2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
32 * monitor mode reception
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
37 static struct sk_buff
*remove_monitor_info(struct ieee80211_local
*local
,
40 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
) {
41 if (likely(skb
->len
> FCS_LEN
))
42 __pskb_trim(skb
, skb
->len
- FCS_LEN
);
54 static inline int should_drop_frame(struct sk_buff
*skb
,
57 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
58 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
60 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
62 if (unlikely(skb
->len
< 16 + present_fcs_len
))
64 if (ieee80211_is_ctl(hdr
->frame_control
) &&
65 !ieee80211_is_pspoll(hdr
->frame_control
) &&
66 !ieee80211_is_back_req(hdr
->frame_control
))
72 ieee80211_rx_radiotap_len(struct ieee80211_local
*local
,
73 struct ieee80211_rx_status
*status
)
77 /* always present fields */
78 len
= sizeof(struct ieee80211_radiotap_header
) + 9;
80 if (status
->flag
& RX_FLAG_MACTIME_MPDU
)
82 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
)
85 if (len
& 1) /* padding for RX_FLAGS if necessary */
88 if (status
->flag
& RX_FLAG_HT
) /* HT info */
95 * ieee80211_add_rx_radiotap_header - add radiotap header
97 * add a radiotap header containing all the fields which the hardware provided.
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
102 struct ieee80211_rate
*rate
,
105 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
106 struct ieee80211_radiotap_header
*rthdr
;
110 rthdr
= (struct ieee80211_radiotap_header
*)skb_push(skb
, rtap_len
);
111 memset(rthdr
, 0, rtap_len
);
113 /* radiotap header, set always present flags */
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA
) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS
));
119 rthdr
->it_len
= cpu_to_le16(rtap_len
);
121 pos
= (unsigned char *)(rthdr
+1);
123 /* the order of the following fields is important */
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status
->flag
& RX_FLAG_MACTIME_MPDU
) {
127 put_unaligned_le64(status
->mactime
, pos
);
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
135 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
136 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
137 *pos
|= IEEE80211_RADIOTAP_F_BADFCS
;
138 if (status
->flag
& RX_FLAG_SHORTPRE
)
139 *pos
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status
->flag
& RX_FLAG_HT
) {
145 * MCS information is a separate field in radiotap,
146 * added below. The byte here is needed as padding
147 * for the channel though, so initialise it to 0.
151 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
152 *pos
= rate
->bitrate
/ 5;
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status
->freq
, pos
);
159 if (status
->band
== IEEE80211_BAND_5GHZ
)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
,
162 else if (status
->flag
& RX_FLAG_HT
)
163 put_unaligned_le16(IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
,
165 else if (rate
->flags
& IEEE80211_RATE_ERP_G
)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
,
169 put_unaligned_le16(IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
,
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
) {
175 *pos
= status
->signal
;
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
183 /* IEEE80211_RADIOTAP_ANTENNA */
184 *pos
= status
->antenna
;
187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
189 /* IEEE80211_RADIOTAP_RX_FLAGS */
190 /* ensure 2 byte alignment for the 2 byte field as required */
191 if ((pos
- (u8
*)rthdr
) & 1)
193 if (status
->flag
& RX_FLAG_FAILED_PLCP_CRC
)
194 rx_flags
|= IEEE80211_RADIOTAP_F_RX_BADPLCP
;
195 put_unaligned_le16(rx_flags
, pos
);
198 if (status
->flag
& RX_FLAG_HT
) {
199 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS
);
200 *pos
++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS
|
201 IEEE80211_RADIOTAP_MCS_HAVE_GI
|
202 IEEE80211_RADIOTAP_MCS_HAVE_BW
;
204 if (status
->flag
& RX_FLAG_SHORT_GI
)
205 *pos
|= IEEE80211_RADIOTAP_MCS_SGI
;
206 if (status
->flag
& RX_FLAG_40MHZ
)
207 *pos
|= IEEE80211_RADIOTAP_MCS_BW_40
;
209 *pos
++ = status
->rate_idx
;
214 * This function copies a received frame to all monitor interfaces and
215 * returns a cleaned-up SKB that no longer includes the FCS nor the
216 * radiotap header the driver might have added.
218 static struct sk_buff
*
219 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
220 struct ieee80211_rate
*rate
)
222 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(origskb
);
223 struct ieee80211_sub_if_data
*sdata
;
224 int needed_headroom
= 0;
225 struct sk_buff
*skb
, *skb2
;
226 struct net_device
*prev_dev
= NULL
;
227 int present_fcs_len
= 0;
230 * First, we may need to make a copy of the skb because
231 * (1) we need to modify it for radiotap (if not present), and
232 * (2) the other RX handlers will modify the skb we got.
234 * We don't need to, of course, if we aren't going to return
235 * the SKB because it has a bad FCS/PLCP checksum.
238 /* room for the radiotap header based on driver features */
239 needed_headroom
= ieee80211_rx_radiotap_len(local
, status
);
241 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
242 present_fcs_len
= FCS_LEN
;
244 /* make sure hdr->frame_control is on the linear part */
245 if (!pskb_may_pull(origskb
, 2)) {
246 dev_kfree_skb(origskb
);
250 if (!local
->monitors
) {
251 if (should_drop_frame(origskb
, present_fcs_len
)) {
252 dev_kfree_skb(origskb
);
256 return remove_monitor_info(local
, origskb
);
259 if (should_drop_frame(origskb
, present_fcs_len
)) {
260 /* only need to expand headroom if necessary */
265 * This shouldn't trigger often because most devices have an
266 * RX header they pull before we get here, and that should
267 * be big enough for our radiotap information. We should
268 * probably export the length to drivers so that we can have
269 * them allocate enough headroom to start with.
271 if (skb_headroom(skb
) < needed_headroom
&&
272 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
278 * Need to make a copy and possibly remove radiotap header
279 * and FCS from the original.
281 skb
= skb_copy_expand(origskb
, needed_headroom
, 0, GFP_ATOMIC
);
283 origskb
= remove_monitor_info(local
, origskb
);
289 /* prepend radiotap information */
290 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, needed_headroom
);
292 skb_reset_mac_header(skb
);
293 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
294 skb
->pkt_type
= PACKET_OTHERHOST
;
295 skb
->protocol
= htons(ETH_P_802_2
);
297 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
298 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
)
301 if (sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
)
304 if (!ieee80211_sdata_running(sdata
))
308 skb2
= skb_clone(skb
, GFP_ATOMIC
);
310 skb2
->dev
= prev_dev
;
311 netif_receive_skb(skb2
);
315 prev_dev
= sdata
->dev
;
316 sdata
->dev
->stats
.rx_packets
++;
317 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
322 netif_receive_skb(skb
);
330 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
332 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
333 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
334 int tid
, seqno_idx
, security_idx
;
336 /* does the frame have a qos control field? */
337 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
338 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
339 /* frame has qos control */
340 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
341 if (*qc
& IEEE80211_QOS_CTL_A_MSDU_PRESENT
)
342 status
->rx_flags
|= IEEE80211_RX_AMSDU
;
348 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
350 * Sequence numbers for management frames, QoS data
351 * frames with a broadcast/multicast address in the
352 * Address 1 field, and all non-QoS data frames sent
353 * by QoS STAs are assigned using an additional single
354 * modulo-4096 counter, [...]
356 * We also use that counter for non-QoS STAs.
358 seqno_idx
= NUM_RX_DATA_QUEUES
;
360 if (ieee80211_is_mgmt(hdr
->frame_control
))
361 security_idx
= NUM_RX_DATA_QUEUES
;
365 rx
->seqno_idx
= seqno_idx
;
366 rx
->security_idx
= security_idx
;
367 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
368 * For now, set skb->priority to 0 for other cases. */
369 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
373 * DOC: Packet alignment
375 * Drivers always need to pass packets that are aligned to two-byte boundaries
378 * Additionally, should, if possible, align the payload data in a way that
379 * guarantees that the contained IP header is aligned to a four-byte
380 * boundary. In the case of regular frames, this simply means aligning the
381 * payload to a four-byte boundary (because either the IP header is directly
382 * contained, or IV/RFC1042 headers that have a length divisible by four are
383 * in front of it). If the payload data is not properly aligned and the
384 * architecture doesn't support efficient unaligned operations, mac80211
385 * will align the data.
387 * With A-MSDU frames, however, the payload data address must yield two modulo
388 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
389 * push the IP header further back to a multiple of four again. Thankfully, the
390 * specs were sane enough this time around to require padding each A-MSDU
391 * subframe to a length that is a multiple of four.
393 * Padding like Atheros hardware adds which is between the 802.11 header and
394 * the payload is not supported, the driver is required to move the 802.11
395 * header to be directly in front of the payload in that case.
397 static void ieee80211_verify_alignment(struct ieee80211_rx_data
*rx
)
399 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
400 WARN_ONCE((unsigned long)rx
->skb
->data
& 1,
401 "unaligned packet at 0x%p\n", rx
->skb
->data
);
408 static ieee80211_rx_result debug_noinline
409 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data
*rx
)
411 struct ieee80211_local
*local
= rx
->local
;
412 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
413 struct sk_buff
*skb
= rx
->skb
;
415 if (likely(!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
) &&
416 !local
->sched_scanning
))
419 if (test_bit(SCAN_HW_SCANNING
, &local
->scanning
) ||
420 test_bit(SCAN_SW_SCANNING
, &local
->scanning
) ||
421 local
->sched_scanning
)
422 return ieee80211_scan_rx(rx
->sdata
, skb
);
424 /* scanning finished during invoking of handlers */
425 I802_DEBUG_INC(local
->rx_handlers_drop_passive_scan
);
426 return RX_DROP_UNUSABLE
;
430 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff
*skb
)
432 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
434 if (skb
->len
< 24 || is_multicast_ether_addr(hdr
->addr1
))
437 return ieee80211_is_robust_mgmt_frame(hdr
);
441 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff
*skb
)
443 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
445 if (skb
->len
< 24 || !is_multicast_ether_addr(hdr
->addr1
))
448 return ieee80211_is_robust_mgmt_frame(hdr
);
452 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
453 static int ieee80211_get_mmie_keyidx(struct sk_buff
*skb
)
455 struct ieee80211_mgmt
*hdr
= (struct ieee80211_mgmt
*) skb
->data
;
456 struct ieee80211_mmie
*mmie
;
458 if (skb
->len
< 24 + sizeof(*mmie
) ||
459 !is_multicast_ether_addr(hdr
->da
))
462 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr
*) hdr
))
463 return -1; /* not a robust management frame */
465 mmie
= (struct ieee80211_mmie
*)
466 (skb
->data
+ skb
->len
- sizeof(*mmie
));
467 if (mmie
->element_id
!= WLAN_EID_MMIE
||
468 mmie
->length
!= sizeof(*mmie
) - 2)
471 return le16_to_cpu(mmie
->key_id
);
475 static ieee80211_rx_result
476 ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
478 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
479 unsigned int hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
480 char *dev_addr
= rx
->sdata
->vif
.addr
;
482 if (ieee80211_is_data(hdr
->frame_control
)) {
483 if (is_multicast_ether_addr(hdr
->addr1
)) {
484 if (ieee80211_has_tods(hdr
->frame_control
) ||
485 !ieee80211_has_fromds(hdr
->frame_control
))
486 return RX_DROP_MONITOR
;
487 if (memcmp(hdr
->addr3
, dev_addr
, ETH_ALEN
) == 0)
488 return RX_DROP_MONITOR
;
490 if (!ieee80211_has_a4(hdr
->frame_control
))
491 return RX_DROP_MONITOR
;
492 if (memcmp(hdr
->addr4
, dev_addr
, ETH_ALEN
) == 0)
493 return RX_DROP_MONITOR
;
497 /* If there is not an established peer link and this is not a peer link
498 * establisment frame, beacon or probe, drop the frame.
