4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
26 * The ring buffer header is special. We must manually up keep it.
28 int ring_buffer_print_entry_header(struct trace_seq
*s
)
32 ret
= trace_seq_printf(s
, "# compressed entry header\n");
33 ret
= trace_seq_printf(s
, "\ttype_len : 5 bits\n");
34 ret
= trace_seq_printf(s
, "\ttime_delta : 27 bits\n");
35 ret
= trace_seq_printf(s
, "\tarray : 32 bits\n");
36 ret
= trace_seq_printf(s
, "\n");
37 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING
);
39 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND
);
41 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
61 * Here's some silly ASCII art.
64 * |reader| RING BUFFER
66 * +------+ +---+ +---+ +---+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
93 * +------------------------------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
101 * | New +---+ +---+ +---+
104 * +------------------------------+
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
111 * We will be using cmpxchg soon to make all this lockless.
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
145 RB_BUFFERS_ON_BIT
= 0,
146 RB_BUFFERS_DISABLED_BIT
= 1,
150 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
151 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
154 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159 * tracing_on - enable all tracing buffers
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
164 void tracing_on(void)
166 set_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
168 EXPORT_SYMBOL_GPL(tracing_on
);
171 * tracing_off - turn off all tracing buffers
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
178 void tracing_off(void)
180 clear_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
182 EXPORT_SYMBOL_GPL(tracing_off
);
185 * tracing_off_permanent - permanently disable ring buffers
187 * This function, once called, will disable all ring buffers
190 void tracing_off_permanent(void)
192 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
196 * tracing_is_on - show state of ring buffers enabled
198 int tracing_is_on(void)
200 return ring_buffer_flags
== RB_BUFFERS_ON
;
202 EXPORT_SYMBOL_GPL(tracing_is_on
);
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT 4U
206 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
213 RB_LEN_TIME_EXTEND
= 8,
214 RB_LEN_TIME_STAMP
= 16,
217 static inline int rb_null_event(struct ring_buffer_event
*event
)
219 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
222 static void rb_event_set_padding(struct ring_buffer_event
*event
)
224 /* padding has a NULL time_delta */
225 event
->type_len
= RINGBUF_TYPE_PADDING
;
226 event
->time_delta
= 0;
230 rb_event_data_length(struct ring_buffer_event
*event
)
235 length
= event
->type_len
* RB_ALIGNMENT
;
237 length
= event
->array
[0];
238 return length
+ RB_EVNT_HDR_SIZE
;
241 /* inline for ring buffer fast paths */
243 rb_event_length(struct ring_buffer_event
*event
)
245 switch (event
->type_len
) {
246 case RINGBUF_TYPE_PADDING
:
247 if (rb_null_event(event
))
250 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
252 case RINGBUF_TYPE_TIME_EXTEND
:
253 return RB_LEN_TIME_EXTEND
;
255 case RINGBUF_TYPE_TIME_STAMP
:
256 return RB_LEN_TIME_STAMP
;
258 case RINGBUF_TYPE_DATA
:
259 return rb_event_data_length(event
);
268 * ring_buffer_event_length - return the length of the event
269 * @event: the event to get the length of
271 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
273 unsigned length
= rb_event_length(event
);
274 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
276 length
-= RB_EVNT_HDR_SIZE
;
277 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
278 length
-= sizeof(event
->array
[0]);
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
283 /* inline for ring buffer fast paths */
285 rb_event_data(struct ring_buffer_event
*event
)
287 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
288 /* If length is in len field, then array[0] has the data */
290 return (void *)&event
->array
[0];
291 /* Otherwise length is in array[0] and array[1] has the data */
292 return (void *)&event
->array
[1];
296 * ring_buffer_event_data - return the data of the event
297 * @event: the event to get the data from
299 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
301 return rb_event_data(event
);
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
305 #define for_each_buffer_cpu(buffer, cpu) \
306 for_each_cpu(cpu, buffer->cpumask)
309 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST (~TS_MASK)
312 struct buffer_data_page
{
313 u64 time_stamp
; /* page time stamp */
314 local_t commit
; /* write committed index */
315 unsigned char data
[]; /* data of buffer page */
319 * Note, the buffer_page list must be first. The buffer pages
320 * are allocated in cache lines, which means that each buffer
321 * page will be at the beginning of a cache line, and thus
322 * the least significant bits will be zero. We use this to
323 * add flags in the list struct pointers, to make the ring buffer
327 struct list_head list
; /* list of buffer pages */
328 local_t write
; /* index for next write */
329 unsigned read
; /* index for next read */
330 local_t entries
; /* entries on this page */
331 struct buffer_data_page
*page
; /* Actual data page */
335 * The buffer page counters, write and entries, must be reset
336 * atomically when crossing page boundaries. To synchronize this
337 * update, two counters are inserted into the number. One is
338 * the actual counter for the write position or count on the page.
340 * The other is a counter of updaters. Before an update happens
341 * the update partition of the counter is incremented. This will
342 * allow the updater to update the counter atomically.
344 * The counter is 20 bits, and the state data is 12.
346 #define RB_WRITE_MASK 0xfffff
347 #define RB_WRITE_INTCNT (1 << 20)
349 static void rb_init_page(struct buffer_data_page
*bpage
)
351 local_set(&bpage
->commit
, 0);
355 * ring_buffer_page_len - the size of data on the page.
356 * @page: The page to read
358 * Returns the amount of data on the page, including buffer page header.
360 size_t ring_buffer_page_len(void *page
)
362 return local_read(&((struct buffer_data_page
*)page
)->commit
)
367 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
370 static void free_buffer_page(struct buffer_page
*bpage
)
372 free_page((unsigned long)bpage
->page
);
377 * We need to fit the time_stamp delta into 27 bits.
379 static inline int test_time_stamp(u64 delta
)
381 if (delta
& TS_DELTA_TEST
)
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
394 int ring_buffer_print_page_header(struct trace_seq
*s
)
396 struct buffer_data_page field
;
399 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
400 "offset:0;\tsize:%u;\n",
401 (unsigned int)sizeof(field
.time_stamp
));
403 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
404 "offset:%u;\tsize:%u;\n",
405 (unsigned int)offsetof(typeof(field
), commit
),
406 (unsigned int)sizeof(field
.commit
));
408 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
409 "offset:%u;\tsize:%u;\n",
410 (unsigned int)offsetof(typeof(field
), data
),
411 (unsigned int)BUF_PAGE_SIZE
);
417 * head_page == tail_page && head == tail then buffer is empty.
419 struct ring_buffer_per_cpu
{
421 struct ring_buffer
*buffer
;
422 spinlock_t reader_lock
; /* serialize readers */
424 struct lock_class_key lock_key
;
425 struct list_head
*pages
;
426 struct buffer_page
*head_page
; /* read from head */
427 struct buffer_page
*tail_page
; /* write to tail */
428 struct buffer_page
*commit_page
; /* committed pages */
429 struct buffer_page
*reader_page
;
430 local_t commit_overrun
;
438 atomic_t record_disabled
;
445 atomic_t record_disabled
;
446 cpumask_var_t cpumask
;
448 struct lock_class_key
*reader_lock_key
;
452 struct ring_buffer_per_cpu
**buffers
;
454 #ifdef CONFIG_HOTPLUG_CPU
455 struct notifier_block cpu_notify
;
460 struct ring_buffer_iter
{
461 struct ring_buffer_per_cpu
*cpu_buffer
;
463 struct buffer_page
*head_page
;
467 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
468 #define RB_WARN_ON(b, cond) \
470 int _____ret = unlikely(cond); \
472 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
473 struct ring_buffer_per_cpu *__b = \
475 atomic_inc(&__b->buffer->record_disabled); \
477 atomic_inc(&b->record_disabled); \
483 /* Up this if you want to test the TIME_EXTENTS and normalization */
484 #define DEBUG_SHIFT 0
486 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
, int cpu
)
488 /* shift to debug/test normalization and TIME_EXTENTS */
489 return buffer
->clock() << DEBUG_SHIFT
;
492 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
496 preempt_disable_notrace();
497 time
= rb_time_stamp(buffer
, cpu
);
498 preempt_enable_no_resched_notrace();
502 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
504 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
507 /* Just stupid testing the normalize function and deltas */
510 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
513 * Making the ring buffer lockless makes things tricky.
514 * Although writes only happen on the CPU that they are on,
515 * and they only need to worry about interrupts. Reads can
518 * The reader page is always off the ring buffer, but when the
519 * reader finishes with a page, it needs to swap its page with
520 * a new one from the buffer. The reader needs to take from
521 * the head (writes go to the tail). But if a writer is in overwrite
522 * mode and wraps, it must push the head page forward.
524 * Here lies the problem.
526 * The reader must be careful to replace only the head page, and
527 * not another one. As described at the top of the file in the
528 * ASCII art, the reader sets its old page to point to the next
529 * page after head. It then sets the page after head to point to
530 * the old reader page. But if the writer moves the head page
531 * during this operation, the reader could end up with the tail.
533 * We use cmpxchg to help prevent this race. We also do something
534 * special with the page before head. We set the LSB to 1.
536 * When the writer must push the page forward, it will clear the
537 * bit that points to the head page, move the head, and then set
538 * the bit that points to the new head page.
540 * We also don't want an interrupt coming in and moving the head
541 * page on another writer. Thus we use the second LSB to catch
544 * head->list->prev->next bit 1 bit 0
547 * Points to head page 0 1
550 * Note we can not trust the prev pointer of the head page, because:
552 * +----+ +-----+ +-----+
553 * | |------>| T |---X--->| N |
555 * +----+ +-----+ +-----+
558 * +----------| R |----------+ |
562 * Key: ---X--> HEAD flag set in pointer
567 * (see __rb_reserve_next() to see where this happens)
569 * What the above shows is that the reader just swapped out
570 * the reader page with a page in the buffer, but before it
571 * could make the new header point back to the new page added
572 * it was preempted by a writer. The writer moved forward onto
573 * the new page added by the reader and is about to move forward
576 * You can see, it is legitimate for the previous pointer of
577 * the head (or any page) not to point back to itself. But only
581 #define RB_PAGE_NORMAL 0UL
582 #define RB_PAGE_HEAD 1UL
583 #define RB_PAGE_UPDATE 2UL
586 #define RB_FLAG_MASK 3UL
588 /* PAGE_MOVED is not part of the mask */
589 #define RB_PAGE_MOVED 4UL
592 * rb_list_head - remove any bit
594 static struct list_head
*rb_list_head(struct list_head
*list
)
596 unsigned long val
= (unsigned long)list
;
598 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
602 * rb_is_head_page - test if the give page is the head page
604 * Because the reader may move the head_page pointer, we can
605 * not trust what the head page is (it may be pointing to
606 * the reader page). But if the next page is a header page,
607 * its flags will be non zero.
