3 * device driver for Conexant 2388x based TV cards
6 * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
8 * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
10 * - video_ioctl2 conversion
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/kmod.h>
34 #include <linux/sound.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/delay.h>
38 #include <linux/videodev2.h>
39 #include <linux/mutex.h>
42 #include <media/v4l2-common.h>
44 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
45 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
46 MODULE_LICENSE("GPL");
48 /* ------------------------------------------------------------------ */
50 static unsigned int core_debug
= 0;
51 module_param(core_debug
,int,0644);
52 MODULE_PARM_DESC(core_debug
,"enable debug messages [core]");
54 static unsigned int nicam
= 0;
55 module_param(nicam
,int,0644);
56 MODULE_PARM_DESC(nicam
,"tv audio is nicam");
58 static unsigned int nocomb
= 0;
59 module_param(nocomb
,int,0644);
60 MODULE_PARM_DESC(nocomb
,"disable comb filter");
62 #define dprintk(level,fmt, arg...) if (core_debug >= level) \
63 printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
65 static unsigned int cx88_devcount
;
66 static LIST_HEAD(cx88_devlist
);
67 static DEFINE_MUTEX(devlist
);
69 #define NO_SYNC_LINE (-1U)
71 /* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
72 generated _after_ lpi lines are transferred. */
73 static u32
* cx88_risc_field(u32
*rp
, struct scatterlist
*sglist
,
74 unsigned int offset
, u32 sync_line
,
75 unsigned int bpl
, unsigned int padding
,
76 unsigned int lines
, unsigned int lpi
)
78 struct scatterlist
*sg
;
79 unsigned int line
,todo
,sol
;
81 /* sync instruction */
82 if (sync_line
!= NO_SYNC_LINE
)
83 *(rp
++) = cpu_to_le32(RISC_RESYNC
| sync_line
);
87 for (line
= 0; line
< lines
; line
++) {
88 while (offset
&& offset
>= sg_dma_len(sg
)) {
89 offset
-= sg_dma_len(sg
);
92 if (lpi
&& line
>0 && !(line
% lpi
))
93 sol
= RISC_SOL
| RISC_IRQ1
| RISC_CNT_INC
;
96 if (bpl
<= sg_dma_len(sg
)-offset
) {
97 /* fits into current chunk */
98 *(rp
++)=cpu_to_le32(RISC_WRITE
|sol
|RISC_EOL
|bpl
);
99 *(rp
++)=cpu_to_le32(sg_dma_address(sg
)+offset
);
102 /* scanline needs to be split */
104 *(rp
++)=cpu_to_le32(RISC_WRITE
|sol
|
105 (sg_dma_len(sg
)-offset
));
106 *(rp
++)=cpu_to_le32(sg_dma_address(sg
)+offset
);
107 todo
-= (sg_dma_len(sg
)-offset
);
110 while (todo
> sg_dma_len(sg
)) {
111 *(rp
++)=cpu_to_le32(RISC_WRITE
|
113 *(rp
++)=cpu_to_le32(sg_dma_address(sg
));
114 todo
-= sg_dma_len(sg
);
117 *(rp
++)=cpu_to_le32(RISC_WRITE
|RISC_EOL
|todo
);
118 *(rp
++)=cpu_to_le32(sg_dma_address(sg
));
127 int cx88_risc_buffer(struct pci_dev
*pci
, struct btcx_riscmem
*risc
,
128 struct scatterlist
*sglist
,
129 unsigned int top_offset
, unsigned int bottom_offset
,
130 unsigned int bpl
, unsigned int padding
, unsigned int lines
)
132 u32 instructions
,fields
;
137 if (UNSET
!= top_offset
)
139 if (UNSET
!= bottom_offset
)
142 /* estimate risc mem: worst case is one write per page border +
143 one write per scan line + syncs + jump (all 2 dwords). Padding
144 can cause next bpl to start close to a page border. First DMA
145 region may be smaller than PAGE_SIZE */
146 instructions
= fields
* (1 + ((bpl
+ padding
) * lines
) / PAGE_SIZE
+ lines
);
148 if ((rc
= btcx_riscmem_alloc(pci
,risc
,instructions
*8)) < 0)