501 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != NL80211_PLINK_ESTAB
) {
502 struct ieee80211_mgmt
*mgmt
;
504 if (!ieee80211_is_mgmt(hdr
->frame_control
))
505 return RX_DROP_MONITOR
;
507 if (ieee80211_is_action(hdr
->frame_control
)) {
509 mgmt
= (struct ieee80211_mgmt
*)hdr
;
510 category
= mgmt
->u
.action
.category
;
511 if (category
!= WLAN_CATEGORY_MESH_ACTION
&&
512 category
!= WLAN_CATEGORY_SELF_PROTECTED
)
513 return RX_DROP_MONITOR
;
517 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
518 ieee80211_is_probe_resp(hdr
->frame_control
) ||
519 ieee80211_is_beacon(hdr
->frame_control
) ||
520 ieee80211_is_auth(hdr
->frame_control
))
523 return RX_DROP_MONITOR
;
527 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
529 if (ieee80211_is_data(hdr
->frame_control
) &&
530 is_multicast_ether_addr(hdr
->addr1
) &&
531 mesh_rmc_check(hdr
->addr3
, msh_h_get(hdr
, hdrlen
), rx
->sdata
))
532 return RX_DROP_MONITOR
;
538 #define SEQ_MODULO 0x1000
539 #define SEQ_MASK 0xfff
541 static inline int seq_less(u16 sq1
, u16 sq2
)
543 return ((sq1
- sq2
) & SEQ_MASK
) > (SEQ_MODULO
>> 1);
546 static inline u16
seq_inc(u16 sq
)
548 return (sq
+ 1) & SEQ_MASK
;
551 static inline u16
seq_sub(u16 sq1
, u16 sq2
)
553 return (sq1
- sq2
) & SEQ_MASK
;
557 static void ieee80211_release_reorder_frame(struct ieee80211_hw
*hw
,
558 struct tid_ampdu_rx
*tid_agg_rx
,
561 struct ieee80211_local
*local
= hw_to_local(hw
);
562 struct sk_buff
*skb
= tid_agg_rx
->reorder_buf
[index
];
563 struct ieee80211_rx_status
*status
;
565 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
570 /* release the frame from the reorder ring buffer */
571 tid_agg_rx
->stored_mpdu_num
--;
572 tid_agg_rx
->reorder_buf
[index
] = NULL
;
573 status
= IEEE80211_SKB_RXCB(skb
);
574 status
->rx_flags
|= IEEE80211_RX_DEFERRED_RELEASE
;
575 skb_queue_tail(&local
->rx_skb_queue
, skb
);
578 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
581 static void ieee80211_release_reorder_frames(struct ieee80211_hw
*hw
,
582 struct tid_ampdu_rx
*tid_agg_rx
,
587 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
589 while (seq_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
590 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
591 tid_agg_rx
->buf_size
;
592 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, index
);
597 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
598 * the skb was added to the buffer longer than this time ago, the earlier
599 * frames that have not yet been received are assumed to be lost and the skb
600 * can be released for processing. This may also release other skb's from the
601 * reorder buffer if there are no additional gaps between the frames.
603 * Callers must hold tid_agg_rx->reorder_lock.
605 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
607 static void ieee80211_sta_reorder_release(struct ieee80211_hw
*hw
,
608 struct tid_ampdu_rx
*tid_agg_rx
)
612 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
614 /* release the buffer until next missing frame */
615 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
616 tid_agg_rx
->buf_size
;
617 if (!tid_agg_rx
->reorder_buf
[index
] &&
618 tid_agg_rx
->stored_mpdu_num
> 1) {
620 * No buffers ready to be released, but check whether any
621 * frames in the reorder buffer have timed out.
624 for (j
= (index
+ 1) % tid_agg_rx
->buf_size
; j
!= index
;
625 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
626 if (!tid_agg_rx
->reorder_buf
[j
]) {
631 !time_after(jiffies
, tid_agg_rx
->reorder_time
[j
] +
632 HT_RX_REORDER_BUF_TIMEOUT
))
633 goto set_release_timer
;
635 #ifdef CONFIG_MAC80211_HT_DEBUG
637 wiphy_debug(hw
->wiphy
,
638 "release an RX reorder frame due to timeout on earlier frames\n");
640 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, j
);
643 * Increment the head seq# also for the skipped slots.
645 tid_agg_rx
->head_seq_num
=
646 (tid_agg_rx
->head_seq_num
+ skipped
) & SEQ_MASK
;
649 } else while (tid_agg_rx
->reorder_buf
[index
]) {
650 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, index
);
651 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
652 tid_agg_rx
->buf_size
;
655 if (tid_agg_rx
->stored_mpdu_num
) {
656 j
= index
= seq_sub(tid_agg_rx
->head_seq_num
,
657 tid_agg_rx
->ssn
) % tid_agg_rx
->buf_size
;
659 for (; j
!= (index
- 1) % tid_agg_rx
->buf_size
;
660 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
661 if (tid_agg_rx
->reorder_buf
[j
])
667 mod_timer(&tid_agg_rx
->reorder_timer
,
668 tid_agg_rx
->reorder_time
[j
] + 1 +
669 HT_RX_REORDER_BUF_TIMEOUT
);
671 del_timer(&tid_agg_rx
->reorder_timer
);
676 * As this function belongs to the RX path it must be under
677 * rcu_read_lock protection. It returns false if the frame
678 * can be processed immediately, true if it was consumed.
680 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw
*hw
,
681 struct tid_ampdu_rx
*tid_agg_rx
,
684 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
685 u16 sc
= le16_to_cpu(hdr
->seq_ctrl
);
686 u16 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
687 u16 head_seq_num
, buf_size
;
691 spin_lock(&tid_agg_rx
->reorder_lock
);
693 buf_size
= tid_agg_rx
->buf_size
;
694 head_seq_num
= tid_agg_rx
->head_seq_num
;
696 /* frame with out of date sequence number */
697 if (seq_less(mpdu_seq_num
, head_seq_num
)) {
703 * If frame the sequence number exceeds our buffering window
704 * size release some previous frames to make room for this one.
706 if (!seq_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) {
707 head_seq_num
= seq_inc(seq_sub(mpdu_seq_num
, buf_size
));
708 /* release stored frames up to new head to stack */
709 ieee80211_release_reorder_frames(hw
, tid_agg_rx
, head_seq_num
);
712 /* Now the new frame is always in the range of the reordering buffer */
714 index
= seq_sub(mpdu_seq_num
, tid_agg_rx
->ssn
) % tid_agg_rx
->buf_size
;
716 /* check if we already stored this frame */
717 if (tid_agg_rx
->reorder_buf
[index
]) {
723 * If the current MPDU is in the right order and nothing else
724 * is stored we can process it directly, no need to buffer it.
725 * If it is first but there's something stored, we may be able
726 * to release frames after this one.
728 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
729 tid_agg_rx
->stored_mpdu_num
== 0) {
730 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
735 /* put the frame in the reordering buffer */
736 tid_agg_rx
->reorder_buf
[index
] = skb
;
737 tid_agg_rx
->reorder_time
[index
] = jiffies
;
738 tid_agg_rx
->stored_mpdu_num
++;
739 ieee80211_sta_reorder_release(hw
, tid_agg_rx
);
742 spin_unlock(&tid_agg_rx
->reorder_lock
);
747 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
748 * true if the MPDU was buffered, false if it should be processed.
750 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data
*rx
)
752 struct sk_buff
*skb
= rx
->skb
;
753 struct ieee80211_local
*local
= rx
->local
;
754 struct ieee80211_hw
*hw
= &local
->hw
;
755 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
756 struct sta_info
*sta
= rx
->sta
;
757 struct tid_ampdu_rx
*tid_agg_rx
;
761 if (!ieee80211_is_data_qos(hdr
->frame_control
))
765 * filter the QoS data rx stream according to
766 * STA/TID and check if this STA/TID is on aggregation
772 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
774 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
778 /* qos null data frames are excluded */
779 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
782 /* new, potentially un-ordered, ampdu frame - process it */
784 /* reset session timer */
785 if (tid_agg_rx
->timeout
)
786 mod_timer(&tid_agg_rx
->session_timer
,
787 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
789 /* if this mpdu is fragmented - terminate rx aggregation session */
790 sc
= le16_to_cpu(hdr
->seq_ctrl
);
791 if (sc
& IEEE80211_SCTL_FRAG
) {
792 skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
793 skb_queue_tail(&rx
->sdata
->skb_queue
, skb
);
794 ieee80211_queue_work(&local
->hw
, &rx
->sdata
->work
);
799 * No locking needed -- we will only ever process one
800 * RX packet at a time, and thus own tid_agg_rx. All
801 * other code manipulating it needs to (and does) make
802 * sure that we cannot get to it any more before doing
805 if (ieee80211_sta_manage_reorder_buf(hw
, tid_agg_rx
, skb
))
809 skb_queue_tail(&local
->rx_skb_queue
, skb
);
812 static ieee80211_rx_result debug_noinline
813 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
815 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
816 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
818 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
819 if (rx
->sta
&& !is_multicast_ether_addr(hdr
->addr1
)) {
820 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
821 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] ==
823 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) {
824 rx
->local
->dot11FrameDuplicateCount
++;
825 rx
->sta
->num_duplicates
++;
827 return RX_DROP_UNUSABLE
;
829 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] = hdr
->seq_ctrl
;
832 if (unlikely(rx
->skb
->len
< 16)) {
833 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_short
);
834 return RX_DROP_MONITOR
;
837 /* Drop disallowed frame classes based on STA auth/assoc state;
838 * IEEE 802.11, Chap 5.5.