610 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
611 struct buffer_page
*page
, struct list_head
*list
)
615 val
= (unsigned long)list
->next
;
617 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
618 return RB_PAGE_MOVED
;
620 return val
& RB_FLAG_MASK
;
626 * The unique thing about the reader page, is that, if the
627 * writer is ever on it, the previous pointer never points
628 * back to the reader page.
630 static int rb_is_reader_page(struct buffer_page
*page
)
632 struct list_head
*list
= page
->list
.prev
;
634 return rb_list_head(list
->next
) != &page
->list
;
638 * rb_set_list_to_head - set a list_head to be pointing to head.
640 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
641 struct list_head
*list
)
645 ptr
= (unsigned long *)&list
->next
;
646 *ptr
|= RB_PAGE_HEAD
;
647 *ptr
&= ~RB_PAGE_UPDATE
;
651 * rb_head_page_activate - sets up head page
653 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
655 struct buffer_page
*head
;
657 head
= cpu_buffer
->head_page
;
662 * Set the previous list pointer to have the HEAD flag.
664 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
667 static void rb_list_head_clear(struct list_head
*list
)
669 unsigned long *ptr
= (unsigned long *)&list
->next
;
671 *ptr
&= ~RB_FLAG_MASK
;
675 * rb_head_page_dactivate - clears head page ptr (for free list)
678 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
680 struct list_head
*hd
;
682 /* Go through the whole list and clear any pointers found. */
683 rb_list_head_clear(cpu_buffer
->pages
);
685 list_for_each(hd
, cpu_buffer
->pages
)
686 rb_list_head_clear(hd
);
689 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
690 struct buffer_page
*head
,
691 struct buffer_page
*prev
,
692 int old_flag
, int new_flag
)
694 struct list_head
*list
;
695 unsigned long val
= (unsigned long)&head
->list
;
700 val
&= ~RB_FLAG_MASK
;
702 ret
= cmpxchg((unsigned long *)&list
->next
,
703 val
| old_flag
, val
| new_flag
);
705 /* check if the reader took the page */
706 if ((ret
& ~RB_FLAG_MASK
) != val
)
707 return RB_PAGE_MOVED
;
709 return ret
& RB_FLAG_MASK
;
712 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
713 struct buffer_page
*head
,
714 struct buffer_page
*prev
,
717 return rb_head_page_set(cpu_buffer
, head
, prev
,
718 old_flag
, RB_PAGE_UPDATE
);
721 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
722 struct buffer_page
*head
,
723 struct buffer_page
*prev
,
726 return rb_head_page_set(cpu_buffer
, head
, prev
,
727 old_flag
, RB_PAGE_HEAD
);
730 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
731 struct buffer_page
*head
,
732 struct buffer_page
*prev
,
735 return rb_head_page_set(cpu_buffer
, head
, prev
,
736 old_flag
, RB_PAGE_NORMAL
);
739 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
740 struct buffer_page
**bpage
)
742 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
744 *bpage
= list_entry(p
, struct buffer_page
, list
);
747 static struct buffer_page
*
748 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
750 struct buffer_page
*head
;
751 struct buffer_page
*page
;
752 struct list_head
*list
;
755 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
759 list
= cpu_buffer
->pages
;
760 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
763 page
= head
= cpu_buffer
->head_page
;
765 * It is possible that the writer moves the header behind
766 * where we started, and we miss in one loop.
767 * A second loop should grab the header, but we'll do
768 * three loops just because I'm paranoid.
770 for (i
= 0; i
< 3; i
++) {
772 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
773 cpu_buffer
->head_page
= page
;
776 rb_inc_page(cpu_buffer
, &page
);
777 } while (page
!= head
);
780 RB_WARN_ON(cpu_buffer
, 1);
785 static int rb_head_page_replace(struct buffer_page
*old
,
786 struct buffer_page
*new)
788 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
792 val
= *ptr
& ~RB_FLAG_MASK
;
795 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
801 * rb_tail_page_update - move the tail page forward
803 * Returns 1 if moved tail page, 0 if someone else did.
805 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
806 struct buffer_page
*tail_page
,
807 struct buffer_page
*next_page
)
809 struct buffer_page
*old_tail
;
810 unsigned long old_entries
;
811 unsigned long old_write
;
815 * The tail page now needs to be moved forward.
817 * We need to reset the tail page, but without messing
818 * with possible erasing of data brought in by interrupts
819 * that have moved the tail page and are currently on it.
821 * We add a counter to the write field to denote this.
823 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
824 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
827 * Just make sure we have seen our old_write and synchronize
828 * with any interrupts that come in.
833 * If the tail page is still the same as what we think
834 * it is, then it is up to us to update the tail
837 if (tail_page
== cpu_buffer
->tail_page
) {
838 /* Zero the write counter */
839 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
840 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
843 * This will only succeed if an interrupt did
844 * not come in and change it. In which case, we
845 * do not want to modify it.
847 * We add (void) to let the compiler know that we do not care
848 * about the return value of these functions. We use the
849 * cmpxchg to only update if an interrupt did not already
850 * do it for us. If the cmpxchg fails, we don't care.
852 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
853 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
856 * No need to worry about races with clearing out the commit.
857 * it only can increment when a commit takes place. But that
858 * only happens in the outer most nested commit.
860 local_set(&next_page
->page
->commit
, 0);
862 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
863 tail_page
, next_page
);
865 if (old_tail
== tail_page
)
872 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
873 struct buffer_page
*bpage
)
875 unsigned long val
= (unsigned long)bpage
;
877 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
884 * rb_check_list - make sure a pointer to a list has the last bits zero
886 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
887 struct list_head
*list
)
889 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
891 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
897 * check_pages - integrity check of buffer pages
898 * @cpu_buffer: CPU buffer with pages to test
900 * As a safety measure we check to make sure the data pages have not
903 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
905 struct list_head
*head
= cpu_buffer
->pages
;
906 struct buffer_page
*bpage
, *tmp
;
908 rb_head_page_deactivate(cpu_buffer
);
910 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
912 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
915 if (rb_check_list(cpu_buffer
, head
))
918 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
919 if (RB_WARN_ON(cpu_buffer
,
920 bpage
->list
.next
->prev
!= &bpage
->list
))
922 if (RB_WARN_ON(cpu_buffer
,
923 bpage
->list
.prev
->next
!= &bpage
->list
))
925 if (rb_check_list(cpu_buffer
, &bpage
->list
))
929 rb_head_page_activate(cpu_buffer
);
934 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
937 struct buffer_page
*bpage
, *tmp
;
944 for (i
= 0; i
< nr_pages
; i
++) {
945 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
946 GFP_KERNEL
, cpu_to_node(cpu_buffer
->cpu
));
950 rb_check_bpage(cpu_buffer
, bpage
);
952 list_add(&bpage
->list
, &pages
);
954 addr
= __get_free_page(GFP_KERNEL
);
957 bpage
->page
= (void *)addr
;
958 rb_init_page(bpage
->page
);
962 * The ring buffer page list is a circular list that does not
963 * start and end with a list head. All page list items point to
966 cpu_buffer
->pages
= pages
.next
;
969 rb_check_pages(cpu_buffer
);
974 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
975 list_del_init(&bpage
->list
);
976 free_buffer_page(bpage
);
981 static struct ring_buffer_per_cpu
*
982 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int cpu
)
984 struct ring_buffer_per_cpu
*cpu_buffer
;
985 struct buffer_page
*bpage
;
989 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
990 GFP_KERNEL
, cpu_to_node(cpu
));
994 cpu_buffer
->cpu
= cpu
;
995 cpu_buffer
->buffer
= buffer
;
996 spin_lock_init(&cpu_buffer
->reader_lock
);
997 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
998 cpu_buffer
->lock
= (raw_spinlock_t
)__RAW_SPIN_LOCK_UNLOCKED
;
1000 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1001 GFP_KERNEL
, cpu_to_node(cpu
));
1003 goto fail_free_buffer
;
1005 rb_check_bpage(cpu_buffer
, bpage
);
1007 cpu_buffer
->reader_page
= bpage
;
1008 addr
= __get_free_page(GFP_KERNEL
);
1010 goto fail_free_reader
;
1011 bpage
->page
= (void *)addr
;
1012 rb_init_page(bpage
->page
);
1014 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1016 ret
= rb_allocate_pages(cpu_buffer
, buffer
->pages
);
1018 goto fail_free_reader
;
1020 cpu_buffer
->head_page
1021 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1022 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1024 rb_head_page_activate(cpu_buffer
);
1029 free_buffer_page(cpu_buffer
->reader_page
);
1036 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1038 struct list_head
*head
= cpu_buffer
->pages
;
1039 struct buffer_page
*bpage
, *tmp
;
1041 free_buffer_page(cpu_buffer
->reader_page
);
1043 rb_head_page_deactivate(cpu_buffer
);
1046 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1047 list_del_init(&bpage
->list
);
1048 free_buffer_page(bpage
);
1050 bpage
= list_entry(head
, struct buffer_page
, list
);
1051 free_buffer_page(bpage
);
1057 #ifdef CONFIG_HOTPLUG_CPU
1058 static int rb_cpu_notify(struct notifier_block
*self
,
1059 unsigned long action
, void *hcpu
);
1063 * ring_buffer_alloc - allocate a new ring_buffer
1064 * @size: the size in bytes per cpu that is needed.
1065 * @flags: attributes to set for the ring buffer.
1067 * Currently the only flag that is available is the RB_FL_OVERWRITE
1068 * flag. This flag means that the buffer will overwrite old data
1069 * when the buffer wraps. If this flag is not set, the buffer will
1070 * drop data when the tail hits the head.
1072 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1073 struct lock_class_key
*key
)
1075 struct ring_buffer
*buffer
;
1079 /* keep it in its own cache line */
1080 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1085 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1086 goto fail_free_buffer
;
1088 buffer
->pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1089 buffer
->flags
= flags
;
1090 buffer
->clock
= trace_clock_local
;
1091 buffer
->reader_lock_key
= key
;
1093 /* need at least two pages */
1094 if (buffer
->pages
< 2)
1098 * In case of non-hotplug cpu, if the ring-buffer is allocated
1099 * in early initcall, it will not be notified of secondary cpus.
1100 * In that off case, we need to allocate for all possible cpus.
