si4713-i2c: avoid potential buffer overflow on si4713
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / soc / soc-cache.c
blob5d76da43b14c1ddfa0e53c0c60a358263bb7d488
1 /*
2 * soc-cache.c -- ASoC register cache helpers
4 * Copyright 2009 Wolfson Microelectronics PLC.
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
14 #include <linux/i2c.h>
15 #include <linux/spi/spi.h>
16 #include <sound/soc.h>
17 #include <linux/lzo.h>
18 #include <linux/bitmap.h>
19 #include <linux/rbtree.h>
21 #include <trace/events/asoc.h>
23 static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
24 unsigned int reg)
26 int ret;
27 unsigned int val;
29 if (reg >= codec->driver->reg_cache_size ||
30 snd_soc_codec_volatile_register(codec, reg) ||
31 codec->cache_bypass) {
32 if (codec->cache_only)
33 return -1;
35 BUG_ON(!codec->hw_read);
36 return codec->hw_read(codec, reg);
39 ret = snd_soc_cache_read(codec, reg, &val);
40 if (ret < 0)
41 return -1;
42 return val;
45 static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
46 unsigned int value)
48 u8 data[2];
49 int ret;
51 data[0] = (reg << 4) | ((value >> 8) & 0x000f);
52 data[1] = value & 0x00ff;
54 if (!snd_soc_codec_volatile_register(codec, reg) &&
55 reg < codec->driver->reg_cache_size &&
56 !codec->cache_bypass) {
57 ret = snd_soc_cache_write(codec, reg, value);
58 if (ret < 0)
59 return -1;
62 if (codec->cache_only) {
63 codec->cache_sync = 1;
64 return 0;
67 ret = codec->hw_write(codec->control_data, data, 2);
68 if (ret == 2)
69 return 0;
70 if (ret < 0)
71 return ret;
72 else
73 return -EIO;
76 #if defined(CONFIG_SPI_MASTER)
77 static int snd_soc_4_12_spi_write(void *control_data, const char *data,
78 int len)
80 struct spi_device *spi = control_data;
81 struct spi_transfer t;
82 struct spi_message m;
83 u8 msg[2];
85 if (len <= 0)
86 return 0;
88 msg[0] = data[1];
89 msg[1] = data[0];
91 spi_message_init(&m);
92 memset(&t, 0, sizeof t);
94 t.tx_buf = &msg[0];
95 t.len = len;
97 spi_message_add_tail(&t, &m);
98 spi_sync(spi, &m);
100 return len;
102 #else
103 #define snd_soc_4_12_spi_write NULL
104 #endif
106 static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
107 unsigned int reg)
109 int ret;
110 unsigned int val;
112 if (reg >= codec->driver->reg_cache_size ||
113 snd_soc_codec_volatile_register(codec, reg) ||
114 codec->cache_bypass) {
115 if (codec->cache_only)
116 return -1;
118 BUG_ON(!codec->hw_read);
119 return codec->hw_read(codec, reg);
122 ret = snd_soc_cache_read(codec, reg, &val);
123 if (ret < 0)
124 return -1;
125 return val;
128 static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
129 unsigned int value)
131 u8 data[2];
132 int ret;
134 data[0] = (reg << 1) | ((value >> 8) & 0x0001);
135 data[1] = value & 0x00ff;
137 if (!snd_soc_codec_volatile_register(codec, reg) &&
138 reg < codec->driver->reg_cache_size &&
139 !codec->cache_bypass) {
140 ret = snd_soc_cache_write(codec, reg, value);
141 if (ret < 0)
142 return -1;
145 if (codec->cache_only) {
146 codec->cache_sync = 1;
147 return 0;
150 ret = codec->hw_write(codec->control_data, data, 2);
151 if (ret == 2)
152 return 0;
153 if (ret < 0)
154 return ret;
155 else
156 return -EIO;
159 #if defined(CONFIG_SPI_MASTER)
160 static int snd_soc_7_9_spi_write(void *control_data, const char *data,
161 int len)
163 struct spi_device *spi = control_data;
164 struct spi_transfer t;
165 struct spi_message m;
166 u8 msg[2];
168 if (len <= 0)
169 return 0;
171 msg[0] = data[0];
172 msg[1] = data[1];
174 spi_message_init(&m);
175 memset(&t, 0, sizeof t);
177 t.tx_buf = &msg[0];
178 t.len = len;
180 spi_message_add_tail(&t, &m);
181 spi_sync(spi, &m);
183 return len;
185 #else
186 #define snd_soc_7_9_spi_write NULL
187 #endif
189 static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
190 unsigned int value)
192 u8 data[2];
193 int ret;
195 reg &= 0xff;
196 data[0] = reg;
197 data[1] = value & 0xff;
199 if (!snd_soc_codec_volatile_register(codec, reg) &&
200 reg < codec->driver->reg_cache_size &&
201 !codec->cache_bypass) {
202 ret = snd_soc_cache_write(codec, reg, value);
203 if (ret < 0)
204 return -1;
207 if (codec->cache_only) {
208 codec->cache_sync = 1;
209 return 0;
212 if (codec->hw_write(codec->control_data, data, 2) == 2)
213 return 0;
214 else
215 return -EIO;
218 static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
219 unsigned int reg)
221 int ret;
222 unsigned int val;
224 reg &= 0xff;
225 if (reg >= codec->driver->reg_cache_size ||
226 snd_soc_codec_volatile_register(codec, reg) ||
227 codec->cache_bypass) {
228 if (codec->cache_only)
229 return -1;
231 BUG_ON(!codec->hw_read);
232 return codec->hw_read(codec, reg);
235 ret = snd_soc_cache_read(codec, reg, &val);
236 if (ret < 0)
237 return -1;
238 return val;
241 #if defined(CONFIG_SPI_MASTER)
242 static int snd_soc_8_8_spi_write(void *control_data, const char *data,
243 int len)
245 struct spi_device *spi = control_data;
