Merge rsync://rsync.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / asm-sparc64 / pbm.h
blob4c15610a2bac188a8f408396d207bd0ff570ab6a
1 /* $Id: pbm.h,v 1.27 2001/08/12 13:18:23 davem Exp $
2 * pbm.h: UltraSparc PCI controller software state.
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
5 */
7 #ifndef __SPARC64_PBM_H
8 #define __SPARC64_PBM_H
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/ioport.h>
13 #include <linux/spinlock.h>
15 #include <asm/io.h>
16 #include <asm/page.h>
17 #include <asm/oplib.h>
18 #include <asm/iommu.h>
20 /* The abstraction used here is that there are PCI controllers,
21 * each with one (Sabre) or two (PSYCHO/SCHIZO) PCI bus modules
22 * underneath. Each PCI bus module uses an IOMMU (shared by both
23 * PBMs of a controller, or per-PBM), and if a streaming buffer
24 * is present, each PCI bus module has it's own. (ie. the IOMMU
25 * might be shared between PBMs, the STC is never shared)
26 * Furthermore, each PCI bus module controls it's own autonomous
27 * PCI bus.
30 #define PBM_LOGCLUSTERS 3
31 #define PBM_NCLUSTERS (1 << PBM_LOGCLUSTERS)
33 struct pci_controller_info;
35 /* This contains the software state necessary to drive a PCI
36 * controller's IOMMU.
38 struct pci_iommu {
39 /* This protects the controller's IOMMU and all
40 * streaming buffers underneath.
42 spinlock_t lock;
44 /* IOMMU page table, a linear array of ioptes. */
45 iopte_t *page_table; /* The page table itself. */
46 int page_table_sz_bits; /* log2 of ow many pages does it map? */
48 /* Base PCI memory space address where IOMMU mappings
49 * begin.
51 u32 page_table_map_base;
53 /* IOMMU Controller Registers */
54 unsigned long iommu_control; /* IOMMU control register */
55 unsigned long iommu_tsbbase; /* IOMMU page table base register */
56 unsigned long iommu_flush; /* IOMMU page flush register */
57 unsigned long iommu_ctxflush; /* IOMMU context flush register */
59 /* This is a register in the PCI controller, which if
60 * read will have no side-effects but will guarantee
61 * completion of all previous writes into IOMMU/STC.
63 unsigned long write_complete_reg;
65 /* The lowest used consistent mapping entry. Since
66 * we allocate consistent maps out of cluster 0 this
67 * is relative to the beginning of closter 0.
69 u32 lowest_consistent_map;
71 /* In order to deal with some buggy third-party PCI bridges that
72 * do wrong prefetching, we never mark valid mappings as invalid.
73 * Instead we point them at this dummy page.
75 unsigned long dummy_page;
76 unsigned long dummy_page_pa;
78 /* If PBM_NCLUSTERS is ever decreased to 4 or lower,
79 * or if largest supported page_table_sz * 8K goes above
80 * 2GB, you must increase the size of the type of
81 * these counters. You have been duly warned. -DaveM
83 struct {
84 u16 next;
85 u16 flush;
86 } alloc_info[PBM_NCLUSTERS];
88 /* CTX allocation. */
89 unsigned long ctx_lowest_free;
90 unsigned long ctx_bitmap[IOMMU_NUM_CTXS / (sizeof(unsigned long) * 8)];
92 /* Here a PCI controller driver describes the areas of
93 * PCI memory space where DMA to/from physical memory
94 * are addressed. Drivers interrogate the PCI layer
95 * if their device has addressing limitations. They
96 * do so via pci_dma_supported, and pass in a mask of
97 * DMA address bits their device can actually drive.
99 * The test for being usable is:
100 * (device_mask & dma_addr_mask) == dma_addr_mask
102 u32 dma_addr_mask;
105 extern void pci_iommu_table_init(struct pci_iommu *, int);
107 /* This describes a PCI bus module's streaming buffer. */
108 struct pci_strbuf {
109 int strbuf_enabled; /* Present and using it? */
111 /* Streaming Buffer Control Registers */
112 unsigned long strbuf_control; /* STC control register */
113 unsigned long strbuf_pflush; /* STC page flush register */
114 unsigned long strbuf_fsync; /* STC flush synchronization reg */
115 unsigned long strbuf_ctxflush; /* STC context flush register */
116 unsigned long strbuf_ctxmatch_base; /* STC context flush match reg */
117 unsigned long strbuf_flushflag_pa; /* Physical address of flush flag */
118 volatile unsigned long *strbuf_flushflag; /* The flush flag itself */
120 /* And this is the actual flush flag area.