151 /* write risc instructions */
153 if (UNSET
!= top_offset
)
154 rp
= cx88_risc_field(rp
, sglist
, top_offset
, 0,
155 bpl
, padding
, lines
, 0);
156 if (UNSET
!= bottom_offset
)
157 rp
= cx88_risc_field(rp
, sglist
, bottom_offset
, 0x200,
158 bpl
, padding
, lines
, 0);
160 /* save pointer to jmp instruction address */
162 BUG_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof (*risc
->cpu
) > risc
->size
);
166 int cx88_risc_databuffer(struct pci_dev
*pci
, struct btcx_riscmem
*risc
,
167 struct scatterlist
*sglist
, unsigned int bpl
,
168 unsigned int lines
, unsigned int lpi
)
174 /* estimate risc mem: worst case is one write per page border +
175 one write per scan line + syncs + jump (all 2 dwords). Here
176 there is no padding and no sync. First DMA region may be smaller
178 instructions
= 1 + (bpl
* lines
) / PAGE_SIZE
+ lines
;
180 if ((rc
= btcx_riscmem_alloc(pci
,risc
,instructions
*8)) < 0)
183 /* write risc instructions */
185 rp
= cx88_risc_field(rp
, sglist
, 0, NO_SYNC_LINE
, bpl
, 0, lines
, lpi
);
187 /* save pointer to jmp instruction address */
189 BUG_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof (*risc
->cpu
) > risc
->size
);
193 int cx88_risc_stopper(struct pci_dev
*pci
, struct btcx_riscmem
*risc
,
194 u32 reg
, u32 mask
, u32 value
)
199 if ((rc
= btcx_riscmem_alloc(pci
, risc
, 4*16)) < 0)
202 /* write risc instructions */
204 *(rp
++) = cpu_to_le32(RISC_WRITECR
| RISC_IRQ2
| RISC_IMM
);
205 *(rp
++) = cpu_to_le32(reg
);
206 *(rp
++) = cpu_to_le32(value
);
207 *(rp
++) = cpu_to_le32(mask
);
208 *(rp
++) = cpu_to_le32(RISC_JUMP
);
209 *(rp
++) = cpu_to_le32(risc
->dma
);
214 cx88_free_buffer(struct videobuf_queue
*q
, struct cx88_buffer
*buf
)
216 BUG_ON(in_interrupt());
217 videobuf_waiton(&buf
->vb
,0,0);
218 videobuf_dma_unmap(q
, &buf
->vb
.dma
);
219 videobuf_dma_free(&buf
->vb
.dma
);
220 btcx_riscmem_free((struct pci_dev
*)q
->dev
, &buf
->risc
);
221 buf
->vb
.state
= STATE_NEEDS_INIT
;
224 /* ------------------------------------------------------------------ */
225 /* our SRAM memory layout */
227 /* we are going to put all thr risc programs into host memory, so we
228 * can use the whole SDRAM for the DMA fifos. To simplify things, we
229 * use a static memory layout. That surely will waste memory in case
230 * we don't use all DMA channels at the same time (which will be the
231 * case most of the time). But that still gives us enougth FIFO space
232 * to be able to deal with insane long pci latencies ...
234 * FIFO space allocations:
235 * channel 21 (y video) - 10.0k
236 * channel 22 (u video) - 2.0k
237 * channel 23 (v video) - 2.0k
238 * channel 24 (vbi) - 4.0k
239 * channels 25+26 (audio) - 4.0k
240 * channel 28 (mpeg) - 4.0k
243 * Every channel has 160 bytes control data (64 bytes instruction
244 * queue and 6 CDT entries), which is close to 2k total.
247 * 0x0000 - 0x03ff CMDs / reserved
248 * 0x0400 - 0x0bff instruction queues + CDs
252 struct sram_channel cx88_sram_channels
[] = {
254 .name
= "video y / packed",
255 .cmds_start
= 0x180040,
256 .ctrl_start
= 0x180400,
257 .cdt
= 0x180400 + 64,
258 .fifo_start
= 0x180c00,
259 .fifo_size
= 0x002800,
260 .ptr1_reg
= MO_DMA21_PTR1
,
261 .ptr2_reg
= MO_DMA21_PTR2
,
262 .cnt1_reg
= MO_DMA21_CNT1
,
263 .cnt2_reg
= MO_DMA21_CNT2
,
267 .cmds_start
= 0x180080,
268 .ctrl_start
= 0x1804a0,
269 .cdt
= 0x1804a0 + 64,
