V4L/DVB (6083): cx88-alsa: Rework buffer handling
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / media / video / cx88 / cx88-core.c
blob41f7f374c18389287dc5611c81973606716720aa
1 /*
3 * device driver for Conexant 2388x based TV cards
4 * driver core
6 * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
8 * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
9 * - Multituner support
10 * - video_ioctl2 conversion
11 * - PAL/M fixes
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/kmod.h>
34 #include <linux/sound.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/delay.h>
38 #include <linux/videodev2.h>
39 #include <linux/mutex.h>
41 #include "cx88.h"
42 #include <media/v4l2-common.h>
44 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
45 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
46 MODULE_LICENSE("GPL");
48 /* ------------------------------------------------------------------ */
50 static unsigned int core_debug = 0;
51 module_param(core_debug,int,0644);
52 MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
54 static unsigned int nicam = 0;
55 module_param(nicam,int,0644);
56 MODULE_PARM_DESC(nicam,"tv audio is nicam");
58 static unsigned int nocomb = 0;
59 module_param(nocomb,int,0644);
60 MODULE_PARM_DESC(nocomb,"disable comb filter");
62 #define dprintk(level,fmt, arg...) if (core_debug >= level) \
63 printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
65 static unsigned int cx88_devcount;
66 static LIST_HEAD(cx88_devlist);
67 static DEFINE_MUTEX(devlist);
69 #define NO_SYNC_LINE (-1U)
71 /* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
72 generated _after_ lpi lines are transferred. */
73 static u32* cx88_risc_field(u32 *rp, struct scatterlist *sglist,
74 unsigned int offset, u32 sync_line,
75 unsigned int bpl, unsigned int padding,
76 unsigned int lines, unsigned int lpi)
78 struct scatterlist *sg;
79 unsigned int line,todo,sol;
81 /* sync instruction */
82 if (sync_line != NO_SYNC_LINE)
83 *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
85 /* scan lines */
86 sg = sglist;
87 for (line = 0; line < lines; line++) {
88 while (offset && offset >= sg_dma_len(sg)) {
89 offset -= sg_dma_len(sg);
90 sg++;
92 if (lpi && line>0 && !(line % lpi))
93 sol = RISC_SOL | RISC_IRQ1 | RISC_CNT_INC;
94 else
95 sol = RISC_SOL;
96 if (bpl <= sg_dma_len(sg)-offset) {
97 /* fits into current chunk */
98 *(rp++)=cpu_to_le32(RISC_WRITE|sol|RISC_EOL|bpl);
99 *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
100 offset+=bpl;
101 } else {
102 /* scanline needs to be split */
103 todo = bpl;
104 *(rp++)=cpu_to_le32(RISC_WRITE|sol|
105 (sg_dma_len(sg)-offset));
106 *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
107 todo -= (sg_dma_len(sg)-offset);
108 offset = 0;
109 sg++;
110 while (todo > sg_dma_len(sg)) {
111 *(rp++)=cpu_to_le32(RISC_WRITE|
112 sg_dma_len(sg));
113 *(rp++)=cpu_to_le32(sg_dma_address(sg));
114 todo -= sg_dma_len(sg);
115 sg++;
117 *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
118 *(rp++)=cpu_to_le32(sg_dma_address(sg));
119 offset += todo;
121 offset += padding;
124 return rp;
127 int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
128 struct scatterlist *sglist,
129 unsigned int top_offset, unsigned int bottom_offset,
130 unsigned int bpl, unsigned int padding, unsigned int lines)
132 u32 instructions,fields;
133 u32 *rp;
134 int rc;
136 fields = 0;
137 if (UNSET != top_offset)
138 fields++;