840 * mac80211 filters only based on association state, i.e. it drops
841 * Class 3 frames from not associated stations. hostapd sends
842 * deauth/disassoc frames when needed. In addition, hostapd is
843 * responsible for filtering on both auth and assoc states.
846 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
847 return ieee80211_rx_mesh_check(rx
);
849 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
850 ieee80211_is_pspoll(hdr
->frame_control
)) &&
851 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
852 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_WDS
&&
853 (!rx
->sta
|| !test_sta_flags(rx
->sta
, WLAN_STA_ASSOC
))))
854 return RX_DROP_MONITOR
;
860 static ieee80211_rx_result debug_noinline
861 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
863 struct sk_buff
*skb
= rx
->skb
;
864 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
865 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
868 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
869 struct ieee80211_key
*sta_ptk
= NULL
;
870 int mmie_keyidx
= -1;
876 * There are four types of keys:
878 * - IGTK (group keys for management frames)
879 * - PTK (pairwise keys)
880 * - STK (station-to-station pairwise keys)
882 * When selecting a key, we have to distinguish between multicast
883 * (including broadcast) and unicast frames, the latter can only
884 * use PTKs and STKs while the former always use GTKs and IGTKs.
885 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
886 * unicast frames can also use key indices like GTKs. Hence, if we
887 * don't have a PTK/STK we check the key index for a WEP key.
889 * Note that in a regular BSS, multicast frames are sent by the
890 * AP only, associated stations unicast the frame to the AP first
891 * which then multicasts it on their behalf.
893 * There is also a slight problem in IBSS mode: GTKs are negotiated
894 * with each station, that is something we don't currently handle.
895 * The spec seems to expect that one negotiates the same key with
896 * every station but there's no such requirement; VLANs could be
901 * No point in finding a key and decrypting if the frame is neither
902 * addressed to us nor a multicast frame.
904 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
907 /* start without a key */
911 sta_ptk
= rcu_dereference(rx
->sta
->ptk
);
913 fc
= hdr
->frame_control
;
915 if (!ieee80211_has_protected(fc
))
916 mmie_keyidx
= ieee80211_get_mmie_keyidx(rx
->skb
);
918 if (!is_multicast_ether_addr(hdr
->addr1
) && sta_ptk
) {
920 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
921 (status
->flag
& RX_FLAG_IV_STRIPPED
))
923 /* Skip decryption if the frame is not protected. */
924 if (!ieee80211_has_protected(fc
))
926 } else if (mmie_keyidx
>= 0) {
927 /* Broadcast/multicast robust management frame / BIP */
928 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
929 (status
->flag
& RX_FLAG_IV_STRIPPED
))
932 if (mmie_keyidx
< NUM_DEFAULT_KEYS
||
933 mmie_keyidx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
934 return RX_DROP_MONITOR
; /* unexpected BIP keyidx */
936 rx
->key
= rcu_dereference(rx
->sta
->gtk
[mmie_keyidx
]);
938 rx
->key
= rcu_dereference(rx
->sdata
->keys
[mmie_keyidx
]);
939 } else if (!ieee80211_has_protected(fc
)) {
941 * The frame was not protected, so skip decryption. However, we
942 * need to set rx->key if there is a key that could have been
943 * used so that the frame may be dropped if encryption would
944 * have been expected.
946 struct ieee80211_key
*key
= NULL
;
947 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
950 if (ieee80211_is_mgmt(fc
) &&
951 is_multicast_ether_addr(hdr
->addr1
) &&
952 (key
= rcu_dereference(rx
->sdata
->default_mgmt_key
)))
956 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
957 key
= rcu_dereference(rx
->sta
->gtk
[i
]);
963 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
964 key
= rcu_dereference(sdata
->keys
[i
]);
976 * The device doesn't give us the IV so we won't be
977 * able to look up the key. That's ok though, we
978 * don't need to decrypt the frame, we just won't
979 * be able to keep statistics accurate.
980 * Except for key threshold notifications, should
981 * we somehow allow the driver to tell us which key
982 * the hardware used if this flag is set?
984 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
985 (status
->flag
& RX_FLAG_IV_STRIPPED
))
988 hdrlen
= ieee80211_hdrlen(fc
);
990 if (rx
->skb
->len
< 8 + hdrlen
)
991 return RX_DROP_UNUSABLE
; /* TODO: count this? */
994 * no need to call ieee80211_wep_get_keyidx,
995 * it verifies a bunch of things we've done already
997 skb_copy_bits(rx
->skb
, hdrlen
+ 3, &keyid
, 1);
1000 /* check per-station GTK first, if multicast packet */
1001 if (is_multicast_ether_addr(hdr
->addr1
) && rx
->sta
)
1002 rx
->key
= rcu_dereference(rx
->sta
->gtk
[keyidx
]);
1004 /* if not found, try default key */
1006 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
1009 * RSNA-protected unicast frames should always be
1010 * sent with pairwise or station-to-station keys,
1011 * but for WEP we allow using a key index as well.
1014 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP40
&&
1015 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP104
&&
1016 !is_multicast_ether_addr(hdr
->addr1
))
1022 if (unlikely(rx
->key
->flags
& KEY_FLAG_TAINTED
))
1023 return RX_DROP_MONITOR
;
1025 rx
->key
->tx_rx_count
++;
1026 /* TODO: add threshold stuff again */
1028 return RX_DROP_MONITOR
;
1031 if (skb_linearize(rx
->skb
))
1032 return RX_DROP_UNUSABLE
;
1033 /* the hdr variable is invalid now! */
1035 switch (rx
->key
->conf
.cipher
) {
1036 case WLAN_CIPHER_SUITE_WEP40
:
1037 case WLAN_CIPHER_SUITE_WEP104
:
1038 /* Check for weak IVs if possible */
1039 if (rx
->sta
&& ieee80211_is_data(fc
) &&
1040 (!(status
->flag
& RX_FLAG_IV_STRIPPED
) ||
1041 !(status
->flag
& RX_FLAG_DECRYPTED
)) &&
1042 ieee80211_wep_is_weak_iv(rx
->skb
, rx
->key
))
1043 rx
->sta
->wep_weak_iv_count
++;
1045 result
= ieee80211_crypto_wep_decrypt(rx
);
1047 case WLAN_CIPHER_SUITE_TKIP
:
1048 result
= ieee80211_crypto_tkip_decrypt(rx
);
1050 case WLAN_CIPHER_SUITE_CCMP
:
1051 result
= ieee80211_crypto_ccmp_decrypt(rx
);
1053 case WLAN_CIPHER_SUITE_AES_CMAC
:
1054 result
= ieee80211_crypto_aes_cmac_decrypt(rx
);
1058 * We can reach here only with HW-only algorithms
1059 * but why didn't it decrypt the frame?!
1061 return RX_DROP_UNUSABLE
;
1064 /* either the frame has been decrypted or will be dropped */
1065 status
->flag
|= RX_FLAG_DECRYPTED
;
1070 static ieee80211_rx_result debug_noinline
1071 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data
*rx
)
1073 struct ieee80211_local
*local
;
1074 struct ieee80211_hdr
*hdr
;
1075 struct sk_buff
*skb
;
1079 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1081 if (!local
->pspolling
)
1084 if (!ieee80211_has_fromds(hdr
->frame_control
))
1085 /* this is not from AP */
1088 if (!ieee80211_is_data(hdr
->frame_control
))
1091 if (!ieee80211_has_moredata(hdr
->frame_control
)) {
1092 /* AP has no more frames buffered for us */
1093 local
->pspolling
= false;
1097 /* more data bit is set, let's request a new frame from the AP */
1098 ieee80211_send_pspoll(local
, rx
->sdata
);
1103 static void ap_sta_ps_start(struct sta_info
*sta
)
1105 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1106 struct ieee80211_local
*local
= sdata
->local
;
1108 atomic_inc(&sdata
->bss
->num_sta_ps
);
1109 set_sta_flags(sta
, WLAN_STA_PS_STA
);
1110 if (!(local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
))
1111 drv_sta_notify(local
, sdata
, STA_NOTIFY_SLEEP
, &sta
->sta
);
1112 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1113 printk(KERN_DEBUG
"%s: STA %pM aid %d enters power save mode\n",
1114 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1115 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1118 static void ap_sta_ps_end(struct sta_info
*sta
)
1120 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1122 atomic_dec(&sdata
->bss
->num_sta_ps
);
1124 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1125 printk(KERN_DEBUG
"%s: STA %pM aid %d exits power save mode\n",
1126 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1127 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1129 if (test_sta_flags(sta
, WLAN_STA_PS_DRIVER
)) {
1130 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1131 printk(KERN_DEBUG
"%s: STA %pM aid %d driver-ps-blocked\n",
1132 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1133 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1137 ieee80211_sta_ps_deliver_wakeup(sta
);
1140 int ieee80211_sta_ps_transition(struct ieee80211_sta
*sta
, bool start
)
1142 struct sta_info
*sta_inf
= container_of(sta
, struct sta_info
, sta
);
1145 WARN_ON(!(sta_inf
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
));
1147 /* Don't let the same PS state be set twice */
1148 in_ps
= test_sta_flags(sta_inf
, WLAN_STA_PS_STA
);
1149 if ((start
&& in_ps
) || (!start
&& !in_ps
))
1153 ap_sta_ps_start(sta_inf
);
1155 ap_sta_ps_end(sta_inf
);
1159 EXPORT_SYMBOL(ieee80211_sta_ps_transition
);
1161 static ieee80211_rx_result debug_noinline
1162 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
1164 struct sta_info
*sta
= rx
->sta
;
1165 struct sk_buff
*skb
= rx
->skb
;
1166 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1167 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1173 * Update last_rx only for IBSS packets which are for the current
1174 * BSSID to avoid keeping the current IBSS network alive in cases
1175 * where other STAs start using different BSSID.
