crypto: cryptd - Fix uninitialized return value
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_inode.c
blob1f22d65fed0a48d230a117f848598ba220017ad1
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_filestream.h"
53 #include "xfs_vnodeops.h"
55 kmem_zone_t *xfs_ifork_zone;
56 kmem_zone_t *xfs_inode_zone;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 #ifdef DEBUG
71 * Make sure that the extents in the given memory buffer
72 * are valid.
74 STATIC void
75 xfs_validate_extents(
76 xfs_ifork_t *ifp,
77 int nrecs,
78 xfs_exntfmt_t fmt)
80 xfs_bmbt_irec_t irec;
81 xfs_bmbt_rec_host_t rec;
82 int i;
84 for (i = 0; i < nrecs; i++) {
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
107 int i;
108 int j;
109 xfs_dinode_t *dip;
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
124 #endif
127 * Find the buffer associated with the given inode map
128 * We do basic validation checks on the buffer once it has been
129 * retrieved from disk.
131 STATIC int
132 xfs_imap_to_bp(
133 xfs_mount_t *mp,
134 xfs_trans_t *tp,
135 struct xfs_imap *imap,
136 xfs_buf_t **bpp,
137 uint buf_flags,
138 uint iget_flags)
140 int error;
141 int i;
142 int ni;
143 xfs_buf_t *bp;
145 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
146 (int)imap->im_len, buf_flags, &bp);
147 if (error) {
148 if (error != EAGAIN) {
149 cmn_err(CE_WARN,
150 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 "an error %d on %s. Returning error.",
152 error, mp->m_fsname);
153 } else {
154 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 return error;
160 * Validate the magic number and version of every inode in the buffer
161 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 #ifdef DEBUG
164 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
165 #else /* usual case */
166 ni = 1;
167 #endif
169 for (i = 0; i < ni; i++) {
170 int di_ok;
171 xfs_dinode_t *dip;
173 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
174 (i << mp->m_sb.sb_inodelog));
175 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
176 XFS_DINODE_GOOD_VERSION(dip->di_version);
177 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
178 XFS_ERRTAG_ITOBP_INOTOBP,
179 XFS_RANDOM_ITOBP_INOTOBP))) {
180 if (iget_flags & XFS_IGET_BULKSTAT) {
181 xfs_trans_brelse(tp, bp);
182 return XFS_ERROR(EINVAL);
184 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 XFS_ERRLEVEL_HIGH, mp, dip);
186 #ifdef DEBUG
187 cmn_err(CE_PANIC,
188 "Device %s - bad inode magic/vsn "
189 "daddr %lld #%d (magic=%x)",
190 XFS_BUFTARG_NAME(mp->m_ddev_targp),
191 (unsigned long long)imap->im_blkno, i,
192 be16_to_cpu(dip->di_magic));
193 #endif
194 xfs_trans_brelse(tp, bp);
195 return XFS_ERROR(EFSCORRUPTED);
199 xfs_inobp_check(mp, bp);
202 * Mark the buffer as an inode buffer now that it looks good
204 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206 *bpp = bp;
207 return 0;
211 * This routine is called to map an inode number within a file
212 * system to the buffer containing the on-disk version of the
213 * inode. It returns a pointer to the buffer containing the
214 * on-disk inode in the bpp parameter, and in the dip parameter
215 * it returns a pointer to the on-disk inode within that buffer.
217 * If a non-zero error is returned, then the contents of bpp and
218 * dipp are undefined.
220 * Use xfs_imap() to determine the size and location of the
221 * buffer to read from disk.
224 xfs_inotobp(
225 xfs_mount_t *mp,
226 xfs_trans_t *tp,
227 xfs_ino_t ino,
228 xfs_dinode_t **dipp,
229 xfs_buf_t **bpp,
230 int *offset,
231 uint imap_flags)
233 struct xfs_imap imap;
234 xfs_buf_t *bp;
235 int error;
237 imap.im_blkno = 0;
238 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
239 if (error)
240 return error;
242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
243 if (error)
244 return error;
246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 *bpp = bp;
248 *offset = imap.im_boffset;
249 return 0;
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
258 * that buffer.
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
263 * The inode is expected to already been mapped to its buffer and read
264 * in once, thus we can use the mapping information stored in the inode
265 * rather than calling xfs_imap(). This allows us to avoid the overhead
266 * of looking at the inode btree for small block file systems
267 * (see xfs_imap()).
270 xfs_itobp(
271 xfs_mount_t *mp,
272 xfs_trans_t *tp,
273 xfs_inode_t *ip,
274 xfs_dinode_t **dipp,
275 xfs_buf_t **bpp,
276 uint buf_flags)
278 xfs_buf_t *bp;
279 int error;
281 ASSERT(ip->i_imap.im_blkno != 0);
283 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
284 if (error)
285 return error;
287 if (!bp) {
288 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
289 ASSERT(tp == NULL);
290 *bpp = NULL;
291 return EAGAIN;
294 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
295 *bpp = bp;
296 return 0;
300 * Move inode type and inode format specific information from the
301 * on-disk inode to the in-core inode. For fifos, devs, and sockets
302 * this means set if_rdev to the proper value. For files, directories,
303 * and symlinks this means to bring in the in-line data or extent
304 * pointers. For a file in B-tree format, only the root is immediately
305 * brought in-core. The rest will be in-lined in if_extents when it
306 * is first referenced (see xfs_iread_extents()).
308 STATIC int
309 xfs_iformat(
310 xfs_inode_t *ip,
311 xfs_dinode_t *dip)
313 xfs_attr_shortform_t *atp;
314 int size;
315 int error;
316 xfs_fsize_t di_size;
317 ip->i_df.if_ext_max =
318 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
319 error = 0;
321 if (unlikely(be32_to_cpu(dip->di_nextents) +
322 be16_to_cpu(dip->di_anextents) >
323 be64_to_cpu(dip->di_nblocks))) {
324 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
325 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 (unsigned long long)ip->i_ino,
327 (int)(be32_to_cpu(dip->di_nextents) +
328 be16_to_cpu(dip->di_anextents)),
329 (unsigned long long)
330 be64_to_cpu(dip->di_nblocks));
331 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
332 ip->i_mount, dip);
333 return XFS_ERROR(EFSCORRUPTED);
336 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
337 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
338 "corrupt dinode %Lu, forkoff = 0x%x.",
339 (unsigned long long)ip->i_ino,
340 dip->di_forkoff);
341 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
342 ip->i_mount, dip);
343 return XFS_ERROR(EFSCORRUPTED);
346 switch (ip->i_d.di_mode & S_IFMT) {
347 case S_IFIFO:
348 case S_IFCHR:
349 case S_IFBLK:
350 case S_IFSOCK:
351 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
352 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
353 ip->i_mount, dip);
354 return XFS_ERROR(EFSCORRUPTED);
356 ip->i_d.di_size = 0;
357 ip->i_size = 0;
358 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
359 break;
361 case S_IFREG:
362 case S_IFLNK:
363 case S_IFDIR:
364 switch (dip->di_format) {
365 case XFS_DINODE_FMT_LOCAL:
367 * no local regular files yet
369 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
370 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
371 "corrupt inode %Lu "
372 "(local format for regular file).",
373 (unsigned long long) ip->i_ino);
374 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
375 XFS_ERRLEVEL_LOW,
376 ip->i_mount, dip);
377 return XFS_ERROR(EFSCORRUPTED);
380 di_size = be64_to_cpu(dip->di_size);
381 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
382 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
383 "corrupt inode %Lu "
384 "(bad size %Ld for local inode).",
385 (unsigned long long) ip->i_ino,
386 (long long) di_size);
387 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
388 XFS_ERRLEVEL_LOW,
389 ip->i_mount, dip);
390 return XFS_ERROR(EFSCORRUPTED);
393 size = (int)di_size;
394 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
395 break;
396 case XFS_DINODE_FMT_EXTENTS:
397 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
398 break;
399 case XFS_DINODE_FMT_BTREE:
400 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
401 break;
402 default:
403 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
404 ip->i_mount);
405 return XFS_ERROR(EFSCORRUPTED);
407 break;
409 default:
410 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
411 return XFS_ERROR(EFSCORRUPTED);
413 if (error) {
414 return error;
416 if (!XFS_DFORK_Q(dip))
417 return 0;
418 ASSERT(ip->i_afp == NULL);
419 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
420 ip->i_afp->if_ext_max =
421 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
422 switch (dip->di_aformat) {
423 case XFS_DINODE_FMT_LOCAL:
424 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
425 size = be16_to_cpu(atp->hdr.totsize);
427 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
428 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
429 "corrupt inode %Lu "
430 "(bad attr fork size %Ld).",
431 (unsigned long long) ip->i_ino,
432 (long long) size);
433 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
434 XFS_ERRLEVEL_LOW,
435 ip->i_mount, dip);
436 return XFS_ERROR(EFSCORRUPTED);
439 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
440 break;
441 case XFS_DINODE_FMT_EXTENTS:
442 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
443 break;
444 case XFS_DINODE_FMT_BTREE:
445 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
446 break;
447 default:
448 error = XFS_ERROR(EFSCORRUPTED);
449 break;
451 if (error) {
452 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
453 ip->i_afp = NULL;
454 xfs_idestroy_fork(ip, XFS_DATA_FORK);
456 return error;
460 * The file is in-lined in the on-disk inode.
461 * If it fits into if_inline_data, then copy
462 * it there, otherwise allocate a buffer for it
463 * and copy the data there. Either way, set
464 * if_data to point at the data.
465 * If we allocate a buffer for the data, make
466 * sure that its size is a multiple of 4 and
467 * record the real size in i_real_bytes.
469 STATIC int
470 xfs_iformat_local(
471 xfs_inode_t *ip,
472 xfs_dinode_t *dip,
473 int whichfork,
474 int size)
476 xfs_ifork_t *ifp;
477 int real_size;
480 * If the size is unreasonable, then something
481 * is wrong and we just bail out rather than crash in
482 * kmem_alloc() or memcpy() below.
484 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
485 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
486 "corrupt inode %Lu "
487 "(bad size %d for local fork, size = %d).",
488 (unsigned long long) ip->i_ino, size,
489 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
490 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
491 ip->i_mount, dip);
492 return XFS_ERROR(EFSCORRUPTED);
494 ifp = XFS_IFORK_PTR(ip, whichfork);
495 real_size = 0;
496 if (size == 0)
497 ifp->if_u1.if_data = NULL;
498 else if (size <= sizeof(ifp->if_u2.if_inline_data))
499 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
500 else {
501 real_size = roundup(size, 4);
502 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
504 ifp->if_bytes = size;
505 ifp->if_real_bytes = real_size;
506 if (size)
507 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
508 ifp->if_flags &= ~XFS_IFEXTENTS;
509 ifp->if_flags |= XFS_IFINLINE;
510 return 0;
514 * The file consists of a set of extents all
515 * of which fit into the on-disk inode.
516 * If there are few enough extents to fit into
517 * the if_inline_ext, then copy them there.
518 * Otherwise allocate a buffer for them and copy
519 * them into it. Either way, set if_extents
520 * to point at the extents.
522 STATIC int
523 xfs_iformat_extents(
524 xfs_inode_t *ip,
525 xfs_dinode_t *dip,
526 int whichfork)
528 xfs_bmbt_rec_t *dp;
529 xfs_ifork_t *ifp;
530 int nex;
531 int size;
532 int i;
534 ifp = XFS_IFORK_PTR(ip, whichfork);
535 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
536 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
539 * If the number of extents is unreasonable, then something
540 * is wrong and we just bail out rather than crash in
541 * kmem_alloc() or memcpy() below.
543 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
544 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
545 "corrupt inode %Lu ((a)extents = %d).",
546 (unsigned long long) ip->i_ino, nex);
547 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
548 ip->i_mount, dip);
549 return XFS_ERROR(EFSCORRUPTED);
552 ifp->if_real_bytes = 0;
553 if (nex == 0)
554 ifp->if_u1.if_extents = NULL;
555 else if (nex <= XFS_INLINE_EXTS)
556 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
557 else
558 xfs_iext_add(ifp, 0, nex);
560 ifp->if_bytes = size;
561 if (size) {
562 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
563 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
564 for (i = 0; i < nex; i++, dp++) {
565 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
566 ep->l0 = get_unaligned_be64(&dp->l0);
567 ep->l1 = get_unaligned_be64(&dp->l1);
569 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
570 if (whichfork != XFS_DATA_FORK ||
571 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
572 if (unlikely(xfs_check_nostate_extents(
573 ifp, 0, nex))) {
574 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
575 XFS_ERRLEVEL_LOW,
576 ip->i_mount);
577 return XFS_ERROR(EFSCORRUPTED);
580 ifp->if_flags |= XFS_IFEXTENTS;
581 return 0;
585 * The file has too many extents to fit into
586 * the inode, so they are in B-tree format.
587 * Allocate a buffer for the root of the B-tree
588 * and copy the root into it. The i_extents
589 * field will remain NULL until all of the
590 * extents are read in (when they are needed).
592 STATIC int
593 xfs_iformat_btree(
594 xfs_inode_t *ip,
595 xfs_dinode_t *dip,
596 int whichfork)
598 xfs_bmdr_block_t *dfp;
599 xfs_ifork_t *ifp;
600 /* REFERENCED */
601 int nrecs;
602 int size;
604 ifp = XFS_IFORK_PTR(ip, whichfork);
605 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
606 size = XFS_BMAP_BROOT_SPACE(dfp);
607 nrecs = be16_to_cpu(dfp->bb_numrecs);
610 * blow out if -- fork has less extents than can fit in
611 * fork (fork shouldn't be a btree format), root btree
612 * block has more records than can fit into the fork,
613 * or the number of extents is greater than the number of
614 * blocks.
616 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
617 || XFS_BMDR_SPACE_CALC(nrecs) >
618 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
619 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
620 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
621 "corrupt inode %Lu (btree).",
622 (unsigned long long) ip->i_ino);
623 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
624 ip->i_mount);
625 return XFS_ERROR(EFSCORRUPTED);
628 ifp->if_broot_bytes = size;
629 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
630 ASSERT(ifp->if_broot != NULL);
632 * Copy and convert from the on-disk structure
633 * to the in-memory structure.