246 struct spi_transfer t;
247 struct spi_message m;
248 u8 msg[2];
250 if (len <= 0)
251 return 0;
253 msg[0] = data[0];
254 msg[1] = data[1];
256 spi_message_init(&m);
257 memset(&t, 0, sizeof t);
259 t.tx_buf = &msg[0];
260 t.len = len;
262 spi_message_add_tail(&t, &m);
263 spi_sync(spi, &m);
265 return len;
267 #else
268 #define snd_soc_8_8_spi_write NULL
269 #endif
271 static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
272 unsigned int value)
274 u8 data[3];
275 int ret;
277 data[0] = reg;
278 data[1] = (value >> 8) & 0xff;
279 data[2] = value & 0xff;
281 if (!snd_soc_codec_volatile_register(codec, reg) &&
282 reg < codec->driver->reg_cache_size &&
283 !codec->cache_bypass) {
284 ret = snd_soc_cache_write(codec, reg, value);
285 if (ret < 0)
286 return -1;
289 if (codec->cache_only) {
290 codec->cache_sync = 1;
291 return 0;
294 if (codec->hw_write(codec->control_data, data, 3) == 3)
295 return 0;
296 else
297 return -EIO;
300 static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
301 unsigned int reg)
303 int ret;
304 unsigned int val;
306 if (reg >= codec->driver->reg_cache_size ||
307 snd_soc_codec_volatile_register(codec, reg) ||
308 codec->cache_bypass) {
309 if (codec->cache_only)
310 return -1;
312 BUG_ON(!codec->hw_read);
313 return codec->hw_read(codec, reg);
316 ret = snd_soc_cache_read(codec, reg, &val);
317 if (ret < 0)
318 return -1;
319 return val;
322 #if defined(CONFIG_SPI_MASTER)
323 static int snd_soc_8_16_spi_write(void *control_data, const char *data,
324 int len)
326 struct spi_device *spi = control_data;
327 struct spi_transfer t;
328 struct spi_message m;
329 u8 msg[3];
331 if (len <= 0)
332 return 0;
334 msg[0] = data[0];
335 msg[1] = data[1];
336 msg[2] = data[2];
338 spi_message_init(&m);
339 memset(&t, 0, sizeof t);
341 t.tx_buf = &msg[0];
342 t.len = len;
344 spi_message_add_tail(&t, &m);
345 spi_sync(spi, &m);
347 return len;
349 #else
350 #define snd_soc_8_16_spi_write NULL
351 #endif
353 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
354 static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
355 unsigned int r)
357 struct i2c_msg xfer[2];
358 u8 reg = r;
359 u8 data;
360 int ret;
361 struct i2c_client *client = codec->control_data;
363 /* Write register */
364 xfer[0].addr = client->addr;
365 xfer[0].flags = 0;
366 xfer[0].len = 1;
367 xfer[0].buf = &reg;
369 /* Read data */
370 xfer[1].addr = client->addr;
371 xfer[1].flags = I2C_M_RD;
372 xfer[1].len = 1;
373 xfer[1].buf = &data;
375 ret = i2c_transfer(client->adapter, xfer, 2);
376 if (ret != 2) {
377 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
378 return 0;
381 return data;
383 #else
384 #define snd_soc_8_8_read_i2c NULL
385 #endif
387 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
388 static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
389 unsigned int r)
391 struct i2c_msg xfer[2];
392 u8 reg = r;
393 u16 data;
394 int ret;
395 struct i2c_client *client = codec->control_data;
397 /* Write register */
398 xfer[0].addr = client->addr;
399 xfer[0].flags = 0;
400 xfer[0].len = 1;
401 xfer[0].buf = &reg;
403 /* Read data */
404 xfer[1].addr = client->addr;
405 xfer[1].flags = I2C_M_RD;
406 xfer[1].len = 2;
407 xfer[1].buf = (u8 *)&data;
409 ret = i2c_transfer(client->adapter, xfer, 2);
410 if (ret != 2) {
411 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
412 return 0;
415 return (data >> 8) | ((data & 0xff) << 8);
417 #else
418 #define snd_soc_8_16_read_i2c NULL
419 #endif
421 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
422 static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
423 unsigned int r)
425 struct i2c_msg xfer[2];
426 u16 reg = r;
427 u8 data;
428 int ret;
429 struct i2c_client *client = codec->control_data;
431 /* Write register */
432 xfer[0].addr = client->addr;
433 xfer[0].flags = 0;
434 xfer[0].len = 2;
435 xfer[0].buf = (u8 *)&reg;
437 /* Read data */
438 xfer[1].addr = client->addr;
439 xfer[1].flags = I2C_M_RD;
440 xfer[1].len = 1;
441 xfer[1].buf = &data;
443 ret = i2c_transfer(client->adapter, xfer, 2);
444 if (ret != 2) {
445 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
446 return 0;
449 return data;
451 #else
452 #define snd_soc_16_8_read_i2c NULL
453 #endif
455 static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
456 unsigned int reg)
458 int ret;
459 unsigned int val;
461 reg &= 0xff;
462 if (reg >= codec->driver->reg_cache_size ||
463 snd_soc_codec_volatile_register(codec, reg) ||
464 codec->cache_bypass) {
465 if (codec->cache_only)
466 return -1;
468 BUG_ON(!codec->hw_read);
469 return codec->hw_read(codec, reg);
472 ret = snd_soc_cache_read(codec, reg, &val);
473 if (ret < 0)
474 return -1;
475 return val;
478 static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
479 unsigned int value)
481 u8 data[3];
482 int ret;
484 data[0] = (reg >> 8) & 0xff;
485 data[1] = reg & 0xff;
486 data[2] = value;