270 .fifo_start
= 0x183400,
271 .fifo_size
= 0x000800,
272 .ptr1_reg
= MO_DMA22_PTR1
,
273 .ptr2_reg
= MO_DMA22_PTR2
,
274 .cnt1_reg
= MO_DMA22_CNT1
,
275 .cnt2_reg
= MO_DMA22_CNT2
,
279 .cmds_start
= 0x1800c0,
280 .ctrl_start
= 0x180540,
281 .cdt
= 0x180540 + 64,
282 .fifo_start
= 0x183c00,
283 .fifo_size
= 0x000800,
284 .ptr1_reg
= MO_DMA23_PTR1
,
285 .ptr2_reg
= MO_DMA23_PTR2
,
286 .cnt1_reg
= MO_DMA23_CNT1
,
287 .cnt2_reg
= MO_DMA23_CNT2
,
291 .cmds_start
= 0x180100,
292 .ctrl_start
= 0x1805e0,
293 .cdt
= 0x1805e0 + 64,
294 .fifo_start
= 0x184400,
295 .fifo_size
= 0x001000,
296 .ptr1_reg
= MO_DMA24_PTR1
,
297 .ptr2_reg
= MO_DMA24_PTR2
,
298 .cnt1_reg
= MO_DMA24_CNT1
,
299 .cnt2_reg
= MO_DMA24_CNT2
,
302 .name
= "audio from",
303 .cmds_start
= 0x180140,
304 .ctrl_start
= 0x180680,
305 .cdt
= 0x180680 + 64,
306 .fifo_start
= 0x185400,
307 .fifo_size
= 0x001000,
308 .ptr1_reg
= MO_DMA25_PTR1
,
309 .ptr2_reg
= MO_DMA25_PTR2
,
310 .cnt1_reg
= MO_DMA25_CNT1
,
311 .cnt2_reg
= MO_DMA25_CNT2
,
315 .cmds_start
= 0x180180,
316 .ctrl_start
= 0x180720,
317 .cdt
= 0x180680 + 64, /* same as audio IN */
318 .fifo_start
= 0x185400, /* same as audio IN */
319 .fifo_size
= 0x001000, /* same as audio IN */
320 .ptr1_reg
= MO_DMA26_PTR1
,
321 .ptr2_reg
= MO_DMA26_PTR2
,
322 .cnt1_reg
= MO_DMA26_CNT1
,
323 .cnt2_reg
= MO_DMA26_CNT2
,
327 .cmds_start
= 0x180200,
328 .ctrl_start
= 0x1807C0,
329 .cdt
= 0x1807C0 + 64,
330 .fifo_start
= 0x186400,
331 .fifo_size
= 0x001000,
332 .ptr1_reg
= MO_DMA28_PTR1
,
333 .ptr2_reg
= MO_DMA28_PTR2
,
334 .cnt1_reg
= MO_DMA28_CNT1
,
335 .cnt2_reg
= MO_DMA28_CNT2
,
339 int cx88_sram_channel_setup(struct cx88_core
*core
,
340 struct sram_channel
*ch
,
341 unsigned int bpl
, u32 risc
)
343 unsigned int i
,lines
;
346 bpl
= (bpl
+ 7) & ~7; /* alignment */
348 lines
= ch
->fifo_size
/ bpl
;
354 for (i
= 0; i
< lines
; i
++)
355 cx_write(cdt
+ 16*i
, ch
->fifo_start
+ bpl
*i
);
358 cx_write(ch
->cmds_start
+ 0, risc
);
359 cx_write(ch
->cmds_start
+ 4, cdt
);
360 cx_write(ch
->cmds_start
+ 8, (lines
*16) >> 3);
361 cx_write(ch
->cmds_start
+ 12, ch
->ctrl_start
);
362 cx_write(ch
->cmds_start
+ 16, 64 >> 2);
363 for (i
= 20; i
< 64; i
+= 4)
364 cx_write(ch
->cmds_start
+ i
, 0);
367 cx_write(ch
->ptr1_reg
, ch
->fifo_start
);
368 cx_write(ch
->ptr2_reg
, cdt
);
369 cx_write(ch
->cnt1_reg
, (bpl
>> 3) -1);
370 cx_write(ch
->cnt2_reg
, (lines
*16) >> 3);
372 dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch
->name
, bpl
, lines
);
376 /* ------------------------------------------------------------------ */
377 /* debug helper code */
379 static int cx88_risc_decode(u32 risc
)
381 static char *instr
[16] = {
382 [ RISC_SYNC
>> 28 ] = "sync",
383 [ RISC_WRITE
>> 28 ] = "write",
384 [ RISC_WRITEC
>> 28 ] = "writec",
385 [ RISC_READ
>> 28 ] = "read",
386 [ RISC_READC
>> 28 ] = "readc",
387 [ RISC_JUMP
>> 28 ] = "jump",
388 [ RISC_SKIP
>> 28 ] = "skip",
389 [ RISC_WRITERM
>> 28 ] = "writerm",
390 [ RISC_WRITECM
>> 28 ] = "writecm",
391 [ RISC_WRITECR
>> 28 ] = "writecr",
393 static int incr
[16] = {
394 [ RISC_WRITE
>> 28 ] = 2,
395 [ RISC_JUMP
>> 28 ] = 2,
396 [ RISC_WRITERM
>> 28 ] = 3,
397 [ RISC_WRITECM
>> 28 ] = 3,
398 [ RISC_WRITECR
>> 28 ] = 4,
400 static char *bits
[] = {
401 "12", "13", "14", "resync",
402 "cnt0", "cnt1", "18", "19",
403 "20", "21", "22", "23",
404 "irq1", "irq2", "eol", "sol",