635 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
636 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
637 ifp->if_broot, size);
638 ifp->if_flags &= ~XFS_IFEXTENTS;
639 ifp->if_flags |= XFS_IFBROOT;
641 return 0;
644 void
645 xfs_dinode_from_disk(
646 xfs_icdinode_t *to,
647 xfs_dinode_t *from)
649 to->di_magic = be16_to_cpu(from->di_magic);
650 to->di_mode = be16_to_cpu(from->di_mode);
651 to->di_version = from ->di_version;
652 to->di_format = from->di_format;
653 to->di_onlink = be16_to_cpu(from->di_onlink);
654 to->di_uid = be32_to_cpu(from->di_uid);
655 to->di_gid = be32_to_cpu(from->di_gid);
656 to->di_nlink = be32_to_cpu(from->di_nlink);
657 to->di_projid = be16_to_cpu(from->di_projid);
658 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
659 to->di_flushiter = be16_to_cpu(from->di_flushiter);
660 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
661 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
662 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
663 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
664 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
665 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
666 to->di_size = be64_to_cpu(from->di_size);
667 to->di_nblocks = be64_to_cpu(from->di_nblocks);
668 to->di_extsize = be32_to_cpu(from->di_extsize);
669 to->di_nextents = be32_to_cpu(from->di_nextents);
670 to->di_anextents = be16_to_cpu(from->di_anextents);
671 to->di_forkoff = from->di_forkoff;
672 to->di_aformat = from->di_aformat;
673 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
674 to->di_dmstate = be16_to_cpu(from->di_dmstate);
675 to->di_flags = be16_to_cpu(from->di_flags);
676 to->di_gen = be32_to_cpu(from->di_gen);
679 void
680 xfs_dinode_to_disk(
681 xfs_dinode_t *to,
682 xfs_icdinode_t *from)
684 to->di_magic = cpu_to_be16(from->di_magic);
685 to->di_mode = cpu_to_be16(from->di_mode);
686 to->di_version = from ->di_version;
687 to->di_format = from->di_format;
688 to->di_onlink = cpu_to_be16(from->di_onlink);
689 to->di_uid = cpu_to_be32(from->di_uid);
690 to->di_gid = cpu_to_be32(from->di_gid);
691 to->di_nlink = cpu_to_be32(from->di_nlink);
692 to->di_projid = cpu_to_be16(from->di_projid);
693 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
694 to->di_flushiter = cpu_to_be16(from->di_flushiter);
695 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
696 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
697 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
698 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
699 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
700 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
701 to->di_size = cpu_to_be64(from->di_size);
702 to->di_nblocks = cpu_to_be64(from->di_nblocks);
703 to->di_extsize = cpu_to_be32(from->di_extsize);
704 to->di_nextents = cpu_to_be32(from->di_nextents);
705 to->di_anextents = cpu_to_be16(from->di_anextents);
706 to->di_forkoff = from->di_forkoff;
707 to->di_aformat = from->di_aformat;
708 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
709 to->di_dmstate = cpu_to_be16(from->di_dmstate);
710 to->di_flags = cpu_to_be16(from->di_flags);
711 to->di_gen = cpu_to_be32(from->di_gen);
714 STATIC uint
715 _xfs_dic2xflags(
716 __uint16_t di_flags)
718 uint flags = 0;
720 if (di_flags & XFS_DIFLAG_ANY) {
721 if (di_flags & XFS_DIFLAG_REALTIME)
722 flags |= XFS_XFLAG_REALTIME;
723 if (di_flags & XFS_DIFLAG_PREALLOC)
724 flags |= XFS_XFLAG_PREALLOC;
725 if (di_flags & XFS_DIFLAG_IMMUTABLE)
726 flags |= XFS_XFLAG_IMMUTABLE;
727 if (di_flags & XFS_DIFLAG_APPEND)
728 flags |= XFS_XFLAG_APPEND;
729 if (di_flags & XFS_DIFLAG_SYNC)
730 flags |= XFS_XFLAG_SYNC;
731 if (di_flags & XFS_DIFLAG_NOATIME)
732 flags |= XFS_XFLAG_NOATIME;
733 if (di_flags & XFS_DIFLAG_NODUMP)
734 flags |= XFS_XFLAG_NODUMP;
735 if (di_flags & XFS_DIFLAG_RTINHERIT)
736 flags |= XFS_XFLAG_RTINHERIT;
737 if (di_flags & XFS_DIFLAG_PROJINHERIT)
738 flags |= XFS_XFLAG_PROJINHERIT;
739 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
740 flags |= XFS_XFLAG_NOSYMLINKS;
741 if (di_flags & XFS_DIFLAG_EXTSIZE)
742 flags |= XFS_XFLAG_EXTSIZE;
743 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
744 flags |= XFS_XFLAG_EXTSZINHERIT;
745 if (di_flags & XFS_DIFLAG_NODEFRAG)
746 flags |= XFS_XFLAG_NODEFRAG;
747 if (di_flags & XFS_DIFLAG_FILESTREAM)
748 flags |= XFS_XFLAG_FILESTREAM;
751 return flags;
754 uint
755 xfs_ip2xflags(
756 xfs_inode_t *ip)
758 xfs_icdinode_t *dic = &ip->i_d;
760 return _xfs_dic2xflags(dic->di_flags) |
761 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
764 uint
765 xfs_dic2xflags(
766 xfs_dinode_t *dip)
768 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
769 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
773 * Read the disk inode attributes into the in-core inode structure.
776 xfs_iread(
777 xfs_mount_t *mp,
778 xfs_trans_t *tp,
779 xfs_inode_t *ip,
780 xfs_daddr_t bno,
781 uint iget_flags)
783 xfs_buf_t *bp;
784 xfs_dinode_t *dip;
785 int error;
788 * Fill in the location information in the in-core inode.
790 ip->i_imap.im_blkno = bno;
791 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
792 if (error)
793 return error;
794 ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
797 * Get pointers to the on-disk inode and the buffer containing it.
799 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
800 XFS_BUF_LOCK, iget_flags);
801 if (error)
802 return error;
803 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
806 * If we got something that isn't an inode it means someone
807 * (nfs or dmi) has a stale handle.
809 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
810 #ifdef DEBUG
811 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
812 "dip->di_magic (0x%x) != "
813 "XFS_DINODE_MAGIC (0x%x)",
814 be16_to_cpu(dip->di_magic),
815 XFS_DINODE_MAGIC);
816 #endif /* DEBUG */
817 error = XFS_ERROR(EINVAL);
818 goto out_brelse;
822 * If the on-disk inode is already linked to a directory
823 * entry, copy all of the inode into the in-core inode.
824 * xfs_iformat() handles copying in the inode format
825 * specific information.
826 * Otherwise, just get the truly permanent information.
828 if (dip->di_mode) {
829 xfs_dinode_from_disk(&ip->i_d, dip);
830 error = xfs_iformat(ip, dip);
831 if (error) {
832 #ifdef DEBUG
833 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
834 "xfs_iformat() returned error %d",
835 error);
836 #endif /* DEBUG */
837 goto out_brelse;
839 } else {
840 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
841 ip->i_d.di_version = dip->di_version;
842 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
843 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
845 * Make sure to pull in the mode here as well in
846 * case the inode is released without being used.
847 * This ensures that xfs_inactive() will see that
848 * the inode is already free and not try to mess
849 * with the uninitialized part of it.
851 ip->i_d.di_mode = 0;
853 * Initialize the per-fork minima and maxima for a new
854 * inode here. xfs_iformat will do it for old inodes.
856 ip->i_df.if_ext_max =
857 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
861 * The inode format changed when we moved the link count and
862 * made it 32 bits long. If this is an old format inode,
863 * convert it in memory to look like a new one. If it gets
864 * flushed to disk we will convert back before flushing or
865 * logging it. We zero out the new projid field and the old link
866 * count field. We'll handle clearing the pad field (the remains
867 * of the old uuid field) when we actually convert the inode to
868 * the new format. We don't change the version number so that we
869 * can distinguish this from a real new format inode.
871 if (ip->i_d.di_version == 1) {
872 ip->i_d.di_nlink = ip->i_d.di_onlink;
873 ip->i_d.di_onlink = 0;
874 ip->i_d.di_projid = 0;
877 ip->i_delayed_blks = 0;
878 ip->i_size = ip->i_d.di_size;
881 * Mark the buffer containing the inode as something to keep
882 * around for a while. This helps to keep recently accessed
883 * meta-data in-core longer.
885 XFS_BUF_SET_REF(bp, XFS_INO_REF);
888 * Use xfs_trans_brelse() to release the buffer containing the
889 * on-disk inode, because it was acquired with xfs_trans_read_buf()
890 * in xfs_itobp() above. If tp is NULL, this is just a normal
891 * brelse(). If we're within a transaction, then xfs_trans_brelse()
892 * will only release the buffer if it is not dirty within the
893 * transaction. It will be OK to release the buffer in this case,
894 * because inodes on disk are never destroyed and we will be
895 * locking the new in-core inode before putting it in the hash
896 * table where other processes can find it. Thus we don't have
897 * to worry about the inode being changed just because we released
898 * the buffer.
900 out_brelse:
901 xfs_trans_brelse(tp, bp);
902 return error;
906 * Read in extents from a btree-format inode.
907 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
910 xfs_iread_extents(
911 xfs_trans_t *tp,
912 xfs_inode_t *ip,
913 int whichfork)
915 int error;
916 xfs_ifork_t *ifp;
917 xfs_extnum_t nextents;
918 size_t size;
920 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
921 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
922 ip->i_mount);
923 return XFS_ERROR(EFSCORRUPTED);
925 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
926 size = nextents * sizeof(xfs_bmbt_rec_t);
927 ifp = XFS_IFORK_PTR(ip, whichfork);
930 * We know that the size is valid (it's checked in iformat_btree)
932 ifp->if_lastex = NULLEXTNUM;
933 ifp->if_bytes = ifp->if_real_bytes = 0;
934 ifp->if_flags |= XFS_IFEXTENTS;
935 xfs_iext_add(ifp, 0, nextents);
936 error = xfs_bmap_read_extents(tp, ip, whichfork);
937 if (error) {
938 xfs_iext_destroy(ifp);
939 ifp->if_flags &= ~XFS_IFEXTENTS;
940 return error;
942 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
943 return 0;
947 * Allocate an inode on disk and return a copy of its in-core version.
948 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
949 * appropriately within the inode. The uid and gid for the inode are
950 * set according to the contents of the given cred structure.
952 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
953 * has a free inode available, call xfs_iget()
954 * to obtain the in-core version of the allocated inode. Finally,
955 * fill in the inode and log its initial contents. In this case,
956 * ialloc_context would be set to NULL and call_again set to false.
958 * If xfs_dialloc() does not have an available inode,
959 * it will replenish its supply by doing an allocation. Since we can
960 * only do one allocation within a transaction without deadlocks, we
961 * must commit the current transaction before returning the inode itself.
962 * In this case, therefore, we will set call_again to true and return.
963 * The caller should then commit the current transaction, start a new
964 * transaction, and call xfs_ialloc() again to actually get the inode.
966 * To ensure that some other process does not grab the inode that
967 * was allocated during the first call to xfs_ialloc(), this routine
968 * also returns the [locked] bp pointing to the head of the freelist
969 * as ialloc_context. The caller should hold this buffer across
970 * the commit and pass it back into this routine on the second call.
972 * If we are allocating quota inodes, we do not have a parent inode
973 * to attach to or associate with (i.e. pip == NULL) because they
974 * are not linked into the directory structure - they are attached
975 * directly to the superblock - and so have no parent.
978 xfs_ialloc(
979 xfs_trans_t *tp,
980 xfs_inode_t *pip,
981 mode_t mode,
982 xfs_nlink_t nlink,
983 xfs_dev_t rdev,
984 cred_t *cr,
985 xfs_prid_t prid,
986 int okalloc,
987 xfs_buf_t **ialloc_context,
988 boolean_t *call_again,
989 xfs_inode_t **ipp)
991 xfs_ino_t ino;
992 xfs_inode_t *ip;
993 uint flags;
994 int error;
995 timespec_t tv;
996 int filestreams = 0;
999 * Call the space management code to pick
1000 * the on-disk inode to be allocated.
1002 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1003 ialloc_context, call_again, &ino);
1004 if (error)
1005 return error;
1006 if (*call_again || ino == NULLFSINO) {
1007 *ipp = NULL;
1008 return 0;
1010 ASSERT(*ialloc_context == NULL);
1013 * Get the in-core inode with the lock held exclusively.
1014 * This is because we're setting fields here we need
1015 * to prevent others from looking at until we're done.
1017 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1018 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1019 if (error)
1020 return error;
1021 ASSERT(ip != NULL);
1023 ip->i_d.di_mode = (__uint16_t)mode;
1024 ip->i_d.di_onlink = 0;
1025 ip->i_d.di_nlink = nlink;
1026 ASSERT(ip->i_d.di_nlink == nlink);
1027 ip->i_d.di_uid = current_fsuid();
1028 ip->i_d.di_gid = current_fsgid();
1029 ip->i_d.di_projid = prid;
1030 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1033 * If the superblock version is up to where we support new format
1034 * inodes and this is currently an old format inode, then change
1035 * the inode version number now. This way we only do the conversion
1036 * here rather than here and in the flush/logging code.
1038 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1039 ip->i_d.di_version == 1) {
1040 ip->i_d.di_version = 2;
1042 * We've already zeroed the old link count, the projid field,
1043 * and the pad field.
1048 * Project ids won't be stored on disk if we are using a version 1 inode.
1050 if ((prid != 0) && (ip->i_d.di_version == 1))
1051 xfs_bump_ino_vers2(tp, ip);
1053 if (pip && XFS_INHERIT_GID(pip)) {
1054 ip->i_d.di_gid = pip->i_d.di_gid;
1055 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1056 ip->i_d.di_mode |= S_ISGID;
1061 * If the group ID of the new file does not match the effective group
1062 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1063 * (and only if the irix_sgid_inherit compatibility variable is set).
1065 if ((irix_sgid_inherit) &&
1066 (ip->i_d.di_mode & S_ISGID) &&
1067 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1068 ip->i_d.di_mode &= ~S_ISGID;
1071 ip->i_d.di_size = 0;
1072 ip->i_size = 0;
1073 ip->i_d.di_nextents = 0;
1074 ASSERT(ip->i_d.di_nblocks == 0);
1076 nanotime(&tv);
1077 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1078 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1079 ip->i_d.di_atime = ip->i_d.di_mtime;
1080 ip->i_d.di_ctime = ip->i_d.di_mtime;
1083 * di_gen will have been taken care of in xfs_iread.
1085 ip->i_d.di_extsize = 0;
1086 ip->i_d.di_dmevmask = 0;
1087 ip->i_d.di_dmstate = 0;
1088 ip->i_d.di_flags = 0;
1089 flags = XFS_ILOG_CORE;
1090 switch (mode & S_IFMT) {
1091 case S_IFIFO:
1092 case S_IFCHR:
1093 case S_IFBLK:
1094 case S_IFSOCK:
1095 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1096 ip->i_df.if_u2.if_rdev = rdev;
1097 ip->i_df.if_flags = 0;
1098 flags |= XFS_ILOG_DEV;
1099 break;
1100 case S_IFREG:
1102 * we can't set up filestreams until after the VFS inode
1103 * is set up properly.
1105 if (pip && xfs_inode_is_filestream(pip))
1106 filestreams = 1;
1107 /* fall through */
1108 case S_IFDIR:
1109 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1110 uint di_flags = 0;
1112 if ((mode & S_IFMT) == S_IFDIR) {
1113 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1114 di_flags |= XFS_DIFLAG_RTINHERIT;
1115 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1116 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1117 ip->i_d.di_extsize = pip->i_d.di_extsize;
1119 } else if ((mode & S_IFMT) == S_IFREG) {
1120 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1121 di_flags |= XFS_DIFLAG_REALTIME;
1122 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1123 di_flags |= XFS_DIFLAG_EXTSIZE;
1124 ip->i_d.di_extsize = pip->i_d.di_extsize;
1127 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1128 xfs_inherit_noatime)
1129 di_flags |= XFS_DIFLAG_NOATIME;
1130 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1131 xfs_inherit_nodump)
1132 di_flags |= XFS_DIFLAG_NODUMP;
1133 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1134 xfs_inherit_sync)
1135 di_flags |= XFS_DIFLAG_SYNC;
1136 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1137 xfs_inherit_nosymlinks)
1138 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1139 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1140 di_flags |= XFS_DIFLAG_PROJINHERIT;
1141 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1142 xfs_inherit_nodefrag)
1143 di_flags |= XFS_DIFLAG_NODEFRAG;
1144 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1145 di_flags |= XFS_DIFLAG_FILESTREAM;
1146 ip->i_d.di_flags |= di_flags;
1148 /* FALLTHROUGH */
1149 case S_IFLNK:
1150 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1151 ip->i_df.if_flags = XFS_IFEXTENTS;
1152 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1153 ip->i_df.if_u1.if_extents = NULL;
1154 break;
1155 default:
1156 ASSERT(0);
1159 * Attribute fork settings for new inode.