488 reg &= 0xff;
489 if (!snd_soc_codec_volatile_register(codec, reg) &&
490 reg < codec->driver->reg_cache_size &&
491 !codec->cache_bypass) {
492 ret = snd_soc_cache_write(codec, reg, value);
493 if (ret < 0)
494 return -1;
497 if (codec->cache_only) {
498 codec->cache_sync = 1;
499 return 0;
502 ret = codec->hw_write(codec->control_data, data, 3);
503 if (ret == 3)
504 return 0;
505 if (ret < 0)
506 return ret;
507 else
508 return -EIO;
511 #if defined(CONFIG_SPI_MASTER)
512 static int snd_soc_16_8_spi_write(void *control_data, const char *data,
513 int len)
515 struct spi_device *spi = control_data;
516 struct spi_transfer t;
517 struct spi_message m;
518 u8 msg[3];
520 if (len <= 0)
521 return 0;
523 msg[0] = data[0];
524 msg[1] = data[1];
525 msg[2] = data[2];
527 spi_message_init(&m);
528 memset(&t, 0, sizeof t);
530 t.tx_buf = &msg[0];
531 t.len = len;
533 spi_message_add_tail(&t, &m);
534 spi_sync(spi, &m);
536 return len;
538 #else
539 #define snd_soc_16_8_spi_write NULL
540 #endif
542 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
543 static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
544 unsigned int r)
546 struct i2c_msg xfer[2];
547 u16 reg = cpu_to_be16(r);
548 u16 data;
549 int ret;
550 struct i2c_client *client = codec->control_data;
552 /* Write register */
553 xfer[0].addr = client->addr;
554 xfer[0].flags = 0;
555 xfer[0].len = 2;
556 xfer[0].buf = (u8 *)&reg;
558 /* Read data */
559 xfer[1].addr = client->addr;
560 xfer[1].flags = I2C_M_RD;
561 xfer[1].len = 2;
562 xfer[1].buf = (u8 *)&data;
564 ret = i2c_transfer(client->adapter, xfer, 2);
565 if (ret != 2) {
566 dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
567 return 0;
570 return be16_to_cpu(data);
572 #else
573 #define snd_soc_16_16_read_i2c NULL
574 #endif
576 static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
577 unsigned int reg)
579 int ret;
580 unsigned int val;
582 if (reg >= codec->driver->reg_cache_size ||
583 snd_soc_codec_volatile_register(codec, reg) ||
584 codec->cache_bypass) {
585 if (codec->cache_only)
586 return -1;
588 BUG_ON(!codec->hw_read);
589 return codec->hw_read(codec, reg);
592 ret = snd_soc_cache_read(codec, reg, &val);
593 if (ret < 0)
594 return -1;
596 return val;
599 static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
600 unsigned int value)
602 u8 data[4];
603 int ret;
605 data[0] = (reg >> 8) & 0xff;
606 data[1] = reg & 0xff;
607 data[2] = (value >> 8) & 0xff;
608 data[3] = value & 0xff;
610 if (!snd_soc_codec_volatile_register(codec, reg) &&
611 reg < codec->driver->reg_cache_size &&
612 !codec->cache_bypass) {
613 ret = snd_soc_cache_write(codec, reg, value);
614 if (ret < 0)
615 return -1;
618 if (codec->cache_only) {
619 codec->cache_sync = 1;
620 return 0;
623 ret = codec->hw_write(codec->control_data, data, 4);
624 if (ret == 4)
625 return 0;
626 if (ret < 0)
627 return ret;
628 else
629 return -EIO;
632 #if defined(CONFIG_SPI_MASTER)
633 static int snd_soc_16_16_spi_write(void *control_data, const char *data,
634 int len)
636 struct spi_device *spi = control_data;
637 struct spi_transfer t;
638 struct spi_message m;
639 u8 msg[4];
641 if (len <= 0)
642 return 0;
644 msg[0] = data[0];
645 msg[1] = data[1];
646 msg[2] = data[2];
647 msg[3] = data[3];
649 spi_message_init(&m);
650 memset(&t, 0, sizeof t);
652 t.tx_buf = &msg[0];
653 t.len = len;
655 spi_message_add_tail(&t, &m);
656 spi_sync(spi, &m);
658 return len;
660 #else
661 #define snd_soc_16_16_spi_write NULL
662 #endif
664 static struct {
665 int addr_bits;
666 int data_bits;
667 int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
668 int (*spi_write)(void *, const char *, int);
669 unsigned int (*read)(struct snd_soc_codec *, unsigned int);
670 unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
671 } io_types[] = {
673 .addr_bits = 4, .data_bits = 12,
674 .write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
675 .spi_write = snd_soc_4_12_spi_write,
678 .addr_bits = 7, .data_bits = 9,
679 .write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
680 .spi_write = snd_soc_7_9_spi_write,
683 .addr_bits = 8, .data_bits = 8,
684 .write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
685 .i2c_read = snd_soc_8_8_read_i2c,
686 .spi_write = snd_soc_8_8_spi_write,
689 .addr_bits = 8, .data_bits = 16,
690 .write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
691 .i2c_read = snd_soc_8_16_read_i2c,
692 .spi_write = snd_soc_8_16_spi_write,
695 .addr_bits = 16, .data_bits = 8,
696 .write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
697 .i2c_read = snd_soc_16_8_read_i2c,
698 .spi_write = snd_soc_16_8_spi_write,
701 .addr_bits = 16, .data_bits = 16,
702 .write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
703 .i2c_read = snd_soc_16_16_read_i2c,
704 .spi_write = snd_soc_16_16_spi_write,
709 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
711 * @codec: CODEC to configure.