408 printk("0x%08x [ %s", risc
,
409 instr
[risc
>> 28] ? instr
[risc
>> 28] : "INVALID");
410 for (i
= ARRAY_SIZE(bits
)-1; i
>= 0; i
--)
411 if (risc
& (1 << (i
+ 12)))
412 printk(" %s",bits
[i
]);
413 printk(" count=%d ]\n", risc
& 0xfff);
414 return incr
[risc
>> 28] ? incr
[risc
>> 28] : 1;
418 void cx88_sram_channel_dump(struct cx88_core
*core
,
419 struct sram_channel
*ch
)
421 static char *name
[] = {
437 printk("%s: %s - dma channel status dump\n",
438 core
->name
,ch
->name
);
439 for (i
= 0; i
< ARRAY_SIZE(name
); i
++)
440 printk("%s: cmds: %-12s: 0x%08x\n",
442 cx_read(ch
->cmds_start
+ 4*i
));
443 for (n
= 1, i
= 0; i
< 4; i
++) {
444 risc
= cx_read(ch
->cmds_start
+ 4 * (i
+11));
445 printk("%s: risc%d: ", core
->name
, i
);
447 printk("0x%08x [ arg #%d ]\n", risc
, n
);
449 n
= cx88_risc_decode(risc
);
451 for (i
= 0; i
< 16; i
+= n
) {
452 risc
= cx_read(ch
->ctrl_start
+ 4 * i
);
453 printk("%s: iq %x: ", core
->name
, i
);
454 n
= cx88_risc_decode(risc
);
455 for (j
= 1; j
< n
; j
++) {
456 risc
= cx_read(ch
->ctrl_start
+ 4 * (i
+j
));
457 printk("%s: iq %x: 0x%08x [ arg #%d ]\n",
458 core
->name
, i
+j
, risc
, j
);
462 printk("%s: fifo: 0x%08x -> 0x%x\n",
463 core
->name
, ch
->fifo_start
, ch
->fifo_start
+ch
->fifo_size
);
464 printk("%s: ctrl: 0x%08x -> 0x%x\n",
465 core
->name
, ch
->ctrl_start
, ch
->ctrl_start
+6*16);
466 printk("%s: ptr1_reg: 0x%08x\n",
467 core
->name
,cx_read(ch
->ptr1_reg
));
468 printk("%s: ptr2_reg: 0x%08x\n",
469 core
->name
,cx_read(ch
->ptr2_reg
));
470 printk("%s: cnt1_reg: 0x%08x\n",
471 core
->name
,cx_read(ch
->cnt1_reg
));
472 printk("%s: cnt2_reg: 0x%08x\n",
473 core
->name
,cx_read(ch
->cnt2_reg
));
476 static char *cx88_pci_irqs
[32] = {
477 "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
478 "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
479 "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
480 "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
483 void cx88_print_irqbits(char *name
, char *tag
, char **strings
,
484 int len
, u32 bits
, u32 mask
)
488 printk(KERN_DEBUG
"%s: %s [0x%x]", name
, tag
, bits
);
489 for (i
= 0; i
< len
; i
++) {
490 if (!(bits
& (1 << i
)))
493 printk(" %s", strings
[i
]);
496 if (!(mask
& (1 << i
)))
503 /* ------------------------------------------------------------------ */
505 int cx88_core_irq(struct cx88_core
*core
, u32 status
)
509 if (status
& PCI_INT_IR_SMPINT
) {
514 cx88_print_irqbits(core
->name
, "irq pci",
515 cx88_pci_irqs
, ARRAY_SIZE(cx88_pci_irqs
),
516 status
, core
->pci_irqmask
);
520 void cx88_wakeup(struct cx88_core
*core
,
521 struct cx88_dmaqueue
*q
, u32 count
)
523 struct cx88_buffer
*buf
;
526 for (bc
= 0;; bc
++) {
527 if (list_empty(&q
->active
))
529 buf
= list_entry(q
->active
.next
,
530 struct cx88_buffer
, vb
.queue
);
531 /* count comes from the hw and is is 16bit wide --
532 * this trick handles wrap-arounds correctly for
533 * up to 32767 buffers in flight... */
534 if ((s16
) (count
- buf
->count
) < 0)
536 do_gettimeofday(&buf
->vb
.ts
);
537 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf
,buf
->vb
.i
,
539 buf
->vb
.state
= STATE_DONE
;
540 list_del(&buf
->vb
.queue
);
541 wake_up(&buf
->vb
.done
);
543 if (list_empty(&q
->active
)) {
544 del_timer(&q
->timeout
);
546 mod_timer(&q
->timeout
, jiffies
+BUFFER_TIMEOUT
);
549 printk("%s: %d buffers handled (should be 1)\n",__FUNCTION__