1161 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1162 ip->i_d.di_anextents = 0;
1165 * Log the new values stuffed into the inode.
1167 xfs_trans_log_inode(tp, ip, flags);
1169 /* now that we have an i_mode we can setup inode ops and unlock */
1170 xfs_setup_inode(ip);
1172 /* now we have set up the vfs inode we can associate the filestream */
1173 if (filestreams) {
1174 error = xfs_filestream_associate(pip, ip);
1175 if (error < 0)
1176 return -error;
1177 if (!error)
1178 xfs_iflags_set(ip, XFS_IFILESTREAM);
1181 *ipp = ip;
1182 return 0;
1186 * Check to make sure that there are no blocks allocated to the
1187 * file beyond the size of the file. We don't check this for
1188 * files with fixed size extents or real time extents, but we
1189 * at least do it for regular files.
1191 #ifdef DEBUG
1192 void
1193 xfs_isize_check(
1194 xfs_mount_t *mp,
1195 xfs_inode_t *ip,
1196 xfs_fsize_t isize)
1198 xfs_fileoff_t map_first;
1199 int nimaps;
1200 xfs_bmbt_irec_t imaps[2];
1202 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1203 return;
1205 if (XFS_IS_REALTIME_INODE(ip))
1206 return;
1208 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1209 return;
1211 nimaps = 2;
1212 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1214 * The filesystem could be shutting down, so bmapi may return
1215 * an error.
1217 if (xfs_bmapi(NULL, ip, map_first,
1218 (XFS_B_TO_FSB(mp,
1219 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1220 map_first),
1221 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1222 NULL, NULL))
1223 return;
1224 ASSERT(nimaps == 1);
1225 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1227 #endif /* DEBUG */
1230 * Calculate the last possible buffered byte in a file. This must
1231 * include data that was buffered beyond the EOF by the write code.
1232 * This also needs to deal with overflowing the xfs_fsize_t type
1233 * which can happen for sizes near the limit.
1235 * We also need to take into account any blocks beyond the EOF. It
1236 * may be the case that they were buffered by a write which failed.
1237 * In that case the pages will still be in memory, but the inode size
1238 * will never have been updated.
1240 xfs_fsize_t
1241 xfs_file_last_byte(
1242 xfs_inode_t *ip)
1244 xfs_mount_t *mp;
1245 xfs_fsize_t last_byte;
1246 xfs_fileoff_t last_block;
1247 xfs_fileoff_t size_last_block;
1248 int error;
1250 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1252 mp = ip->i_mount;
1254 * Only check for blocks beyond the EOF if the extents have
1255 * been read in. This eliminates the need for the inode lock,
1256 * and it also saves us from looking when it really isn't
1257 * necessary.
1259 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1260 xfs_ilock(ip, XFS_ILOCK_SHARED);
1261 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1262 XFS_DATA_FORK);
1263 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1264 if (error) {
1265 last_block = 0;
1267 } else {
1268 last_block = 0;
1270 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1271 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1273 last_byte = XFS_FSB_TO_B(mp, last_block);
1274 if (last_byte < 0) {
1275 return XFS_MAXIOFFSET(mp);
1277 last_byte += (1 << mp->m_writeio_log);
1278 if (last_byte < 0) {
1279 return XFS_MAXIOFFSET(mp);
1281 return last_byte;
1284 #if defined(XFS_RW_TRACE)
1285 STATIC void
1286 xfs_itrunc_trace(
1287 int tag,
1288 xfs_inode_t *ip,
1289 int flag,
1290 xfs_fsize_t new_size,
1291 xfs_off_t toss_start,
1292 xfs_off_t toss_finish)
1294 if (ip->i_rwtrace == NULL) {
1295 return;
1298 ktrace_enter(ip->i_rwtrace,
1299 (void*)((long)tag),
1300 (void*)ip,
1301 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1302 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1303 (void*)((long)flag),
1304 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1305 (void*)(unsigned long)(new_size & 0xffffffff),
1306 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1307 (void*)(unsigned long)(toss_start & 0xffffffff),
1308 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1309 (void*)(unsigned long)(toss_finish & 0xffffffff),
1310 (void*)(unsigned long)current_cpu(),
1311 (void*)(unsigned long)current_pid(),
1312 (void*)NULL,
1313 (void*)NULL,
1314 (void*)NULL);
1316 #else
1317 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1318 #endif
1321 * Start the truncation of the file to new_size. The new size
1322 * must be smaller than the current size. This routine will
1323 * clear the buffer and page caches of file data in the removed
1324 * range, and xfs_itruncate_finish() will remove the underlying
1325 * disk blocks.
1327 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1328 * must NOT have the inode lock held at all. This is because we're
1329 * calling into the buffer/page cache code and we can't hold the
1330 * inode lock when we do so.
1332 * We need to wait for any direct I/Os in flight to complete before we
1333 * proceed with the truncate. This is needed to prevent the extents
1334 * being read or written by the direct I/Os from being removed while the
1335 * I/O is in flight as there is no other method of synchronising
1336 * direct I/O with the truncate operation. Also, because we hold
1337 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1338 * started until the truncate completes and drops the lock. Essentially,
1339 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1340 * ordering between direct I/Os and the truncate operation.
1342 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1343 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1344 * in the case that the caller is locking things out of order and
1345 * may not be able to call xfs_itruncate_finish() with the inode lock
1346 * held without dropping the I/O lock. If the caller must drop the
1347 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1348 * must be called again with all the same restrictions as the initial
1349 * call.
1352 xfs_itruncate_start(
1353 xfs_inode_t *ip,
1354 uint flags,
1355 xfs_fsize_t new_size)
1357 xfs_fsize_t last_byte;
1358 xfs_off_t toss_start;
1359 xfs_mount_t *mp;
1360 int error = 0;
1362 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1363 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1364 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1365 (flags == XFS_ITRUNC_MAYBE));
1367 mp = ip->i_mount;
1369 /* wait for the completion of any pending DIOs */
1370 if (new_size == 0 || new_size < ip->i_size)
1371 xfs_ioend_wait(ip);
1374 * Call toss_pages or flushinval_pages to get rid of pages
1375 * overlapping the region being removed. We have to use
1376 * the less efficient flushinval_pages in the case that the
1377 * caller may not be able to finish the truncate without
1378 * dropping the inode's I/O lock. Make sure
1379 * to catch any pages brought in by buffers overlapping
1380 * the EOF by searching out beyond the isize by our
1381 * block size. We round new_size up to a block boundary
1382 * so that we don't toss things on the same block as
1383 * new_size but before it.
1385 * Before calling toss_page or flushinval_pages, make sure to
1386 * call remapf() over the same region if the file is mapped.
1387 * This frees up mapped file references to the pages in the
1388 * given range and for the flushinval_pages case it ensures
1389 * that we get the latest mapped changes flushed out.
1391 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1392 toss_start = XFS_FSB_TO_B(mp, toss_start);
1393 if (toss_start < 0) {
1395 * The place to start tossing is beyond our maximum
1396 * file size, so there is no way that the data extended
1397 * out there.
1399 return 0;
1401 last_byte = xfs_file_last_byte(ip);
1402 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1403 last_byte);
1404 if (last_byte > toss_start) {
1405 if (flags & XFS_ITRUNC_DEFINITE) {
1406 xfs_tosspages(ip, toss_start,
1407 -1, FI_REMAPF_LOCKED);
1408 } else {
1409 error = xfs_flushinval_pages(ip, toss_start,
1410 -1, FI_REMAPF_LOCKED);
1414 #ifdef DEBUG
1415 if (new_size == 0) {
1416 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1418 #endif
1419 return error;
1423 * Shrink the file to the given new_size. The new size must be smaller than
1424 * the current size. This will free up the underlying blocks in the removed
1425 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1427 * The transaction passed to this routine must have made a permanent log
1428 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1429 * given transaction and start new ones, so make sure everything involved in
1430 * the transaction is tidy before calling here. Some transaction will be
1431 * returned to the caller to be committed. The incoming transaction must
1432 * already include the inode, and both inode locks must be held exclusively.
1433 * The inode must also be "held" within the transaction. On return the inode
1434 * will be "held" within the returned transaction. This routine does NOT
1435 * require any disk space to be reserved for it within the transaction.
1437 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1438 * indicates the fork which is to be truncated. For the attribute fork we only
1439 * support truncation to size 0.
1441 * We use the sync parameter to indicate whether or not the first transaction
1442 * we perform might have to be synchronous. For the attr fork, it needs to be
1443 * so if the unlink of the inode is not yet known to be permanent in the log.
1444 * This keeps us from freeing and reusing the blocks of the attribute fork
1445 * before the unlink of the inode becomes permanent.
1447 * For the data fork, we normally have to run synchronously if we're being
1448 * called out of the inactive path or we're being called out of the create path
1449 * where we're truncating an existing file. Either way, the truncate needs to
1450 * be sync so blocks don't reappear in the file with altered data in case of a
1451 * crash. wsync filesystems can run the first case async because anything that
1452 * shrinks the inode has to run sync so by the time we're called here from
1453 * inactive, the inode size is permanently set to 0.
1455 * Calls from the truncate path always need to be sync unless we're in a wsync
1456 * filesystem and the file has already been unlinked.
1458 * The caller is responsible for correctly setting the sync parameter. It gets
1459 * too hard for us to guess here which path we're being called out of just
1460 * based on inode state.
1462 * If we get an error, we must return with the inode locked and linked into the
1463 * current transaction. This keeps things simple for the higher level code,
1464 * because it always knows that the inode is locked and held in the transaction
1465 * that returns to it whether errors occur or not. We don't mark the inode
1466 * dirty on error so that transactions can be easily aborted if possible.
1469 xfs_itruncate_finish(
1470 xfs_trans_t **tp,
1471 xfs_inode_t *ip,
1472 xfs_fsize_t new_size,
1473 int fork,
1474 int sync)
1476 xfs_fsblock_t first_block;
1477 xfs_fileoff_t first_unmap_block;
1478 xfs_fileoff_t last_block;
1479 xfs_filblks_t unmap_len=0;
1480 xfs_mount_t *mp;
1481 xfs_trans_t *ntp;
1482 int done;
1483 int committed;
1484 xfs_bmap_free_t free_list;
1485 int error;
1487 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1488 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1489 ASSERT(*tp != NULL);
1490 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1491 ASSERT(ip->i_transp == *tp);
1492 ASSERT(ip->i_itemp != NULL);
1493 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1496 ntp = *tp;
1497 mp = (ntp)->t_mountp;
1498 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1501 * We only support truncating the entire attribute fork.
1503 if (fork == XFS_ATTR_FORK) {
1504 new_size = 0LL;
1506 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1507 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1509 * The first thing we do is set the size to new_size permanently
1510 * on disk. This way we don't have to worry about anyone ever
1511 * being able to look at the data being freed even in the face
1512 * of a crash. What we're getting around here is the case where
1513 * we free a block, it is allocated to another file, it is written
1514 * to, and then we crash. If the new data gets written to the
1515 * file but the log buffers containing the free and reallocation
1516 * don't, then we'd end up with garbage in the blocks being freed.
1517 * As long as we make the new_size permanent before actually
1518 * freeing any blocks it doesn't matter if they get writtten to.
1520 * The callers must signal into us whether or not the size
1521 * setting here must be synchronous. There are a few cases
1522 * where it doesn't have to be synchronous. Those cases
1523 * occur if the file is unlinked and we know the unlink is
1524 * permanent or if the blocks being truncated are guaranteed
1525 * to be beyond the inode eof (regardless of the link count)
1526 * and the eof value is permanent. Both of these cases occur
1527 * only on wsync-mounted filesystems. In those cases, we're
1528 * guaranteed that no user will ever see the data in the blocks
1529 * that are being truncated so the truncate can run async.
1530 * In the free beyond eof case, the file may wind up with
1531 * more blocks allocated to it than it needs if we crash
1532 * and that won't get fixed until the next time the file
1533 * is re-opened and closed but that's ok as that shouldn't
1534 * be too many blocks.
1536 * However, we can't just make all wsync xactions run async
1537 * because there's one call out of the create path that needs
1538 * to run sync where it's truncating an existing file to size
1539 * 0 whose size is > 0.
1541 * It's probably possible to come up with a test in this
1542 * routine that would correctly distinguish all the above
1543 * cases from the values of the function parameters and the
1544 * inode state but for sanity's sake, I've decided to let the
1545 * layers above just tell us. It's simpler to correctly figure
1546 * out in the layer above exactly under what conditions we
1547 * can run async and I think it's easier for others read and
1548 * follow the logic in case something has to be changed.
1549 * cscope is your friend -- rcc.
1551 * The attribute fork is much simpler.
1553 * For the attribute fork we allow the caller to tell us whether
1554 * the unlink of the inode that led to this call is yet permanent
1555 * in the on disk log. If it is not and we will be freeing extents
1556 * in this inode then we make the first transaction synchronous
1557 * to make sure that the unlink is permanent by the time we free
1558 * the blocks.
1560 if (fork == XFS_DATA_FORK) {
1561 if (ip->i_d.di_nextents > 0) {
1563 * If we are not changing the file size then do
1564 * not update the on-disk file size - we may be
1565 * called from xfs_inactive_free_eofblocks(). If we
1566 * update the on-disk file size and then the system
1567 * crashes before the contents of the file are
1568 * flushed to disk then the files may be full of
1569 * holes (ie NULL files bug).
1571 if (ip->i_size != new_size) {
1572 ip->i_d.di_size = new_size;
1573 ip->i_size = new_size;
1574 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1577 } else if (sync) {
1578 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1579 if (ip->i_d.di_anextents > 0)
1580 xfs_trans_set_sync(ntp);
1582 ASSERT(fork == XFS_DATA_FORK ||
1583 (fork == XFS_ATTR_FORK &&
1584 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1585 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1588 * Since it is possible for space to become allocated beyond
1589 * the end of the file (in a crash where the space is allocated
1590 * but the inode size is not yet updated), simply remove any
1591 * blocks which show up between the new EOF and the maximum
1592 * possible file size. If the first block to be removed is
1593 * beyond the maximum file size (ie it is the same as last_block),
1594 * then there is nothing to do.
1596 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1597 ASSERT(first_unmap_block <= last_block);
1598 done = 0;
1599 if (last_block == first_unmap_block) {
1600 done = 1;
1601 } else {
1602 unmap_len = last_block - first_unmap_block + 1;
1604 while (!done) {
1606 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1607 * will tell us whether it freed the entire range or
1608 * not. If this is a synchronous mount (wsync),
1609 * then we can tell bunmapi to keep all the
1610 * transactions asynchronous since the unlink
1611 * transaction that made this inode inactive has
1612 * already hit the disk. There's no danger of
1613 * the freed blocks being reused, there being a
1614 * crash, and the reused blocks suddenly reappearing
1615 * in this file with garbage in them once recovery
1616 * runs.