712 * @type: Type of cache.
713 * @addr_bits: Number of bits of register address data.
714 * @data_bits: Number of bits of data per register.
715 * @control: Control bus used.
717 * Register formats are frequently shared between many I2C and SPI
718 * devices. In order to promote code reuse the ASoC core provides
719 * some standard implementations of CODEC read and write operations
720 * which can be set up using this function.
722 * The caller is responsible for allocating and initialising the
723 * actual cache.
725 * Note that at present this code cannot be used by CODECs with
726 * volatile registers.
728 int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
729 int addr_bits, int data_bits,
730 enum snd_soc_control_type control)
732 int i;
734 for (i = 0; i < ARRAY_SIZE(io_types); i++)
735 if (io_types[i].addr_bits == addr_bits &&
736 io_types[i].data_bits == data_bits)
737 break;
738 if (i == ARRAY_SIZE(io_types)) {
739 printk(KERN_ERR
740 "No I/O functions for %d bit address %d bit data\n",
741 addr_bits, data_bits);
742 return -EINVAL;
745 codec->write = io_types[i].write;
746 codec->read = io_types[i].read;
748 switch (control) {
749 case SND_SOC_CUSTOM:
750 break;
752 case SND_SOC_I2C:
753 #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
754 codec->hw_write = (hw_write_t)i2c_master_send;
755 #endif
756 if (io_types[i].i2c_read)
757 codec->hw_read = io_types[i].i2c_read;
759 codec->control_data = container_of(codec->dev,
760 struct i2c_client,
761 dev);
762 break;
764 case SND_SOC_SPI:
765 if (io_types[i].spi_write)
766 codec->hw_write = io_types[i].spi_write;
768 codec->control_data = container_of(codec->dev,
769 struct spi_device,
770 dev);
771 break;
774 return 0;
776 EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
778 static bool snd_soc_set_cache_val(void *base, unsigned int idx,
779 unsigned int val, unsigned int word_size)
781 switch (word_size) {
782 case 1: {
783 u8 *cache = base;
784 if (cache[idx] == val)
785 return true;
786 cache[idx] = val;
787 break;
789 case 2: {
790 u16 *cache = base;
791 if (cache[idx] == val)
792 return true;
793 cache[idx] = val;
794 break;
796 default:
797 BUG();
799 return false;
802 static unsigned int snd_soc_get_cache_val(const void *base, unsigned int idx,
803 unsigned int word_size)
805 switch (word_size) {
806 case 1: {
807 const u8 *cache = base;
808 return cache[idx];
810 case 2: {
811 const u16 *cache = base;
812 return cache[idx];
814 default:
815 BUG();
817 /* unreachable */
818 return -1;
821 struct snd_soc_rbtree_node {
822 struct rb_node node;
823 unsigned int reg;
824 unsigned int value;
825 unsigned int defval;
826 } __attribute__ ((packed));
828 struct snd_soc_rbtree_ctx {
829 struct rb_root root;
832 static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
833 struct rb_root *root, unsigned int reg)
835 struct rb_node *node;
836 struct snd_soc_rbtree_node *rbnode;
838 node = root->rb_node;
839 while (node) {
840 rbnode = container_of(node, struct snd_soc_rbtree_node, node);
841 if (rbnode->reg < reg)
842 node = node->rb_left;
843 else if (rbnode->reg > reg)
844 node = node->rb_right;
845 else
846 return rbnode;
849 return NULL;
852 static int snd_soc_rbtree_insert(struct rb_root *root,
853 struct snd_soc_rbtree_node *rbnode)
855 struct rb_node **new, *parent;
856 struct snd_soc_rbtree_node *rbnode_tmp;
858 parent = NULL;
859 new = &root->rb_node;
860 while (*new) {
861 rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
862 node);
863 parent = *new;
864 if (rbnode_tmp->reg < rbnode->reg)
865 new = &((*new)->rb_left);
866 else if (rbnode_tmp->reg > rbnode->reg)
867 new = &((*new)->rb_right);
868 else
869 return 0;
872 /* insert the node into the rbtree */
873 rb_link_node(&rbnode->node, parent, new);
874 rb_insert_color(&rbnode->node, root);
876 return 1;
879 static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
881 struct snd_soc_rbtree_ctx *rbtree_ctx;
882 struct rb_node *node;
883 struct snd_soc_rbtree_node *rbnode;
884 unsigned int val;
885 int ret;
887 rbtree_ctx = codec->reg_cache;
888 for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
889 rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
890 if (rbnode->value == rbnode->defval)
891 continue;
892 ret = snd_soc_cache_read(codec, rbnode->reg, &val);
893 if (ret)
894 return ret;
895 codec->cache_bypass = 1;
896 ret = snd_soc_write(codec, rbnode->reg, val);
897 codec->cache_bypass = 0;
898 if (ret)
899 return ret;
900 dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
901 rbnode->reg, val);
904 return 0;
907 static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
908 unsigned int reg, unsigned int value)
910 struct snd_soc_rbtree_ctx *rbtree_ctx;
911 struct snd_soc_rbtree_node *rbnode;
913 rbtree_ctx = codec->reg_cache;
914 rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
915 if (rbnode) {
916 if (rbnode->value == value)
917 return 0;
918 rbnode->value = value;
919 } else {
920 /* bail out early, no need to create the rbnode yet */
921 if (!value)
922 return 0;
924 * for uninitialized registers whose value is changed
925 * from the default zero, create an rbnode and insert
926 * it into the tree.
