520 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4522 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4524 SLAB_ATTR_RO(objects_partial
);
4526 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4528 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4531 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4532 const char *buf
, size_t length
)
4534 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4536 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4539 SLAB_ATTR(reclaim_account
);
4541 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4543 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4545 SLAB_ATTR_RO(hwcache_align
);
4547 #ifdef CONFIG_ZONE_DMA
4548 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4550 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4552 SLAB_ATTR_RO(cache_dma
);
4555 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4557 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4559 SLAB_ATTR_RO(destroy_by_rcu
);
4561 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4563 return sprintf(buf
, "%d\n", s
->reserved
);
4565 SLAB_ATTR_RO(reserved
);
4567 #ifdef CONFIG_SLUB_DEBUG
4568 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4570 return show_slab_objects(s
, buf
, SO_ALL
);
4572 SLAB_ATTR_RO(slabs
);
4574 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4576 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4578 SLAB_ATTR_RO(total_objects
);
4580 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4582 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4585 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4586 const char *buf
, size_t length
)
4588 s
->flags
&= ~SLAB_DEBUG_FREE
;
4589 if (buf
[0] == '1') {
4590 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4591 s
->flags
|= SLAB_DEBUG_FREE
;
4595 SLAB_ATTR(sanity_checks
);
4597 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4599 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4602 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4605 s
->flags
&= ~SLAB_TRACE
;
4606 if (buf
[0] == '1') {
4607 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4608 s
->flags
|= SLAB_TRACE
;
4614 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4616 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4619 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4620 const char *buf
, size_t length
)
4622 if (any_slab_objects(s
))
4625 s
->flags
&= ~SLAB_RED_ZONE
;
4626 if (buf
[0] == '1') {
4627 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4628 s
->flags
|= SLAB_RED_ZONE
;
4630 calculate_sizes(s
, -1);
4633 SLAB_ATTR(red_zone
);
4635 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4637 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4640 static ssize_t
poison_store(struct kmem_cache
*s
,
4641 const char *buf
, size_t length
)
4643 if (any_slab_objects(s
))
4646 s
->flags
&= ~SLAB_POISON
;
4647 if (buf
[0] == '1') {
4648 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4649 s
->flags
|= SLAB_POISON
;
4651 calculate_sizes(s
, -1);
4656 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4658 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4661 static ssize_t
store_user_store(struct kmem_cache
*s
,
4662 const char *buf
, size_t length
)
4664 if (any_slab_objects(s
))
4667 s
->flags
&= ~SLAB_STORE_USER
;
4668 if (buf
[0] == '1') {
4669 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4670 s
->flags
|= SLAB_STORE_USER
;
4672 calculate_sizes(s
, -1);
4675 SLAB_ATTR(store_user
);
4677 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4682 static ssize_t
validate_store(struct kmem_cache
*s
,
4683 const char *buf
, size_t length
)
4687 if (buf
[0] == '1') {
4688 ret
= validate_slab_cache(s
);
4694 SLAB_ATTR(validate
);
4696 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4698 if (!(s
->flags
& SLAB_STORE_USER
))
4700 return list_locations(s
, buf
, TRACK_ALLOC
);
4702 SLAB_ATTR_RO(alloc_calls
);
4704 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4706 if (!(s
->flags
& SLAB_STORE_USER
))
4708 return list_locations(s
, buf
, TRACK_FREE
);
4710 SLAB_ATTR_RO(free_calls
);
4711 #endif /* CONFIG_SLUB_DEBUG */
4713 #ifdef CONFIG_FAILSLAB
4714 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4716 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4719 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4722 s
->flags
&= ~SLAB_FAILSLAB
;
4724 s
->flags
|= SLAB_FAILSLAB
;
4727 SLAB_ATTR(failslab
);
4730 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4735 static ssize_t
shrink_store(struct kmem_cache
*s
,
4736 const char *buf
, size_t length
)
4738 if (buf
[0] == '1') {
4739 int rc
= kmem_cache_shrink(s
);
4750 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4752 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4755 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4756 const char *buf
, size_t length
)
4758 unsigned long ratio
;
4761 err
= strict_strtoul(buf
, 10, &ratio
);
4766 s
->remote_node_defrag_ratio
= ratio
* 10;
4770 SLAB_ATTR(remote_node_defrag_ratio
);
4773 #ifdef CONFIG_SLUB_STATS
4774 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4776 unsigned long sum
= 0;
4779 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4784 for_each_online_cpu(cpu
) {
4785 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4791 len
= sprintf(buf
, "%lu", sum
);
4794 for_each_online_cpu(cpu
) {
4795 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4796 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4800 return len