1618 xfs_bmap_init(&free_list, &first_block);
1619 error = xfs_bunmapi(ntp, ip,
1620 first_unmap_block, unmap_len,
1621 xfs_bmapi_aflag(fork) |
1622 (sync ? 0 : XFS_BMAPI_ASYNC),
1623 XFS_ITRUNC_MAX_EXTENTS,
1624 &first_block, &free_list,
1625 NULL, &done);
1626 if (error) {
1628 * If the bunmapi call encounters an error,
1629 * return to the caller where the transaction
1630 * can be properly aborted. We just need to
1631 * make sure we're not holding any resources
1632 * that we were not when we came in.
1634 xfs_bmap_cancel(&free_list);
1635 return error;
1639 * Duplicate the transaction that has the permanent
1640 * reservation and commit the old transaction.
1642 error = xfs_bmap_finish(tp, &free_list, &committed);
1643 ntp = *tp;
1644 if (committed) {
1645 /* link the inode into the next xact in the chain */
1646 xfs_trans_ijoin(ntp, ip,
1647 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1648 xfs_trans_ihold(ntp, ip);
1651 if (error) {
1653 * If the bmap finish call encounters an error, return
1654 * to the caller where the transaction can be properly
1655 * aborted. We just need to make sure we're not
1656 * holding any resources that we were not when we came
1657 * in.
1659 * Aborting from this point might lose some blocks in
1660 * the file system, but oh well.
1662 xfs_bmap_cancel(&free_list);
1663 return error;
1666 if (committed) {
1668 * Mark the inode dirty so it will be logged and
1669 * moved forward in the log as part of every commit.
1671 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1674 ntp = xfs_trans_dup(ntp);
1675 error = xfs_trans_commit(*tp, 0);
1676 *tp = ntp;
1678 /* link the inode into the next transaction in the chain */
1679 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1680 xfs_trans_ihold(ntp, ip);
1682 if (error)
1683 return error;
1685 * transaction commit worked ok so we can drop the extra ticket
1686 * reference that we gained in xfs_trans_dup()
1688 xfs_log_ticket_put(ntp->t_ticket);
1689 error = xfs_trans_reserve(ntp, 0,
1690 XFS_ITRUNCATE_LOG_RES(mp), 0,
1691 XFS_TRANS_PERM_LOG_RES,
1692 XFS_ITRUNCATE_LOG_COUNT);
1693 if (error)
1694 return error;
1697 * Only update the size in the case of the data fork, but
1698 * always re-log the inode so that our permanent transaction
1699 * can keep on rolling it forward in the log.
1701 if (fork == XFS_DATA_FORK) {
1702 xfs_isize_check(mp, ip, new_size);
1704 * If we are not changing the file size then do
1705 * not update the on-disk file size - we may be
1706 * called from xfs_inactive_free_eofblocks(). If we
1707 * update the on-disk file size and then the system
1708 * crashes before the contents of the file are
1709 * flushed to disk then the files may be full of
1710 * holes (ie NULL files bug).
1712 if (ip->i_size != new_size) {
1713 ip->i_d.di_size = new_size;
1714 ip->i_size = new_size;
1717 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1718 ASSERT((new_size != 0) ||
1719 (fork == XFS_ATTR_FORK) ||
1720 (ip->i_delayed_blks == 0));
1721 ASSERT((new_size != 0) ||
1722 (fork == XFS_ATTR_FORK) ||
1723 (ip->i_d.di_nextents == 0));
1724 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1725 return 0;
1729 * This is called when the inode's link count goes to 0.
1730 * We place the on-disk inode on a list in the AGI. It
1731 * will be pulled from this list when the inode is freed.
1734 xfs_iunlink(
1735 xfs_trans_t *tp,
1736 xfs_inode_t *ip)
1738 xfs_mount_t *mp;
1739 xfs_agi_t *agi;
1740 xfs_dinode_t *dip;
1741 xfs_buf_t *agibp;
1742 xfs_buf_t *ibp;
1743 xfs_agino_t agino;
1744 short bucket_index;
1745 int offset;
1746 int error;
1748 ASSERT(ip->i_d.di_nlink == 0);
1749 ASSERT(ip->i_d.di_mode != 0);
1750 ASSERT(ip->i_transp == tp);
1752 mp = tp->t_mountp;
1755 * Get the agi buffer first. It ensures lock ordering
1756 * on the list.
1758 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1759 if (error)
1760 return error;
1761 agi = XFS_BUF_TO_AGI(agibp);
1764 * Get the index into the agi hash table for the
1765 * list this inode will go on.
1767 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1768 ASSERT(agino != 0);
1769 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1770 ASSERT(agi->agi_unlinked[bucket_index]);
1771 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1773 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1775 * There is already another inode in the bucket we need
1776 * to add ourselves to. Add us at the front of the list.
1777 * Here we put the head pointer into our next pointer,
1778 * and then we fall through to point the head at us.
1780 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1781 if (error)
1782 return error;
1784 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1785 /* both on-disk, don't endian flip twice */
1786 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1787 offset = ip->i_imap.im_boffset +
1788 offsetof(xfs_dinode_t, di_next_unlinked);
1789 xfs_trans_inode_buf(tp, ibp);
1790 xfs_trans_log_buf(tp, ibp, offset,
1791 (offset + sizeof(xfs_agino_t) - 1));
1792 xfs_inobp_check(mp, ibp);
1796 * Point the bucket head pointer at the inode being inserted.
1798 ASSERT(agino != 0);
1799 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1800 offset = offsetof(xfs_agi_t, agi_unlinked) +
1801 (sizeof(xfs_agino_t) * bucket_index);
1802 xfs_trans_log_buf(tp, agibp, offset,
1803 (offset + sizeof(xfs_agino_t) - 1));
1804 return 0;
1808 * Pull the on-disk inode from the AGI unlinked list.
1810 STATIC int
1811 xfs_iunlink_remove(
1812 xfs_trans_t *tp,
1813 xfs_inode_t *ip)
1815 xfs_ino_t next_ino;
1816 xfs_mount_t *mp;
1817 xfs_agi_t *agi;
1818 xfs_dinode_t *dip;
1819 xfs_buf_t *agibp;
1820 xfs_buf_t *ibp;
1821 xfs_agnumber_t agno;
1822 xfs_agino_t agino;
1823 xfs_agino_t next_agino;
1824 xfs_buf_t *last_ibp;
1825 xfs_dinode_t *last_dip = NULL;
1826 short bucket_index;
1827 int offset, last_offset = 0;
1828 int error;
1830 mp = tp->t_mountp;
1831 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1834 * Get the agi buffer first. It ensures lock ordering
1835 * on the list.
1837 error = xfs_read_agi(mp, tp, agno, &agibp);
1838 if (error)
1839 return error;
1841 agi = XFS_BUF_TO_AGI(agibp);
1844 * Get the index into the agi hash table for the
1845 * list this inode will go on.
1847 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1848 ASSERT(agino != 0);
1849 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1850 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1851 ASSERT(agi->agi_unlinked[bucket_index]);
1853 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1855 * We're at the head of the list. Get the inode's
1856 * on-disk buffer to see if there is anyone after us
1857 * on the list. Only modify our next pointer if it
1858 * is not already NULLAGINO. This saves us the overhead
1859 * of dealing with the buffer when there is no need to
1860 * change it.
1862 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1863 if (error) {
1864 cmn_err(CE_WARN,
1865 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1866 error, mp->m_fsname);
1867 return error;
1869 next_agino = be32_to_cpu(dip->di_next_unlinked);
1870 ASSERT(next_agino != 0);
1871 if (next_agino != NULLAGINO) {
1872 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1873 offset = ip->i_imap.im_boffset +
1874 offsetof(xfs_dinode_t, di_next_unlinked);
1875 xfs_trans_inode_buf(tp, ibp);
1876 xfs_trans_log_buf(tp, ibp, offset,
1877 (offset + sizeof(xfs_agino_t) - 1));
1878 xfs_inobp_check(mp, ibp);
1879 } else {
1880 xfs_trans_brelse(tp, ibp);
1883 * Point the bucket head pointer at the next inode.
1885 ASSERT(next_agino != 0);
1886 ASSERT(next_agino != agino);
1887 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1888 offset = offsetof(xfs_agi_t, agi_unlinked) +
1889 (sizeof(xfs_agino_t) * bucket_index);
1890 xfs_trans_log_buf(tp, agibp, offset,
1891 (offset + sizeof(xfs_agino_t) - 1));
1892 } else {
1894 * We need to search the list for the inode being freed.
1896 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1897 last_ibp = NULL;
1898 while (next_agino != agino) {
1900 * If the last inode wasn't the one pointing to
1901 * us, then release its buffer since we're not
1902 * going to do anything with it.
1904 if (last_ibp != NULL) {
1905 xfs_trans_brelse(tp, last_ibp);
1907 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1908 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1909 &last_ibp, &last_offset, 0);
1910 if (error) {
1911 cmn_err(CE_WARN,
1912 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1913 error, mp->m_fsname);
1914 return error;
1916 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1917 ASSERT(next_agino != NULLAGINO);
1918 ASSERT(next_agino != 0);
1921 * Now last_ibp points to the buffer previous to us on
1922 * the unlinked list. Pull us from the list.
1924 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1925 if (error) {
1926 cmn_err(CE_WARN,
1927 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1928 error, mp->m_fsname);
1929 return error;
1931 next_agino = be32_to_cpu(dip->di_next_unlinked);
1932 ASSERT(next_agino != 0);
1933 ASSERT(next_agino != agino);
1934 if (next_agino != NULLAGINO) {
1935 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1936 offset = ip->i_imap.im_boffset +
1937 offsetof(xfs_dinode_t, di_next_unlinked);
1938 xfs_trans_inode_buf(tp, ibp);
1939 xfs_trans_log_buf(tp, ibp, offset,
1940 (offset + sizeof(xfs_agino_t) - 1));
1941 xfs_inobp_check(mp, ibp);
1942 } else {
1943 xfs_trans_brelse(tp, ibp);
1946 * Point the previous inode on the list to the next inode.
1948 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1949 ASSERT(next_agino != 0);
1950 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1951 xfs_trans_inode_buf(tp, last_ibp);
1952 xfs_trans_log_buf(tp, last_ibp, offset,
1953 (offset + sizeof(xfs_agino_t) - 1));
1954 xfs_inobp_check(mp, last_ibp);
1956 return 0;
1959 STATIC void
1960 xfs_ifree_cluster(
1961 xfs_inode_t *free_ip,
1962 xfs_trans_t *tp,
1963 xfs_ino_t inum)
1965 xfs_mount_t *mp = free_ip->i_mount;
1966 int blks_per_cluster;
1967 int nbufs;
1968 int ninodes;
1969 int i, j, found, pre_flushed;
1970 xfs_daddr_t blkno;
1971 xfs_buf_t *bp;
1972 xfs_inode_t *ip, **ip_found;
1973 xfs_inode_log_item_t *iip;
1974 xfs_log_item_t *lip;
1975 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1977 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1978 blks_per_cluster = 1;
1979 ninodes = mp->m_sb.sb_inopblock;
1980 nbufs = XFS_IALLOC_BLOCKS(mp);
1981 } else {
1982 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1983 mp->m_sb.sb_blocksize;
1984 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1985 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1988 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
1990 for (j = 0; j < nbufs; j++, inum += ninodes) {
1991 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1992 XFS_INO_TO_AGBNO(mp, inum));
1996 * Look for each inode in memory and attempt to lock it,
1997 * we can be racing with flush and tail pushing here.
1998 * any inode we get the locks on, add to an array of
1999 * inode items to process later.
2001 * The get the buffer lock, we could beat a flush
2002 * or tail pushing thread to the lock here, in which
2003 * case they will go looking for the inode buffer
2004 * and fail, we need some other form of interlock
2005 * here.
2007 found = 0;
2008 for (i = 0; i < ninodes; i++) {
2009 read_lock(&pag->pag_ici_lock);
2010 ip = radix_tree_lookup(&pag->pag_ici_root,
2011 XFS_INO_TO_AGINO(mp, (inum + i)));
2013 /* Inode not in memory or we found it already,
2014 * nothing to do
2016 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2017 read_unlock(&pag->pag_ici_lock);
2018 continue;
2021 if (xfs_inode_clean(ip)) {
2022 read_unlock(&pag->pag_ici_lock);
2023 continue;
2026 /* If we can get the locks then add it to the
2027 * list, otherwise by the time we get the bp lock
2028 * below it will already be attached to the
2029 * inode buffer.
2032 /* This inode will already be locked - by us, lets
2033 * keep it that way.
2036 if (ip == free_ip) {
2037 if (xfs_iflock_nowait(ip)) {
2038 xfs_iflags_set(ip, XFS_ISTALE);
2039 if (xfs_inode_clean(ip)) {
2040 xfs_ifunlock(ip);
2041 } else {
2042 ip_found[found++] = ip;
2045 read_unlock(&pag->pag_ici_lock);
2046 continue;
2049 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2050 if (xfs_iflock_nowait(ip)) {
2051 xfs_iflags_set(ip, XFS_ISTALE);
2053 if (xfs_inode_clean(ip)) {
2054 xfs_ifunlock(ip);
2055 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2056 } else {
2057 ip_found[found++] = ip;
2059 } else {
2060 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2063 read_unlock(&pag->pag_ici_lock);
2066 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2067 mp->m_bsize * blks_per_cluster,
2068 XFS_BUF_LOCK);
2070 pre_flushed = 0;
2071 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2072 while (lip) {
2073 if (lip->li_type == XFS_LI_INODE) {
2074 iip = (xfs_inode_log_item_t *)lip;
2075 ASSERT(iip->ili_logged == 1);
2076 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2077 xfs_trans_ail_copy_lsn(mp->m_ail,
2078 &iip->ili_flush_lsn,
2079 &iip->ili_item.li_lsn);
2080 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2081 pre_flushed++;
2083 lip = lip->li_bio_list;
2086 for (i = 0; i < found; i++) {
2087 ip = ip_found[i];
2088 iip = ip->i_itemp;
2090 if (!iip) {
2091 ip->i_update_core = 0;
2092 xfs_ifunlock(ip);
2093 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2094 continue;
2097 iip->ili_last_fields = iip->ili_format.ilf_fields;
2098 iip->ili_format.ilf_fields = 0;
2099 iip->ili_logged = 1;
2100 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2101 &iip->ili_item.li_lsn);
2103 xfs_buf_attach_iodone(bp,
2104 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2105 xfs_istale_done, (xfs_log_item_t *)iip);
2106 if (ip != free_ip) {
2107 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2111 if (found || pre_flushed)
2112 xfs_trans_stale_inode_buf(tp, bp);
2113 xfs_trans_binval(tp, bp);
2116 kmem_free(ip_found);
2117 xfs_put_perag(mp, pag);
2121 * This is called to return an inode to the inode free list.
2122 * The inode should already be truncated to 0 length and have
2123 * no pages associated with it. This routine also assumes that
2124 * the inode is already a part of the transaction.
2126 * The on-disk copy of the inode will have been added to the list
2127 * of unlinked inodes in the AGI. We need to remove the inode from
2128 * that list atomically with respect to freeing it here.