1102 #ifdef CONFIG_HOTPLUG_CPU
1104 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1106 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1108 buffer
->cpus
= nr_cpu_ids
;
1110 bsize
= sizeof(void *) * nr_cpu_ids
;
1111 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1113 if (!buffer
->buffers
)
1114 goto fail_free_cpumask
;
1116 for_each_buffer_cpu(buffer
, cpu
) {
1117 buffer
->buffers
[cpu
] =
1118 rb_allocate_cpu_buffer(buffer
, cpu
);
1119 if (!buffer
->buffers
[cpu
])
1120 goto fail_free_buffers
;
1123 #ifdef CONFIG_HOTPLUG_CPU
1124 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1125 buffer
->cpu_notify
.priority
= 0;
1126 register_cpu_notifier(&buffer
->cpu_notify
);
1130 mutex_init(&buffer
->mutex
);
1135 for_each_buffer_cpu(buffer
, cpu
) {
1136 if (buffer
->buffers
[cpu
])
1137 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1139 kfree(buffer
->buffers
);
1142 free_cpumask_var(buffer
->cpumask
);
1149 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1152 * ring_buffer_free - free a ring buffer.
1153 * @buffer: the buffer to free.
1156 ring_buffer_free(struct ring_buffer
*buffer
)
1162 #ifdef CONFIG_HOTPLUG_CPU
1163 unregister_cpu_notifier(&buffer
->cpu_notify
);
1166 for_each_buffer_cpu(buffer
, cpu
)
1167 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1171 kfree(buffer
->buffers
);
1172 free_cpumask_var(buffer
->cpumask
);
1176 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1178 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1181 buffer
->clock
= clock
;
1184 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1187 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned nr_pages
)
1189 struct buffer_page
*bpage
;
1190 struct list_head
*p
;
1193 atomic_inc(&cpu_buffer
->record_disabled
);
1194 synchronize_sched();
1196 rb_head_page_deactivate(cpu_buffer
);
1198 for (i
= 0; i
< nr_pages
; i
++) {
1199 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1201 p
= cpu_buffer
->pages
->next
;
1202 bpage
= list_entry(p
, struct buffer_page
, list
);
1203 list_del_init(&bpage
->list
);
1204 free_buffer_page(bpage
);
1206 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1209 rb_reset_cpu(cpu_buffer
);
1211 rb_check_pages(cpu_buffer
);
1213 atomic_dec(&cpu_buffer
->record_disabled
);
1218 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1219 struct list_head
*pages
, unsigned nr_pages
)
1221 struct buffer_page
*bpage
;
1222 struct list_head
*p
;
1225 atomic_inc(&cpu_buffer
->record_disabled
);
1226 synchronize_sched();
1228 spin_lock_irq(&cpu_buffer
->reader_lock
);
1229 rb_head_page_deactivate(cpu_buffer
);
1231 for (i
= 0; i
< nr_pages
; i
++) {
1232 if (RB_WARN_ON(cpu_buffer
, list_empty(pages
)))
1235 bpage
= list_entry(p
, struct buffer_page
, list
);
1236 list_del_init(&bpage
->list
);
1237 list_add_tail(&bpage
->list
, cpu_buffer
->pages
);
1239 rb_reset_cpu(cpu_buffer
);
1240 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1242 rb_check_pages(cpu_buffer
);
1244 atomic_dec(&cpu_buffer
->record_disabled
);
1248 * ring_buffer_resize - resize the ring buffer
1249 * @buffer: the buffer to resize.
1250 * @size: the new size.
1252 * The tracer is responsible for making sure that the buffer is
1253 * not being used while changing the size.
1254 * Note: We may be able to change the above requirement by using
1255 * RCU synchronizations.
1257 * Minimum size is 2 * BUF_PAGE_SIZE.
1259 * Returns -1 on failure.
1261 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
)
1263 struct ring_buffer_per_cpu
*cpu_buffer
;
1264 unsigned nr_pages
, rm_pages
, new_pages
;
1265 struct buffer_page
*bpage
, *tmp
;
1266 unsigned long buffer_size
;
1272 * Always succeed at resizing a non-existent buffer:
1277 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1278 size
*= BUF_PAGE_SIZE
;
1279 buffer_size
= buffer
->pages
* BUF_PAGE_SIZE
;
1281 /* we need a minimum of two pages */
1282 if (size
< BUF_PAGE_SIZE
* 2)
1283 size
= BUF_PAGE_SIZE
* 2;
1285 if (size
== buffer_size
)
1288 mutex_lock(&buffer
->mutex
);
1291 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1293 if (size
< buffer_size
) {
1295 /* easy case, just free pages */
1296 if (RB_WARN_ON(buffer
, nr_pages
>= buffer
->pages
))
1299 rm_pages
= buffer
->pages
- nr_pages
;
1301 for_each_buffer_cpu(buffer
, cpu
) {
1302 cpu_buffer
= buffer
->buffers
[cpu
];
1303 rb_remove_pages(cpu_buffer
, rm_pages
);
1309 * This is a bit more difficult. We only want to add pages
1310 * when we can allocate enough for all CPUs. We do this
1311 * by allocating all the pages and storing them on a local
1312 * link list. If we succeed in our allocation, then we
1313 * add these pages to the cpu_buffers. Otherwise we just free
1314 * them all and return -ENOMEM;
1316 if (RB_WARN_ON(buffer
, nr_pages
<= buffer
->pages
))
1319 new_pages
= nr_pages
- buffer
->pages
;
1321 for_each_buffer_cpu(buffer
, cpu
) {
1322 for (i
= 0; i
< new_pages
; i
++) {
1323 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
),
1325 GFP_KERNEL
, cpu_to_node(cpu
));
1328 list_add(&bpage
->list
, &pages
);
1329 addr
= __get_free_page(GFP_KERNEL
);
1332 bpage
->page
= (void *)addr
;
1333 rb_init_page(bpage
->page
);
1337 for_each_buffer_cpu(buffer
, cpu
) {
1338 cpu_buffer
= buffer
->buffers
[cpu
];
1339 rb_insert_pages(cpu_buffer
, &pages
, new_pages
);
1342 if (RB_WARN_ON(buffer
, !list_empty(&pages
)))
1346 buffer
->pages
= nr_pages
;
1348 mutex_unlock(&buffer
->mutex
);
1353 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1354 list_del_init(&bpage
->list
);
1355 free_buffer_page(bpage
);
1358 mutex_unlock(&buffer
->mutex
);
1362 * Something went totally wrong, and we are too paranoid
1363 * to even clean up the mess.
1367 mutex_unlock(&buffer
->mutex
);
1370 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1372 static inline void *
1373 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1375 return bpage
->data
+ index
;
1378 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1380 return bpage
->page
->data
+ index
;
1383 static inline struct ring_buffer_event
*
1384 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1386 return __rb_page_index(cpu_buffer
->reader_page
,
1387 cpu_buffer
->reader_page
->read
);
1390 static inline struct ring_buffer_event
*
1391 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1393 return __rb_page_index(iter
->head_page
, iter
->head
);
1396 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1398 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1401 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1403 return local_read(&bpage
->page
->commit
);
1406 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1408 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1411 /* Size is determined by what has been commited */
1412 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1414 return rb_page_commit(bpage
);
1417 static inline unsigned
1418 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1420 return rb_page_commit(cpu_buffer
->commit_page
);
1423 static inline unsigned
1424 rb_event_index(struct ring_buffer_event
*event
)
1426 unsigned long addr
= (unsigned long)event
;
1428 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1432 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1433 struct ring_buffer_event
*event
)
1435 unsigned long addr
= (unsigned long)event
;
1436 unsigned long index
;
1438 index
= rb_event_index(event
);
1441 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1442 rb_commit_index(cpu_buffer
) == index
;
1446 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1448 unsigned long max_count
;
1451 * We only race with interrupts and NMIs on this CPU.
1452 * If we own the commit event, then we can commit
1453 * all others that interrupted us, since the interruptions
1454 * are in stack format (they finish before they come
1455 * back to us). This allows us to do a simple loop to
1456 * assign the commit to the tail.
1459 max_count
= cpu_buffer
->buffer
->pages
* 100;
1461 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1462 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1464 if (RB_WARN_ON(cpu_buffer
,
1465 rb_is_reader_page(cpu_buffer
->tail_page
)))
1467 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1468 rb_page_write(cpu_buffer
->commit_page
));
1469 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1470 cpu_buffer
->write_stamp
=
1471 cpu_buffer
->commit_page
->page
->time_stamp
;
1472 /* add barrier to keep gcc from optimizing too much */
1475 while (rb_commit_index(cpu_buffer
) !=
1476 rb_page_write(cpu_buffer
->commit_page
)) {
1478 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1479 rb_page_write(cpu_buffer
->commit_page
));
1480 RB_WARN_ON(cpu_buffer
,
1481 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1486 /* again, keep gcc from optimizing */
1490 * If an interrupt came in just after the first while loop
1491 * and pushed the tail page forward, we will be left with
1492 * a dangling commit that will never go forward.
1494 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1498 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1500 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1501 cpu_buffer
->reader_page
->read
= 0;
1504 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1506 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1509 * The iterator could be on the reader page (it starts there).
1510 * But the head could have moved, since the reader was
1511 * found. Check for this case and assign the iterator
1512 * to the head page instead of next.
1514 if (iter
->head_page
== cpu_buffer
->reader_page
)
1515 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1517 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1519 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1524 * ring_buffer_update_event - update event type and data
1525 * @event: the even to update
1526 * @type: the type of event
1527 * @length: the size of the event field in the ring buffer
1529 * Update the type and data fields of the event. The length
1530 * is the actual size that is written to the ring buffer,
1531 * and with this, we can determine what to place into the
1535 rb_update_event(struct ring_buffer_event
*event
,
1536 unsigned type
, unsigned length
)
1538 event
->type_len
= type
;
1542 case RINGBUF_TYPE_PADDING
:
1543 case RINGBUF_TYPE_TIME_EXTEND
:
1544 case RINGBUF_TYPE_TIME_STAMP
:
1548 length
-= RB_EVNT_HDR_SIZE
;
1549 if (length
> RB_MAX_SMALL_DATA
)
1550 event
->array
[0] = length
;
1552 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
1560 * rb_handle_head_page - writer hit the head page
1562 * Returns: +1 to retry page
1567 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1568 struct buffer_page
*tail_page
,
1569 struct buffer_page
*next_page
)
1571 struct buffer_page
*new_head
;
1576 entries
= rb_page_entries(next_page
);
1579 * The hard part is here. We need to move the head
1580 * forward, and protect against both readers on
1581 * other CPUs and writers coming in via interrupts.