1177 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
) {
1178 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
1179 NL80211_IFTYPE_ADHOC
);
1180 if (compare_ether_addr(bssid
, rx
->sdata
->u
.ibss
.bssid
) == 0) {
1181 sta
->last_rx
= jiffies
;
1182 if (ieee80211_is_data(hdr
->frame_control
)) {
1183 sta
->last_rx_rate_idx
= status
->rate_idx
;
1184 sta
->last_rx_rate_flag
= status
->flag
;
1187 } else if (!is_multicast_ether_addr(hdr
->addr1
)) {
1189 * Mesh beacons will update last_rx when if they are found to
1190 * match the current local configuration when processed.
1192 sta
->last_rx
= jiffies
;
1193 if (ieee80211_is_data(hdr
->frame_control
)) {
1194 sta
->last_rx_rate_idx
= status
->rate_idx
;
1195 sta
->last_rx_rate_flag
= status
->flag
;
1199 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
1202 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
1203 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
1205 sta
->rx_fragments
++;
1206 sta
->rx_bytes
+= rx
->skb
->len
;
1207 sta
->last_signal
= status
->signal
;
1208 ewma_add(&sta
->avg_signal
, -status
->signal
);
1211 * Change STA power saving mode only at the end of a frame
1212 * exchange sequence.
1214 if (!(sta
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
) &&
1215 !ieee80211_has_morefrags(hdr
->frame_control
) &&
1216 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1217 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1218 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)) {
1219 if (test_sta_flags(sta
, WLAN_STA_PS_STA
)) {
1221 * Ignore doze->wake transitions that are
1222 * indicated by non-data frames, the standard
1223 * is unclear here, but for example going to
1224 * PS mode and then scanning would cause a
1225 * doze->wake transition for the probe request,
1226 * and that is clearly undesirable.
1228 if (ieee80211_is_data(hdr
->frame_control
) &&
1229 !ieee80211_has_pm(hdr
->frame_control
))
1232 if (ieee80211_has_pm(hdr
->frame_control
))
1233 ap_sta_ps_start(sta
);
1238 * Drop (qos-)data::nullfunc frames silently, since they
1239 * are used only to control station power saving mode.
1241 if (ieee80211_is_nullfunc(hdr
->frame_control
) ||
1242 ieee80211_is_qos_nullfunc(hdr
->frame_control
)) {
1243 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
1246 * If we receive a 4-addr nullfunc frame from a STA
1247 * that was not moved to a 4-addr STA vlan yet, drop
1248 * the frame to the monitor interface, to make sure
1249 * that hostapd sees it
1251 if (ieee80211_has_a4(hdr
->frame_control
) &&
1252 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1253 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1254 !rx
->sdata
->u
.vlan
.sta
)))
1255 return RX_DROP_MONITOR
;
1257 * Update counter and free packet here to avoid
1258 * counting this as a dropped packed.
1261 dev_kfree_skb(rx
->skb
);
1266 } /* ieee80211_rx_h_sta_process */
1268 static inline struct ieee80211_fragment_entry
*
1269 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
1270 unsigned int frag
, unsigned int seq
, int rx_queue
,
1271 struct sk_buff
**skb
)
1273 struct ieee80211_fragment_entry
*entry
;
1276 idx
= sdata
->fragment_next
;
1277 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
1278 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
1279 sdata
->fragment_next
= 0;
1281 if (!skb_queue_empty(&entry
->skb_list
)) {
1282 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1283 struct ieee80211_hdr
*hdr
=
1284 (struct ieee80211_hdr
*) entry
->skb_list
.next
->data
;
1285 printk(KERN_DEBUG
"%s: RX reassembly removed oldest "
1286 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1287 "addr1=%pM addr2=%pM\n",
1289 jiffies
- entry
->first_frag_time
, entry
->seq
,
1290 entry
->last_frag
, hdr
->addr1
, hdr
->addr2
);
1292 __skb_queue_purge(&entry
->skb_list
);
1295 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
1297 entry
->first_frag_time
= jiffies
;
1299 entry
->rx_queue
= rx_queue
;
1300 entry
->last_frag
= frag
;
1302 entry
->extra_len
= 0;
1307 static inline struct ieee80211_fragment_entry
*
1308 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
1309 unsigned int frag
, unsigned int seq
,
1310 int rx_queue
, struct ieee80211_hdr
*hdr
)
1312 struct ieee80211_fragment_entry
*entry
;
1315 idx
= sdata
->fragment_next
;
1316 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
1317 struct ieee80211_hdr
*f_hdr
;
1321 idx
= IEEE80211_FRAGMENT_MAX
- 1;
1323 entry
= &sdata
->fragments
[idx
];
1324 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
1325 entry
->rx_queue
!= rx_queue
||
1326 entry
->last_frag
+ 1 != frag
)
1329 f_hdr
= (struct ieee80211_hdr
*)entry
->skb_list
.next
->data
;
1332 * Check ftype and addresses are equal, else check next fragment
1334 if (((hdr
->frame_control
^ f_hdr
->frame_control
) &
1335 cpu_to_le16(IEEE80211_FCTL_FTYPE
)) ||
1336 compare_ether_addr(hdr
->addr1
, f_hdr
->addr1
) != 0 ||
1337 compare_ether_addr(hdr
->addr2
, f_hdr
->addr2
) != 0)
1340 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
1341 __skb_queue_purge(&entry
->skb_list
);
1350 static ieee80211_rx_result debug_noinline
1351 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
1353 struct ieee80211_hdr
*hdr
;
1356 unsigned int frag
, seq
;
1357 struct ieee80211_fragment_entry
*entry
;
1358 struct sk_buff
*skb
;
1359 struct ieee80211_rx_status
*status
;
1361 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1362 fc
= hdr
->frame_control
;
1363 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1364 frag
= sc
& IEEE80211_SCTL_FRAG
;
1366 if (likely((!ieee80211_has_morefrags(fc
) && frag
== 0) ||
1367 (rx
->skb
)->len
< 24 ||
1368 is_multicast_ether_addr(hdr
->addr1
))) {
1369 /* not fragmented */
1372 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
1374 if (skb_linearize(rx
->skb
))
1375 return RX_DROP_UNUSABLE
;
1378 * skb_linearize() might change the skb->data and
1379 * previously cached variables (in this case, hdr) need to
1380 * be refreshed with the new data.
1382 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1383 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1386 /* This is the first fragment of a new frame. */
1387 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
1388 rx
->seqno_idx
, &(rx
->skb
));
1389 if (rx
->key
&& rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
&&
1390 ieee80211_has_protected(fc
)) {
1391 int queue
= rx
->security_idx
;
1392 /* Store CCMP PN so that we can verify that the next
1393 * fragment has a sequential PN value. */
1395 memcpy(entry
->last_pn
,
1396 rx
->key
->u
.ccmp
.rx_pn
[queue
],
1402 /* This is a fragment for a frame that should already be pending in
1403 * fragment cache. Add this fragment to the end of the pending entry.
1405 entry
= ieee80211_reassemble_find(rx
->sdata
, frag
, seq
,
1406 rx
->seqno_idx
, hdr
);
1408 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1409 return RX_DROP_MONITOR
;
1412 /* Verify that MPDUs within one MSDU have sequential PN values.
1413 * (IEEE 802.11i, 8.3.3.4.5) */
1416 u8 pn
[CCMP_PN_LEN
], *rpn
;
1418 if (!rx
->key
|| rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP
)
1419 return RX_DROP_UNUSABLE
;
1420 memcpy(pn
, entry
->last_pn
, CCMP_PN_LEN
);
1421 for (i
= CCMP_PN_LEN
- 1; i
>= 0; i
--) {
1426 queue
= rx
->security_idx
;
1427 rpn
= rx
->key
->u
.ccmp
.rx_pn
[queue
];
1428 if (memcmp(pn
, rpn
, CCMP_PN_LEN
))
1429 return RX_DROP_UNUSABLE
;
1430 memcpy(entry
->last_pn
, pn
, CCMP_PN_LEN
);
1433 skb_pull(rx
->skb
, ieee80211_hdrlen(fc
));
1434 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
1435 entry
->last_frag
= frag
;
1436 entry
->extra_len
+= rx
->skb
->len
;
1437 if (ieee80211_has_morefrags(fc
)) {
1442 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
1443 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
1444 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head2
);
1445 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
1447 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1448 __skb_queue_purge(&entry
->skb_list
);
1449 return RX_DROP_UNUSABLE
;
1452 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
1453 memcpy(skb_put(rx
->skb
, skb
->len
), skb
->data
, skb
->len
);
1457 /* Complete frame has been reassembled - process it now */
1458 status
= IEEE80211_SKB_RXCB(rx
->skb
);
1459 status
->rx_flags
|= IEEE80211_RX_FRAGMENTED
;
1463 rx
->sta
->rx_packets
++;
1464 if (is_multicast_ether_addr(hdr
->addr1
))
1465 rx
->local
->dot11MulticastReceivedFrameCount
++;
1467 ieee80211_led_rx(rx
->local
);
1471 static ieee80211_rx_result debug_noinline
1472 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data
*rx
)
1474 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1475 __le16 fc
= ((struct ieee80211_hdr
*)rx
->skb
->data
)->frame_control
;
1476 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1478 if (likely(!rx
->sta
|| !ieee80211_is_pspoll(fc
) ||
1479 !(status
->rx_flags
& IEEE80211_RX_RA_MATCH
)))
1482 if ((sdata
->vif
.type
!= NL80211_IFTYPE_AP
) &&
1483 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
))
1484 return RX_DROP_UNUSABLE
;
1486 if (!test_sta_flags(rx
->sta
, WLAN_STA_PS_DRIVER
))
1487 ieee80211_sta_ps_deliver_poll_response(rx
->sta
);
1489 set_sta_flags(rx
->sta
, WLAN_STA_PSPOLL
);
1491 /* Free PS Poll skb here instead of returning RX_DROP that would
1492 * count as an dropped frame. */
1493 dev_kfree_skb(rx
->skb
);
1498 static ieee80211_rx_result debug_noinline
1499 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data
*rx
)
1501 u8
*data
= rx
->skb
->data
;
1502 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)data
;
1504 if (!ieee80211_is_data_qos(hdr
->frame_control
))
1507 /* remove the qos control field, update frame type and meta-data */
1508 memmove(data
+ IEEE80211_QOS_CTL_LEN
, data
,
1509 ieee80211_hdrlen(hdr
->frame_control
) - IEEE80211_QOS_CTL_LEN
);
1510 hdr
= (struct ieee80211_hdr
*)skb_pull(rx
->skb
, IEEE80211_QOS_CTL_LEN
);
1511 /* change frame type to non QOS */
1512 hdr
->frame_control
&= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA
);
1518 ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
1520 if (unlikely(!rx
->sta
||
1521 !test_sta_flags(rx
->sta
, WLAN_STA_AUTHORIZED
)))
1528 ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
, __le16 fc
)
1530 struct sk_buff
*skb
= rx
->skb
;
1531 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1534 * Pass through unencrypted frames if the hardware has
1535 * decrypted them already.