2131 xfs_ifree(
2132 xfs_trans_t *tp,
2133 xfs_inode_t *ip,
2134 xfs_bmap_free_t *flist)
2136 int error;
2137 int delete;
2138 xfs_ino_t first_ino;
2139 xfs_dinode_t *dip;
2140 xfs_buf_t *ibp;
2142 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2143 ASSERT(ip->i_transp == tp);
2144 ASSERT(ip->i_d.di_nlink == 0);
2145 ASSERT(ip->i_d.di_nextents == 0);
2146 ASSERT(ip->i_d.di_anextents == 0);
2147 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2148 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2149 ASSERT(ip->i_d.di_nblocks == 0);
2152 * Pull the on-disk inode from the AGI unlinked list.
2154 error = xfs_iunlink_remove(tp, ip);
2155 if (error != 0) {
2156 return error;
2159 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2160 if (error != 0) {
2161 return error;
2163 ip->i_d.di_mode = 0; /* mark incore inode as free */
2164 ip->i_d.di_flags = 0;
2165 ip->i_d.di_dmevmask = 0;
2166 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2167 ip->i_df.if_ext_max =
2168 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2169 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2170 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2172 * Bump the generation count so no one will be confused
2173 * by reincarnations of this inode.
2175 ip->i_d.di_gen++;
2177 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2179 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
2180 if (error)
2181 return error;
2184 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2185 * from picking up this inode when it is reclaimed (its incore state
2186 * initialzed but not flushed to disk yet). The in-core di_mode is
2187 * already cleared and a corresponding transaction logged.
2188 * The hack here just synchronizes the in-core to on-disk
2189 * di_mode value in advance before the actual inode sync to disk.
2190 * This is OK because the inode is already unlinked and would never
2191 * change its di_mode again for this inode generation.
2192 * This is a temporary hack that would require a proper fix
2193 * in the future.
2195 dip->di_mode = 0;
2197 if (delete) {
2198 xfs_ifree_cluster(ip, tp, first_ino);
2201 return 0;
2205 * Reallocate the space for if_broot based on the number of records
2206 * being added or deleted as indicated in rec_diff. Move the records
2207 * and pointers in if_broot to fit the new size. When shrinking this
2208 * will eliminate holes between the records and pointers created by
2209 * the caller. When growing this will create holes to be filled in
2210 * by the caller.
2212 * The caller must not request to add more records than would fit in
2213 * the on-disk inode root. If the if_broot is currently NULL, then
2214 * if we adding records one will be allocated. The caller must also
2215 * not request that the number of records go below zero, although
2216 * it can go to zero.
2218 * ip -- the inode whose if_broot area is changing
2219 * ext_diff -- the change in the number of records, positive or negative,
2220 * requested for the if_broot array.
2222 void
2223 xfs_iroot_realloc(
2224 xfs_inode_t *ip,
2225 int rec_diff,
2226 int whichfork)
2228 struct xfs_mount *mp = ip->i_mount;
2229 int cur_max;
2230 xfs_ifork_t *ifp;
2231 struct xfs_btree_block *new_broot;
2232 int new_max;
2233 size_t new_size;
2234 char *np;
2235 char *op;
2238 * Handle the degenerate case quietly.
2240 if (rec_diff == 0) {
2241 return;
2244 ifp = XFS_IFORK_PTR(ip, whichfork);
2245 if (rec_diff > 0) {
2247 * If there wasn't any memory allocated before, just
2248 * allocate it now and get out.
2250 if (ifp->if_broot_bytes == 0) {
2251 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2252 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2253 ifp->if_broot_bytes = (int)new_size;
2254 return;
2258 * If there is already an existing if_broot, then we need
2259 * to realloc() it and shift the pointers to their new
2260 * location. The records don't change location because
2261 * they are kept butted up against the btree block header.
2263 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2264 new_max = cur_max + rec_diff;
2265 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2266 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2267 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2268 KM_SLEEP);
2269 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2270 ifp->if_broot_bytes);
2271 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2272 (int)new_size);
2273 ifp->if_broot_bytes = (int)new_size;
2274 ASSERT(ifp->if_broot_bytes <=
2275 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2276 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2277 return;
2281 * rec_diff is less than 0. In this case, we are shrinking the
2282 * if_broot buffer. It must already exist. If we go to zero
2283 * records, just get rid of the root and clear the status bit.
2285 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2286 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2287 new_max = cur_max + rec_diff;
2288 ASSERT(new_max >= 0);
2289 if (new_max > 0)
2290 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2291 else
2292 new_size = 0;
2293 if (new_size > 0) {
2294 new_broot = kmem_alloc(new_size, KM_SLEEP);
2296 * First copy over the btree block header.
2298 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2299 } else {
2300 new_broot = NULL;
2301 ifp->if_flags &= ~XFS_IFBROOT;
2305 * Only copy the records and pointers if there are any.
2307 if (new_max > 0) {
2309 * First copy the records.
2311 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2312 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2313 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2316 * Then copy the pointers.
2318 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2319 ifp->if_broot_bytes);
2320 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2321 (int)new_size);
2322 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2324 kmem_free(ifp->if_broot);
2325 ifp->if_broot = new_broot;
2326 ifp->if_broot_bytes = (int)new_size;
2327 ASSERT(ifp->if_broot_bytes <=
2328 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2329 return;
2334 * This is called when the amount of space needed for if_data
2335 * is increased or decreased. The change in size is indicated by
2336 * the number of bytes that need to be added or deleted in the
2337 * byte_diff parameter.
2339 * If the amount of space needed has decreased below the size of the
2340 * inline buffer, then switch to using the inline buffer. Otherwise,
2341 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2342 * to what is needed.
2344 * ip -- the inode whose if_data area is changing
2345 * byte_diff -- the change in the number of bytes, positive or negative,
2346 * requested for the if_data array.
2348 void
2349 xfs_idata_realloc(
2350 xfs_inode_t *ip,
2351 int byte_diff,
2352 int whichfork)
2354 xfs_ifork_t *ifp;
2355 int new_size;
2356 int real_size;
2358 if (byte_diff == 0) {
2359 return;
2362 ifp = XFS_IFORK_PTR(ip, whichfork);
2363 new_size = (int)ifp->if_bytes + byte_diff;
2364 ASSERT(new_size >= 0);
2366 if (new_size == 0) {
2367 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2368 kmem_free(ifp->if_u1.if_data);
2370 ifp->if_u1.if_data = NULL;
2371 real_size = 0;
2372 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2374 * If the valid extents/data can fit in if_inline_ext/data,
2375 * copy them from the malloc'd vector and free it.
2377 if (ifp->if_u1.if_data == NULL) {
2378 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2379 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2380 ASSERT(ifp->if_real_bytes != 0);
2381 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2382 new_size);
2383 kmem_free(ifp->if_u1.if_data);
2384 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2386 real_size = 0;
2387 } else {
2389 * Stuck with malloc/realloc.
2390 * For inline data, the underlying buffer must be
2391 * a multiple of 4 bytes in size so that it can be
2392 * logged and stay on word boundaries. We enforce
2393 * that here.
2395 real_size = roundup(new_size, 4);
2396 if (ifp->if_u1.if_data == NULL) {
2397 ASSERT(ifp->if_real_bytes == 0);
2398 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2399 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2401 * Only do the realloc if the underlying size
2402 * is really changing.
2404 if (ifp->if_real_bytes != real_size) {
2405 ifp->if_u1.if_data =
2406 kmem_realloc(ifp->if_u1.if_data,
2407 real_size,
2408 ifp->if_real_bytes,
2409 KM_SLEEP);
2411 } else {
2412 ASSERT(ifp->if_real_bytes == 0);
2413 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2414 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2415 ifp->if_bytes);
2418 ifp->if_real_bytes = real_size;
2419 ifp->if_bytes = new_size;
2420 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2423 void
2424 xfs_idestroy_fork(
2425 xfs_inode_t *ip,
2426 int whichfork)
2428 xfs_ifork_t *ifp;
2430 ifp = XFS_IFORK_PTR(ip, whichfork);
2431 if (ifp->if_broot != NULL) {
2432 kmem_free(ifp->if_broot);
2433 ifp->if_broot = NULL;
2437 * If the format is local, then we can't have an extents
2438 * array so just look for an inline data array. If we're
2439 * not local then we may or may not have an extents list,
2440 * so check and free it up if we do.
2442 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2443 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2444 (ifp->if_u1.if_data != NULL)) {
2445 ASSERT(ifp->if_real_bytes != 0);
2446 kmem_free(ifp->if_u1.if_data);
2447 ifp->if_u1.if_data = NULL;
2448 ifp->if_real_bytes = 0;
2450 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2451 ((ifp->if_flags & XFS_IFEXTIREC) ||
2452 ((ifp->if_u1.if_extents != NULL) &&
2453 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2454 ASSERT(ifp->if_real_bytes != 0);
2455 xfs_iext_destroy(ifp);
2457 ASSERT(ifp->if_u1.if_extents == NULL ||
2458 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2459 ASSERT(ifp->if_real_bytes == 0);
2460 if (whichfork == XFS_ATTR_FORK) {
2461 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2462 ip->i_afp = NULL;
2467 * Increment the pin count of the given buffer.
2468 * This value is protected by ipinlock spinlock in the mount structure.
2470 void
2471 xfs_ipin(
2472 xfs_inode_t *ip)
2474 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2476 atomic_inc(&ip->i_pincount);
2480 * Decrement the pin count of the given inode, and wake up
2481 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2482 * inode must have been previously pinned with a call to xfs_ipin().
2484 void
2485 xfs_iunpin(
2486 xfs_inode_t *ip)
2488 ASSERT(atomic_read(&ip->i_pincount) > 0);
2490 if (atomic_dec_and_test(&ip->i_pincount))
2491 wake_up(&ip->i_ipin_wait);
2495 * This is called to unpin an inode. It can be directed to wait or to return
2496 * immediately without waiting for the inode to be unpinned. The caller must
2497 * have the inode locked in at least shared mode so that the buffer cannot be
2498 * subsequently pinned once someone is waiting for it to be unpinned.
2500 STATIC void
2501 __xfs_iunpin_wait(
2502 xfs_inode_t *ip,
2503 int wait)
2505 xfs_inode_log_item_t *iip = ip->i_itemp;
2507 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2508 if (atomic_read(&ip->i_pincount) == 0)
2509 return;
2511 /* Give the log a push to start the unpinning I/O */
2512 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2513 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2514 if (wait)
2515 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2518 static inline void
2519 xfs_iunpin_wait(
2520 xfs_inode_t *ip)
2522 __xfs_iunpin_wait(ip, 1);
2525 static inline void
2526 xfs_iunpin_nowait(
2527 xfs_inode_t *ip)
2529 __xfs_iunpin_wait(ip, 0);
2534 * xfs_iextents_copy()
2536 * This is called to copy the REAL extents (as opposed to the delayed
2537 * allocation extents) from the inode into the given buffer. It
2538 * returns the number of bytes copied into the buffer.
2540 * If there are no delayed allocation extents, then we can just
2541 * memcpy() the extents into the buffer. Otherwise, we need to
2542 * examine each extent in turn and skip those which are delayed.
2545 xfs_iextents_copy(
2546 xfs_inode_t *ip,
2547 xfs_bmbt_rec_t *dp,
2548 int whichfork)
2550 int copied;
2551 int i;
2552 xfs_ifork_t *ifp;
2553 int nrecs;
2554 xfs_fsblock_t start_block;
2556 ifp = XFS_IFORK_PTR(ip, whichfork);
2557 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2558 ASSERT(ifp->if_bytes > 0);
2560 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2561 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2562 ASSERT(nrecs > 0);
2565 * There are some delayed allocation extents in the
2566 * inode, so copy the extents one at a time and skip
2567 * the delayed ones. There must be at least one
2568 * non-delayed extent.
2570 copied = 0;
2571 for (i = 0; i < nrecs; i++) {
2572 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2573 start_block = xfs_bmbt_get_startblock(ep);
2574 if (isnullstartblock(start_block)) {
2576 * It's a delayed allocation extent, so skip it.
2578 continue;
2581 /* Translate to on disk format */
2582 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2583 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2584 dp++;
2585 copied++;
2587 ASSERT(copied != 0);
2588 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2590 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2594 * Each of the following cases stores data into the same region
2595 * of the on-disk inode, so only one of them can be valid at
2596 * any given time. While it is possible to have conflicting formats
2597 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2598 * in EXTENTS format, this can only happen when the fork has
2599 * changed formats after being modified but before being flushed.
2600 * In these cases, the format always takes precedence, because the
2601 * format indicates the current state of the fork.
2603 /*ARGSUSED*/
2604 STATIC void
2605 xfs_iflush_fork(
2606 xfs_inode_t *ip,
2607 xfs_dinode_t *dip,
2608 xfs_inode_log_item_t *iip,
2609 int whichfork,
2610 xfs_buf_t *bp)
2612 char *cp;
2613 xfs_ifork_t *ifp;
2614 xfs_mount_t *mp;
2615 #ifdef XFS_TRANS_DEBUG
2616 int first;
2617 #endif
2618 static const short brootflag[2] =
2619 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2620 static const short dataflag[2] =
2621 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2622 static const short extflag[2] =
2623 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2625 if (!iip)
2626 return;
2627 ifp = XFS_IFORK_PTR(ip, whichfork);
2629 * This can happen if we gave up in iformat in an error path,
2630 * for the attribute fork.
2632 if (!ifp) {
2633 ASSERT(whichfork == XFS_ATTR_FORK);
2634 return;
2636 cp = XFS_DFORK_PTR(dip, whichfork);
2637 mp = ip->i_mount;
2638 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2639 case XFS_DINODE_FMT_LOCAL:
2640 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2641 (ifp->if_bytes > 0)) {
2642 ASSERT(ifp->if_u1.if_data != NULL);
2643 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2644 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2646 break;
2648 case XFS_DINODE_FMT_EXTENTS:
2649 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2650 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2651 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2652 (ifp->if_bytes == 0));
2653 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2654 (ifp->if_bytes > 0));
2655 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2656 (ifp->if_bytes > 0)) {
2657 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2658 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2659 whichfork);
2661 break;
2663 case XFS_DINODE_FMT_BTREE:
2664 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2665 (ifp->if_broot_bytes > 0)) {
2666 ASSERT(ifp->if_broot != NULL);
2667 ASSERT(ifp->if_broot_bytes <=
2668 (XFS_IFORK_SIZE(ip, whichfork) +
2669 XFS_BROOT_SIZE_ADJ));
2670 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2671 (xfs_bmdr_block_t *)cp,
2672 XFS_DFORK_SIZE(dip, mp, whichfork));
2674 break;
2676 case XFS_DINODE_FMT_DEV:
2677 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2678 ASSERT(whichfork == XFS_DATA_FORK);
2679 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2681 break;
2683 case XFS_DINODE_FMT_UUID:
2684 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2685 ASSERT(whichfork == XFS_DATA_FORK);
2686 memcpy(XFS_DFORK_DPTR(dip),
2687 &ip->i_df.if_u2.if_uuid,
2688 sizeof(uuid_t));
2690 break;
2692 default:
2693 ASSERT(0);
2694 break;
2698 STATIC int
2699 xfs_iflush_cluster(
2700 xfs_inode_t *ip,
2701 xfs_buf_t *bp)
2703 xfs_mount_t *mp = ip->i_mount;
2704 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2705 unsigned long first_index, mask;
2706 unsigned long inodes_per_cluster;
2707 int ilist_size;
2708 xfs_inode_t **ilist;
2709 xfs_inode_t *iq;
2710 int nr_found;
2711 int clcount = 0;
2712 int bufwasdelwri;
2713 int i;
2715 ASSERT(pag->pagi_inodeok);
2716 ASSERT(pag->pag_ici_init);
2718 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2719 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2720 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2721 if (!ilist)
2722 return 0;
2724 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2725 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2726 read_lock(&pag->pag_ici_lock);
2727 /* really need a gang lookup range call here */
2728 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2729 first_index, inodes_per_cluster);
2730 if (nr_found == 0)
2731 goto out_free;
2733 for (i = 0; i < nr_found; i++) {
2734 iq = ilist[i];
2735 if (iq == ip)
2736 continue;
2737 /* if the inode lies outside this cluster, we're done. */
2738 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2739 break;
2741 * Do an un-protected check to see if the inode is dirty and
2742 * is a candidate for flushing. These checks will be repeated
2743 * later after the appropriate locks are acquired.