139 if (UNSET != bottom_offset)
140 fields++;
142 /* estimate risc mem: worst case is one write per page border +
143 one write per scan line + syncs + jump (all 2 dwords). Padding
144 can cause next bpl to start close to a page border. First DMA
145 region may be smaller than PAGE_SIZE */
146 instructions = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
147 instructions += 2;
148 if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
149 return rc;
151 /* write risc instructions */
152 rp = risc->cpu;
153 if (UNSET != top_offset)
154 rp = cx88_risc_field(rp, sglist, top_offset, 0,
155 bpl, padding, lines, 0);
156 if (UNSET != bottom_offset)
157 rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
158 bpl, padding, lines, 0);
160 /* save pointer to jmp instruction address */
161 risc->jmp = rp;
162 BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
163 return 0;
166 int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
167 struct scatterlist *sglist, unsigned int bpl,
168 unsigned int lines, unsigned int lpi)
170 u32 instructions;
171 u32 *rp;
172 int rc;
174 /* estimate risc mem: worst case is one write per page border +
175 one write per scan line + syncs + jump (all 2 dwords). Here
176 there is no padding and no sync. First DMA region may be smaller
177 than PAGE_SIZE */
178 instructions = 1 + (bpl * lines) / PAGE_SIZE + lines;
179 instructions += 1;
180 if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
181 return rc;
183 /* write risc instructions */
184 rp = risc->cpu;
185 rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines, lpi);
187 /* save pointer to jmp instruction address */
188 risc->jmp = rp;
189 BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
190 return 0;
193 int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
194 u32 reg, u32 mask, u32 value)
196 u32 *rp;
197 int rc;
199 if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
200 return rc;
202 /* write risc instructions */
203 rp = risc->cpu;
204 *(rp++) = cpu_to_le32(RISC_WRITECR | RISC_IRQ2 | RISC_IMM);
205 *(rp++) = cpu_to_le32(reg);
206 *(rp++) = cpu_to_le32(value);
207 *(rp++) = cpu_to_le32(mask);
208 *(rp++) = cpu_to_le32(RISC_JUMP);
209 *(rp++) = cpu_to_le32(risc->dma);
210 return 0;
213 void
214 cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
216 BUG_ON(in_interrupt());
217 videobuf_waiton(&buf->vb,0,0);
218 videobuf_dma_unmap(q, &buf->vb.dma);
219 videobuf_dma_free(&buf->vb.dma);
220 btcx_riscmem_free((struct pci_dev *)q->dev, &buf->risc);
221 buf->vb.state = STATE_NEEDS_INIT;
224 /* ------------------------------------------------------------------ */
225 /* our SRAM memory layout */
227 /* we are going to put all thr risc programs into host memory, so we
228 * can use the whole SDRAM for the DMA fifos. To simplify things, we
229 * use a static memory layout. That surely will waste memory in case
230 * we don't use all DMA channels at the same time (which will be the
231 * case most of the time). But that still gives us enougth FIFO space
232 * to be able to deal with insane long pci latencies ...
234 * FIFO space allocations:
235 * channel 21 (y video) - 10.0k
236 * channel 22 (u video) - 2.0k
237 * channel 23 (v video) - 2.0k
238 * channel 24 (vbi) - 4.0k
239 * channels 25+26 (audio) - 4.0k
240 * channel 28 (mpeg) - 4.0k
241 * TOTAL = 29.0k
243 * Every channel has 160 bytes control data (64 bytes instruction
244 * queue and 6 CDT entries), which is close to 2k total.