1583 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1587 * type can be one of four:
1588 * NORMAL - an interrupt already moved it for us
1589 * HEAD - we are the first to get here.
1590 * UPDATE - we are the interrupt interrupting
1592 * MOVED - a reader on another CPU moved the next
1593 * pointer to its reader page. Give up
1600 * We changed the head to UPDATE, thus
1601 * it is our responsibility to update
1604 local_add(entries
, &cpu_buffer
->overrun
);
1607 * The entries will be zeroed out when we move the
1611 /* still more to do */
1614 case RB_PAGE_UPDATE
:
1616 * This is an interrupt that interrupt the
1617 * previous update. Still more to do.
1620 case RB_PAGE_NORMAL
:
1622 * An interrupt came in before the update
1623 * and processed this for us.
1624 * Nothing left to do.
1629 * The reader is on another CPU and just did
1630 * a swap with our next_page.
1635 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1640 * Now that we are here, the old head pointer is
1641 * set to UPDATE. This will keep the reader from
1642 * swapping the head page with the reader page.
1643 * The reader (on another CPU) will spin till
1646 * We just need to protect against interrupts
1647 * doing the job. We will set the next pointer
1648 * to HEAD. After that, we set the old pointer
1649 * to NORMAL, but only if it was HEAD before.
1650 * otherwise we are an interrupt, and only
1651 * want the outer most commit to reset it.
1653 new_head
= next_page
;
1654 rb_inc_page(cpu_buffer
, &new_head
);
1656 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
1660 * Valid returns are:
1661 * HEAD - an interrupt came in and already set it.
1662 * NORMAL - One of two things:
1663 * 1) We really set it.
1664 * 2) A bunch of interrupts came in and moved
1665 * the page forward again.
1669 case RB_PAGE_NORMAL
:
1673 RB_WARN_ON(cpu_buffer
, 1);
1678 * It is possible that an interrupt came in,
1679 * set the head up, then more interrupts came in
1680 * and moved it again. When we get back here,
1681 * the page would have been set to NORMAL but we
1682 * just set it back to HEAD.
1684 * How do you detect this? Well, if that happened
1685 * the tail page would have moved.
1687 if (ret
== RB_PAGE_NORMAL
) {
1689 * If the tail had moved passed next, then we need
1690 * to reset the pointer.
1692 if (cpu_buffer
->tail_page
!= tail_page
&&
1693 cpu_buffer
->tail_page
!= next_page
)
1694 rb_head_page_set_normal(cpu_buffer
, new_head
,
1700 * If this was the outer most commit (the one that
1701 * changed the original pointer from HEAD to UPDATE),
1702 * then it is up to us to reset it to NORMAL.
1704 if (type
== RB_PAGE_HEAD
) {
1705 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
1708 if (RB_WARN_ON(cpu_buffer
,
1709 ret
!= RB_PAGE_UPDATE
))
1716 static unsigned rb_calculate_event_length(unsigned length
)
1718 struct ring_buffer_event event
; /* Used only for sizeof array */
1720 /* zero length can cause confusions */
1724 if (length
> RB_MAX_SMALL_DATA
)
1725 length
+= sizeof(event
.array
[0]);
1727 length
+= RB_EVNT_HDR_SIZE
;
1728 length
= ALIGN(length
, RB_ALIGNMENT
);
1734 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1735 struct buffer_page
*tail_page
,
1736 unsigned long tail
, unsigned long length
)
1738 struct ring_buffer_event
*event
;
1741 * Only the event that crossed the page boundary
1742 * must fill the old tail_page with padding.
1744 if (tail
>= BUF_PAGE_SIZE
) {
1745 local_sub(length
, &tail_page
->write
);
1749 event
= __rb_page_index(tail_page
, tail
);
1750 kmemcheck_annotate_bitfield(event
, bitfield
);
1753 * If this event is bigger than the minimum size, then
1754 * we need to be careful that we don't subtract the
1755 * write counter enough to allow another writer to slip
1757 * We put in a discarded commit instead, to make sure
1758 * that this space is not used again.
1760 * If we are less than the minimum size, we don't need to
1763 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
1764 /* No room for any events */
1766 /* Mark the rest of the page with padding */
1767 rb_event_set_padding(event
);
1769 /* Set the write back to the previous setting */
1770 local_sub(length
, &tail_page
->write
);
1774 /* Put in a discarded event */
1775 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
1776 event
->type_len
= RINGBUF_TYPE_PADDING
;
1777 /* time delta must be non zero */
1778 event
->time_delta
= 1;
1780 /* Set write to end of buffer */
1781 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
1782 local_sub(length
, &tail_page
->write
);
1785 static struct ring_buffer_event
*
1786 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1787 unsigned long length
, unsigned long tail
,
1788 struct buffer_page
*commit_page
,
1789 struct buffer_page
*tail_page
, u64
*ts
)
1791 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
1792 struct buffer_page
*next_page
;
1795 next_page
= tail_page
;
1797 rb_inc_page(cpu_buffer
, &next_page
);
1800 * If for some reason, we had an interrupt storm that made
1801 * it all the way around the buffer, bail, and warn
1804 if (unlikely(next_page
== commit_page
)) {
1805 local_inc(&cpu_buffer
->commit_overrun
);
1810 * This is where the fun begins!
1812 * We are fighting against races between a reader that
1813 * could be on another CPU trying to swap its reader
1814 * page with the buffer head.
1816 * We are also fighting against interrupts coming in and
1817 * moving the head or tail on us as well.
1819 * If the next page is the head page then we have filled
1820 * the buffer, unless the commit page is still on the
1823 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
1826 * If the commit is not on the reader page, then
1827 * move the header page.
1829 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
1831 * If we are not in overwrite mode,
1832 * this is easy, just stop here.
1834 if (!(buffer
->flags
& RB_FL_OVERWRITE
))
1837 ret
= rb_handle_head_page(cpu_buffer
,
1846 * We need to be careful here too. The
1847 * commit page could still be on the reader
1848 * page. We could have a small buffer, and
1849 * have filled up the buffer with events
1850 * from interrupts and such, and wrapped.
1852 * Note, if the tail page is also the on the
1853 * reader_page, we let it move out.
1855 if (unlikely((cpu_buffer
->commit_page
!=
1856 cpu_buffer
->tail_page
) &&
1857 (cpu_buffer
->commit_page
==
1858 cpu_buffer
->reader_page
))) {
1859 local_inc(&cpu_buffer
->commit_overrun
);
1865 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
1868 * Nested commits always have zero deltas, so
1869 * just reread the time stamp
1871 *ts
= rb_time_stamp(buffer
, cpu_buffer
->cpu
);
1872 next_page
->page
->time_stamp
= *ts
;
1877 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1879 /* fail and let the caller try again */
1880 return ERR_PTR(-EAGAIN
);
1884 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1889 static struct ring_buffer_event
*
1890 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
1891 unsigned type
, unsigned long length
, u64
*ts
)
1893 struct buffer_page
*tail_page
, *commit_page
;
1894 struct ring_buffer_event
*event
;
1895 unsigned long tail
, write
;
1897 commit_page
= cpu_buffer
->commit_page
;
1898 /* we just need to protect against interrupts */
1900 tail_page
= cpu_buffer
->tail_page
;
1901 write
= local_add_return(length
, &tail_page
->write
);
1903 /* set write to only the index of the write */
1904 write
&= RB_WRITE_MASK
;
1905 tail
= write
- length
;
1907 /* See if we shot pass the end of this buffer page */
1908 if (write
> BUF_PAGE_SIZE
)
1909 return rb_move_tail(cpu_buffer
, length
, tail
,
1910 commit_page
, tail_page
, ts
);
1912 /* We reserved something on the buffer */
1914 event
= __rb_page_index(tail_page
, tail
);
1915 kmemcheck_annotate_bitfield(event
, bitfield
);
1916 rb_update_event(event
, type
, length
);
1918 /* The passed in type is zero for DATA */
1920 local_inc(&tail_page
->entries
);
1923 * If this is the first commit on the page, then update
1927 tail_page
->page
->time_stamp
= *ts
;
1933 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
1934 struct ring_buffer_event
*event
)
1936 unsigned long new_index
, old_index
;
1937 struct buffer_page
*bpage
;
1938 unsigned long index
;
1941 new_index
= rb_event_index(event
);
1942 old_index
= new_index
+ rb_event_length(event
);
1943 addr
= (unsigned long)event
;
1946 bpage
= cpu_buffer
->tail_page
;
1948 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
1949 unsigned long write_mask
=
1950 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
1952 * This is on the tail page. It is possible that
1953 * a write could come in and move the tail page
1954 * and write to the next page. That is fine
1955 * because we just shorten what is on this page.
1957 old_index
+= write_mask
;
1958 new_index
+= write_mask
;
1959 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
1960 if (index
== old_index
)
1964 /* could not discard */
1969 rb_add_time_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
1970 u64
*ts
, u64
*delta
)
1972 struct ring_buffer_event
*event
;
1976 if (unlikely(*delta
> (1ULL << 59) && !once
++)) {
1977 printk(KERN_WARNING
"Delta way too big! %llu"
1978 " ts=%llu write stamp = %llu\n",
1979 (unsigned long long)*delta
,
1980 (unsigned long long)*ts
,
1981 (unsigned long long)cpu_buffer
->write_stamp
);
1986 * The delta is too big, we to add a
1989 event
= __rb_reserve_next(cpu_buffer
,
1990 RINGBUF_TYPE_TIME_EXTEND
,
1996 if (PTR_ERR(event
) == -EAGAIN
)
1999 /* Only a commited time event can update the write stamp */
2000 if (rb_event_is_commit(cpu_buffer
, event
)) {
2002 * If this is the first on the page, then it was
2003 * updated with the page itself. Try to discard it
2004 * and if we can't just make it zero.
2006 if (rb_event_index(event
)) {
2007 event
->time_delta
= *delta
& TS_MASK
;
2008 event
->array
[0] = *delta
>> TS_SHIFT
;
2010 /* try to discard, since we do not need this */
2011 if (!rb_try_to_discard(cpu_buffer
, event
)) {
2012 /* nope, just zero it */
2013 event
->time_delta
= 0;
2014 event
->array
[0] = 0;
2017 cpu_buffer
->write_stamp
= *ts
;
2018 /* let the caller know this was the commit */
2021 /* Try to discard the event */
2022 if (!rb_try_to_discard(cpu_buffer
, event
)) {
2023 /* Darn, this is just wasted space */
2024 event
->time_delta
= 0;
2025 event
->array
[0] = 0;
2035 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2037 local_inc(&cpu_buffer
->committing
);
2038 local_inc(&cpu_buffer
->commits
);
2041 static void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2043 unsigned long commits
;
2045 if (RB_WARN_ON(cpu_buffer
,
2046 !local_read(&cpu_buffer
->committing
)))
2050 commits
= local_read(&cpu_buffer
->commits
);
2051 /* synchronize with interrupts */
2053 if (local_read(&cpu_buffer
->committing
) == 1)
2054 rb_set_commit_to_write(cpu_buffer
);
2056 local_dec(&cpu_buffer
->committing
);
2058 /* synchronize with interrupts */
2062 * Need to account for interrupts coming in between the
2063 * updating of the commit page and the clearing of the
2064 * committing counter.