2745 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2746 continue;
2749 * Try to get locks. If any are unavailable or it is pinned,
2750 * then this inode cannot be flushed and is skipped.
2753 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2754 continue;
2755 if (!xfs_iflock_nowait(iq)) {
2756 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2757 continue;
2759 if (xfs_ipincount(iq)) {
2760 xfs_ifunlock(iq);
2761 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2762 continue;
2766 * arriving here means that this inode can be flushed. First
2767 * re-check that it's dirty before flushing.
2769 if (!xfs_inode_clean(iq)) {
2770 int error;
2771 error = xfs_iflush_int(iq, bp);
2772 if (error) {
2773 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2774 goto cluster_corrupt_out;
2776 clcount++;
2777 } else {
2778 xfs_ifunlock(iq);
2780 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2783 if (clcount) {
2784 XFS_STATS_INC(xs_icluster_flushcnt);
2785 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2788 out_free:
2789 read_unlock(&pag->pag_ici_lock);
2790 kmem_free(ilist);
2791 return 0;
2794 cluster_corrupt_out:
2796 * Corruption detected in the clustering loop. Invalidate the
2797 * inode buffer and shut down the filesystem.
2799 read_unlock(&pag->pag_ici_lock);
2801 * Clean up the buffer. If it was B_DELWRI, just release it --
2802 * brelse can handle it with no problems. If not, shut down the
2803 * filesystem before releasing the buffer.
2805 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2806 if (bufwasdelwri)
2807 xfs_buf_relse(bp);
2809 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2811 if (!bufwasdelwri) {
2813 * Just like incore_relse: if we have b_iodone functions,
2814 * mark the buffer as an error and call them. Otherwise
2815 * mark it as stale and brelse.
2817 if (XFS_BUF_IODONE_FUNC(bp)) {
2818 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2819 XFS_BUF_UNDONE(bp);
2820 XFS_BUF_STALE(bp);
2821 XFS_BUF_ERROR(bp,EIO);
2822 xfs_biodone(bp);
2823 } else {
2824 XFS_BUF_STALE(bp);
2825 xfs_buf_relse(bp);
2830 * Unlocks the flush lock
2832 xfs_iflush_abort(iq);
2833 kmem_free(ilist);
2834 return XFS_ERROR(EFSCORRUPTED);
2838 * xfs_iflush() will write a modified inode's changes out to the
2839 * inode's on disk home. The caller must have the inode lock held
2840 * in at least shared mode and the inode flush completion must be
2841 * active as well. The inode lock will still be held upon return from
2842 * the call and the caller is free to unlock it.
2843 * The inode flush will be completed when the inode reaches the disk.
2844 * The flags indicate how the inode's buffer should be written out.
2847 xfs_iflush(
2848 xfs_inode_t *ip,
2849 uint flags)
2851 xfs_inode_log_item_t *iip;
2852 xfs_buf_t *bp;
2853 xfs_dinode_t *dip;
2854 xfs_mount_t *mp;
2855 int error;
2856 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
2857 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
2859 XFS_STATS_INC(xs_iflush_count);
2861 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2862 ASSERT(!completion_done(&ip->i_flush));
2863 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2864 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2866 iip = ip->i_itemp;
2867 mp = ip->i_mount;
2870 * If the inode isn't dirty, then just release the inode
2871 * flush lock and do nothing.
2873 if (xfs_inode_clean(ip)) {
2874 xfs_ifunlock(ip);
2875 return 0;
2879 * We can't flush the inode until it is unpinned, so wait for it if we
2880 * are allowed to block. We know noone new can pin it, because we are
2881 * holding the inode lock shared and you need to hold it exclusively to
2882 * pin the inode.
2884 * If we are not allowed to block, force the log out asynchronously so
2885 * that when we come back the inode will be unpinned. If other inodes
2886 * in the same cluster are dirty, they will probably write the inode
2887 * out for us if they occur after the log force completes.
2889 if (noblock && xfs_ipincount(ip)) {
2890 xfs_iunpin_nowait(ip);
2891 xfs_ifunlock(ip);
2892 return EAGAIN;
2894 xfs_iunpin_wait(ip);
2897 * This may have been unpinned because the filesystem is shutting
2898 * down forcibly. If that's the case we must not write this inode
2899 * to disk, because the log record didn't make it to disk!
2901 if (XFS_FORCED_SHUTDOWN(mp)) {
2902 ip->i_update_core = 0;
2903 if (iip)
2904 iip->ili_format.ilf_fields = 0;
2905 xfs_ifunlock(ip);
2906 return XFS_ERROR(EIO);
2910 * Decide how buffer will be flushed out. This is done before
2911 * the call to xfs_iflush_int because this field is zeroed by it.
2913 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2915 * Flush out the inode buffer according to the directions
2916 * of the caller. In the cases where the caller has given
2917 * us a choice choose the non-delwri case. This is because
2918 * the inode is in the AIL and we need to get it out soon.
2920 switch (flags) {
2921 case XFS_IFLUSH_SYNC:
2922 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2923 flags = 0;
2924 break;
2925 case XFS_IFLUSH_ASYNC_NOBLOCK:
2926 case XFS_IFLUSH_ASYNC:
2927 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2928 flags = INT_ASYNC;
2929 break;
2930 case XFS_IFLUSH_DELWRI:
2931 flags = INT_DELWRI;
2932 break;
2933 default:
2934 ASSERT(0);
2935 flags = 0;
2936 break;
2938 } else {
2939 switch (flags) {
2940 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2941 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2942 case XFS_IFLUSH_DELWRI:
2943 flags = INT_DELWRI;
2944 break;
2945 case XFS_IFLUSH_ASYNC_NOBLOCK:
2946 case XFS_IFLUSH_ASYNC:
2947 flags = INT_ASYNC;
2948 break;
2949 case XFS_IFLUSH_SYNC:
2950 flags = 0;
2951 break;
2952 default:
2953 ASSERT(0);
2954 flags = 0;
2955 break;
2960 * Get the buffer containing the on-disk inode.
2962 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2963 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
2964 if (error || !bp) {
2965 xfs_ifunlock(ip);
2966 return error;
2970 * First flush out the inode that xfs_iflush was called with.
2972 error = xfs_iflush_int(ip, bp);
2973 if (error)
2974 goto corrupt_out;
2977 * If the buffer is pinned then push on the log now so we won't
2978 * get stuck waiting in the write for too long.
2980 if (XFS_BUF_ISPINNED(bp))
2981 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
2984 * inode clustering:
2985 * see if other inodes can be gathered into this write
2987 error = xfs_iflush_cluster(ip, bp);
2988 if (error)
2989 goto cluster_corrupt_out;
2991 if (flags & INT_DELWRI) {
2992 xfs_bdwrite(mp, bp);
2993 } else if (flags & INT_ASYNC) {
2994 error = xfs_bawrite(mp, bp);
2995 } else {
2996 error = xfs_bwrite(mp, bp);
2998 return error;
3000 corrupt_out:
3001 xfs_buf_relse(bp);
3002 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3003 cluster_corrupt_out:
3005 * Unlocks the flush lock
3007 xfs_iflush_abort(ip);
3008 return XFS_ERROR(EFSCORRUPTED);
3012 STATIC int
3013 xfs_iflush_int(
3014 xfs_inode_t *ip,
3015 xfs_buf_t *bp)
3017 xfs_inode_log_item_t *iip;
3018 xfs_dinode_t *dip;
3019 xfs_mount_t *mp;
3020 #ifdef XFS_TRANS_DEBUG
3021 int first;
3022 #endif
3024 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3025 ASSERT(!completion_done(&ip->i_flush));
3026 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3027 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3029 iip = ip->i_itemp;
3030 mp = ip->i_mount;
3034 * If the inode isn't dirty, then just release the inode
3035 * flush lock and do nothing.
3037 if (xfs_inode_clean(ip)) {
3038 xfs_ifunlock(ip);
3039 return 0;
3042 /* set *dip = inode's place in the buffer */
3043 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3046 * Clear i_update_core before copying out the data.
3047 * This is for coordination with our timestamp updates
3048 * that don't hold the inode lock. They will always
3049 * update the timestamps BEFORE setting i_update_core,
3050 * so if we clear i_update_core after they set it we
3051 * are guaranteed to see their updates to the timestamps.
3052 * I believe that this depends on strongly ordered memory
3053 * semantics, but we have that. We use the SYNCHRONIZE
3054 * macro to make sure that the compiler does not reorder
3055 * the i_update_core access below the data copy below.
3057 ip->i_update_core = 0;
3058 SYNCHRONIZE();
3061 * Make sure to get the latest atime from the Linux inode.
3063 xfs_synchronize_atime(ip);
3065 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
3066 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3067 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3068 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3069 ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3070 goto corrupt_out;
3072 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3073 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3074 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3075 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3076 ip->i_ino, ip, ip->i_d.di_magic);
3077 goto corrupt_out;
3079 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3080 if (XFS_TEST_ERROR(
3081 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3082 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3083 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3084 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3085 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3086 ip->i_ino, ip);
3087 goto corrupt_out;
3089 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3090 if (XFS_TEST_ERROR(
3091 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3092 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3093 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3094 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3095 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3096 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3097 ip->i_ino, ip);
3098 goto corrupt_out;
3101 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3102 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3103 XFS_RANDOM_IFLUSH_5)) {
3104 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3105 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3106 ip->i_ino,
3107 ip->i_d.di_nextents + ip->i_d.di_anextents,
3108 ip->i_d.di_nblocks,
3109 ip);
3110 goto corrupt_out;
3112 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3113 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3114 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3115 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3116 ip->i_ino, ip->i_d.di_forkoff, ip);
3117 goto corrupt_out;
3120 * bump the flush iteration count, used to detect flushes which
3121 * postdate a log record during recovery.
3124 ip->i_d.di_flushiter++;
3127 * Copy the dirty parts of the inode into the on-disk
3128 * inode. We always copy out the core of the inode,
3129 * because if the inode is dirty at all the core must
3130 * be.
3132 xfs_dinode_to_disk(dip, &ip->i_d);
3134 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3135 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3136 ip->i_d.di_flushiter = 0;
3139 * If this is really an old format inode and the superblock version
3140 * has not been updated to support only new format inodes, then
3141 * convert back to the old inode format. If the superblock version
3142 * has been updated, then make the conversion permanent.
3144 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3145 if (ip->i_d.di_version == 1) {
3146 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3148 * Convert it back.
3150 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3151 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3152 } else {
3154 * The superblock version has already been bumped,
3155 * so just make the conversion to the new inode
3156 * format permanent.
3158 ip->i_d.di_version = 2;
3159 dip->di_version = 2;
3160 ip->i_d.di_onlink = 0;
3161 dip->di_onlink = 0;
3162 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3163 memset(&(dip->di_pad[0]), 0,
3164 sizeof(dip->di_pad));
3165 ASSERT(ip->i_d.di_projid == 0);
3169 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3170 if (XFS_IFORK_Q(ip))
3171 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3172 xfs_inobp_check(mp, bp);
3175 * We've recorded everything logged in the inode, so we'd
3176 * like to clear the ilf_fields bits so we don't log and
3177 * flush things unnecessarily. However, we can't stop
3178 * logging all this information until the data we've copied
3179 * into the disk buffer is written to disk. If we did we might
3180 * overwrite the copy of the inode in the log with all the
3181 * data after re-logging only part of it, and in the face of
3182 * a crash we wouldn't have all the data we need to recover.
3184 * What we do is move the bits to the ili_last_fields field.
3185 * When logging the inode, these bits are moved back to the
3186 * ilf_fields field. In the xfs_iflush_done() routine we
3187 * clear ili_last_fields, since we know that the information
3188 * those bits represent is permanently on disk. As long as
3189 * the flush completes before the inode is logged again, then
3190 * both ilf_fields and ili_last_fields will be cleared.
3192 * We can play with the ilf_fields bits here, because the inode
3193 * lock must be held exclusively in order to set bits there
3194 * and the flush lock protects the ili_last_fields bits.
3195 * Set ili_logged so the flush done
3196 * routine can tell whether or not to look in the AIL.
3197 * Also, store the current LSN of the inode so that we can tell
3198 * whether the item has moved in the AIL from xfs_iflush_done().
3199 * In order to read the lsn we need the AIL lock, because
3200 * it is a 64 bit value that cannot be read atomically.
3202 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3203 iip->ili_last_fields = iip->ili_format.ilf_fields;
3204 iip->ili_format.ilf_fields = 0;
3205 iip->ili_logged = 1;
3207 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3208 &iip->ili_item.li_lsn);
3211 * Attach the function xfs_iflush_done to the inode's
3212 * buffer. This will remove the inode from the AIL
3213 * and unlock the inode's flush lock when the inode is
3214 * completely written to disk.
3216 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3217 xfs_iflush_done, (xfs_log_item_t *)iip);
3219 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3220 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3221 } else {
3223 * We're flushing an inode which is not in the AIL and has
3224 * not been logged but has i_update_core set. For this
3225 * case we can use a B_DELWRI flush and immediately drop
3226 * the inode flush lock because we can avoid the whole
3227 * AIL state thing. It's OK to drop the flush lock now,
3228 * because we've already locked the buffer and to do anything
3229 * you really need both.
3231 if (iip != NULL) {
3232 ASSERT(iip->ili_logged == 0);
3233 ASSERT(iip->ili_last_fields == 0);
3234 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3236 xfs_ifunlock(ip);
3239 return 0;
3241 corrupt_out:
3242 return XFS_ERROR(EFSCORRUPTED);
3247 #ifdef XFS_ILOCK_TRACE
3248 void
3249 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3251 ktrace_enter(ip->i_lock_trace,
3252 (void *)ip,
3253 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3254 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3255 (void *)ra, /* caller of ilock */
3256 (void *)(unsigned long)current_cpu(),
3257 (void *)(unsigned long)current_pid(),
3258 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3260 #endif
3263 * Return a pointer to the extent record at file index idx.