,bc
);
552 void cx88_shutdown(struct cx88_core
*core
)
554 /* disable RISC controller + IRQs */
555 cx_write(MO_DEV_CNTRL2
, 0);
557 /* stop dma transfers */
558 cx_write(MO_VID_DMACNTRL
, 0x0);
559 cx_write(MO_AUD_DMACNTRL
, 0x0);
560 cx_write(MO_TS_DMACNTRL
, 0x0);
561 cx_write(MO_VIP_DMACNTRL
, 0x0);
562 cx_write(MO_GPHST_DMACNTRL
, 0x0);
564 /* stop interrupts */
565 cx_write(MO_PCI_INTMSK
, 0x0);
566 cx_write(MO_VID_INTMSK
, 0x0);
567 cx_write(MO_AUD_INTMSK
, 0x0);
568 cx_write(MO_TS_INTMSK
, 0x0);
569 cx_write(MO_VIP_INTMSK
, 0x0);
570 cx_write(MO_GPHST_INTMSK
, 0x0);
573 cx_write(VID_CAPTURE_CONTROL
, 0);
576 int cx88_reset(struct cx88_core
*core
)
578 dprintk(1,"%s\n",__FUNCTION__
);
581 /* clear irq status */
582 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
583 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
584 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
590 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH21
], 720*4, 0);
591 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH22
], 128, 0);
592 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH23
], 128, 0);
593 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH24
], 128, 0);
594 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], 128, 0);
595 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], 128, 0);
596 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH28
], 188*4, 0);
599 cx_write(MO_INPUT_FORMAT
, ((1 << 13) | // agc enable
600 (1 << 12) | // agc gain
601 (1 << 11) | // adaptibe agc
602 (0 << 10) | // chroma agc
603 (0 << 9) | // ckillen
606 /* setup image format */
607 cx_andor(MO_COLOR_CTRL
, 0x4000, 0x4000);
609 /* setup FIFO Threshholds */
610 cx_write(MO_PDMA_STHRSH
, 0x0807);
611 cx_write(MO_PDMA_DTHRSH
, 0x0807);
613 /* fixes flashing of image */
614 cx_write(MO_AGC_SYNC_TIP1
, 0x0380000F);
615 cx_write(MO_AGC_BACK_VBI
, 0x00E00555);
617 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
618 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
619 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
621 /* Reset on-board parts */
622 cx_write(MO_SRST_IO
, 0);
624 cx_write(MO_SRST_IO
, 1);
629 /* ------------------------------------------------------------------ */
631 static unsigned int inline norm_swidth(v4l2_std_id norm
)
633 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 754 : 922;
636 static unsigned int inline norm_hdelay(v4l2_std_id norm
)
638 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 135 : 186;
641 static unsigned int inline norm_vdelay(v4l2_std_id norm
)
643 return (norm
& V4L2_STD_625_50
) ? 0x24 : 0x18;
646 static unsigned int inline norm_fsc8(v4l2_std_id norm
)
648 if (norm
& V4L2_STD_PAL_M
)
649 return 28604892; // 3.575611 MHz
651 if (norm
& (V4L2_STD_PAL_Nc
))
652 return 28656448; // 3.582056 MHz
654 if (norm
& V4L2_STD_NTSC
) // All NTSC/M and variants
655 return 28636360; // 3.57954545 MHz +/- 10 Hz
657 /* SECAM have also different sub carrier for chroma,
658 but step_db and step_dr, at cx88_set_tvnorm already handles that.
660 The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
663 return 35468950; // 4.43361875 MHz +/- 5 Hz
666 static unsigned int inline norm_htotal(v4l2_std_id norm
)
669 unsigned int fsc4
=norm_fsc8(norm
)/2;
671 /* returns 4*FSC / vtotal / frames per seconds */
672 return (norm
& V4L2_STD_625_50
) ?