2066 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2067 !local_read(&cpu_buffer
->committing
)) {
2068 local_inc(&cpu_buffer
->committing
);
2073 static struct ring_buffer_event
*
2074 rb_reserve_next_event(struct ring_buffer
*buffer
,
2075 struct ring_buffer_per_cpu
*cpu_buffer
,
2076 unsigned long length
)
2078 struct ring_buffer_event
*event
;
2083 rb_start_commit(cpu_buffer
);
2085 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2087 * Due to the ability to swap a cpu buffer from a buffer
2088 * it is possible it was swapped before we committed.
2089 * (committing stops a swap). We check for it here and
2090 * if it happened, we have to fail the write.
2093 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2094 local_dec(&cpu_buffer
->committing
);
2095 local_dec(&cpu_buffer
->commits
);
2100 length
= rb_calculate_event_length(length
);
2103 * We allow for interrupts to reenter here and do a trace.
2104 * If one does, it will cause this original code to loop
2105 * back here. Even with heavy interrupts happening, this
2106 * should only happen a few times in a row. If this happens
2107 * 1000 times in a row, there must be either an interrupt
2108 * storm or we have something buggy.
2111 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2114 ts
= rb_time_stamp(cpu_buffer
->buffer
, cpu_buffer
->cpu
);
2117 * Only the first commit can update the timestamp.
2118 * Yes there is a race here. If an interrupt comes in
2119 * just after the conditional and it traces too, then it
2120 * will also check the deltas. More than one timestamp may
2121 * also be made. But only the entry that did the actual
2122 * commit will be something other than zero.
2124 if (likely(cpu_buffer
->tail_page
== cpu_buffer
->commit_page
&&
2125 rb_page_write(cpu_buffer
->tail_page
) ==
2126 rb_commit_index(cpu_buffer
))) {
2129 diff
= ts
- cpu_buffer
->write_stamp
;
2131 /* make sure this diff is calculated here */
2134 /* Did the write stamp get updated already? */
2135 if (unlikely(ts
< cpu_buffer
->write_stamp
))
2139 if (unlikely(test_time_stamp(delta
))) {
2141 commit
= rb_add_time_stamp(cpu_buffer
, &ts
, &delta
);
2142 if (commit
== -EBUSY
)
2145 if (commit
== -EAGAIN
)
2148 RB_WARN_ON(cpu_buffer
, commit
< 0);
2153 event
= __rb_reserve_next(cpu_buffer
, 0, length
, &ts
);
2154 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2160 if (!rb_event_is_commit(cpu_buffer
, event
))
2163 event
->time_delta
= delta
;
2168 rb_end_commit(cpu_buffer
);
2172 #ifdef CONFIG_TRACING
2174 #define TRACE_RECURSIVE_DEPTH 16
2176 static int trace_recursive_lock(void)
2178 current
->trace_recursion
++;
2180 if (likely(current
->trace_recursion
< TRACE_RECURSIVE_DEPTH
))
2183 /* Disable all tracing before we do anything else */
2184 tracing_off_permanent();
2186 printk_once(KERN_WARNING
"Tracing recursion: depth[%ld]:"
2187 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2188 current
->trace_recursion
,
2189 hardirq_count() >> HARDIRQ_SHIFT
,
2190 softirq_count() >> SOFTIRQ_SHIFT
,
2197 static void trace_recursive_unlock(void)
2199 WARN_ON_ONCE(!current
->trace_recursion
);
2201 current
->trace_recursion
--;
2206 #define trace_recursive_lock() (0)
2207 #define trace_recursive_unlock() do { } while (0)
2211 static DEFINE_PER_CPU(int, rb_need_resched
);
2214 * ring_buffer_lock_reserve - reserve a part of the buffer
2215 * @buffer: the ring buffer to reserve from
2216 * @length: the length of the data to reserve (excluding event header)
2218 * Returns a reseverd event on the ring buffer to copy directly to.
2219 * The user of this interface will need to get the body to write into
2220 * and can use the ring_buffer_event_data() interface.
2222 * The length is the length of the data needed, not the event length
2223 * which also includes the event header.
2225 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2226 * If NULL is returned, then nothing has been allocated or locked.
2228 struct ring_buffer_event
*
2229 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2231 struct ring_buffer_per_cpu
*cpu_buffer
;
2232 struct ring_buffer_event
*event
;
2235 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2238 if (atomic_read(&buffer
->record_disabled
))
2241 /* If we are tracing schedule, we don't want to recurse */
2242 resched
= ftrace_preempt_disable();
2244 if (trace_recursive_lock())
2247 cpu
= raw_smp_processor_id();
2249 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2252 cpu_buffer
= buffer
->buffers
[cpu
];
2254 if (atomic_read(&cpu_buffer
->record_disabled
))
2257 if (length
> BUF_MAX_DATA_SIZE
)
2260 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2265 * Need to store resched state on this cpu.
2266 * Only the first needs to.
2269 if (preempt_count() == 1)
2270 per_cpu(rb_need_resched
, cpu
) = resched
;
2275 trace_recursive_unlock();
2278 ftrace_preempt_enable(resched
);
2281 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2284 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2285 struct ring_buffer_event
*event
)
2288 * The event first in the commit queue updates the
2291 if (rb_event_is_commit(cpu_buffer
, event
))
2292 cpu_buffer
->write_stamp
+= event
->time_delta
;
2295 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2296 struct ring_buffer_event
*event
)
2298 local_inc(&cpu_buffer
->entries
);
2299 rb_update_write_stamp(cpu_buffer
, event
);
2300 rb_end_commit(cpu_buffer
);
2304 * ring_buffer_unlock_commit - commit a reserved
2305 * @buffer: The buffer to commit to
2306 * @event: The event pointer to commit.
2308 * This commits the data to the ring buffer, and releases any locks held.
2310 * Must be paired with ring_buffer_lock_reserve.
2312 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2313 struct ring_buffer_event
*event
)
2315 struct ring_buffer_per_cpu
*cpu_buffer
;
2316 int cpu
= raw_smp_processor_id();
2318 cpu_buffer
= buffer
->buffers
[cpu
];
2320 rb_commit(cpu_buffer
, event
);
2322 trace_recursive_unlock();
2325 * Only the last preempt count needs to restore preemption.
2327 if (preempt_count() == 1)
2328 ftrace_preempt_enable(per_cpu(rb_need_resched
, cpu
));
2330 preempt_enable_no_resched_notrace();
2334 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2336 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2338 /* array[0] holds the actual length for the discarded event */
2339 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2340 event
->type_len
= RINGBUF_TYPE_PADDING
;
2341 /* time delta must be non zero */
2342 if (!event
->time_delta
)
2343 event
->time_delta
= 1;
2347 * Decrement the entries to the page that an event is on.
2348 * The event does not even need to exist, only the pointer
2349 * to the page it is on. This may only be called before the commit
2353 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2354 struct ring_buffer_event
*event
)
2356 unsigned long addr
= (unsigned long)event
;
2357 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2358 struct buffer_page
*start
;
2362 /* Do the likely case first */
2363 if (likely(bpage
->page
== (void *)addr
)) {
2364 local_dec(&bpage
->entries
);
2369 * Because the commit page may be on the reader page we
2370 * start with the next page and check the end loop there.
2372 rb_inc_page(cpu_buffer
, &bpage
);
2375 if (bpage
->page
== (void *)addr
) {
2376 local_dec(&bpage
->entries
);
2379 rb_inc_page(cpu_buffer
, &bpage
);
2380 } while (bpage
!= start
);
2382 /* commit not part of this buffer?? */
2383 RB_WARN_ON(cpu_buffer
, 1);
2387 * ring_buffer_commit_discard - discard an event that has not been committed
2388 * @buffer: the ring buffer
2389 * @event: non committed event to discard
2391 * Sometimes an event that is in the ring buffer needs to be ignored.
2392 * This function lets the user discard an event in the ring buffer
2393 * and then that event will not be read later.
2395 * This function only works if it is called before the the item has been
2396 * committed. It will try to free the event from the ring buffer
2397 * if another event has not been added behind it.
2399 * If another event has been added behind it, it will set the event
2400 * up as discarded, and perform the commit.
2402 * If this function is called, do not call ring_buffer_unlock_commit on
2405 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2406 struct ring_buffer_event
*event
)
2408 struct ring_buffer_per_cpu
*cpu_buffer
;
2411 /* The event is discarded regardless */
2412 rb_event_discard(event
);
2414 cpu
= smp_processor_id();
2415 cpu_buffer
= buffer
->buffers
[cpu
];
2418 * This must only be called if the event has not been
2419 * committed yet. Thus we can assume that preemption
2420 * is still disabled.
2422 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2424 rb_decrement_entry(cpu_buffer
, event
);
2425 if (rb_try_to_discard(cpu_buffer
, event
))
2429 * The commit is still visible by the reader, so we
2430 * must still update the timestamp.
2432 rb_update_write_stamp(cpu_buffer
, event
);
2434 rb_end_commit(cpu_buffer
);
2436 trace_recursive_unlock();
2439 * Only the last preempt count needs to restore preemption.
2441 if (preempt_count() == 1)
2442 ftrace_preempt_enable(per_cpu(rb_need_resched
, cpu
));
2444 preempt_enable_no_resched_notrace();
2447 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2450 * ring_buffer_write - write data to the buffer without reserving
2451 * @buffer: The ring buffer to write to.
2452 * @length: The length of the data being written (excluding the event header)
2453 * @data: The data to write to the buffer.
2455 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2456 * one function. If you already have the data to write to the buffer, it
2457 * may be easier to simply call this function.
2459 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2460 * and not the length of the event which would hold the header.