1537 if (status
->flag
& RX_FLAG_DECRYPTED
)
1540 /* Drop unencrypted frames if key is set. */
1541 if (unlikely(!ieee80211_has_protected(fc
) &&
1542 !ieee80211_is_nullfunc(fc
) &&
1543 ieee80211_is_data(fc
) &&
1544 (rx
->key
|| rx
->sdata
->drop_unencrypted
)))
1551 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data
*rx
)
1553 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1554 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1555 __le16 fc
= hdr
->frame_control
;
1558 * Pass through unencrypted frames if the hardware has
1559 * decrypted them already.
1561 if (status
->flag
& RX_FLAG_DECRYPTED
)
1564 if (rx
->sta
&& test_sta_flags(rx
->sta
, WLAN_STA_MFP
)) {
1565 if (unlikely(!ieee80211_has_protected(fc
) &&
1566 ieee80211_is_unicast_robust_mgmt_frame(rx
->skb
) &&
1568 if (ieee80211_is_deauth(fc
))
1569 cfg80211_send_unprot_deauth(rx
->sdata
->dev
,
1572 else if (ieee80211_is_disassoc(fc
))
1573 cfg80211_send_unprot_disassoc(rx
->sdata
->dev
,
1578 /* BIP does not use Protected field, so need to check MMIE */
1579 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx
->skb
) &&
1580 ieee80211_get_mmie_keyidx(rx
->skb
) < 0)) {
1581 if (ieee80211_is_deauth(fc
))
1582 cfg80211_send_unprot_deauth(rx
->sdata
->dev
,
1585 else if (ieee80211_is_disassoc(fc
))
1586 cfg80211_send_unprot_disassoc(rx
->sdata
->dev
,
1592 * When using MFP, Action frames are not allowed prior to
1593 * having configured keys.
1595 if (unlikely(ieee80211_is_action(fc
) && !rx
->key
&&
1596 ieee80211_is_robust_mgmt_frame(
1597 (struct ieee80211_hdr
*) rx
->skb
->data
)))
1605 __ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
, bool *port_control
)
1607 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1608 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1609 bool check_port_control
= false;
1610 struct ethhdr
*ehdr
;
1613 *port_control
= false;
1614 if (ieee80211_has_a4(hdr
->frame_control
) &&
1615 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& !sdata
->u
.vlan
.sta
)
1618 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1619 !!sdata
->u
.mgd
.use_4addr
!= !!ieee80211_has_a4(hdr
->frame_control
)) {
1621 if (!sdata
->u
.mgd
.use_4addr
)
1624 check_port_control
= true;
1627 if (is_multicast_ether_addr(hdr
->addr1
) &&
1628 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& sdata
->u
.vlan
.sta
)
1631 ret
= ieee80211_data_to_8023(rx
->skb
, sdata
->vif
.addr
, sdata
->vif
.type
);
1635 ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1636 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
)
1637 *port_control
= true;
1638 else if (check_port_control
)
1645 * requires that rx->skb is a frame with ethernet header
1647 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
, __le16 fc
)
1649 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
1650 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1651 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1654 * Allow EAPOL frames to us/the PAE group address regardless
1655 * of whether the frame was encrypted or not.
1657 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
&&
1658 (compare_ether_addr(ehdr
->h_dest
, rx
->sdata
->vif
.addr
) == 0 ||
1659 compare_ether_addr(ehdr
->h_dest
, pae_group_addr
) == 0))
1662 if (ieee80211_802_1x_port_control(rx
) ||
1663 ieee80211_drop_unencrypted(rx
, fc
))
1670 * requires that rx->skb is a frame with ethernet header
1673 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
1675 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1676 struct net_device
*dev
= sdata
->dev
;
1677 struct sk_buff
*skb
, *xmit_skb
;
1678 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1679 struct sta_info
*dsta
;
1680 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1685 if ((sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1686 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
1687 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
1688 (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) &&
1689 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
|| !sdata
->u
.vlan
.sta
)) {
1690 if (is_multicast_ether_addr(ehdr
->h_dest
)) {
1692 * send multicast frames both to higher layers in
1693 * local net stack and back to the wireless medium
1695 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
1696 if (!xmit_skb
&& net_ratelimit())
1697 printk(KERN_DEBUG
"%s: failed to clone "
1698 "multicast frame\n", dev
->name
);
1700 dsta
= sta_info_get(sdata
, skb
->data
);
1703 * The destination station is associated to
1704 * this AP (in this VLAN), so send the frame
1705 * directly to it and do not pass it to local
1715 int align __maybe_unused
;
1717 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1719 * 'align' will only take the values 0 or 2 here
1720 * since all frames are required to be aligned
1721 * to 2-byte boundaries when being passed to
1722 * mac80211. That also explains the __skb_push()
1725 align
= ((unsigned long)(skb
->data
+ sizeof(struct ethhdr
))) & 3;
1727 if (WARN_ON(skb_headroom(skb
) < 3)) {
1731 u8
*data
= skb
->data
;
1732 size_t len
= skb_headlen(skb
);
1734 memmove(skb
->data
, data
, len
);
1735 skb_set_tail_pointer(skb
, len
);
1741 /* deliver to local stack */
1742 skb
->protocol
= eth_type_trans(skb
, dev
);
1743 memset(skb
->cb
, 0, sizeof(skb
->cb
));
1744 netif_receive_skb(skb
);
1749 /* send to wireless media */
1750 xmit_skb
->protocol
= htons(ETH_P_802_3
);
1751 skb_reset_network_header(xmit_skb
);
1752 skb_reset_mac_header(xmit_skb
);
1753 dev_queue_xmit(xmit_skb
);
1757 static ieee80211_rx_result debug_noinline
1758 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
1760 struct net_device
*dev
= rx
->sdata
->dev
;
1761 struct sk_buff
*skb
= rx
->skb
;
1762 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1763 __le16 fc
= hdr
->frame_control
;
1764 struct sk_buff_head frame_list
;
1765 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1767 if (unlikely(!ieee80211_is_data(fc
)))
1770 if (unlikely(!ieee80211_is_data_present(fc
)))
1771 return RX_DROP_MONITOR
;
1773 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
))
1776 if (ieee80211_has_a4(hdr
->frame_control
) &&
1777 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1778 !rx
->sdata
->u
.vlan
.sta
)
1779 return RX_DROP_UNUSABLE
;
1781 if (is_multicast_ether_addr(hdr
->addr1
) &&
1782 ((rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1783 rx
->sdata
->u
.vlan
.sta
) ||
1784 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1785 rx
->sdata
->u
.mgd
.use_4addr
)))
1786 return RX_DROP_UNUSABLE
;
1789 __skb_queue_head_init(&frame_list
);
1791 if (skb_linearize(skb
))
1792 return RX_DROP_UNUSABLE
;
1794 ieee80211_amsdu_to_8023s(skb
, &frame_list
, dev
->dev_addr
,
1795 rx
->sdata
->vif
.type
,
1796 rx
->local
->hw
.extra_tx_headroom
, true);
1798 while (!skb_queue_empty(&frame_list
)) {
1799 rx
->skb
= __skb_dequeue(&frame_list
);
1801 if (!ieee80211_frame_allowed(rx
, fc
)) {
1802 dev_kfree_skb(rx
->skb
);
1805 dev
->stats
.rx_packets
++;
1806 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
1808 ieee80211_deliver_skb(rx
);
1814 #ifdef CONFIG_MAC80211_MESH
1815 static ieee80211_rx_result
1816 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data
*rx
)
1818 struct ieee80211_hdr
*hdr
;
1819 struct ieee80211s_hdr
*mesh_hdr
;
1820 unsigned int hdrlen
;
1821 struct sk_buff
*skb
= rx
->skb
, *fwd_skb
;
1822 struct ieee80211_local
*local
= rx
->local
;
1823 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1824 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1826 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1827 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1828 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
1830 if (!ieee80211_is_data(hdr
->frame_control
))
1835 return RX_DROP_MONITOR
;
1837 if (mesh_hdr
->flags
& MESH_FLAGS_AE
) {
1838 struct mesh_path
*mppath
;
1842 if (is_multicast_ether_addr(hdr
->addr1
)) {
1843 mpp_addr
= hdr
->addr3
;
1844 proxied_addr
= mesh_hdr
->eaddr1
;
1846 mpp_addr
= hdr
->addr4
;
1847 proxied_addr
= mesh_hdr
->eaddr2
;
1851 mppath
= mpp_path_lookup(proxied_addr
, sdata
);
1853 mpp_path_add(proxied_addr
, mpp_addr