673 ((fsc4
+312)/625+12)/25 :
674 ((fsc4
+262)/525*1001+15000)/30000;
677 static unsigned int inline norm_vbipack(v4l2_std_id norm
)
679 return (norm
& V4L2_STD_625_50
) ? 511 : 400;
682 int cx88_set_scale(struct cx88_core
*core
, unsigned int width
, unsigned int height
,
683 enum v4l2_field field
)
685 unsigned int swidth
= norm_swidth(core
->tvnorm
);
686 unsigned int sheight
= norm_maxh(core
->tvnorm
);
689 dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width
, height
,
690 V4L2_FIELD_HAS_TOP(field
) ? "T" : "",
691 V4L2_FIELD_HAS_BOTTOM(field
) ? "B" : "",
692 v4l2_norm_to_name(core
->tvnorm
));
693 if (!V4L2_FIELD_HAS_BOTH(field
))
696 // recalc H delay and scale registers
697 value
= (width
* norm_hdelay(core
->tvnorm
)) / swidth
;
699 cx_write(MO_HDELAY_EVEN
, value
);
700 cx_write(MO_HDELAY_ODD
, value
);
701 dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value
,swidth
);
703 value
= (swidth
* 4096 / width
) - 4096;
704 cx_write(MO_HSCALE_EVEN
, value
);
705 cx_write(MO_HSCALE_ODD
, value
);
706 dprintk(1,"set_scale: hscale 0x%04x\n", value
);
708 cx_write(MO_HACTIVE_EVEN
, width
);
709 cx_write(MO_HACTIVE_ODD
, width
);
710 dprintk(1,"set_scale: hactive 0x%04x\n", width
);
712 // recalc V scale Register (delay is constant)
713 cx_write(MO_VDELAY_EVEN
, norm_vdelay(core
->tvnorm
));
714 cx_write(MO_VDELAY_ODD
, norm_vdelay(core
->tvnorm
));
715 dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core
->tvnorm
));
717 value
= (0x10000 - (sheight
* 512 / height
- 512)) & 0x1fff;
718 cx_write(MO_VSCALE_EVEN
, value
);
719 cx_write(MO_VSCALE_ODD
, value
);
720 dprintk(1,"set_scale: vscale 0x%04x\n", value
);
722 cx_write(MO_VACTIVE_EVEN
, sheight
);
723 cx_write(MO_VACTIVE_ODD
, sheight
);
724 dprintk(1,"set_scale: vactive 0x%04x\n", sheight
);
728 value
|= (1 << 19); // CFILT (default)
729 if (core
->tvnorm
& V4L2_STD_SECAM
) {
733 if (INPUT(core
->input
).type
== CX88_VMUX_SVIDEO
)
734 value
|= (1 << 13) | (1 << 5);
735 if (V4L2_FIELD_INTERLACED
== field
)
736 value
|= (1 << 3); // VINT (interlaced vertical scaling)
738 value
|= (1 << 0); // 3-tap interpolation
740 value
|= (1 << 1); // 5-tap interpolation
742 value
|= (3 << 5); // disable comb filter
744 cx_write(MO_FILTER_EVEN
, value
);
745 cx_write(MO_FILTER_ODD
, value
);
746 dprintk(1,"set_scale: filter 0x%04x\n", value
);
751 static const u32 xtal
= 28636363;
753 static int set_pll(struct cx88_core
*core
, int prescale
, u32 ofreq
)
755 static u32 pre
[] = { 0, 0, 0, 3, 2, 1 };
765 pll
= ofreq
* 8 * prescale
* (u64
)(1 << 20);
767 reg
= (pll
& 0x3ffffff) | (pre
[prescale
] << 26);
768 if (((reg
>> 20) & 0x3f) < 14) {
769 printk("%s/0: pll out of range\n",core
->name
);
773 dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
774 reg
, cx_read(MO_PLL_REG
), ofreq
);
775 cx_write(MO_PLL_REG
, reg
);
776 for (i
= 0; i
< 100; i
++) {
777 reg
= cx_read(MO_DEVICE_STATUS
);
779 dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
783 dprintk(1,"pll not locked yet, waiting ...\n");
786 dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale
,ofreq
);
790 int cx88_start_audio_dma(struct cx88_core
*core
)
792 /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
793 int bpl
= cx88_sram_channels
[SRAM_CH25
].fifo_size
/4;
795 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
796 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
799 /* setup fifo + format */
800 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], bpl
, 0);
801 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], bpl
, 0);