2462 int ring_buffer_write(struct ring_buffer
*buffer
,
2463 unsigned long length
,
2466 struct ring_buffer_per_cpu
*cpu_buffer
;
2467 struct ring_buffer_event
*event
;
2472 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2475 if (atomic_read(&buffer
->record_disabled
))
2478 resched
= ftrace_preempt_disable();
2480 cpu
= raw_smp_processor_id();
2482 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2485 cpu_buffer
= buffer
->buffers
[cpu
];
2487 if (atomic_read(&cpu_buffer
->record_disabled
))
2490 if (length
> BUF_MAX_DATA_SIZE
)
2493 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2497 body
= rb_event_data(event
);
2499 memcpy(body
, data
, length
);
2501 rb_commit(cpu_buffer
, event
);
2505 ftrace_preempt_enable(resched
);
2509 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2511 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
2513 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
2514 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
2515 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
2517 /* In case of error, head will be NULL */
2518 if (unlikely(!head
))
2521 return reader
->read
== rb_page_commit(reader
) &&
2522 (commit
== reader
||
2524 head
->read
== rb_page_commit(commit
)));
2528 * ring_buffer_record_disable - stop all writes into the buffer
2529 * @buffer: The ring buffer to stop writes to.
2531 * This prevents all writes to the buffer. Any attempt to write
2532 * to the buffer after this will fail and return NULL.
2534 * The caller should call synchronize_sched() after this.
2536 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
2538 atomic_inc(&buffer
->record_disabled
);
2540 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
2543 * ring_buffer_record_enable - enable writes to the buffer
2544 * @buffer: The ring buffer to enable writes
2546 * Note, multiple disables will need the same number of enables
2547 * to truely enable the writing (much like preempt_disable).
2549 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
2551 atomic_dec(&buffer
->record_disabled
);
2553 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
2556 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2557 * @buffer: The ring buffer to stop writes to.
2558 * @cpu: The CPU buffer to stop
2560 * This prevents all writes to the buffer. Any attempt to write
2561 * to the buffer after this will fail and return NULL.
2563 * The caller should call synchronize_sched() after this.
2565 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
2567 struct ring_buffer_per_cpu
*cpu_buffer
;
2569 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2572 cpu_buffer
= buffer
->buffers
[cpu
];
2573 atomic_inc(&cpu_buffer
->record_disabled
);
2575 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
2578 * ring_buffer_record_enable_cpu - enable writes to the buffer
2579 * @buffer: The ring buffer to enable writes
2580 * @cpu: The CPU to enable.
2582 * Note, multiple disables will need the same number of enables
2583 * to truely enable the writing (much like preempt_disable).
2585 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
2587 struct ring_buffer_per_cpu
*cpu_buffer
;
2589 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2592 cpu_buffer
= buffer
->buffers
[cpu
];
2593 atomic_dec(&cpu_buffer
->record_disabled
);
2595 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
2598 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2599 * @buffer: The ring buffer
2600 * @cpu: The per CPU buffer to get the entries from.
2602 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
2604 struct ring_buffer_per_cpu
*cpu_buffer
;
2607 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2610 cpu_buffer
= buffer
->buffers
[cpu
];
2611 ret
= (local_read(&cpu_buffer
->entries
) - local_read(&cpu_buffer
->overrun
))
2616 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
2619 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2620 * @buffer: The ring buffer
2621 * @cpu: The per CPU buffer to get the number of overruns from
2623 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2625 struct ring_buffer_per_cpu
*cpu_buffer
;
2628 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2631 cpu_buffer
= buffer
->buffers
[cpu
];
2632 ret
= local_read(&cpu_buffer
->overrun
);
2636 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
2639 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2640 * @buffer: The ring buffer
2641 * @cpu: The per CPU buffer to get the number of overruns from
2644 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2646 struct ring_buffer_per_cpu
*cpu_buffer
;
2649 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2652 cpu_buffer
= buffer
->buffers
[cpu
];
2653 ret
= local_read(&cpu_buffer
->commit_overrun
);
2657 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
2660 * ring_buffer_entries - get the number of entries in a buffer
2661 * @buffer: The ring buffer
2663 * Returns the total number of entries in the ring buffer
2666 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
2668 struct ring_buffer_per_cpu
*cpu_buffer
;
2669 unsigned long entries
= 0;
2672 /* if you care about this being correct, lock the buffer */
2673 for_each_buffer_cpu(buffer
, cpu
) {
2674 cpu_buffer
= buffer
->buffers
[cpu
];
2675 entries
+= (local_read(&cpu_buffer
->entries
) -
2676 local_read(&cpu_buffer
->overrun
)) - cpu_buffer
->read
;
2681 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
2684 * ring_buffer_overrun_cpu - get the number of overruns in buffer
2685 * @buffer: The ring buffer
2687 * Returns the total number of overruns in the ring buffer
2690 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
2692 struct ring_buffer_per_cpu
*cpu_buffer
;
2693 unsigned long overruns
= 0;
2696 /* if you care about this being correct, lock the buffer */
2697 for_each_buffer_cpu(buffer
, cpu
) {
2698 cpu_buffer
= buffer
->buffers
[cpu
];
2699 overruns
+= local_read(&cpu_buffer
->overrun
);
2704 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
2706 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
2708 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2710 /* Iterator usage is expected to have record disabled */
2711 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
2712 iter
->head_page
= rb_set_head_page(cpu_buffer
);
2713 if (unlikely(!iter
->head_page
))
2715 iter
->head
= iter
->head_page
->read
;
2717 iter
->head_page
= cpu_buffer
->reader_page
;
2718 iter
->head
= cpu_buffer
->reader_page
->read
;
2721 iter
->read_stamp
= cpu_buffer
->read_stamp
;
2723 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
2727 * ring_buffer_iter_reset - reset an iterator
2728 * @iter: The iterator to reset
2730 * Resets the iterator, so that it will start from the beginning
2733 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
2735 struct ring_buffer_per_cpu
*cpu_buffer
;
2736 unsigned long flags
;
2741 cpu_buffer
= iter
->cpu_buffer
;
2743 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2744 rb_iter_reset(iter
);
2745 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2747 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
2750 * ring_buffer_iter_empty - check if an iterator has no more to read
2751 * @iter: The iterator to check
2753 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
2755 struct ring_buffer_per_cpu
*cpu_buffer
;
2757 cpu_buffer
= iter
->cpu_buffer
;
2759 return iter
->head_page
== cpu_buffer
->commit_page
&&
2760 iter
->head
== rb_commit_index(cpu_buffer
);
2762 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
2765 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2766 struct ring_buffer_event
*event
)
2770 switch (event
->type_len
) {
2771 case RINGBUF_TYPE_PADDING
:
2774 case RINGBUF_TYPE_TIME_EXTEND
:
2775 delta
= event
->array
[0];
2777 delta
+= event
->time_delta
;
2778 cpu_buffer
->read_stamp
+= delta
;
2781 case RINGBUF_TYPE_TIME_STAMP
:
2782 /* FIXME: not implemented */
2785 case RINGBUF_TYPE_DATA
:
2786 cpu_buffer
->read_stamp
+= event
->time_delta
;
2796 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
2797 struct ring_buffer_event
*event
)
2801 switch (event
->type_len
) {
2802 case RINGBUF_TYPE_PADDING
:
2805 case RINGBUF_TYPE_TIME_EXTEND
:
2806 delta
= event
->array
[0];
2808 delta
+= event
->time_delta
;
2809 iter
->read_stamp
+= delta
;
2812 case RINGBUF_TYPE_TIME_STAMP
:
2813 /* FIXME: not implemented */
2816 case RINGBUF_TYPE_DATA
:
2817 iter
->read_stamp
+= event
->time_delta
;
2826 static struct buffer_page
*
2827 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
2829 struct buffer_page
*reader
= NULL
;
2830 unsigned long flags
;
2834 local_irq_save(flags
);
2835 __raw_spin_lock(&cpu_buffer
->lock
);
2839 * This should normally only loop twice. But because the
2840 * start of the reader inserts an empty page, it causes
2841 * a case where we will loop three times. There should be no
2842 * reason to loop four times (that I know of).
2844 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
2849 reader
= cpu_buffer
->reader_page
;
2851 /* If there's more to read, return this page */
2852 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
2855 /* Never should we have an index greater than the size */
2856 if (RB_WARN_ON(cpu_buffer
,
2857 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
2860 /* check if we caught up to the tail */
2862 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
2866 * Reset the reader page to size zero.
2868 local_set(&cpu_buffer
->reader_page
->write
, 0);
2869 local_set(&cpu_buffer
->reader_page
->entries
, 0);
2870 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
2874 * Splice the empty reader page into the list around the head.
2876 reader
= rb_set_head_page(cpu_buffer
);
2877 cpu_buffer
->reader_page
->list
.next
= reader
->list
.next
;
2878 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
2881 * cpu_buffer->pages just needs to point to the buffer, it
2882 * has no specific buffer page to point to. Lets move it out
2883 * of our way so we don't accidently swap it.
2885 cpu_buffer
->pages
= reader
->list
.prev
;
2887 /* The reader page will be pointing to the new head */
2888 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
2891 * Here's the tricky part.
2893 * We need to move the pointer past the header page.
2894 * But we can only do that if a writer is not currently
2895 * moving it. The page before the header page has the
2896 * flag bit '1' set if it is pointing to the page we want.
2897 * but if the writer is in the process of moving it
2898 * than it will be '2' or already moved '0'.
2901 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
2904 * If we did not convert it, then we must try again.
2910 * Yeah! We succeeded in replacing the page.
2912 * Now make the new head point back to the reader page.
2914 reader
->list
.next
->prev
= &cpu_buffer
->reader_page
->list
;
2915 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
2917 /* Finally update the reader page to the new head */
2918 cpu_buffer
->reader_page
= reader
;
2919 rb_reset_reader_page(cpu_buffer
);
2924 __raw_spin_unlock(&cpu_buffer
->lock
);
2925 local_irq_restore(flags
);
2930 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
2932 struct ring_buffer_event
*event
;
2933 struct buffer_page
*reader
;
2936 reader
= rb_get_reader_page(cpu_buffer
);
2938 /* This function should not be called when buffer is empty */
2939 if (RB_WARN_ON(cpu_buffer
, !reader
))
2942 event
= rb_reader_event(cpu_buffer
);
2944 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
2947 rb_update_read_stamp(cpu_buffer
, event
);
2949 length
= rb_event_length(event
);
2950 cpu_buffer
->reader_page
->read
+= length
;
2953 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
2955 struct ring_buffer
*buffer
;
2956 struct ring_buffer_per_cpu
*cpu_buffer
;
2957 struct ring_buffer_event
*event
;
2960 cpu_buffer
= iter
->cpu_buffer
;
2961 buffer
= cpu_buffer
->buffer
;
2964 * Check if we are at the end of the buffer.