246 * Address layout:
247 * 0x0000 - 0x03ff CMDs / reserved
248 * 0x0400 - 0x0bff instruction queues + CDs
249 * 0x0c00 - FIFOs
252 struct sram_channel cx88_sram_channels[] = {
253 [SRAM_CH21] = {
254 .name = "video y / packed",
255 .cmds_start = 0x180040,
256 .ctrl_start = 0x180400,
257 .cdt = 0x180400 + 64,
258 .fifo_start = 0x180c00,
259 .fifo_size = 0x002800,
260 .ptr1_reg = MO_DMA21_PTR1,
261 .ptr2_reg = MO_DMA21_PTR2,
262 .cnt1_reg = MO_DMA21_CNT1,
263 .cnt2_reg = MO_DMA21_CNT2,
265 [SRAM_CH22] = {
266 .name = "video u",
267 .cmds_start = 0x180080,
268 .ctrl_start = 0x1804a0,
269 .cdt = 0x1804a0 + 64,
270 .fifo_start = 0x183400,
271 .fifo_size = 0x000800,
272 .ptr1_reg = MO_DMA22_PTR1,
273 .ptr2_reg = MO_DMA22_PTR2,
274 .cnt1_reg = MO_DMA22_CNT1,
275 .cnt2_reg = MO_DMA22_CNT2,
277 [SRAM_CH23] = {
278 .name = "video v",
279 .cmds_start = 0x1800c0,
280 .ctrl_start = 0x180540,
281 .cdt = 0x180540 + 64,
282 .fifo_start = 0x183c00,
283 .fifo_size = 0x000800,
284 .ptr1_reg = MO_DMA23_PTR1,
285 .ptr2_reg = MO_DMA23_PTR2,
286 .cnt1_reg = MO_DMA23_CNT1,
287 .cnt2_reg = MO_DMA23_CNT2,
289 [SRAM_CH24] = {
290 .name = "vbi",
291 .cmds_start = 0x180100,
292 .ctrl_start = 0x1805e0,
293 .cdt = 0x1805e0 + 64,
294 .fifo_start = 0x184400,
295 .fifo_size = 0x001000,
296 .ptr1_reg = MO_DMA24_PTR1,
297 .ptr2_reg = MO_DMA24_PTR2,
298 .cnt1_reg = MO_DMA24_CNT1,
299 .cnt2_reg = MO_DMA24_CNT2,
301 [SRAM_CH25] = {
302 .name = "audio from",
303 .cmds_start = 0x180140,
304 .ctrl_start = 0x180680,
305 .cdt = 0x180680 + 64,
306 .fifo_start = 0x185400,
307 .fifo_size = 0x001000,
308 .ptr1_reg = MO_DMA25_PTR1,
309 .ptr2_reg = MO_DMA25_PTR2,
310 .cnt1_reg = MO_DMA25_CNT1,
311 .cnt2_reg = MO_DMA25_CNT2,
313 [SRAM_CH26] = {
314 .name = "audio to",
315 .cmds_start = 0x180180,
316 .ctrl_start = 0x180720,
317 .cdt = 0x180680 + 64, /* same as audio IN */
318 .fifo_start = 0x185400, /* same as audio IN */
319 .fifo_size = 0x001000, /* same as audio IN */
320 .ptr1_reg = MO_DMA26_PTR1,
321 .ptr2_reg = MO_DMA26_PTR2,
322 .cnt1_reg = MO_DMA26_CNT1,
323 .cnt2_reg = MO_DMA26_CNT2,
325 [SRAM_CH28] = {
326 .name = "mpeg",
327 .cmds_start = 0x180200,
328 .ctrl_start = 0x1807C0,
329 .cdt = 0x1807C0 + 64,
330 .fifo_start = 0x186400,
331 .fifo_size = 0x001000,
332 .ptr1_reg = MO_DMA28_PTR1,
333 .ptr2_reg = MO_DMA28_PTR2,
334 .cnt1_reg = MO_DMA28_CNT1,
335 .cnt2_reg = MO_DMA28_CNT2,
339 int cx88_sram_channel_setup(struct cx88_core *core,
340 struct sram_channel *ch,
341 unsigned int bpl, u32 risc)
343 unsigned int i,lines;
344 u32 cdt;
346 bpl = (bpl + 7) & ~7; /* alignment */
347 cdt = ch->cdt;
348 lines = ch->fifo_size / bpl;
349 if (lines > 6)
350 lines = 6;
351 BUG_ON(lines < 2);
353 /* write CDT */
354 for (i = 0; i < lines; i++)