928 rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
929 if (!rbnode)
930 return -ENOMEM;
931 rbnode->reg = reg;
932 rbnode->value = value;
933 snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
936 return 0;
939 static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
940 unsigned int reg, unsigned int *value)
942 struct snd_soc_rbtree_ctx *rbtree_ctx;
943 struct snd_soc_rbtree_node *rbnode;
945 rbtree_ctx = codec->reg_cache;
946 rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
947 if (rbnode) {
948 *value = rbnode->value;
949 } else {
950 /* uninitialized registers default to 0 */
951 *value = 0;
954 return 0;
957 static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
959 struct rb_node *next;
960 struct snd_soc_rbtree_ctx *rbtree_ctx;
961 struct snd_soc_rbtree_node *rbtree_node;
963 /* if we've already been called then just return */
964 rbtree_ctx = codec->reg_cache;
965 if (!rbtree_ctx)
966 return 0;
968 /* free up the rbtree */
969 next = rb_first(&rbtree_ctx->root);
970 while (next) {
971 rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
972 next = rb_next(&rbtree_node->node);
973 rb_erase(&rbtree_node->node, &rbtree_ctx->root);
974 kfree(rbtree_node);
977 /* release the resources */
978 kfree(codec->reg_cache);
979 codec->reg_cache = NULL;
981 return 0;
984 static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
986 struct snd_soc_rbtree_node *rbtree_node;
987 struct snd_soc_rbtree_ctx *rbtree_ctx;
988 unsigned int val;
989 unsigned int word_size;
990 int i;
991 int ret;
993 codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
994 if (!codec->reg_cache)
995 return -ENOMEM;
997 rbtree_ctx = codec->reg_cache;
998 rbtree_ctx->root = RB_ROOT;
1000 if (!codec->reg_def_copy)
1001 return 0;
1004 * populate the rbtree with the initialized registers. All other
1005 * registers will be inserted when they are first modified.
1007 word_size = codec->driver->reg_word_size;
1008 for (i = 0; i < codec->driver->reg_cache_size; ++i) {
1009 val = snd_soc_get_cache_val(codec->reg_def_copy, i, word_size);
1010 if (!val)
1011 continue;
1012 rbtree_node = kzalloc(sizeof *rbtree_node, GFP_KERNEL);
1013 if (!rbtree_node) {
1014 ret = -ENOMEM;
1015 snd_soc_cache_exit(codec);
1016 break;
1018 rbtree_node->reg = i;
1019 rbtree_node->value = val;
1020 rbtree_node->defval = val;
1021 snd_soc_rbtree_insert(&rbtree_ctx->root, rbtree_node);
1024 return 0;
1027 #ifdef CONFIG_SND_SOC_CACHE_LZO
1028 struct snd_soc_lzo_ctx {
1029 void *wmem;
1030 void *dst;
1031 const void *src;
1032 size_t src_len;
1033 size_t dst_len;
1034 size_t decompressed_size;
1035 unsigned long *sync_bmp;
1036 int sync_bmp_nbits;
1039 #define LZO_BLOCK_NUM 8
1040 static int snd_soc_lzo_block_count(void)
1042 return LZO_BLOCK_NUM;
1045 static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
1047 lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
1048 if (!lzo_ctx->wmem)
1049 return -ENOMEM;
1050 return 0;
1053 static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
1055 size_t compress_size;
1056 int ret;
1058 ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
1059 lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
1060 if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
1061 return -EINVAL;
1062 lzo_ctx->dst_len = compress_size;
1063 return 0;
1066 static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
1068 size_t dst_len;
1069 int ret;
1071 dst_len = lzo_ctx->dst_len;
1072 ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
1073 lzo_ctx->dst, &dst_len);
1074 if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
1075 return -EINVAL;
1076 return 0;
1079 static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
1080 struct snd_soc_lzo_ctx *lzo_ctx)
1082 int ret;
1084 lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
1085 lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
1086 if (!lzo_ctx->dst) {
1087 lzo_ctx->dst_len = 0;
1088 return -ENOMEM;
1091 ret = snd_soc_lzo_compress(lzo_ctx);
1092 if (ret < 0)
1093 return ret;
1094 return 0;
1097 static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
1098 struct snd_soc_lzo_ctx *lzo_ctx)
1100 int ret;
1102 lzo_ctx->dst_len = lzo_ctx->decompressed_size;
1103 lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
1104 if (!lzo_ctx->dst) {
1105 lzo_ctx->dst_len = 0;
1106 return -ENOMEM;
1109 ret = snd_soc_lzo_decompress(lzo_ctx);
1110 if (ret < 0)
1111 return ret;
1112 return 0;
1115 static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
1116 unsigned int reg)
1118 const struct snd_soc_codec_driver *codec_drv;
1120 codec_drv = codec->driver;
1121 return (reg * codec_drv->reg_word_size) /
1122 DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
1125 static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
1126 unsigned int reg)
1128 const struct snd_soc_codec_driver *codec_drv;
1130 codec_drv = codec->driver;
1131 return reg % (DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count()) /
1132 codec_drv->reg_word_size);
1135 static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