2966 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
2967 /* discarded commits can make the page empty */
2968 if (iter
->head_page
== cpu_buffer
->commit_page
)
2974 event
= rb_iter_head_event(iter
);
2976 length
= rb_event_length(event
);
2979 * This should not be called to advance the header if we are
2980 * at the tail of the buffer.
2982 if (RB_WARN_ON(cpu_buffer
,
2983 (iter
->head_page
== cpu_buffer
->commit_page
) &&
2984 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
2987 rb_update_iter_read_stamp(iter
, event
);
2989 iter
->head
+= length
;
2991 /* check for end of page padding */
2992 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
2993 (iter
->head_page
!= cpu_buffer
->commit_page
))
2994 rb_advance_iter(iter
);
2997 static struct ring_buffer_event
*
2998 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
)
3000 struct ring_buffer_event
*event
;
3001 struct buffer_page
*reader
;
3006 * We repeat when a timestamp is encountered. It is possible
3007 * to get multiple timestamps from an interrupt entering just
3008 * as one timestamp is about to be written, or from discarded
3009 * commits. The most that we can have is the number on a single page.
3011 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> RB_TIMESTAMPS_PER_PAGE
))
3014 reader
= rb_get_reader_page(cpu_buffer
);
3018 event
= rb_reader_event(cpu_buffer
);
3020 switch (event
->type_len
) {
3021 case RINGBUF_TYPE_PADDING
:
3022 if (rb_null_event(event
))
3023 RB_WARN_ON(cpu_buffer
, 1);
3025 * Because the writer could be discarding every
3026 * event it creates (which would probably be bad)
3027 * if we were to go back to "again" then we may never
3028 * catch up, and will trigger the warn on, or lock
3029 * the box. Return the padding, and we will release
3030 * the current locks, and try again.
3034 case RINGBUF_TYPE_TIME_EXTEND
:
3035 /* Internal data, OK to advance */
3036 rb_advance_reader(cpu_buffer
);
3039 case RINGBUF_TYPE_TIME_STAMP
:
3040 /* FIXME: not implemented */
3041 rb_advance_reader(cpu_buffer
);
3044 case RINGBUF_TYPE_DATA
:
3046 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3047 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3048 cpu_buffer
->cpu
, ts
);
3058 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3060 static struct ring_buffer_event
*
3061 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3063 struct ring_buffer
*buffer
;
3064 struct ring_buffer_per_cpu
*cpu_buffer
;
3065 struct ring_buffer_event
*event
;
3068 if (ring_buffer_iter_empty(iter
))
3071 cpu_buffer
= iter
->cpu_buffer
;
3072 buffer
= cpu_buffer
->buffer
;
3076 * We repeat when a timestamp is encountered.
3077 * We can get multiple timestamps by nested interrupts or also
3078 * if filtering is on (discarding commits). Since discarding
3079 * commits can be frequent we can get a lot of timestamps.
3080 * But we limit them by not adding timestamps if they begin
3081 * at the start of a page.
3083 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> RB_TIMESTAMPS_PER_PAGE
))
3086 if (rb_per_cpu_empty(cpu_buffer
))
3089 event
= rb_iter_head_event(iter
);
3091 switch (event
->type_len
) {
3092 case RINGBUF_TYPE_PADDING
:
3093 if (rb_null_event(event
)) {
3097 rb_advance_iter(iter
);
3100 case RINGBUF_TYPE_TIME_EXTEND
:
3101 /* Internal data, OK to advance */
3102 rb_advance_iter(iter
);
3105 case RINGBUF_TYPE_TIME_STAMP
:
3106 /* FIXME: not implemented */
3107 rb_advance_iter(iter
);
3110 case RINGBUF_TYPE_DATA
:
3112 *ts
= iter
->read_stamp
+ event
->time_delta
;
3113 ring_buffer_normalize_time_stamp(buffer
,
3114 cpu_buffer
->cpu
, ts
);
3124 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3126 static inline int rb_ok_to_lock(void)
3129 * If an NMI die dumps out the content of the ring buffer
3130 * do not grab locks. We also permanently disable the ring
3131 * buffer too. A one time deal is all you get from reading
3132 * the ring buffer from an NMI.
3134 if (likely(!in_nmi()))
3137 tracing_off_permanent();
3142 * ring_buffer_peek - peek at the next event to be read
3143 * @buffer: The ring buffer to read
3144 * @cpu: The cpu to peak at
3145 * @ts: The timestamp counter of this event.
3147 * This will return the event that will be read next, but does
3148 * not consume the data.
3150 struct ring_buffer_event
*
3151 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
)
3153 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3154 struct ring_buffer_event
*event
;
3155 unsigned long flags
;
3158 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3161 dolock
= rb_ok_to_lock();
3163 local_irq_save(flags
);
3165 spin_lock(&cpu_buffer
->reader_lock
);
3166 event
= rb_buffer_peek(cpu_buffer
, ts
);
3167 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3168 rb_advance_reader(cpu_buffer
);
3170 spin_unlock(&cpu_buffer
->reader_lock
);
3171 local_irq_restore(flags
);
3173 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3180 * ring_buffer_iter_peek - peek at the next event to be read
3181 * @iter: The ring buffer iterator
3182 * @ts: The timestamp counter of this event.
3184 * This will return the event that will be read next, but does
3185 * not increment the iterator.
3187 struct ring_buffer_event
*
3188 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3190 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3191 struct ring_buffer_event
*event
;
3192 unsigned long flags
;
3195 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3196 event
= rb_iter_peek(iter
, ts
);
3197 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3199 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3206 * ring_buffer_consume - return an event and consume it
3207 * @buffer: The ring buffer to get the next event from
3209 * Returns the next event in the ring buffer, and that event is consumed.
3210 * Meaning, that sequential reads will keep returning a different event,
3211 * and eventually empty the ring buffer if the producer is slower.
3213 struct ring_buffer_event
*
3214 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
)
3216 struct ring_buffer_per_cpu
*cpu_buffer
;
3217 struct ring_buffer_event
*event
= NULL
;
3218 unsigned long flags
;
3221 dolock
= rb_ok_to_lock();
3224 /* might be called in atomic */
3227 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3230 cpu_buffer
= buffer
->buffers
[cpu
];
3231 local_irq_save(flags
);
3233 spin_lock(&cpu_buffer
->reader_lock
);
3235 event
= rb_buffer_peek(cpu_buffer
, ts
);
3237 rb_advance_reader(cpu_buffer
);
3240 spin_unlock(&cpu_buffer
->reader_lock
);
3241 local_irq_restore(flags
);
3246 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3251 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3254 * ring_buffer_read_start - start a non consuming read of the buffer
3255 * @buffer: The ring buffer to read from
3256 * @cpu: The cpu buffer to iterate over
3258 * This starts up an iteration through the buffer. It also disables
3259 * the recording to the buffer until the reading is finished.
3260 * This prevents the reading from being corrupted. This is not
3261 * a consuming read, so a producer is not expected.
3263 * Must be paired with ring_buffer_finish.
3265 struct ring_buffer_iter
*
3266 ring_buffer_read_start(struct ring_buffer
*buffer
, int cpu
)
3268 struct ring_buffer_per_cpu
*cpu_buffer
;
3269 struct ring_buffer_iter
*iter
;
3270 unsigned long flags
;
3272 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3275 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3279 cpu_buffer
= buffer
->buffers
[cpu
];
3281 iter
->cpu_buffer
= cpu_buffer
;
3283 atomic_inc(&cpu_buffer
->record_disabled
);
3284 synchronize_sched();
3286 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3287 __raw_spin_lock(&cpu_buffer
->lock
);
3288 rb_iter_reset(iter
);
3289 __raw_spin_unlock(&cpu_buffer
->lock
);
3290 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3294 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
3297 * ring_buffer_finish - finish reading the iterator of the buffer
3298 * @iter: The iterator retrieved by ring_buffer_start
3300 * This re-enables the recording to the buffer, and frees the
3304 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
3306 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3308 atomic_dec(&cpu_buffer
->record_disabled
);
3311 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
3314 * ring_buffer_read - read the next item in the ring buffer by the iterator
3315 * @iter: The ring buffer iterator
3316 * @ts: The time stamp of the event read.
3318 * This reads the next event in the ring buffer and increments the iterator.
3320 struct ring_buffer_event
*
3321 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
3323 struct ring_buffer_event
*event
;
3324 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3325 unsigned long flags
;
3327 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3329 event
= rb_iter_peek(iter
, ts
);
3333 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
3336 rb_advance_iter(iter
);
3338 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3342 EXPORT_SYMBOL_GPL(ring_buffer_read
);
3345 * ring_buffer_size - return the size of the ring buffer (in bytes)
3346 * @buffer: The ring buffer.
3348 unsigned long ring_buffer_size(struct ring_buffer
*buffer
)
3350 return BUF_PAGE_SIZE
* buffer
->pages
;
3352 EXPORT_SYMBOL_GPL(ring_buffer_size
);
3355 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
3357 rb_head_page_deactivate(cpu_buffer
);
3359 cpu_buffer
->head_page
3360 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
3361 local_set(&cpu_buffer
->head_page
->write
, 0);
3362 local_set(&cpu_buffer
->head_page
->entries
, 0);
3363 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
3365 cpu_buffer
->head_page
->read
= 0;
3367 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
3368 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
3370 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
3371 local_set(&cpu_buffer
->reader_page
->write
, 0);
3372 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3373 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3374 cpu_buffer
->reader_page
->read
= 0;
3376 local_set(&cpu_buffer
->commit_overrun
, 0);
3377 local_set(&cpu_buffer
->overrun
, 0);
3378 local_set(&cpu_buffer
->entries
, 0);
3379 local_set(&cpu_buffer
->committing
, 0);
3380 local_set(&cpu_buffer
->commits
, 0);
3381 cpu_buffer
->read
= 0;
3383 cpu_buffer
->write_stamp
= 0;
3384 cpu_buffer
->read_stamp
= 0;
3386 rb_head_page_activate(cpu_buffer
);
3390 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3391 * @buffer: The ring buffer to reset a per cpu buffer of
3392 * @cpu: The CPU buffer to be reset
3394 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
3396 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3397 unsigned long flags
;
3399 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3402 atomic_inc(&cpu_buffer
->record_disabled
);
3404 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3406 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
3409 __raw_spin_lock(&cpu_buffer
->lock
);
3411 rb_reset_cpu(cpu_buffer
);
3413 __raw_spin_unlock(&cpu_buffer
->lock
);
3416 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3418 atomic_dec(&cpu_buffer
->record_disabled
);
3420 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
3423 * ring_buffer_reset - reset a ring buffer
3424 * @buffer: The ring buffer to reset all cpu buffers
3426 void ring_buffer_reset(struct ring_buffer
*buffer
)
3430 for_each_buffer_cpu(buffer
, cpu
)
3431 ring_buffer_reset_cpu(buffer
, cpu
);
3433 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
3436 * rind_buffer_empty - is the ring buffer empty?