, sdata
);
1855 spin_lock_bh(&mppath
->state_lock
);
1856 if (compare_ether_addr(mppath
->mpp
, mpp_addr
) != 0)
1857 memcpy(mppath
->mpp
, mpp_addr
, ETH_ALEN
);
1858 spin_unlock_bh(&mppath
->state_lock
);
1863 /* Frame has reached destination. Don't forward */
1864 if (!is_multicast_ether_addr(hdr
->addr1
) &&
1865 compare_ether_addr(sdata
->vif
.addr
, hdr
->addr3
) == 0)
1870 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) {
1872 IEEE80211_IFSTA_MESH_CTR_INC(&rx
->sdata
->u
.mesh
,
1873 dropped_frames_ttl
);
1875 struct ieee80211_hdr
*fwd_hdr
;
1876 struct ieee80211_tx_info
*info
;
1878 fwd_skb
= skb_copy(skb
, GFP_ATOMIC
);
1880 if (!fwd_skb
&& net_ratelimit())
1881 printk(KERN_DEBUG
"%s: failed to clone mesh frame\n",
1886 fwd_hdr
= (struct ieee80211_hdr
*) fwd_skb
->data
;
1887 memcpy(fwd_hdr
->addr2
, sdata
->vif
.addr
, ETH_ALEN
);
1888 info
= IEEE80211_SKB_CB(fwd_skb
);
1889 memset(info
, 0, sizeof(*info
));
1890 info
->flags
|= IEEE80211_TX_INTFL_NEED_TXPROCESSING
;
1891 info
->control
.vif
= &rx
->sdata
->vif
;
1892 skb_set_queue_mapping(skb
,
1893 ieee80211_select_queue(rx
->sdata
, fwd_skb
));
1894 ieee80211_set_qos_hdr(local
, skb
);
1895 if (is_multicast_ether_addr(fwd_hdr
->addr1
))
1896 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1901 * Save TA to addr1 to send TA a path error if a
1902 * suitable next hop is not found
1904 memcpy(fwd_hdr
->addr1
, fwd_hdr
->addr2
,
1906 err
= mesh_nexthop_lookup(fwd_skb
, sdata
);
1907 /* Failed to immediately resolve next hop:
1908 * fwded frame was dropped or will be added
1909 * later to the pending skb queue. */
1911 return RX_DROP_MONITOR
;
1913 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1916 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1918 ieee80211_add_pending_skb(local
, fwd_skb
);
1923 if (is_multicast_ether_addr(hdr
->addr1
) ||
1924 sdata
->dev
->flags
& IFF_PROMISC
)
1927 return RX_DROP_MONITOR
;
1931 static ieee80211_rx_result debug_noinline
1932 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
1934 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1935 struct ieee80211_local
*local
= rx
->local
;
1936 struct net_device
*dev
= sdata
->dev
;
1937 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1938 __le16 fc
= hdr
->frame_control
;
1942 if (unlikely(!ieee80211_is_data(hdr
->frame_control
)))
1945 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
1946 return RX_DROP_MONITOR
;
1949 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1950 * that a 4-addr station can be detected and moved into a separate VLAN
1952 if (ieee80211_has_a4(hdr
->frame_control
) &&
1953 sdata
->vif
.type
== NL80211_IFTYPE_AP
)
1954 return RX_DROP_MONITOR
;
1956 err
= __ieee80211_data_to_8023(rx
, &port_control
);
1958 return RX_DROP_UNUSABLE
;
1960 if (!ieee80211_frame_allowed(rx
, fc
))
1961 return RX_DROP_MONITOR
;
1963 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1964 unlikely(port_control
) && sdata
->bss
) {
1965 sdata
= container_of(sdata
->bss
, struct ieee80211_sub_if_data
,
1973 dev
->stats
.rx_packets
++;
1974 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
1976 if (local
->ps_sdata
&& local
->hw
.conf
.dynamic_ps_timeout
> 0 &&
1977 !is_multicast_ether_addr(
1978 ((struct ethhdr
*)rx
->skb
->data
)->h_dest
) &&
1979 (!local
->scanning
&&
1980 !test_bit(SDATA_STATE_OFFCHANNEL
, &sdata
->state
))) {
1981 mod_timer(&local
->dynamic_ps_timer
, jiffies
+
1982 msecs_to_jiffies(local
->hw
.conf
.dynamic_ps_timeout
));
1985 ieee80211_deliver_skb(rx
);
1990 static ieee80211_rx_result debug_noinline
1991 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
)
1993 struct ieee80211_local
*local
= rx
->local
;
1994 struct ieee80211_hw
*hw
= &local
->hw
;
1995 struct sk_buff
*skb
= rx
->skb
;
1996 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
1997 struct tid_ampdu_rx
*tid_agg_rx
;
2001 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
2004 if (ieee80211_is_back_req(bar
->frame_control
)) {
2006 __le16 control
, start_seq_num
;
2007 } __packed bar_data
;
2010 return RX_DROP_MONITOR
;
2012 if (skb_copy_bits(skb
, offsetof(struct ieee80211_bar
, control
),
2013 &bar_data
, sizeof(bar_data
)))
2014 return RX_DROP_MONITOR
;
2016 tid
= le16_to_cpu(bar_data
.control
) >> 12;
2018 tid_agg_rx
= rcu_dereference(rx
->sta
->ampdu_mlme
.tid_rx
[tid
]);
2020 return RX_DROP_MONITOR
;
2022 start_seq_num
= le16_to_cpu(bar_data
.start_seq_num
) >> 4;
2024 /* reset session timer */
2025 if (tid_agg_rx
->timeout
)
2026 mod_timer(&tid_agg_rx
->session_timer
,
2027 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
2029 spin_lock(&tid_agg_rx
->reorder_lock
);
2030 /* release stored frames up to start of BAR */
2031 ieee80211_release_reorder_frames(hw
, tid_agg_rx
, start_seq_num
);
2032 spin_unlock(&tid_agg_rx
->reorder_lock
);
2039 * After this point, we only want management frames,
2040 * so we can drop all remaining control frames to
2041 * cooked monitor interfaces.
2043 return RX_DROP_MONITOR
;
2046 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data
*sdata
,
2047 struct ieee80211_mgmt
*mgmt
,
2050 struct ieee80211_local
*local
= sdata
->local
;
2051 struct sk_buff
*skb
;
2052 struct ieee80211_mgmt
*resp
;
2054 if (compare_ether_addr(mgmt
->da
, sdata
->vif
.addr
) != 0) {
2055 /* Not to own unicast address */
2059 if (compare_ether_addr(mgmt
->sa
, sdata
->u
.mgd
.bssid
) != 0 ||
2060 compare_ether_addr(mgmt
->bssid
, sdata
->u
.mgd
.bssid
) != 0) {
2061 /* Not from the current AP or not associated yet. */
2065 if (len
< 24 + 1 + sizeof(resp
->u
.action
.u
.sa_query
)) {
2066 /* Too short SA Query request frame */
2070 skb
= dev_alloc_skb(sizeof(*resp
) + local
->hw
.extra_tx_headroom
);
2074 skb_reserve(skb
, local
->hw
.extra_tx_headroom
);
2075 resp
= (struct ieee80211_mgmt
*) skb_put(skb
, 24);
2076 memset(resp
, 0, 24);
2077 memcpy(resp
->da
, mgmt
->sa
, ETH_ALEN
);
2078 memcpy(resp
->sa
, sdata
->vif
.addr
, ETH_ALEN
);
2079 memcpy(resp
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
);
2080 resp
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_MGMT
|
2081 IEEE80211_STYPE_ACTION
);
2082 skb_put(skb
, 1 + sizeof(resp
->u
.action
.u
.sa_query
));
2083 resp
->u
.action
.category
= WLAN_CATEGORY_SA_QUERY
;
2084 resp
->u
.action
.u
.sa_query
.action
= WLAN_ACTION_SA_QUERY_RESPONSE
;
2085 memcpy(resp
->u
.action
.u
.sa_query
.trans_id
,
2086 mgmt
->u
.action
.u
.sa_query
.trans_id
,
2087 WLAN_SA_QUERY_TR_ID_LEN
);
2089 ieee80211_tx_skb(sdata
, skb
);
2092 static ieee80211_rx_result debug_noinline
2093 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data
*rx
)
2095 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2096 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2099 * From here on, look only at management frames.
2100 * Data and control frames are already handled,
2101 * and unknown (reserved) frames are useless.
2103 if (rx
->skb
->len
< 24)
2104 return RX_DROP_MONITOR
;
2106 if (!ieee80211_is_mgmt(mgmt
->frame_control
))
2107 return RX_DROP_MONITOR
;
2109 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2110 return RX_DROP_MONITOR
;
2112 if (ieee80211_drop_unencrypted_mgmt(rx
))
2113 return RX_DROP_UNUSABLE
;
2118 static ieee80211_rx_result debug_noinline
2119 ieee80211_rx_h_action(struct ieee80211_rx_data
*rx
)
2121 struct ieee80211_local
*local
= rx
->local
;
2122 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2123 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2124 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2125 int len
= rx
->skb
->len
;
2127 if (!ieee80211_is_action(mgmt
->frame_control
))
2130 /* drop too small frames */
2131 if (len
< IEEE80211_MIN_ACTION_SIZE
)
2132 return RX_DROP_UNUSABLE
;
2134 if (!rx
->sta
&& mgmt
->u
.action
.category
!= WLAN_CATEGORY_PUBLIC
)
2135 return RX_DROP_UNUSABLE
;
2137 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2138 return RX_DROP_UNUSABLE
;
2140 switch (mgmt
->u
.action
.category
) {
2141 case WLAN_CATEGORY_BACK
:
2143 * The aggregation code is not prepared to handle
2144 * anything but STA/AP due to the BSSID handling;
2145 * IBSS could work in the code but isn't supported
2146 * by drivers or the standard.