121 * We allocate extra because the chips require
122 * a 64-byte aligned area.
124 volatile unsigned long __flushflag_buf[(64 + (64 - 1)) / sizeof(long)];
127 #define PCI_STC_FLUSHFLAG_INIT(STC) \
128 (*((STC)->strbuf_flushflag) = 0UL)
129 #define PCI_STC_FLUSHFLAG_SET(STC) \
130 (*((STC)->strbuf_flushflag) != 0UL)
132 /* There can be quite a few ranges and interrupt maps on a PCI
133 * segment. Thus...
135 #define PROM_PCIRNG_MAX 64
136 #define PROM_PCIIMAP_MAX 64
138 struct pci_pbm_info {
139 /* PCI controller we sit under. */
140 struct pci_controller_info *parent;
142 /* Physical address base of controller registers. */
143 unsigned long controller_regs;
145 /* Physical address base of PBM registers. */
146 unsigned long pbm_regs;
148 /* Opaque 32-bit system bus Port ID. */
149 u32 portid;
151 /* Chipset version information. */
152 int chip_type;
153 #define PBM_CHIP_TYPE_SABRE 1
154 #define PBM_CHIP_TYPE_PSYCHO 2
155 #define PBM_CHIP_TYPE_SCHIZO 3
156 #define PBM_CHIP_TYPE_SCHIZO_PLUS 4
157 #define PBM_CHIP_TYPE_TOMATILLO 5
158 int chip_version;
159 int chip_revision;
161 /* Name used for top-level resources. */
162 char name[64];
164 /* OBP specific information. */
165 int prom_node;
166 char prom_name[64];
167 struct linux_prom_pci_ranges pbm_ranges[PROM_PCIRNG_MAX];
168 int num_pbm_ranges;
169 struct linux_prom_pci_intmap pbm_intmap[PROM_PCIIMAP_MAX];
170 int num_pbm_intmap;
171 struct linux_prom_pci_intmask pbm_intmask;
172 u64 ino_bitmap;
174 /* PBM I/O and Memory space resources. */
175 struct resource io_space;
176 struct resource mem_space;
178 /* Base of PCI Config space, can be per-PBM or shared. */
179 unsigned long config_space;
181 /* State of 66MHz capabilities on this PBM. */
182 int is_66mhz_capable;
183 int all_devs_66mhz;
185 /* This PBM's streaming buffer. */
186 struct pci_strbuf stc;
188 /* IOMMU state, potentially shared by both PBM segments. */
189 struct pci_iommu *iommu;
191 /* PCI slot mapping. */
192 unsigned int pci_first_slot;
194 /* Now things for the actual PCI bus probes. */
195 unsigned int pci_first_busno;
196 unsigned int pci_last_busno;
197 struct pci_bus *pci_bus;
200 struct pci_controller_info {
201 /* List of all PCI controllers. */
202 struct pci_controller_info *next;
204 /* Each controller gets a unique index, used mostly for
205 * error logging purposes.
207 int index;
209 /* Do the PBMs both exist in the same PCI domain? */
210 int pbms_same_domain;
212 /* The PCI bus modules controlled by us. */
213 struct pci_pbm_info pbm_A;
214 struct pci_pbm_info pbm_B;
216 /* Operations which are controller specific. */
217 void (*scan_bus)(struct pci_controller_info *);
218 unsigned int (*irq_build)(struct pci_pbm_info *, struct pci_dev *, unsigned int);
219 void (*base_address_update)(struct pci_dev *, int);
220 void (*resource_adjust)(struct pci_dev *, struct resource *, struct resource *);
222 /* Now things for the actual PCI bus probes. */
223 struct pci_ops *pci_ops;
224 unsigned int pci_first_busno;
225 unsigned int pci_last_busno;
227 void *starfire_cookie;
230 /* PCI devices which are not bridges have this placed in their pci_dev
231 * sysdata member. This makes OBP aware PCI device drivers easier to
232 * code.
234 struct pcidev_cookie {
235 struct pci_pbm_info *pbm;
236 char prom_name[64];
237 int prom_node;
238 struct linux_prom_pci_registers prom_regs[PROMREG_MAX];
239 int num_prom_regs;
240 struct linux_prom_pci_registers prom_assignments[PROMREG_MAX];
241 int num_prom_assignments;
244 /* Currently these are the same across all PCI controllers
245 * we support. Someday they may not be...
247 #define PCI_IRQ_IGN 0x000007c0 /* Interrupt Group Number */
248 #define PCI_IRQ_INO 0x0000003f /* Interrupt Number */
250 #endif /* !(__SPARC64_PBM_H) */