+ sprintf(buf
+ len
, "\n");
4803 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4807 for_each_online_cpu(cpu
)
4808 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4811 #define STAT_ATTR(si, text) \
4812 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4814 return show_stat(s, buf, si); \
4816 static ssize_t text##_store(struct kmem_cache *s, \
4817 const char *buf, size_t length) \
4819 if (buf[0] != '0') \
4821 clear_stat(s, si); \
4826 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4827 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4828 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4829 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4830 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4831 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4832 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4833 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4834 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4835 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4836 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
4837 STAT_ATTR(FREE_SLAB
, free_slab
);
4838 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4839 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4840 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4841 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4842 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4843 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4844 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
4845 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4846 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
4847 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
4850 static struct attribute
*slab_attrs
[] = {
4851 &slab_size_attr
.attr
,
4852 &object_size_attr
.attr
,
4853 &objs_per_slab_attr
.attr
,
4855 &min_partial_attr
.attr
,
4857 &objects_partial_attr
.attr
,
4859 &cpu_slabs_attr
.attr
,
4863 &hwcache_align_attr
.attr
,
4864 &reclaim_account_attr
.attr
,
4865 &destroy_by_rcu_attr
.attr
,
4867 &reserved_attr
.attr
,
4868 #ifdef CONFIG_SLUB_DEBUG
4869 &total_objects_attr
.attr
,
4871 &sanity_checks_attr
.attr
,
4873 &red_zone_attr
.attr
,
4875 &store_user_attr
.attr
,
4876 &validate_attr
.attr
,
4877 &alloc_calls_attr
.attr
,
4878 &free_calls_attr
.attr
,
4880 #ifdef CONFIG_ZONE_DMA
4881 &cache_dma_attr
.attr
,
4884 &remote_node_defrag_ratio_attr
.attr
,
4886 #ifdef CONFIG_SLUB_STATS
4887 &alloc_fastpath_attr
.attr
,
4888 &alloc_slowpath_attr
.attr
,
4889 &free_fastpath_attr
.attr
,
4890 &free_slowpath_attr
.attr
,
4891 &free_frozen_attr
.attr
,
4892 &free_add_partial_attr
.attr
,
4893 &free_remove_partial_attr
.attr
,
4894 &alloc_from_partial_attr
.attr
,
4895 &alloc_slab_attr
.attr
,
4896 &alloc_refill_attr
.attr
,
4897 &alloc_node_mismatch_attr
.attr
,
4898 &free_slab_attr
.attr
,
4899 &cpuslab_flush_attr
.attr
,
4900 &deactivate_full_attr
.attr
,
4901 &deactivate_empty_attr
.attr
,
4902 &deactivate_to_head_attr
.attr
,
4903 &deactivate_to_tail_attr
.attr
,
4904 &deactivate_remote_frees_attr
.attr
,
4905 &deactivate_bypass_attr
.attr
,
4906 &order_fallback_attr
.attr
,
4907 &cmpxchg_double_fail_attr
.attr
,
4908 &cmpxchg_double_cpu_fail_attr
.attr
,
4910 #ifdef CONFIG_FAILSLAB
4911 &failslab_attr
.attr
,
4917 static struct attribute_group slab_attr_group
= {
4918 .attrs
= slab_attrs
,
4921 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4922 struct attribute
*attr
,
4925 struct slab_attribute
*attribute
;
4926 struct kmem_cache
*s
;
4929 attribute
= to_slab_attr(attr
);
4932 if (!attribute
->show
)
4935 err
= attribute
->show(s
, buf
);
4940 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4941 struct attribute
*attr
,
4942 const char *buf
, size_t len
)
4944 struct slab_attribute
*attribute
;
4945 struct kmem_cache
*s
;
4948 attribute
= to_slab_attr(attr
);
4951 if (!attribute
->store
)
4954 err
= attribute
->store(s
, buf
, len
);
4959 static void kmem_cache_release(struct kobject
*kobj
)
4961 struct kmem_cache
*s
= to_slab(kobj
);
4967 static const struct sysfs_ops slab_sysfs_ops
= {
4968 .show
= slab_attr_show
,
4969 .store
= slab_attr_store
,
4972 static struct kobj_type slab_ktype
= {
4973 .sysfs_ops
= &slab_sysfs_ops
,
4974 .release
= kmem_cache_release
4977 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4979 struct kobj_type
*ktype
= get_ktype(kobj
);
4981 if (ktype
== &slab_ktype
)
4986 static const struct kset_uevent_ops slab_uevent_ops
= {
4987 .filter
= uevent_filter
,
4990 static struct kset
*slab_kset
;
4992 #define ID_STR_LENGTH 64
4994 /* Create a unique string id for a slab cache:
4996 * Format :[flags-]size
4998 static char *create_unique_id(struct kmem_cache
*s
)
5000 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5007 * First flags affecting slabcache operations. We will only
5008 * get here for aliasable slabs so we do not need to support
5009 * too many flags. The flags here must cover all flags that
5010 * are matched during merging to guarantee that the id is
5013 if (s
->flags
& SLAB_CACHE_DMA
)
5015 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5017 if (s
->flags
& SLAB_DEBUG_FREE
)
5019 if (!(s
->flags
& SLAB_NOTRACK
))
5023 p
+= sprintf(p
, "%07d", s
->size
);
5024 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5028 static int sysfs_slab_add(struct kmem_cache
*s
)
5034 if (slab_state
< SYSFS
)
5035 /* Defer until later */
5038 unmergeable
= slab_unmergeable(s
);
5041 * Slabcache can never be merged so we can use the name proper.