2148 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2149 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2150 sdata
->vif
.type
!= NL80211_IFTYPE_AP
)
2153 /* verify action_code is present */
2154 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2157 switch (mgmt
->u
.action
.u
.addba_req
.action_code
) {
2158 case WLAN_ACTION_ADDBA_REQ
:
2159 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2160 sizeof(mgmt
->u
.action
.u
.addba_req
)))
2163 case WLAN_ACTION_ADDBA_RESP
:
2164 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2165 sizeof(mgmt
->u
.action
.u
.addba_resp
)))
2168 case WLAN_ACTION_DELBA
:
2169 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2170 sizeof(mgmt
->u
.action
.u
.delba
)))
2178 case WLAN_CATEGORY_SPECTRUM_MGMT
:
2179 if (local
->hw
.conf
.channel
->band
!= IEEE80211_BAND_5GHZ
)
2182 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2185 /* verify action_code is present */
2186 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2189 switch (mgmt
->u
.action
.u
.measurement
.action_code
) {
2190 case WLAN_ACTION_SPCT_MSR_REQ
:
2191 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2192 sizeof(mgmt
->u
.action
.u
.measurement
)))
2194 ieee80211_process_measurement_req(sdata
, mgmt
, len
);
2196 case WLAN_ACTION_SPCT_CHL_SWITCH
:
2197 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2198 sizeof(mgmt
->u
.action
.u
.chan_switch
)))
2201 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2204 if (memcmp(mgmt
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
))
2210 case WLAN_CATEGORY_SA_QUERY
:
2211 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2212 sizeof(mgmt
->u
.action
.u
.sa_query
)))
2215 switch (mgmt
->u
.action
.u
.sa_query
.action
) {
2216 case WLAN_ACTION_SA_QUERY_REQUEST
:
2217 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2219 ieee80211_process_sa_query_req(sdata
, mgmt
, len
);
2223 case WLAN_CATEGORY_MESH_ACTION
:
2224 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
2227 case WLAN_CATEGORY_MESH_PATH_SEL
:
2228 if (!mesh_path_sel_is_hwmp(sdata
))
2236 status
->rx_flags
|= IEEE80211_RX_MALFORMED_ACTION_FRM
;
2237 /* will return in the next handlers */
2242 rx
->sta
->rx_packets
++;
2243 dev_kfree_skb(rx
->skb
);
2247 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
2248 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2249 ieee80211_queue_work(&local
->hw
, &sdata
->work
);
2251 rx
->sta
->rx_packets
++;
2255 static ieee80211_rx_result debug_noinline
2256 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data
*rx
)
2258 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2260 /* skip known-bad action frames and return them in the next handler */
2261 if (status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
)
2265 * Getting here means the kernel doesn't know how to handle
2266 * it, but maybe userspace does ... include returned frames
2267 * so userspace can register for those to know whether ones
2268 * it transmitted were processed or returned.
2271 if (cfg80211_rx_mgmt(rx
->sdata
->dev
, status
->freq
,
2272 rx
->skb
->data
, rx
->skb
->len
,
2275 rx
->sta
->rx_packets
++;
2276 dev_kfree_skb(rx
->skb
);
2284 static ieee80211_rx_result debug_noinline
2285 ieee80211_rx_h_action_return(struct ieee80211_rx_data
*rx
)
2287 struct ieee80211_local
*local
= rx
->local
;
2288 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2289 struct sk_buff
*nskb
;
2290 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2291 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2293 if (!ieee80211_is_action(mgmt
->frame_control
))
2297 * For AP mode, hostapd is responsible for handling any action
2298 * frames that we didn't handle, including returning unknown
2299 * ones. For all other modes we will return them to the sender,
2300 * setting the 0x80 bit in the action category, as required by
2301 * 802.11-2007 7.3.1.11.
2302 * Newer versions of hostapd shall also use the management frame
2303 * registration mechanisms, but older ones still use cooked
2304 * monitor interfaces so push all frames there.
2306 if (!(status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
) &&
2307 (sdata
->vif
.type
== NL80211_IFTYPE_AP
||
2308 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
))
2309 return RX_DROP_MONITOR
;
2311 /* do not return rejected action frames */
2312 if (mgmt
->u
.action
.category
& 0x80)
2313 return RX_DROP_UNUSABLE
;
2315 nskb
= skb_copy_expand(rx
->skb
, local
->hw
.extra_tx_headroom
, 0,
2318 struct ieee80211_mgmt
*nmgmt
= (void *)nskb
->data
;
2320 nmgmt
->u
.action
.category
|= 0x80;
2321 memcpy(nmgmt
->da
, nmgmt
->sa
, ETH_ALEN
);
2322 memcpy(nmgmt
->sa
, rx
->sdata
->vif
.addr
, ETH_ALEN
);
2324 memset(nskb
->cb
, 0, sizeof(nskb
->cb
));
2326 ieee80211_tx_skb(rx
->sdata
, nskb
);
2328 dev_kfree_skb(rx
->skb
);
2332 static ieee80211_rx_result debug_noinline
2333 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
2335 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2336 ieee80211_rx_result rxs
;
2337 struct ieee80211_mgmt
*mgmt
= (void *)rx
->skb
->data
;
2340 rxs
= ieee80211_work_rx_mgmt(rx
->sdata
, rx
->skb
);
2341 if (rxs
!= RX_CONTINUE
)
2344 stype
= mgmt
->frame_control
& cpu_to_le16(IEEE80211_FCTL_STYPE
);
2346 if (!ieee80211_vif_is_mesh(&sdata
->vif
) &&
2347 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
2348 sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2349 return RX_DROP_MONITOR
;
2352 case cpu_to_le16(IEEE80211_STYPE_BEACON
):
2353 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP
):
2354 /* process for all: mesh, mlme, ibss */
2356 case cpu_to_le16(IEEE80211_STYPE_DEAUTH
):
2357 case cpu_to_le16(IEEE80211_STYPE_DISASSOC
):
2358 if (is_multicast_ether_addr(mgmt
->da
) &&
2359 !is_broadcast_ether_addr(mgmt
->da
))
2360 return RX_DROP_MONITOR
;
2362 /* process only for station */
2363 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2364 return RX_DROP_MONITOR
;
2366 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ
):
2367 case cpu_to_le16(IEEE80211_STYPE_AUTH
):
2368 /* process only for ibss */
2369 if (sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2370 return RX_DROP_MONITOR
;
2373 return RX_DROP_MONITOR
;
2376 /* queue up frame and kick off work to process it */
2377 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
2378 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2379 ieee80211_queue_work(&rx
->local
->hw
, &sdata
->work
);
2381 rx
->sta
->rx_packets
++;
2386 /* TODO: use IEEE80211_RX_FRAGMENTED */
2387 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
,
2388 struct ieee80211_rate
*rate
)
2390 struct ieee80211_sub_if_data
*sdata
;
2391 struct ieee80211_local
*local
= rx
->local
;
2392 struct ieee80211_rtap_hdr
{
2393 struct ieee80211_radiotap_header hdr
;
2399 struct sk_buff
*skb
= rx
->skb
, *skb2
;
2400 struct net_device
*prev_dev
= NULL
;
2401 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2404 * If cooked monitor has been processed already, then
2405 * don't do it again. If not, set the flag.
2407 if (rx
->flags
& IEEE80211_RX_CMNTR
)
2409 rx
->flags
|= IEEE80211_RX_CMNTR
;
2411 if (skb_headroom(skb
) < sizeof(*rthdr
) &&
2412 pskb_expand_head(skb
, sizeof(*rthdr
), 0, GFP_ATOMIC
))
2415 rthdr
= (void *)skb_push(skb
, sizeof(*rthdr
));
2416 memset(rthdr
, 0, sizeof(*rthdr
));
2417 rthdr
->hdr
.it_len
= cpu_to_le16(sizeof(*rthdr
));
2418 rthdr
->hdr
.it_present
=
2419 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
2420 (1 << IEEE80211_RADIOTAP_CHANNEL
));
2423 rthdr
->rate_or_pad
= rate
->bitrate
/ 5;
2424 rthdr
->hdr
.it_present
|=
2425 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
2427 rthdr
->chan_freq
= cpu_to_le16(status
->freq
);
2429 if (status
->band
== IEEE80211_BAND_5GHZ
)
2430 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_OFDM
|
2431 IEEE80211_CHAN_5GHZ
);
2433 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_DYN
|
2434 IEEE80211_CHAN_2GHZ
);
2436 skb_set_mac_header(skb
, 0);
2437 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2438 skb
->pkt_type
= PACKET_OTHERHOST
;
2439 skb
->protocol
= htons(ETH_P_802_2
);
2441 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
2442 if (!ieee80211_sdata_running(sdata
))
2445 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
||
2446 !(sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
))
2450 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2452 skb2
->dev
= prev_dev
;
2453 netif_receive_skb(skb2
);
2457 prev_dev
= sdata
->dev
;
2458 sdata
->dev
->stats
.rx_packets
++;
2459 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
2463 skb
->dev
= prev_dev
;
2464 netif_receive_skb(skb
);
2472 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data
*rx
,
2473 ieee80211_rx_result res
)
2476 case RX_DROP_MONITOR
:
2477 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
2479 rx
->sta
->rx_dropped
++;
2482 struct ieee80211_rate
*rate
= NULL
;
2483 struct ieee80211_supported_band
*sband
;
2484 struct ieee80211_rx_status
*status
;
2486 status
= IEEE80211_SKB_RXCB((rx
->skb
));
2488 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2489 if (!(status
->flag
& RX_FLAG_HT
))
2490 rate
= &sband
->bitrates
[status
->rate_idx
];
2492 ieee80211_rx_cooked_monitor(rx
, rate
);
2495 case RX_DROP_UNUSABLE
:
2496 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
2498 rx
->sta
->rx_dropped
++;
2499 dev_kfree_skb(rx
->skb
);
2502 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_queued
);
2507 static void ieee80211_rx_handlers(struct ieee80211_rx_data
*rx
)
2509 ieee80211_rx_result res
= RX_DROP_MONITOR
;
2510 struct sk_buff
*skb
;
2512 #define CALL_RXH(rxh) \
2515 if (res != RX_CONTINUE) \
2519 spin_lock(&rx
->local
->rx_skb_queue
.lock
);
2520 if (rx
->local
->running_rx_handler
)
2523 rx
->local
->running_rx_handler
= true;
2525 while ((skb
= __skb_dequeue(&rx
->local
->rx_skb_queue
))) {
2526 spin_unlock(&rx
->local
->rx_skb_queue
.lock
);
2529 * all the other fields are valid across frames
2530 * that belong to an aMPDU since they are on the
2531 * same TID from the same station
2535 CALL_RXH(ieee80211_rx_h_decrypt
)
2536 CALL_RXH(ieee80211_rx_h_check_more_data
)
2537 CALL_RXH(ieee80211_rx_h_sta_process
)
2538 CALL_RXH(ieee80211_rx_h_defragment
)
2539 CALL_RXH(ieee80211_rx_h_ps_poll
)
2540 CALL_RXH(ieee80211_rx_h_michael_mic_verify
)
2541 /* must be after MMIC verify so header is counted in MPDU mic */
2542 CALL_RXH(ieee80211_rx_h_remove_qos_control
)
2543 CALL_RXH(ieee80211_rx_h_amsdu
)
2544 #ifdef CONFIG_MAC80211_MESH
2545 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
2546 CALL_RXH(ieee80211_rx_h_mesh_fwding
);
2548 CALL_RXH(ieee80211_rx_h_data
)
2549 CALL_RXH(ieee80211_rx_h_ctrl
);
2550 CALL_RXH(ieee80211_rx_h_mgmt_check
)
2551 CALL_RXH(ieee80211_rx_h_action
)
2552 CALL_RXH(ieee80211_rx_h_userspace_mgmt
)
2553 CALL_RXH(ieee80211_rx_h_action_return
)
2554 CALL_RXH(ieee80211_rx_h_mgmt
)
2557 ieee80211_rx_handlers_result(rx
, res
);
2558 spin_lock(&rx
->local
->rx_skb_queue
.lock
);
2562 rx
->local
->running_rx_handler
= false;
2565 spin_unlock(&rx
->local
->rx_skb_queue
.lock
);
2568 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data
*rx
)
2570 ieee80211_rx_result res
= RX_DROP_MONITOR
;
2572 #define CALL_RXH(rxh) \
2575 if (res != RX_CONTINUE) \
2579 CALL_RXH(ieee80211_rx_h_passive_scan
)
2580 CALL_RXH(ieee80211_rx_h_check
)
2582 ieee80211_rx_reorder_ampdu(rx
);
2584 ieee80211_rx_handlers(rx
);
2588 ieee80211_rx_handlers_result(rx
, res
);
2594 * This function makes calls into the RX path, therefore
2595 * it has to be invoked under RCU read lock.