3265 xfs_bmbt_rec_host_t *
3266 xfs_iext_get_ext(
3267 xfs_ifork_t *ifp, /* inode fork pointer */
3268 xfs_extnum_t idx) /* index of target extent */
3270 ASSERT(idx >= 0);
3271 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3272 return ifp->if_u1.if_ext_irec->er_extbuf;
3273 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3274 xfs_ext_irec_t *erp; /* irec pointer */
3275 int erp_idx = 0; /* irec index */
3276 xfs_extnum_t page_idx = idx; /* ext index in target list */
3278 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3279 return &erp->er_extbuf[page_idx];
3280 } else if (ifp->if_bytes) {
3281 return &ifp->if_u1.if_extents[idx];
3282 } else {
3283 return NULL;
3288 * Insert new item(s) into the extent records for incore inode
3289 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3291 void
3292 xfs_iext_insert(
3293 xfs_ifork_t *ifp, /* inode fork pointer */
3294 xfs_extnum_t idx, /* starting index of new items */
3295 xfs_extnum_t count, /* number of inserted items */
3296 xfs_bmbt_irec_t *new) /* items to insert */
3298 xfs_extnum_t i; /* extent record index */
3300 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3301 xfs_iext_add(ifp, idx, count);
3302 for (i = idx; i < idx + count; i++, new++)
3303 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3307 * This is called when the amount of space required for incore file
3308 * extents needs to be increased. The ext_diff parameter stores the
3309 * number of new extents being added and the idx parameter contains
3310 * the extent index where the new extents will be added. If the new
3311 * extents are being appended, then we just need to (re)allocate and
3312 * initialize the space. Otherwise, if the new extents are being
3313 * inserted into the middle of the existing entries, a bit more work
3314 * is required to make room for the new extents to be inserted. The
3315 * caller is responsible for filling in the new extent entries upon
3316 * return.
3318 void
3319 xfs_iext_add(
3320 xfs_ifork_t *ifp, /* inode fork pointer */
3321 xfs_extnum_t idx, /* index to begin adding exts */
3322 int ext_diff) /* number of extents to add */
3324 int byte_diff; /* new bytes being added */
3325 int new_size; /* size of extents after adding */
3326 xfs_extnum_t nextents; /* number of extents in file */
3328 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3329 ASSERT((idx >= 0) && (idx <= nextents));
3330 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3331 new_size = ifp->if_bytes + byte_diff;
3333 * If the new number of extents (nextents + ext_diff)
3334 * fits inside the inode, then continue to use the inline
3335 * extent buffer.
3337 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3338 if (idx < nextents) {
3339 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3340 &ifp->if_u2.if_inline_ext[idx],
3341 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3342 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3344 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3345 ifp->if_real_bytes = 0;
3346 ifp->if_lastex = nextents + ext_diff;
3349 * Otherwise use a linear (direct) extent list.
3350 * If the extents are currently inside the inode,
3351 * xfs_iext_realloc_direct will switch us from
3352 * inline to direct extent allocation mode.
3354 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3355 xfs_iext_realloc_direct(ifp, new_size);
3356 if (idx < nextents) {
3357 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3358 &ifp->if_u1.if_extents[idx],
3359 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3360 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3363 /* Indirection array */
3364 else {
3365 xfs_ext_irec_t *erp;
3366 int erp_idx = 0;
3367 int page_idx = idx;
3369 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3370 if (ifp->if_flags & XFS_IFEXTIREC) {
3371 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3372 } else {
3373 xfs_iext_irec_init(ifp);
3374 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3375 erp = ifp->if_u1.if_ext_irec;
3377 /* Extents fit in target extent page */
3378 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3379 if (page_idx < erp->er_extcount) {
3380 memmove(&erp->er_extbuf[page_idx + ext_diff],
3381 &erp->er_extbuf[page_idx],
3382 (erp->er_extcount - page_idx) *
3383 sizeof(xfs_bmbt_rec_t));
3384 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3386 erp->er_extcount += ext_diff;
3387 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3389 /* Insert a new extent page */
3390 else if (erp) {
3391 xfs_iext_add_indirect_multi(ifp,
3392 erp_idx, page_idx, ext_diff);
3395 * If extent(s) are being appended to the last page in
3396 * the indirection array and the new extent(s) don't fit
3397 * in the page, then erp is NULL and erp_idx is set to
3398 * the next index needed in the indirection array.
3400 else {
3401 int count = ext_diff;
3403 while (count) {
3404 erp = xfs_iext_irec_new(ifp, erp_idx);
3405 erp->er_extcount = count;
3406 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3407 if (count) {
3408 erp_idx++;
3413 ifp->if_bytes = new_size;
3417 * This is called when incore extents are being added to the indirection
3418 * array and the new extents do not fit in the target extent list. The
3419 * erp_idx parameter contains the irec index for the target extent list
3420 * in the indirection array, and the idx parameter contains the extent
3421 * index within the list. The number of extents being added is stored
3422 * in the count parameter.
3424 * |-------| |-------|
3425 * | | | | idx - number of extents before idx
3426 * | idx | | count |
3427 * | | | | count - number of extents being inserted at idx
3428 * |-------| |-------|
3429 * | count | | nex2 | nex2 - number of extents after idx + count
3430 * |-------| |-------|
3432 void
3433 xfs_iext_add_indirect_multi(
3434 xfs_ifork_t *ifp, /* inode fork pointer */
3435 int erp_idx, /* target extent irec index */
3436 xfs_extnum_t idx, /* index within target list */
3437 int count) /* new extents being added */
3439 int byte_diff; /* new bytes being added */
3440 xfs_ext_irec_t *erp; /* pointer to irec entry */
3441 xfs_extnum_t ext_diff; /* number of extents to add */
3442 xfs_extnum_t ext_cnt; /* new extents still needed */
3443 xfs_extnum_t nex2; /* extents after idx + count */
3444 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3445 int nlists; /* number of irec's (lists) */
3447 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3448 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3449 nex2 = erp->er_extcount - idx;
3450 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3453 * Save second part of target extent list
3454 * (all extents past */
3455 if (nex2) {
3456 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3457 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3458 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3459 erp->er_extcount -= nex2;
3460 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3461 memset(&erp->er_extbuf[idx], 0, byte_diff);
3465 * Add the new extents to the end of the target
3466 * list, then allocate new irec record(s) and
3467 * extent buffer(s) as needed to store the rest
3468 * of the new extents.
3470 ext_cnt = count;
3471 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3472 if (ext_diff) {
3473 erp->er_extcount += ext_diff;
3474 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3475 ext_cnt -= ext_diff;
3477 while (ext_cnt) {
3478 erp_idx++;
3479 erp = xfs_iext_irec_new(ifp, erp_idx);
3480 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3481 erp->er_extcount = ext_diff;
3482 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3483 ext_cnt -= ext_diff;
3486 /* Add nex2 extents back to indirection array */
3487 if (nex2) {
3488 xfs_extnum_t ext_avail;
3489 int i;
3491 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3492 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3493 i = 0;
3495 * If nex2 extents fit in the current page, append
3496 * nex2_ep after the new extents.
3498 if (nex2 <= ext_avail) {
3499 i = erp->er_extcount;
3502 * Otherwise, check if space is available in the
3503 * next page.
3505 else if ((erp_idx < nlists - 1) &&
3506 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3507 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3508 erp_idx++;
3509 erp++;
3510 /* Create a hole for nex2 extents */
3511 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3512 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3515 * Final choice, create a new extent page for
3516 * nex2 extents.
3518 else {
3519 erp_idx++;
3520 erp = xfs_iext_irec_new(ifp, erp_idx);
3522 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3523 kmem_free(nex2_ep);
3524 erp->er_extcount += nex2;
3525 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3530 * This is called when the amount of space required for incore file
3531 * extents needs to be decreased. The ext_diff parameter stores the
3532 * number of extents to be removed and the idx parameter contains
3533 * the extent index where the extents will be removed from.
3535 * If the amount of space needed has decreased below the linear
3536 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3537 * extent array. Otherwise, use kmem_realloc() to adjust the
3538 * size to what is needed.
3540 void
3541 xfs_iext_remove(
3542 xfs_ifork_t *ifp, /* inode fork pointer */
3543 xfs_extnum_t idx, /* index to begin removing exts */
3544 int ext_diff) /* number of extents to remove */
3546 xfs_extnum_t nextents; /* number of extents in file */
3547 int new_size; /* size of extents after removal */
3549 ASSERT(ext_diff > 0);
3550 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3551 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3553 if (new_size == 0) {
3554 xfs_iext_destroy(ifp);
3555 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3556 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3557 } else if (ifp->if_real_bytes) {
3558 xfs_iext_remove_direct(ifp, idx, ext_diff);
3559 } else {
3560 xfs_iext_remove_inline(ifp, idx, ext_diff);
3562 ifp->if_bytes = new_size;
3566 * This removes ext_diff extents from the inline buffer, beginning
3567 * at extent index idx.
3569 void
3570 xfs_iext_remove_inline(
3571 xfs_ifork_t *ifp, /* inode fork pointer */
3572 xfs_extnum_t idx, /* index to begin removing exts */
3573 int ext_diff) /* number of extents to remove */
3575 int nextents; /* number of extents in file */
3577 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3578 ASSERT(idx < XFS_INLINE_EXTS);
3579 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3580 ASSERT(((nextents - ext_diff) > 0) &&
3581 (nextents - ext_diff) < XFS_INLINE_EXTS);
3583 if (idx + ext_diff < nextents) {
3584 memmove(&ifp->if_u2.if_inline_ext[idx],
3585 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3586 (nextents - (idx + ext_diff)) *
3587 sizeof(xfs_bmbt_rec_t));
3588 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3589 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3590 } else {
3591 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3592 ext_diff * sizeof(xfs_bmbt_rec_t));
3597 * This removes ext_diff extents from a linear (direct) extent list,
3598 * beginning at extent index idx. If the extents are being removed
3599 * from the end of the list (ie. truncate) then we just need to re-
3600 * allocate the list to remove the extra space. Otherwise, if the
3601 * extents are being removed from the middle of the existing extent
3602 * entries, then we first need to move the extent records beginning
3603 * at idx + ext_diff up in the list to overwrite the records being
3604 * removed, then remove the extra space via kmem_realloc.
3606 void
3607 xfs_iext_remove_direct(
3608 xfs_ifork_t *ifp, /* inode fork pointer */
3609 xfs_extnum_t idx, /* index to begin removing exts */
3610 int ext_diff) /* number of extents to remove */
3612 xfs_extnum_t nextents; /* number of extents in file */
3613 int new_size; /* size of extents after removal */
3615 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3616 new_size = ifp->if_bytes -
3617 (ext_diff * sizeof(xfs_bmbt_rec_t));
3618 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3620 if (new_size == 0) {
3621 xfs_iext_destroy(ifp);
3622 return;
3624 /* Move extents up in the list (if needed) */
3625 if (idx + ext_diff < nextents) {
3626 memmove(&ifp->if_u1.if_extents[idx],
3627 &ifp->if_u1.if_extents[idx + ext_diff],
3628 (nextents - (idx + ext_diff)) *
3629 sizeof(xfs_bmbt_rec_t));
3631 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3632 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3634 * Reallocate the direct extent list. If the extents
3635 * will fit inside the inode then xfs_iext_realloc_direct
3636 * will switch from direct to inline extent allocation
3637 * mode for us.
3639 xfs_iext_realloc_direct(ifp, new_size);
3640 ifp->if_bytes = new_size;
3644 * This is called when incore extents are being removed from the
3645 * indirection array and the extents being removed span multiple extent
3646 * buffers. The idx parameter contains the file extent index where we
3647 * want to begin removing extents, and the count parameter contains
3648 * how many extents need to be removed.
3650 * |-------| |-------|
3651 * | nex1 | | | nex1 - number of extents before idx
3652 * |-------| | count |
3653 * | | | | count - number of extents being removed at idx
3654 * | count | |-------|
3655 * | | | nex2 | nex2 - number of extents after idx + count
3656 * |-------| |-------|
3658 void
3659 xfs_iext_remove_indirect(
3660 xfs_ifork_t *ifp, /* inode fork pointer */
3661 xfs_extnum_t idx, /* index to begin removing extents */
3662 int count) /* number of extents to remove */
3664 xfs_ext_irec_t *erp; /* indirection array pointer */
3665 int erp_idx = 0; /* indirection array index */
3666 xfs_extnum_t ext_cnt; /* extents left to remove */
3667 xfs_extnum_t ext_diff; /* extents to remove in current list */
3668 xfs_extnum_t nex1; /* number of extents before idx */
3669 xfs_extnum_t nex2; /* extents after idx + count */
3670 int nlists; /* entries in indirection array */
3671 int page_idx = idx; /* index in target extent list */
3673 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3674 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3675 ASSERT(erp != NULL);
3676 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3677 nex1 = page_idx;
3678 ext_cnt = count;
3679 while (ext_cnt) {
3680 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3681 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3683 * Check for deletion of entire list;
3684 * xfs_iext_irec_remove() updates extent offsets.
3686 if (ext_diff == erp->er_extcount) {
3687 xfs_iext_irec_remove(ifp, erp_idx);
3688 ext_cnt -= ext_diff;
3689 nex1 = 0;
3690 if (ext_cnt) {
3691 ASSERT(erp_idx < ifp->if_real_bytes /
3692 XFS_IEXT_BUFSZ);
3693 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3694 nex1 = 0;
3695 continue;
3696 } else {
3697 break;
3700 /* Move extents up (if needed) */
3701 if (nex2) {
3702 memmove(&erp->er_extbuf[nex1],
3703 &erp->er_extbuf[nex1 + ext_diff],
3704 nex2 * sizeof(xfs_bmbt_rec_t));
3706 /* Zero out rest of page */
3707 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3708 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3709 /* Update remaining counters */
3710 erp->er_extcount -= ext_diff;
3711 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3712 ext_cnt -= ext_diff;
3713 nex1 = 0;
3714 erp_idx++;
3715 erp++;
3717 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3718 xfs_iext_irec_compact(ifp);
3722 * Create, destroy, or resize a linear (direct) block of extents.
3724 void
3725 xfs_iext_realloc_direct(
3726 xfs_ifork_t *ifp, /* inode fork pointer */
3727 int new_size) /* new size of extents */
3729 int rnew_size; /* real new size of extents */
3731 rnew_size = new_size;
3733 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3734 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3735 (new_size != ifp->if_real_bytes)));
3737 /* Free extent records */
3738 if (new_size == 0) {
3739 xfs_iext_destroy(ifp);
3741 /* Resize direct extent list and zero any new bytes */
3742 else if (ifp->if_real_bytes) {
3743 /* Check if extents will fit inside the inode */
3744 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3745 xfs_iext_direct_to_inline(ifp, new_size /
3746 (uint)sizeof(xfs_bmbt_rec_t));
3747 ifp->if_bytes = new_size;
3748 return;
3750 if (!is_power_of_2(new_size)){
3751 rnew_size = roundup_pow_of_two(new_size);
3753 if (rnew_size != ifp->if_real_bytes) {
3754 ifp->if_u1.if_extents =
3755 kmem_realloc(ifp->if_u1.if_extents,
3756 rnew_size,
3757 ifp->if_real_bytes, KM_NOFS);
3759 if (rnew_size > ifp->if_real_bytes) {
3760 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3761 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3762 rnew_size - ifp->if_real_bytes);
3766 * Switch from the inline extent buffer to a direct
3767 * extent list. Be sure to include the inline extent
3768 * bytes in new_size.