5042 * This is typically the case for debug situations. In that
5043 * case we can catch duplicate names easily.
5045 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5049 * Create a unique name for the slab as a target
5052 name
= create_unique_id(s
);
5055 s
->kobj
.kset
= slab_kset
;
5056 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
5058 kobject_put(&s
->kobj
);
5062 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5064 kobject_del(&s
->kobj
);
5065 kobject_put(&s
->kobj
);
5068 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5070 /* Setup first alias */
5071 sysfs_slab_alias(s
, s
->name
);
5077 static void sysfs_slab_remove(struct kmem_cache
*s
)
5079 if (slab_state
< SYSFS
)
5081 * Sysfs has not been setup yet so no need to remove the
5086 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5087 kobject_del(&s
->kobj
);
5088 kobject_put(&s
->kobj
);
5092 * Need to buffer aliases during bootup until sysfs becomes
5093 * available lest we lose that information.
5095 struct saved_alias
{
5096 struct kmem_cache
*s
;
5098 struct saved_alias
*next
;
5101 static struct saved_alias
*alias_list
;
5103 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5105 struct saved_alias
*al
;
5107 if (slab_state
== SYSFS
) {
5109 * If we have a leftover link then remove it.
5111 sysfs_remove_link(&slab_kset
->kobj
, name
);
5112 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5115 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5121 al
->next
= alias_list
;
5126 static int __init
slab_sysfs_init(void)
5128 struct kmem_cache
*s
;
5131 down_write(&slub_lock
);
5133 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5135 up_write(&slub_lock
);
5136 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5142 list_for_each_entry(s
, &slab_caches
, list
) {
5143 err
= sysfs_slab_add(s
);
5145 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5146 " to sysfs\n", s
->name
);
5149 while (alias_list
) {
5150 struct saved_alias
*al
= alias_list
;
5152 alias_list
= alias_list
->next
;
5153 err
= sysfs_slab_alias(al
->s
, al
->name
);
5155 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5156 " %s to sysfs\n", s
->name
);
5160 up_write(&slub_lock
);
5165 __initcall(slab_sysfs_init
);
5166 #endif /* CONFIG_SYSFS */
5169 * The /proc/slabinfo ABI
5171 #ifdef CONFIG_SLABINFO
5172 static void print_slabinfo_header(struct seq_file
*m
)
5174 seq_puts(m
, "slabinfo - version: 2.1\n");
5175 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
5176 "<objperslab> <pagesperslab>");
5177 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
5178 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5182 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
5186 down_read(&slub_lock
);
5188 print_slabinfo_header(m
);
5190 return seq_list_start(&slab_caches
, *pos
);
5193 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
5195 return seq_list_next(p
, &slab_caches
, pos
);
5198 static void s_stop(struct seq_file
*m
, void *p
)
5200 up_read(&slub_lock
);
5203 static int s_show(struct seq_file
*m
, void *p
)
5205 unsigned long nr_partials
= 0;
5206 unsigned long nr_slabs
= 0;
5207 unsigned long nr_inuse
= 0;
5208 unsigned long nr_objs
= 0;
5209 unsigned long nr_free
= 0;
5210 struct kmem_cache
*s
;
5213 s
= list_entry(p
, struct kmem_cache
, list
);
5215 for_each_online_node(node
) {
5216 struct kmem_cache_node
*n
= get_node(s
, node
);
5221 nr_partials
+= n
->nr_partial
;
5222 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
5223 nr_objs
+= atomic_long_read(&n
->total_objects
);
5224 nr_free
+= count_partial(n
, count_free
);
5227 nr_inuse
= nr_objs
- nr_free
;
5229 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
5230 nr_objs
, s
->size
, oo_objects(s
->oo
),
5231 (1 << oo_order(s
->oo
)));
5232 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
5233 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
5239 static const struct seq_operations slabinfo_op
= {
5246 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
5248 return seq_open(file
, &slabinfo_op
);
5251 static const struct file_operations proc_slabinfo_operations
= {
5252 .open
= slabinfo_open
,
5254 .llseek
= seq_lseek
,
5255 .release
= seq_release
,
5258 static int __init
slab_proc_init(void)
5260 proc_create("slabinfo", S_IRUGO
, NULL
, &proc_slabinfo_operations
);
5263 module_init(slab_proc_init
);
5264 #endif /* CONFIG_SLABINFO */