1137 const struct snd_soc_codec_driver *codec_drv;
1139 codec_drv = codec->driver;
1140 return DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
1143 static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
1145 struct snd_soc_lzo_ctx **lzo_blocks;
1146 unsigned int val;
1147 int i;
1148 int ret;
1150 lzo_blocks = codec->reg_cache;
1151 for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
1152 ret = snd_soc_cache_read(codec, i, &val);
1153 if (ret)
1154 return ret;
1155 codec->cache_bypass = 1;
1156 ret = snd_soc_write(codec, i, val);
1157 codec->cache_bypass = 0;
1158 if (ret)
1159 return ret;
1160 dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
1161 i, val);
1164 return 0;
1167 static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
1168 unsigned int reg, unsigned int value)
1170 struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
1171 int ret, blkindex, blkpos;
1172 size_t blksize, tmp_dst_len;
1173 void *tmp_dst;
1175 /* index of the compressed lzo block */
1176 blkindex = snd_soc_lzo_get_blkindex(codec, reg);
1177 /* register index within the decompressed block */
1178 blkpos = snd_soc_lzo_get_blkpos(codec, reg);
1179 /* size of the compressed block */
1180 blksize = snd_soc_lzo_get_blksize(codec);
1181 lzo_blocks = codec->reg_cache;
1182 lzo_block = lzo_blocks[blkindex];
1184 /* save the pointer and length of the compressed block */
1185 tmp_dst = lzo_block->dst;
1186 tmp_dst_len = lzo_block->dst_len;
1188 /* prepare the source to be the compressed block */
1189 lzo_block->src = lzo_block->dst;
1190 lzo_block->src_len = lzo_block->dst_len;
1192 /* decompress the block */
1193 ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
1194 if (ret < 0) {
1195 kfree(lzo_block->dst);
1196 goto out;
1199 /* write the new value to the cache */
1200 if (snd_soc_set_cache_val(lzo_block->dst, blkpos, value,
1201 codec->driver->reg_word_size)) {
1202 kfree(lzo_block->dst);
1203 goto out;
1206 /* prepare the source to be the decompressed block */
1207 lzo_block->src = lzo_block->dst;
1208 lzo_block->src_len = lzo_block->dst_len;
1210 /* compress the block */
1211 ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
1212 if (ret < 0) {
1213 kfree(lzo_block->dst);
1214 kfree(lzo_block->src);
1215 goto out;
1218 /* set the bit so we know we have to sync this register */
1219 set_bit(reg, lzo_block->sync_bmp);
1220 kfree(tmp_dst);
1221 kfree(lzo_block->src);
1222 return 0;
1223 out:
1224 lzo_block->dst = tmp_dst;
1225 lzo_block->dst_len = tmp_dst_len;
1226 return ret;
1229 static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
1230 unsigned int reg, unsigned int *value)
1232 struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
1233 int ret, blkindex, blkpos;
1234 size_t blksize, tmp_dst_len;
1235 void *tmp_dst;
1237 *value = 0;
1238 /* index of the compressed lzo block */
1239 blkindex = snd_soc_lzo_get_blkindex(codec, reg);
1240 /* register index within the decompressed block */
1241 blkpos = snd_soc_lzo_get_blkpos(codec, reg);
1242 /* size of the compressed block */
1243 blksize = snd_soc_lzo_get_blksize(codec);
1244 lzo_blocks = codec->reg_cache;
1245 lzo_block = lzo_blocks[blkindex];
1247 /* save the pointer and length of the compressed block */
1248 tmp_dst = lzo_block->dst;
1249 tmp_dst_len = lzo_block->dst_len;
1251 /* prepare the source to be the compressed block */
1252 lzo_block->src = lzo_block->dst;
1253 lzo_block->src_len = lzo_block->dst_len;
1255 /* decompress the block */
1256 ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
1257 if (ret >= 0)
1258 /* fetch the value from the cache */
1259 *value = snd_soc_get_cache_val(lzo_block->dst, blkpos,
1260 codec->driver->reg_word_size);
1262 kfree(lzo_block->dst);
1263 /* restore the pointer and length of the compressed block */
1264 lzo_block->dst = tmp_dst;
1265 lzo_block->dst_len = tmp_dst_len;
1266 return 0;
1269 static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
1271 struct snd_soc_lzo_ctx **lzo_blocks;
1272 int i, blkcount;
1274 lzo_blocks = codec->reg_cache;
1275 if (!lzo_blocks)
1276 return 0;
1278 blkcount = snd_soc_lzo_block_count();
1280 * the pointer to the bitmap used for syncing the cache
1281 * is shared amongst all lzo_blocks. Ensure it is freed
1282 * only once.
1284 if (lzo_blocks[0])
1285 kfree(lzo_blocks[0]->sync_bmp);
1286 for (i = 0; i < blkcount; ++i) {
1287 if (lzo_blocks[i]) {
1288 kfree(lzo_blocks[i]->wmem);
1289 kfree(lzo_blocks[i]->dst);
1291 /* each lzo_block is a pointer returned by kmalloc or NULL */
1292 kfree(lzo_blocks[i]);
1294 kfree(lzo_blocks);
1295 codec->reg_cache = NULL;
1296 return 0;
1299 static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
1301 struct snd_soc_lzo_ctx **lzo_blocks;
1302 size_t bmp_size;
1303 const struct snd_soc_codec_driver *codec_drv;
1304 int ret, tofree, i, blksize, blkcount;
1305 const char *p, *end;
1306 unsigned long *sync_bmp;
1308 ret = 0;
1309 codec_drv = codec->driver;
1312 * If we have not been given a default register cache
1313 * then allocate a dummy zero-ed out region, compress it
1314 * and remember to free it afterwards.