803 cx_write(MO_AUDD_LNGTH
, bpl
); /* fifo bpl size */
804 cx_write(MO_AUDR_LNGTH
, bpl
); /* fifo bpl size */
807 cx_write(MO_AUD_DMACNTRL
, 0x0003); /* Up and Down fifo enable */
812 int cx88_stop_audio_dma(struct cx88_core
*core
)
814 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
815 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
819 cx_write(MO_AUD_DMACNTRL
, 0x0000);
824 static int set_tvaudio(struct cx88_core
*core
)
826 v4l2_std_id norm
= core
->tvnorm
;
828 if (CX88_VMUX_TELEVISION
!= INPUT(core
->input
).type
)
831 if (V4L2_STD_PAL_BG
& norm
) {
832 core
->tvaudio
= WW_BG
;
834 } else if (V4L2_STD_PAL_DK
& norm
) {
835 core
->tvaudio
= WW_DK
;
837 } else if (V4L2_STD_PAL_I
& norm
) {
838 core
->tvaudio
= WW_I
;
840 } else if (V4L2_STD_SECAM_L
& norm
) {
841 core
->tvaudio
= WW_L
;
843 } else if (V4L2_STD_SECAM_DK
& norm
) {
844 core
->tvaudio
= WW_DK
;
846 } else if ((V4L2_STD_NTSC_M
& norm
) ||
847 (V4L2_STD_PAL_M
& norm
)) {
848 core
->tvaudio
= WW_BTSC
;
850 } else if (V4L2_STD_NTSC_M_JP
& norm
) {
851 core
->tvaudio
= WW_EIAJ
;
854 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
855 core
->name
, v4l2_norm_to_name(core
->tvnorm
));
860 cx_andor(MO_AFECFG_IO
, 0x1f, 0x0);
861 cx88_set_tvaudio(core
);
862 /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
865 This should be needed only on cx88-alsa. It seems that some cx88 chips have
866 bugs and does require DMA enabled for it to work.
868 cx88_start_audio_dma(core
);
874 int cx88_set_tvnorm(struct cx88_core
*core
, v4l2_std_id norm
)
881 u32 bdelay
,agcdelay
,htotal
;
882 u32 cxiformat
, cxoformat
;
885 fsc8
= norm_fsc8(norm
);
891 if (norm
& V4L2_STD_NTSC_M_JP
) {
892 cxiformat
= VideoFormatNTSCJapan
;
893 cxoformat
= 0x181f0008;
894 } else if (norm
& V4L2_STD_NTSC_443
) {
895 cxiformat
= VideoFormatNTSC443
;
896 cxoformat
= 0x181f0008;
897 } else if (norm
& V4L2_STD_PAL_M
) {
898 cxiformat
= VideoFormatPALM
;
899 cxoformat
= 0x1c1f0008;
900 } else if (norm
& V4L2_STD_PAL_N
) {
901 cxiformat
= VideoFormatPALN
;
902 cxoformat
= 0x1c1f0008;
903 } else if (norm
& V4L2_STD_PAL_Nc
) {
904 cxiformat
= VideoFormatPALNC
;
905 cxoformat
= 0x1c1f0008;
906 } else if (norm
& V4L2_STD_PAL_60
) {
907 cxiformat
= VideoFormatPAL60
;
908 cxoformat
= 0x181f0008;
909 } else if (norm
& V4L2_STD_NTSC
) {
910 cxiformat
= VideoFormatNTSC
;
911 cxoformat
= 0x181f0008;
912 } else if (norm
& V4L2_STD_SECAM
) {
913 step_db
= 4250000 * 8;
914 step_dr
= 4406250 * 8;
916 cxiformat
= VideoFormatSECAM
;
917 cxoformat
= 0x181f0008;
919 cxiformat
= VideoFormatPAL
;
920 cxoformat
= 0x181f0008;
923 dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
924 v4l2_norm_to_name(core
->tvnorm
), fsc8
, adc_clock
, vdec_clock
,
926 set_pll(core
,2,vdec_clock
);
928 dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
929 cxiformat
, cx_read(MO_INPUT_FORMAT
) & 0x0f);
930 cx_andor(MO_INPUT_FORMAT
, 0xf, cxiformat
);
932 // FIXME: as-is from DScaler
933 dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
934 cxoformat
, cx_read(MO_OUTPUT_FORMAT
));
935 cx_write(MO_OUTPUT_FORMAT
, cxoformat
);
937 // MO_SCONV_REG = adc clock / video dec clock * 2^17
938 tmp64
= adc_clock
* (u64
)(1 << 17);
939 do_div(tmp64
, vdec_clock
);
940 dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
941 (u32
)tmp64
, cx_read(MO_SCONV_REG
));
942 cx_write(MO_SCONV_REG
, (u32
)tmp64
);
944 // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
945 tmp64
= step_db
* (u64
)(1 << 22);
946 do_div(tmp64
, vdec_clock
);
947 dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