3770 else {
3771 new_size += ifp->if_bytes;
3772 if (!is_power_of_2(new_size)) {
3773 rnew_size = roundup_pow_of_two(new_size);
3775 xfs_iext_inline_to_direct(ifp, rnew_size);
3777 ifp->if_real_bytes = rnew_size;
3778 ifp->if_bytes = new_size;
3782 * Switch from linear (direct) extent records to inline buffer.
3784 void
3785 xfs_iext_direct_to_inline(
3786 xfs_ifork_t *ifp, /* inode fork pointer */
3787 xfs_extnum_t nextents) /* number of extents in file */
3789 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3790 ASSERT(nextents <= XFS_INLINE_EXTS);
3792 * The inline buffer was zeroed when we switched
3793 * from inline to direct extent allocation mode,
3794 * so we don't need to clear it here.
3796 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3797 nextents * sizeof(xfs_bmbt_rec_t));
3798 kmem_free(ifp->if_u1.if_extents);
3799 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3800 ifp->if_real_bytes = 0;
3804 * Switch from inline buffer to linear (direct) extent records.
3805 * new_size should already be rounded up to the next power of 2
3806 * by the caller (when appropriate), so use new_size as it is.
3807 * However, since new_size may be rounded up, we can't update
3808 * if_bytes here. It is the caller's responsibility to update
3809 * if_bytes upon return.
3811 void
3812 xfs_iext_inline_to_direct(
3813 xfs_ifork_t *ifp, /* inode fork pointer */
3814 int new_size) /* number of extents in file */
3816 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3817 memset(ifp->if_u1.if_extents, 0, new_size);
3818 if (ifp->if_bytes) {
3819 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3820 ifp->if_bytes);
3821 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3822 sizeof(xfs_bmbt_rec_t));
3824 ifp->if_real_bytes = new_size;
3828 * Resize an extent indirection array to new_size bytes.
3830 void
3831 xfs_iext_realloc_indirect(
3832 xfs_ifork_t *ifp, /* inode fork pointer */
3833 int new_size) /* new indirection array size */
3835 int nlists; /* number of irec's (ex lists) */
3836 int size; /* current indirection array size */
3838 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3839 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3840 size = nlists * sizeof(xfs_ext_irec_t);
3841 ASSERT(ifp->if_real_bytes);
3842 ASSERT((new_size >= 0) && (new_size != size));
3843 if (new_size == 0) {
3844 xfs_iext_destroy(ifp);
3845 } else {
3846 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3847 kmem_realloc(ifp->if_u1.if_ext_irec,
3848 new_size, size, KM_NOFS);
3853 * Switch from indirection array to linear (direct) extent allocations.
3855 void
3856 xfs_iext_indirect_to_direct(
3857 xfs_ifork_t *ifp) /* inode fork pointer */
3859 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3860 xfs_extnum_t nextents; /* number of extents in file */
3861 int size; /* size of file extents */
3863 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3864 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3865 ASSERT(nextents <= XFS_LINEAR_EXTS);
3866 size = nextents * sizeof(xfs_bmbt_rec_t);
3868 xfs_iext_irec_compact_pages(ifp);
3869 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3871 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3872 kmem_free(ifp->if_u1.if_ext_irec);
3873 ifp->if_flags &= ~XFS_IFEXTIREC;
3874 ifp->if_u1.if_extents = ep;
3875 ifp->if_bytes = size;
3876 if (nextents < XFS_LINEAR_EXTS) {
3877 xfs_iext_realloc_direct(ifp, size);
3882 * Free incore file extents.
3884 void
3885 xfs_iext_destroy(
3886 xfs_ifork_t *ifp) /* inode fork pointer */
3888 if (ifp->if_flags & XFS_IFEXTIREC) {
3889 int erp_idx;
3890 int nlists;
3892 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3893 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3894 xfs_iext_irec_remove(ifp, erp_idx);
3896 ifp->if_flags &= ~XFS_IFEXTIREC;
3897 } else if (ifp->if_real_bytes) {
3898 kmem_free(ifp->if_u1.if_extents);
3899 } else if (ifp->if_bytes) {
3900 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3901 sizeof(xfs_bmbt_rec_t));
3903 ifp->if_u1.if_extents = NULL;
3904 ifp->if_real_bytes = 0;
3905 ifp->if_bytes = 0;
3909 * Return a pointer to the extent record for file system block bno.
3911 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3912 xfs_iext_bno_to_ext(
3913 xfs_ifork_t *ifp, /* inode fork pointer */
3914 xfs_fileoff_t bno, /* block number to search for */
3915 xfs_extnum_t *idxp) /* index of target extent */
3917 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3918 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3919 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3920 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3921 int high; /* upper boundary in search */
3922 xfs_extnum_t idx = 0; /* index of target extent */
3923 int low; /* lower boundary in search */
3924 xfs_extnum_t nextents; /* number of file extents */
3925 xfs_fileoff_t startoff = 0; /* start offset of extent */
3927 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3928 if (nextents == 0) {
3929 *idxp = 0;
3930 return NULL;
3932 low = 0;
3933 if (ifp->if_flags & XFS_IFEXTIREC) {
3934 /* Find target extent list */
3935 int erp_idx = 0;
3936 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3937 base = erp->er_extbuf;
3938 high = erp->er_extcount - 1;
3939 } else {
3940 base = ifp->if_u1.if_extents;
3941 high = nextents - 1;
3943 /* Binary search extent records */
3944 while (low <= high) {
3945 idx = (low + high) >> 1;
3946 ep = base + idx;
3947 startoff = xfs_bmbt_get_startoff(ep);
3948 blockcount = xfs_bmbt_get_blockcount(ep);
3949 if (bno < startoff) {
3950 high = idx - 1;
3951 } else if (bno >= startoff + blockcount) {
3952 low = idx + 1;
3953 } else {
3954 /* Convert back to file-based extent index */
3955 if (ifp->if_flags & XFS_IFEXTIREC) {
3956 idx += erp->er_extoff;
3958 *idxp = idx;
3959 return ep;
3962 /* Convert back to file-based extent index */
3963 if (ifp->if_flags & XFS_IFEXTIREC) {
3964 idx += erp->er_extoff;
3966 if (bno >= startoff + blockcount) {
3967 if (++idx == nextents) {
3968 ep = NULL;
3969 } else {
3970 ep = xfs_iext_get_ext(ifp, idx);
3973 *idxp = idx;
3974 return ep;
3978 * Return a pointer to the indirection array entry containing the
3979 * extent record for filesystem block bno. Store the index of the
3980 * target irec in *erp_idxp.
3982 xfs_ext_irec_t * /* pointer to found extent record */
3983 xfs_iext_bno_to_irec(
3984 xfs_ifork_t *ifp, /* inode fork pointer */
3985 xfs_fileoff_t bno, /* block number to search for */
3986 int *erp_idxp) /* irec index of target ext list */
3988 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3989 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3990 int erp_idx; /* indirection array index */
3991 int nlists; /* number of extent irec's (lists) */
3992 int high; /* binary search upper limit */
3993 int low; /* binary search lower limit */
3995 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3996 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3997 erp_idx = 0;
3998 low = 0;
3999 high = nlists - 1;
4000 while (low <= high) {
4001 erp_idx = (low + high) >> 1;
4002 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4003 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4004 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4005 high = erp_idx - 1;
4006 } else if (erp_next && bno >=
4007 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4008 low = erp_idx + 1;
4009 } else {
4010 break;
4013 *erp_idxp = erp_idx;
4014 return erp;
4018 * Return a pointer to the indirection array entry containing the
4019 * extent record at file extent index *idxp. Store the index of the
4020 * target irec in *erp_idxp and store the page index of the target
4021 * extent record in *idxp.
4023 xfs_ext_irec_t *
4024 xfs_iext_idx_to_irec(
4025 xfs_ifork_t *ifp, /* inode fork pointer */
4026 xfs_extnum_t *idxp, /* extent index (file -> page) */
4027 int *erp_idxp, /* pointer to target irec */
4028 int realloc) /* new bytes were just added */
4030 xfs_ext_irec_t *prev; /* pointer to previous irec */
4031 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4032 int erp_idx; /* indirection array index */
4033 int nlists; /* number of irec's (ex lists) */
4034 int high; /* binary search upper limit */
4035 int low; /* binary search lower limit */
4036 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4038 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4039 ASSERT(page_idx >= 0 && page_idx <=
4040 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4041 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4042 erp_idx = 0;
4043 low = 0;
4044 high = nlists - 1;
4046 /* Binary search extent irec's */
4047 while (low <= high) {
4048 erp_idx = (low + high) >> 1;
4049 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4050 prev = erp_idx > 0 ? erp - 1 : NULL;
4051 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4052 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4053 high = erp_idx - 1;
4054 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4055 (page_idx == erp->er_extoff + erp->er_extcount &&
4056 !realloc)) {
4057 low = erp_idx + 1;
4058 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4059 erp->er_extcount == XFS_LINEAR_EXTS) {
4060 ASSERT(realloc);
4061 page_idx = 0;
4062 erp_idx++;
4063 erp = erp_idx < nlists ? erp + 1 : NULL;
4064 break;
4065 } else {
4066 page_idx -= erp->er_extoff;
4067 break;
4070 *idxp = page_idx;
4071 *erp_idxp = erp_idx;
4072 return(erp);
4076 * Allocate and initialize an indirection array once the space needed
4077 * for incore extents increases above XFS_IEXT_BUFSZ.
4079 void
4080 xfs_iext_irec_init(
4081 xfs_ifork_t *ifp) /* inode fork pointer */
4083 xfs_ext_irec_t *erp; /* indirection array pointer */
4084 xfs_extnum_t nextents; /* number of extents in file */
4086 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4087 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4088 ASSERT(nextents <= XFS_LINEAR_EXTS);
4090 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4092 if (nextents == 0) {
4093 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4094 } else if (!ifp->if_real_bytes) {
4095 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4096 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4097 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4099 erp->er_extbuf = ifp->if_u1.if_extents;
4100 erp->er_extcount = nextents;
4101 erp->er_extoff = 0;
4103 ifp->if_flags |= XFS_IFEXTIREC;
4104 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4105 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4106 ifp->if_u1.if_ext_irec = erp;
4108 return;
4112 * Allocate and initialize a new entry in the indirection array.
4114 xfs_ext_irec_t *
4115 xfs_iext_irec_new(
4116 xfs_ifork_t *ifp, /* inode fork pointer */
4117 int erp_idx) /* index for new irec */
4119 xfs_ext_irec_t *erp; /* indirection array pointer */
4120 int i; /* loop counter */
4121 int nlists; /* number of irec's (ex lists) */
4123 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4124 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4126 /* Resize indirection array */
4127 xfs_iext_realloc_indirect(ifp, ++nlists *
4128 sizeof(xfs_ext_irec_t));
4130 * Move records down in the array so the
4131 * new page can use erp_idx.
4133 erp = ifp->if_u1.if_ext_irec;
4134 for (i = nlists - 1; i > erp_idx; i--) {
4135 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4137 ASSERT(i == erp_idx);
4139 /* Initialize new extent record */
4140 erp = ifp->if_u1.if_ext_irec;
4141 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4142 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4143 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4144 erp[erp_idx].er_extcount = 0;
4145 erp[erp_idx].er_extoff = erp_idx > 0 ?
4146 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4147 return (&erp[erp_idx]);
4151 * Remove a record from the indirection array.
4153 void
4154 xfs_iext_irec_remove(
4155 xfs_ifork_t *ifp, /* inode fork pointer */
4156 int erp_idx) /* irec index to remove */
4158 xfs_ext_irec_t *erp; /* indirection array pointer */
4159 int i; /* loop counter */
4160 int nlists; /* number of irec's (ex lists) */
4162 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4163 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4164 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4165 if (erp->er_extbuf) {
4166 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4167 -erp->er_extcount);
4168 kmem_free(erp->er_extbuf);
4170 /* Compact extent records */
4171 erp = ifp->if_u1.if_ext_irec;
4172 for (i = erp_idx; i < nlists - 1; i++) {
4173 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4176 * Manually free the last extent record from the indirection
4177 * array. A call to xfs_iext_realloc_indirect() with a size
4178 * of zero would result in a call to xfs_iext_destroy() which
4179 * would in turn call this function again, creating a nasty
4180 * infinite loop.
4182 if (--nlists) {
4183 xfs_iext_realloc_indirect(ifp,
4184 nlists * sizeof(xfs_ext_irec_t));
4185 } else {
4186 kmem_free(ifp->if_u1.if_ext_irec);
4188 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4192 * This is called to clean up large amounts of unused memory allocated
4193 * by the indirection array. Before compacting anything though, verify
4194 * that the indirection array is still needed and switch back to the
4195 * linear extent list (or even the inline buffer) if possible. The
4196 * compaction policy is as follows:
4198 * Full Compaction: Extents fit into a single page (or inline buffer)
4199 * Partial Compaction: Extents occupy less than 50% of allocated space
4200 * No Compaction: Extents occupy at least 50% of allocated space
4202 void
4203 xfs_iext_irec_compact(
4204 xfs_ifork_t *ifp) /* inode fork pointer */
4206 xfs_extnum_t nextents; /* number of extents in file */
4207 int nlists; /* number of irec's (ex lists) */
4209 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4210 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4211 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4213 if (nextents == 0) {
4214 xfs_iext_destroy(ifp);
4215 } else if (nextents <= XFS_INLINE_EXTS) {
4216 xfs_iext_indirect_to_direct(ifp);
4217 xfs_iext_direct_to_inline(ifp, nextents);
4218 } else if (nextents <= XFS_LINEAR_EXTS) {
4219 xfs_iext_indirect_to_direct(ifp);
4220 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4221 xfs_iext_irec_compact_pages(ifp);
4226 * Combine extents from neighboring extent pages.
4228 void
4229 xfs_iext_irec_compact_pages(
4230 xfs_ifork_t *ifp) /* inode fork pointer */
4232 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4233 int erp_idx = 0; /* indirection array index */
4234 int nlists; /* number of irec's (ex lists) */
4236 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4237 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4238 while (erp_idx < nlists - 1) {
4239 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4240 erp_next = erp + 1;
4241 if (erp_next->er_extcount <=
4242 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4243 memcpy(&erp->er_extbuf[erp->er_extcount],
4244 erp_next->er_extbuf, erp_next->er_extcount *
4245 sizeof(xfs_bmbt_rec_t));
4246 erp->er_extcount += erp_next->er_extcount;
4248 * Free page before removing extent record
4249 * so er_extoffs don't get modified in
4250 * xfs_iext_irec_remove.
4252 kmem_free(erp_next->er_extbuf);
4253 erp_next->er_extbuf = NULL;
4254 xfs_iext_irec_remove(ifp, erp_idx + 1);
4255 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4256 } else {
4257 erp_idx++;
4263 * This is called to update the er_extoff field in the indirection
4264 * array when extents have been added or removed from one of the
4265 * extent lists. erp_idx contains the irec index to begin updating
4266 * at and ext_diff contains the number of extents that were added
4267 * or removed.
4269 void
4270 xfs_iext_irec_update_extoffs(
4271 xfs_ifork_t *ifp, /* inode fork pointer */
4272 int erp_idx, /* irec index to update */
4273 int ext_diff) /* number of new extents */
4275 int i; /* loop counter */
4276 int nlists; /* number of irec's (ex lists */
4278 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4279 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4280 for (i = erp_idx; i < nlists; i++) {
4281 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;