1316 tofree = 0;
1317 if (!codec->reg_def_copy)
1318 tofree = 1;
1320 if (!codec->reg_def_copy) {
1321 codec->reg_def_copy = kzalloc(codec->reg_size, GFP_KERNEL);
1322 if (!codec->reg_def_copy)
1323 return -ENOMEM;
1326 blkcount = snd_soc_lzo_block_count();
1327 codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
1328 GFP_KERNEL);
1329 if (!codec->reg_cache) {
1330 ret = -ENOMEM;
1331 goto err_tofree;
1333 lzo_blocks = codec->reg_cache;
1336 * allocate a bitmap to be used when syncing the cache with
1337 * the hardware. Each time a register is modified, the corresponding
1338 * bit is set in the bitmap, so we know that we have to sync
1339 * that register.
1341 bmp_size = codec_drv->reg_cache_size;
1342 sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
1343 GFP_KERNEL);
1344 if (!sync_bmp) {
1345 ret = -ENOMEM;
1346 goto err;
1348 bitmap_zero(sync_bmp, bmp_size);
1350 /* allocate the lzo blocks and initialize them */
1351 for (i = 0; i < blkcount; ++i) {
1352 lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
1353 GFP_KERNEL);
1354 if (!lzo_blocks[i]) {
1355 kfree(sync_bmp);
1356 ret = -ENOMEM;
1357 goto err;
1359 lzo_blocks[i]->sync_bmp = sync_bmp;
1360 lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1361 /* alloc the working space for the compressed block */
1362 ret = snd_soc_lzo_prepare(lzo_blocks[i]);
1363 if (ret < 0)
1364 goto err;
1367 blksize = snd_soc_lzo_get_blksize(codec);
1368 p = codec->reg_def_copy;
1369 end = codec->reg_def_copy + codec->reg_size;
1370 /* compress the register map and fill the lzo blocks */
1371 for (i = 0; i < blkcount; ++i, p += blksize) {
1372 lzo_blocks[i]->src = p;
1373 if (p + blksize > end)
1374 lzo_blocks[i]->src_len = end - p;
1375 else
1376 lzo_blocks[i]->src_len = blksize;
1377 ret = snd_soc_lzo_compress_cache_block(codec,
1378 lzo_blocks[i]);
1379 if (ret < 0)
1380 goto err;
1381 lzo_blocks[i]->decompressed_size =
1382 lzo_blocks[i]->src_len;
1385 if (tofree) {
1386 kfree(codec->reg_def_copy);
1387 codec->reg_def_copy = NULL;
1389 return 0;
1390 err:
1391 snd_soc_cache_exit(codec);
1392 err_tofree:
1393 if (tofree) {
1394 kfree(codec->reg_def_copy);
1395 codec->reg_def_copy = NULL;
1397 return ret;
1399 #endif
1401 static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
1403 int i;
1404 int ret;
1405 const struct snd_soc_codec_driver *codec_drv;
1406 unsigned int val;
1408 codec_drv = codec->driver;
1409 for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1410 ret = snd_soc_cache_read(codec, i, &val);
1411 if (ret)
1412 return ret;
1413 if (codec->reg_def_copy)
1414 if (snd_soc_get_cache_val(codec->reg_def_copy,
1415 i, codec_drv->reg_word_size) == val)
1416 continue;
1417 ret = snd_soc_write(codec, i, val);
1418 if (ret)
1419 return ret;
1420 dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
1421 i, val);
1423 return 0;
1426 static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
1427 unsigned int reg, unsigned int value)
1429 snd_soc_set_cache_val(codec->reg_cache, reg, value,
1430 codec->driver->reg_word_size);
1431 return 0;
1434 static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
1435 unsigned int reg, unsigned int *value)
1437 *value = snd_soc_get_cache_val(codec->reg_cache, reg,
1438 codec->driver->reg_word_size);
1439 return 0;
1442 static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
1444 if (!codec->reg_cache)
1445 return 0;
1446 kfree(codec->reg_cache);
1447 codec->reg_cache = NULL;
1448 return 0;
1451 static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
1453 const struct snd_soc_codec_driver *codec_drv;
1455 codec_drv = codec->driver;
1457 if (codec->reg_def_copy)
1458 codec->reg_cache = kmemdup(codec->reg_def_copy,
1459 codec->reg_size, GFP_KERNEL);
1460 else
1461 codec->reg_cache = kzalloc(codec->reg_size, GFP_KERNEL);
1462 if (!codec->reg_cache)
1463 return -ENOMEM;
1465 return 0;
1468 /* an array of all supported compression types */
1469 static const struct snd_soc_cache_ops cache_types[] = {
1470 /* Flat *must* be the first entry for fallback */
1472 .id = SND_SOC_FLAT_COMPRESSION,
1473 .name = "flat",
1474 .init = snd_soc_flat_cache_init,
1475 .exit = snd_soc_flat_cache_exit,
1476 .read = snd_soc_flat_cache_read,
1477 .write = snd_soc_flat_cache_write,
1478 .sync = snd_soc_flat_cache_sync
1480 #ifdef CONFIG_SND_SOC_CACHE_LZO
1482 .id = SND_SOC_LZO_COMPRESSION,
1483 .name = "LZO",
1484 .init = snd_soc_lzo_cache_init,
1485 .exit = snd_soc_lzo_cache_exit,
1486 .read = snd_soc_lzo_cache_read,
1487 .write = snd_soc_lzo_cache_write,
1488 .sync = snd_soc_lzo_cache_sync
1490 #endif
1492 .id = SND_SOC_RBTREE_COMPRESSION,
1493 .name = "rbtree",
1494 .init = snd_soc_rbtree_cache_init,
1495 .exit = snd_soc_rbtree_cache_exit,
1496 .read = snd_soc_rbtree_cache_read,
1497 .write = snd_soc_rbtree_cache_write,
1498 .sync = snd_soc_rbtree_cache_sync
1502 int snd_soc_cache_init(struct snd_soc_codec *codec)
1504 int i;
1506 for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1507 if (cache_types[i].id == codec->compress_type)
1508 break;
1510 /* Fall back to flat compression */
1511 if (i == ARRAY_SIZE(cache_types)) {
1512 dev_warn(codec->dev, "Could not match compress type: %d\n",
1513 codec->compress_type);
1514 i = 0;
1517 mutex_init(&codec->cache_rw_mutex);
1518 codec->cache_ops = &cache_types[i];
1520 if (codec->cache_ops->init) {
1521 if (codec->cache_ops->name)
1522 dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
1523 codec->cache_ops->name, codec->name);
1524 return codec->cache_ops->init(codec);
1526 return -EINVAL;
1530 * NOTE: keep in mind that this function might be called
1531 * multiple times.