2597 void ieee80211_release_reorder_timeout(struct sta_info
*sta
, int tid
)
2599 struct ieee80211_rx_data rx
= {
2601 .sdata
= sta
->sdata
,
2602 .local
= sta
->local
,
2603 /* This is OK -- must be QoS data frame */
2604 .security_idx
= tid
,
2608 struct tid_ampdu_rx
*tid_agg_rx
;
2610 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
2614 spin_lock(&tid_agg_rx
->reorder_lock
);
2615 ieee80211_sta_reorder_release(&sta
->local
->hw
, tid_agg_rx
);
2616 spin_unlock(&tid_agg_rx
->reorder_lock
);
2618 ieee80211_rx_handlers(&rx
);
2621 /* main receive path */
2623 static int prepare_for_handlers(struct ieee80211_rx_data
*rx
,
2624 struct ieee80211_hdr
*hdr
)
2626 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2627 struct sk_buff
*skb
= rx
->skb
;
2628 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2629 u8
*bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
2630 int multicast
= is_multicast_ether_addr(hdr
->addr1
);
2632 switch (sdata
->vif
.type
) {
2633 case NL80211_IFTYPE_STATION
:
2634 if (!bssid
&& !sdata
->u
.mgd
.use_4addr
)
2637 compare_ether_addr(sdata
->vif
.addr
, hdr
->addr1
) != 0) {
2638 if (!(sdata
->dev
->flags
& IFF_PROMISC
) ||
2639 sdata
->u
.mgd
.use_4addr
)
2641 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2644 case NL80211_IFTYPE_ADHOC
:
2647 if (ieee80211_is_beacon(hdr
->frame_control
)) {
2650 else if (!ieee80211_bssid_match(bssid
, sdata
->u
.ibss
.bssid
)) {
2651 if (!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
))
2653 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2654 } else if (!multicast
&&
2655 compare_ether_addr(sdata
->vif
.addr
,
2657 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
2659 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2660 } else if (!rx
->sta
) {
2662 if (status
->flag
& RX_FLAG_HT
)
2663 rate_idx
= 0; /* TODO: HT rates */
2665 rate_idx
= status
->rate_idx
;
2666 rx
->sta
= ieee80211_ibss_add_sta(sdata
, bssid
,
2667 hdr
->addr2
, BIT(rate_idx
), GFP_ATOMIC
);
2670 case NL80211_IFTYPE_MESH_POINT
:
2672 compare_ether_addr(sdata
->vif
.addr
,
2674 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
2677 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2680 case NL80211_IFTYPE_AP_VLAN
:
2681 case NL80211_IFTYPE_AP
:
2683 if (compare_ether_addr(sdata
->vif
.addr
,
2686 } else if (!ieee80211_bssid_match(bssid
,
2688 if (!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
) &&
2689 !ieee80211_is_beacon(hdr
->frame_control
))
2691 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2694 case NL80211_IFTYPE_WDS
:
2695 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
2697 if (compare_ether_addr(sdata
->u
.wds
.remote_addr
, hdr
->addr2
))
2701 /* should never get here */
2710 * This function returns whether or not the SKB
2711 * was destined for RX processing or not, which,
2712 * if consume is true, is equivalent to whether
2713 * or not the skb was consumed.
2715 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data
*rx
,
2716 struct sk_buff
*skb
, bool consume
)
2718 struct ieee80211_local
*local
= rx
->local
;
2719 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2720 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2721 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
2725 status
->rx_flags
|= IEEE80211_RX_RA_MATCH
;
2726 prepares
= prepare_for_handlers(rx
, hdr
);
2732 skb
= skb_copy(skb
, GFP_ATOMIC
);
2734 if (net_ratelimit())
2735 wiphy_debug(local
->hw
.wiphy
,
2736 "failed to copy skb for %s\n",
2744 ieee80211_invoke_rx_handlers(rx
);
2749 * This is the actual Rx frames handler. as it blongs to Rx path it must
2750 * be called with rcu_read_lock protection.
2752 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
2753 struct sk_buff
*skb
)
2755 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2756 struct ieee80211_local
*local
= hw_to_local(hw
);
2757 struct ieee80211_sub_if_data
*sdata
;
2758 struct ieee80211_hdr
*hdr
;
2760 struct ieee80211_rx_data rx
;
2761 struct ieee80211_sub_if_data
*prev
;
2762 struct sta_info
*sta
, *tmp
, *prev_sta
;
2765 fc
= ((struct ieee80211_hdr
*)skb
->data
)->frame_control
;
2766 memset(&rx
, 0, sizeof(rx
));
2770 if (ieee80211_is_data(fc
) || ieee80211_is_mgmt(fc
))
2771 local
->dot11ReceivedFragmentCount
++;
2773 if (unlikely(test_bit(SCAN_HW_SCANNING
, &local
->scanning
) ||
2774 test_bit(SCAN_SW_SCANNING
, &local
->scanning
)))
2775 status
->rx_flags
|= IEEE80211_RX_IN_SCAN
;
2777 if (ieee80211_is_mgmt(fc
))
2778 err
= skb_linearize(skb
);
2780 err
= !pskb_may_pull(skb
, ieee80211_hdrlen(fc
));
2787 hdr
= (struct ieee80211_hdr
*)skb
->data
;
2788 ieee80211_parse_qos(&rx
);
2789 ieee80211_verify_alignment(&rx
);
2791 if (ieee80211_is_data(fc
)) {
2794 for_each_sta_info(local
, hdr
->addr2
, sta
, tmp
) {
2801 rx
.sdata
= prev_sta
->sdata
;
2802 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
2809 rx
.sdata
= prev_sta
->sdata
;
2811 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
2819 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
2820 if (!ieee80211_sdata_running(sdata
))
2823 if (sdata
->vif
.type
== NL80211_IFTYPE_MONITOR
||
2824 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
2828 * frame is destined for this interface, but if it's
2829 * not also for the previous one we handle that after
2830 * the loop to avoid copying the SKB once too much
2838 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
2840 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
2846 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
2849 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
2858 * This is the receive path handler. It is called by a low level driver when an
2859 * 802.11 MPDU is received from the hardware.
2861 void ieee80211_rx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
2863 struct ieee80211_local
*local
= hw_to_local(hw
);
2864 struct ieee80211_rate
*rate
= NULL
;
2865 struct ieee80211_supported_band
*sband
;
2866 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2868 WARN_ON_ONCE(softirq_count() == 0);
2870 if (WARN_ON(status
->band
< 0 ||
2871 status
->band
>= IEEE80211_NUM_BANDS
))
2874 sband
= local
->hw
.wiphy
->bands
[status
->band
];
2875 if (WARN_ON(!sband
))
2879 * If we're suspending, it is possible although not too likely
2880 * that we'd be receiving frames after having already partially
2881 * quiesced the stack. We can't process such frames then since
2882 * that might, for example, cause stations to be added or other
2883 * driver callbacks be invoked.
2885 if (unlikely(local
->quiescing
|| local
->suspended
))
2889 * The same happens when we're not even started,
2890 * but that's worth a warning.
2892 if (WARN_ON(!local
->started
))
2895 if (likely(!(status
->flag
& RX_FLAG_FAILED_PLCP_CRC
))) {
2897 * Validate the rate, unless a PLCP error means that
2898 * we probably can't have a valid rate here anyway.
2901 if (status
->flag
& RX_FLAG_HT
) {
2903 * rate_idx is MCS index, which can be [0-76]
2906 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2908 * Anything else would be some sort of driver or
2909 * hardware error. The driver should catch hardware
2912 if (WARN((status
->rate_idx
< 0 ||
2913 status
->rate_idx
> 76),
2914 "Rate marked as an HT rate but passed "
2915 "status->rate_idx is not "
2916 "an MCS index [0-76]: %d (0x%02x)\n",
2921 if (WARN_ON(status
->rate_idx
< 0 ||
2922 status
->rate_idx
>= sband
->n_bitrates
))
2924 rate
= &sband
->bitrates
[status
->rate_idx
];
2928 status
->rx_flags
= 0;
2931 * key references and virtual interfaces are protected using RCU
2932 * and this requires that we are in a read-side RCU section during
2933 * receive processing
2938 * Frames with failed FCS/PLCP checksum are not returned,
2939 * all other frames are returned without radiotap header
2940 * if it was previously present.
2941 * Also, frames with less than 16 bytes are dropped.
2943 skb
= ieee80211_rx_monitor(local
, skb
, rate
);
2949 ieee80211_tpt_led_trig_rx(local
,
2950 ((struct ieee80211_hdr
*)skb
->data
)->frame_control
,
2952 __ieee80211_rx_handle_packet(hw
, skb
);
2960 EXPORT_SYMBOL(ieee80211_rx
);
2962 /* This is a version of the rx handler that can be called from hard irq
2963 * context. Post the skb on the queue and schedule the tasklet */
2964 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
2966 struct ieee80211_local
*local
= hw_to_local(hw
);
2968 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
2970 skb
->pkt_type
= IEEE80211_RX_MSG
;
2971 skb_queue_tail(&local
->skb_queue
, skb
);
2972 tasklet_schedule(&local
->tasklet
);
2974 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);