3437 * @buffer: The ring buffer to test
3439 int ring_buffer_empty(struct ring_buffer
*buffer
)
3441 struct ring_buffer_per_cpu
*cpu_buffer
;
3442 unsigned long flags
;
3447 dolock
= rb_ok_to_lock();
3449 /* yes this is racy, but if you don't like the race, lock the buffer */
3450 for_each_buffer_cpu(buffer
, cpu
) {
3451 cpu_buffer
= buffer
->buffers
[cpu
];
3452 local_irq_save(flags
);
3454 spin_lock(&cpu_buffer
->reader_lock
);
3455 ret
= rb_per_cpu_empty(cpu_buffer
);
3457 spin_unlock(&cpu_buffer
->reader_lock
);
3458 local_irq_restore(flags
);
3466 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
3469 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3470 * @buffer: The ring buffer
3471 * @cpu: The CPU buffer to test
3473 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
3475 struct ring_buffer_per_cpu
*cpu_buffer
;
3476 unsigned long flags
;
3480 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3483 dolock
= rb_ok_to_lock();
3485 cpu_buffer
= buffer
->buffers
[cpu
];
3486 local_irq_save(flags
);
3488 spin_lock(&cpu_buffer
->reader_lock
);
3489 ret
= rb_per_cpu_empty(cpu_buffer
);
3491 spin_unlock(&cpu_buffer
->reader_lock
);
3492 local_irq_restore(flags
);
3496 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
3498 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3500 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3501 * @buffer_a: One buffer to swap with
3502 * @buffer_b: The other buffer to swap with
3504 * This function is useful for tracers that want to take a "snapshot"
3505 * of a CPU buffer and has another back up buffer lying around.
3506 * it is expected that the tracer handles the cpu buffer not being
3507 * used at the moment.
3509 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
3510 struct ring_buffer
*buffer_b
, int cpu
)
3512 struct ring_buffer_per_cpu
*cpu_buffer_a
;
3513 struct ring_buffer_per_cpu
*cpu_buffer_b
;
3516 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
3517 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
3520 /* At least make sure the two buffers are somewhat the same */
3521 if (buffer_a
->pages
!= buffer_b
->pages
)
3526 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
3529 if (atomic_read(&buffer_a
->record_disabled
))
3532 if (atomic_read(&buffer_b
->record_disabled
))
3535 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
3536 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
3538 if (atomic_read(&cpu_buffer_a
->record_disabled
))
3541 if (atomic_read(&cpu_buffer_b
->record_disabled
))
3545 * We can't do a synchronize_sched here because this
3546 * function can be called in atomic context.
3547 * Normally this will be called from the same CPU as cpu.
3548 * If not it's up to the caller to protect this.
3550 atomic_inc(&cpu_buffer_a
->record_disabled
);
3551 atomic_inc(&cpu_buffer_b
->record_disabled
);
3554 if (local_read(&cpu_buffer_a
->committing
))
3556 if (local_read(&cpu_buffer_b
->committing
))
3559 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
3560 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
3562 cpu_buffer_b
->buffer
= buffer_a
;
3563 cpu_buffer_a
->buffer
= buffer_b
;
3568 atomic_dec(&cpu_buffer_a
->record_disabled
);
3569 atomic_dec(&cpu_buffer_b
->record_disabled
);
3573 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
3574 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3577 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3578 * @buffer: the buffer to allocate for.
3580 * This function is used in conjunction with ring_buffer_read_page.
3581 * When reading a full page from the ring buffer, these functions
3582 * can be used to speed up the process. The calling function should
3583 * allocate a few pages first with this function. Then when it
3584 * needs to get pages from the ring buffer, it passes the result
3585 * of this function into ring_buffer_read_page, which will swap
3586 * the page that was allocated, with the read page of the buffer.
3589 * The page allocated, or NULL on error.
3591 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
)
3593 struct buffer_data_page
*bpage
;
3596 addr
= __get_free_page(GFP_KERNEL
);
3600 bpage
= (void *)addr
;
3602 rb_init_page(bpage
);
3606 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
3609 * ring_buffer_free_read_page - free an allocated read page
3610 * @buffer: the buffer the page was allocate for
3611 * @data: the page to free
3613 * Free a page allocated from ring_buffer_alloc_read_page.
3615 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
3617 free_page((unsigned long)data
);
3619 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
3622 * ring_buffer_read_page - extract a page from the ring buffer
3623 * @buffer: buffer to extract from
3624 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3625 * @len: amount to extract
3626 * @cpu: the cpu of the buffer to extract
3627 * @full: should the extraction only happen when the page is full.
3629 * This function will pull out a page from the ring buffer and consume it.
3630 * @data_page must be the address of the variable that was returned
3631 * from ring_buffer_alloc_read_page. This is because the page might be used
3632 * to swap with a page in the ring buffer.
3635 * rpage = ring_buffer_alloc_read_page(buffer);
3638 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3640 * process_page(rpage, ret);
3642 * When @full is set, the function will not return true unless
3643 * the writer is off the reader page.
3645 * Note: it is up to the calling functions to handle sleeps and wakeups.
3646 * The ring buffer can be used anywhere in the kernel and can not
3647 * blindly call wake_up. The layer that uses the ring buffer must be
3648 * responsible for that.
3651 * >=0 if data has been transferred, returns the offset of consumed data.
3652 * <0 if no data has been transferred.
3654 int ring_buffer_read_page(struct ring_buffer
*buffer
,
3655 void **data_page
, size_t len
, int cpu
, int full
)
3657 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3658 struct ring_buffer_event
*event
;
3659 struct buffer_data_page
*bpage
;
3660 struct buffer_page
*reader
;
3661 unsigned long flags
;
3662 unsigned int commit
;
3667 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3671 * If len is not big enough to hold the page header, then
3672 * we can not copy anything.
3674 if (len
<= BUF_PAGE_HDR_SIZE
)
3677 len
-= BUF_PAGE_HDR_SIZE
;
3686 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3688 reader
= rb_get_reader_page(cpu_buffer
);
3692 event
= rb_reader_event(cpu_buffer
);
3694 read
= reader
->read
;
3695 commit
= rb_page_commit(reader
);
3698 * If this page has been partially read or
3699 * if len is not big enough to read the rest of the page or
3700 * a writer is still on the page, then
3701 * we must copy the data from the page to the buffer.
3702 * Otherwise, we can simply swap the page with the one passed in.
3704 if (read
|| (len
< (commit
- read
)) ||
3705 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
3706 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
3707 unsigned int rpos
= read
;
3708 unsigned int pos
= 0;
3714 if (len
> (commit
- read
))
3715 len
= (commit
- read
);
3717 size
= rb_event_length(event
);
3722 /* save the current timestamp, since the user will need it */
3723 save_timestamp
= cpu_buffer
->read_stamp
;
3725 /* Need to copy one event at a time */
3727 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
3731 rb_advance_reader(cpu_buffer
);
3732 rpos
= reader
->read
;
3735 event
= rb_reader_event(cpu_buffer
);
3736 size
= rb_event_length(event
);
3737 } while (len
> size
);
3740 local_set(&bpage
->commit
, pos
);
3741 bpage
->time_stamp
= save_timestamp
;
3743 /* we copied everything to the beginning */
3746 /* update the entry counter */
3747 cpu_buffer
->read
+= rb_page_entries(reader
);
3749 /* swap the pages */
3750 rb_init_page(bpage
);
3751 bpage
= reader
->page
;
3752 reader
->page
= *data_page
;
3753 local_set(&reader
->write
, 0);
3754 local_set(&reader
->entries
, 0);
3761 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3766 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
3768 #ifdef CONFIG_TRACING
3770 rb_simple_read(struct file
*filp
, char __user
*ubuf
,
3771 size_t cnt
, loff_t
*ppos
)
3773 unsigned long *p
= filp
->private_data
;
3777 if (test_bit(RB_BUFFERS_DISABLED_BIT
, p
))
3778 r
= sprintf(buf
, "permanently disabled\n");
3780 r
= sprintf(buf
, "%d\n", test_bit(RB_BUFFERS_ON_BIT
, p
));
3782 return simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
3786 rb_simple_write(struct file
*filp
, const char __user
*ubuf
,
3787 size_t cnt
, loff_t
*ppos
)
3789 unsigned long *p
= filp
->private_data
;
3794 if (cnt
>= sizeof(buf
))
3797 if (copy_from_user(&buf
, ubuf
, cnt
))
3802 ret
= strict_strtoul(buf
, 10, &val
);
3807 set_bit(RB_BUFFERS_ON_BIT
, p
);
3809 clear_bit(RB_BUFFERS_ON_BIT
, p
);
3816 static const struct file_operations rb_simple_fops
= {
3817 .open
= tracing_open_generic
,
3818 .read
= rb_simple_read
,
3819 .write
= rb_simple_write
,
3823 static __init
int rb_init_debugfs(void)
3825 struct dentry
*d_tracer
;
3827 d_tracer
= tracing_init_dentry();
3829 trace_create_file("tracing_on", 0644, d_tracer
,
3830 &ring_buffer_flags
, &rb_simple_fops
);
3835 fs_initcall(rb_init_debugfs
);
3838 #ifdef CONFIG_HOTPLUG_CPU
3839 static int rb_cpu_notify(struct notifier_block
*self
,
3840 unsigned long action
, void *hcpu
)
3842 struct ring_buffer
*buffer
=
3843 container_of(self
, struct ring_buffer
, cpu_notify
);
3844 long cpu
= (long)hcpu
;
3847 case CPU_UP_PREPARE
:
3848 case CPU_UP_PREPARE_FROZEN
:
3849 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
3852 buffer
->buffers
[cpu
] =
3853 rb_allocate_cpu_buffer(buffer
, cpu
);
3854 if (!buffer
->buffers
[cpu
]) {
3855 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3860 cpumask_set_cpu(cpu
, buffer
->cpumask
);
3862 case CPU_DOWN_PREPARE
:
3863 case CPU_DOWN_PREPARE_FROZEN
:
3866 * If we were to free the buffer, then the user would
3867 * lose any trace that was in the buffer.