948 (u32
)tmp64
, cx_read(MO_SUB_STEP
));
949 cx_write(MO_SUB_STEP
, (u32
)tmp64
);
951 // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
952 tmp64
= step_dr
* (u64
)(1 << 22);
953 do_div(tmp64
, vdec_clock
);
954 dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
955 (u32
)tmp64
, cx_read(MO_SUB_STEP_DR
));
956 cx_write(MO_SUB_STEP_DR
, (u32
)tmp64
);
959 bdelay
= vdec_clock
* 65 / 20000000 + 21;
960 agcdelay
= vdec_clock
* 68 / 20000000 + 15;
961 dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
962 (bdelay
<< 8) | agcdelay
, cx_read(MO_AGC_BURST
), bdelay
, agcdelay
);
963 cx_write(MO_AGC_BURST
, (bdelay
<< 8) | agcdelay
);
966 tmp64
= norm_htotal(norm
) * (u64
)vdec_clock
;
968 htotal
= (u32
)tmp64
| (HLNotchFilter4xFsc
<< 11);
969 dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
970 htotal
, cx_read(MO_HTOTAL
), (u32
)tmp64
);
971 cx_write(MO_HTOTAL
, htotal
);
973 // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
974 // the effective vbi offset ~244 samples, the same as the Bt8x8
975 cx_write(MO_VBI_PACKET
, (10<<11) | norm_vbipack(norm
));
977 // this is needed as well to set all tvnorm parameter
978 cx88_set_scale(core
, 320, 240, V4L2_FIELD_INTERLACED
);
984 cx88_call_i2c_clients(core
,VIDIOC_S_STD
,&norm
);
990 /* ------------------------------------------------------------------ */
992 struct video_device
*cx88_vdev_init(struct cx88_core
*core
,
994 struct video_device
*template,
997 struct video_device
*vfd
;
999 vfd
= video_device_alloc();
1004 vfd
->dev
= &pci
->dev
;
1005 vfd
->release
= video_device_release
;
1006 snprintf(vfd
->name
, sizeof(vfd
->name
), "%s %s (%s)",
1007 core
->name
, type
, core
->board
.name
);
1011 struct cx88_core
* cx88_core_get(struct pci_dev
*pci
)
1013 struct cx88_core
*core
;
1014 struct list_head
*item
;
1016 mutex_lock(&devlist
);
1017 list_for_each(item
,&cx88_devlist
) {
1018 core
= list_entry(item
, struct cx88_core
, devlist
);
1019 if (pci
->bus
->number
!= core
->pci_bus
)
1021 if (PCI_SLOT(pci
->devfn
) != core
->pci_slot
)
1024 if (0 != cx88_get_resources(core
, pci
)) {
1025 mutex_unlock(&devlist
);
1028 atomic_inc(&core
->refcount
);
1029 mutex_unlock(&devlist
);
1033 core
= cx88_core_create(pci
, cx88_devcount
);
1036 list_add_tail(&core
->devlist
, &cx88_devlist
);
1039 mutex_unlock(&devlist
);
1043 void cx88_core_put(struct cx88_core
*core
, struct pci_dev
*pci
)
1045 release_mem_region(pci_resource_start(pci
,0),
1046 pci_resource_len(pci
,0));
1048 if (!atomic_dec_and_test(&core
->refcount
))
1051 mutex_lock(&devlist
);
1053 if (0 == core
->i2c_rc
)
1054 i2c_del_adapter(&core
->i2c_adap
);
1055 list_del(&core
->devlist
);
1056 iounmap(core
->lmmio
);
1058 mutex_unlock(&devlist
);
1062 /* ------------------------------------------------------------------ */
1064 EXPORT_SYMBOL(cx88_print_irqbits
);
1066 EXPORT_SYMBOL(cx88_core_irq
);
1067 EXPORT_SYMBOL(cx88_wakeup
);
1068 EXPORT_SYMBOL(cx88_reset
);
1069 EXPORT_SYMBOL(cx88_shutdown
);
1071 EXPORT_SYMBOL(cx88_risc_buffer
);
1072 EXPORT_SYMBOL(cx88_risc_databuffer
);
1073 EXPORT_SYMBOL(cx88_risc_stopper
);
1074 EXPORT_SYMBOL(cx88_free_buffer
);
1076 EXPORT_SYMBOL(cx88_sram_channels
);
1077 EXPORT_SYMBOL(cx88_sram_channel_setup
);
1078 EXPORT_SYMBOL(cx88_sram_channel_dump
);
1080 EXPORT_SYMBOL(cx88_set_tvnorm
);
1081 EXPORT_SYMBOL(cx88_set_scale
);
1083 EXPORT_SYMBOL(cx88_vdev_init
);
1084 EXPORT_SYMBOL(cx88_core_get
);
1085 EXPORT_SYMBOL(cx88_core_put
);
1091 * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off