1533 int snd_soc_cache_exit(struct snd_soc_codec *codec)
1535 if (codec->cache_ops && codec->cache_ops->exit) {
1536 if (codec->cache_ops->name)
1537 dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
1538 codec->cache_ops->name, codec->name);
1539 return codec->cache_ops->exit(codec);
1541 return -EINVAL;
1545 * snd_soc_cache_read: Fetch the value of a given register from the cache.
1547 * @codec: CODEC to configure.
1548 * @reg: The register index.
1549 * @value: The value to be returned.
1551 int snd_soc_cache_read(struct snd_soc_codec *codec,
1552 unsigned int reg, unsigned int *value)
1554 int ret;
1556 mutex_lock(&codec->cache_rw_mutex);
1558 if (value && codec->cache_ops && codec->cache_ops->read) {
1559 ret = codec->cache_ops->read(codec, reg, value);
1560 mutex_unlock(&codec->cache_rw_mutex);
1561 return ret;
1564 mutex_unlock(&codec->cache_rw_mutex);
1565 return -EINVAL;
1567 EXPORT_SYMBOL_GPL(snd_soc_cache_read);
1570 * snd_soc_cache_write: Set the value of a given register in the cache.
1572 * @codec: CODEC to configure.
1573 * @reg: The register index.
1574 * @value: The new register value.
1576 int snd_soc_cache_write(struct snd_soc_codec *codec,
1577 unsigned int reg, unsigned int value)
1579 int ret;
1581 mutex_lock(&codec->cache_rw_mutex);
1583 if (codec->cache_ops && codec->cache_ops->write) {
1584 ret = codec->cache_ops->write(codec, reg, value);
1585 mutex_unlock(&codec->cache_rw_mutex);
1586 return ret;
1589 mutex_unlock(&codec->cache_rw_mutex);
1590 return -EINVAL;
1592 EXPORT_SYMBOL_GPL(snd_soc_cache_write);
1595 * snd_soc_cache_sync: Sync the register cache with the hardware.
1597 * @codec: CODEC to configure.
1599 * Any registers that should not be synced should be marked as
1600 * volatile. In general drivers can choose not to use the provided
1601 * syncing functionality if they so require.
1603 int snd_soc_cache_sync(struct snd_soc_codec *codec)
1605 int ret;
1606 const char *name;
1608 if (!codec->cache_sync) {
1609 return 0;
1612 if (!codec->cache_ops || !codec->cache_ops->sync)
1613 return -EINVAL;
1615 if (codec->cache_ops->name)
1616 name = codec->cache_ops->name;
1617 else
1618 name = "unknown";
1620 if (codec->cache_ops->name)
1621 dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
1622 codec->cache_ops->name, codec->name);
1623 trace_snd_soc_cache_sync(codec, name, "start");
1624 ret = codec->cache_ops->sync(codec);
1625 if (!ret)
1626 codec->cache_sync = 0;
1627 trace_snd_soc_cache_sync(codec, name, "end");
1628 return ret;
1630 EXPORT_SYMBOL_GPL(snd_soc_cache_sync);
1632 static int snd_soc_get_reg_access_index(struct snd_soc_codec *codec,
1633 unsigned int reg)
1635 const struct snd_soc_codec_driver *codec_drv;
1636 unsigned int min, max, index;
1638 codec_drv = codec->driver;
1639 min = 0;
1640 max = codec_drv->reg_access_size - 1;
1641 do {
1642 index = (min + max) / 2;
1643 if (codec_drv->reg_access_default[index].reg == reg)
1644 return index;
1645 if (codec_drv->reg_access_default[index].reg < reg)
1646 min = index + 1;
1647 else
1648 max = index;
1649 } while (min <= max);
1650 return -1;
1653 int snd_soc_default_volatile_register(struct snd_soc_codec *codec,
1654 unsigned int reg)
1656 int index;
1658 if (reg >= codec->driver->reg_cache_size)
1659 return 1;
1660 index = snd_soc_get_reg_access_index(codec, reg);
1661 if (index < 0)
1662 return 0;
1663 return codec->driver->reg_access_default[index].vol;
1665 EXPORT_SYMBOL_GPL(snd_soc_default_volatile_register);
1667 int snd_soc_default_readable_register(struct snd_soc_codec *codec,
1668 unsigned int reg)
1670 int index;
1672 if (reg >= codec->driver->reg_cache_size)
1673 return 1;
1674 index = snd_soc_get_reg_access_index(codec, reg);
1675 if (index < 0)
1676 return 0;
1677 return codec->driver->reg_access_default[index].read;
1679 EXPORT_SYMBOL_GPL(snd_soc_default_readable_register);