355 cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
357 /* write CMDS */
358 cx_write(ch->cmds_start + 0, risc);
359 cx_write(ch->cmds_start + 4, cdt);
360 cx_write(ch->cmds_start + 8, (lines*16) >> 3);
361 cx_write(ch->cmds_start + 12, ch->ctrl_start);
362 cx_write(ch->cmds_start + 16, 64 >> 2);
363 for (i = 20; i < 64; i += 4)
364 cx_write(ch->cmds_start + i, 0);
366 /* fill registers */
367 cx_write(ch->ptr1_reg, ch->fifo_start);
368 cx_write(ch->ptr2_reg, cdt);
369 cx_write(ch->cnt1_reg, (bpl >> 3) -1);
370 cx_write(ch->cnt2_reg, (lines*16) >> 3);
372 dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
373 return 0;
376 /* ------------------------------------------------------------------ */
377 /* debug helper code */
379 static int cx88_risc_decode(u32 risc)
381 static char *instr[16] = {
382 [ RISC_SYNC >> 28 ] = "sync",
383 [ RISC_WRITE >> 28 ] = "write",
384 [ RISC_WRITEC >> 28 ] = "writec",
385 [ RISC_READ >> 28 ] = "read",
386 [ RISC_READC >> 28 ] = "readc",
387 [ RISC_JUMP >> 28 ] = "jump",
388 [ RISC_SKIP >> 28 ] = "skip",
389 [ RISC_WRITERM >> 28 ] = "writerm",
390 [ RISC_WRITECM >> 28 ] = "writecm",
391 [ RISC_WRITECR >> 28 ] = "writecr",
393 static int incr[16] = {
394 [ RISC_WRITE >> 28 ] = 2,
395 [ RISC_JUMP >> 28 ] = 2,
396 [ RISC_WRITERM >> 28 ] = 3,
397 [ RISC_WRITECM >> 28 ] = 3,
398 [ RISC_WRITECR >> 28 ] = 4,
400 static char *bits[] = {
401 "12", "13", "14", "resync",
402 "cnt0", "cnt1", "18", "19",
403 "20", "21", "22", "23",
404 "irq1", "irq2", "eol", "sol",
406 int i;
408 printk("0x%08x [ %s", risc,
409 instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
410 for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
411 if (risc & (1 << (i + 12)))
412 printk(" %s",bits[i]);
413 printk(" count=%d ]\n", risc & 0xfff);
414 return incr[risc >> 28] ? incr[risc >> 28] : 1;
418 void cx88_sram_channel_dump(struct cx88_core *core,
419 struct sram_channel *ch)
421 static char *name[] = {
422 "initial risc",
423 "cdt base",
424 "cdt size",
425 "iq base",
426 "iq size",
427 "risc pc",
428 "iq wr ptr",
429 "iq rd ptr",
430 "cdt current",
431 "pci target",
432 "line / byte",
434 u32 risc;
435 unsigned int i,j,n;
437 printk("%s: %s - dma channel status dump\n",
438 core->name,ch->name);
439 for (i = 0; i < ARRAY_SIZE(name); i++)
440 printk("%s: cmds: %-12s: 0x%08x\n",
441 core->name,name[i],
442 cx_read(ch->cmds_start + 4*i));
443 for (n = 1, i = 0; i < 4; i++) {
444 risc = cx_read(ch->cmds_start + 4 * (i+11));
445 printk("%s: risc%d: ", core->name, i);
446 if (--n)
447 printk("0x%08x [ arg #%d ]\n", risc, n);
448 else
449 n = cx88_risc_decode(risc);
451 for (i = 0; i < 16; i += n) {
452 risc = cx_read(ch->ctrl_start + 4 * i);
453 printk("%s: iq %x: ", core->name, i);
454 n = cx88_risc_decode(risc);
455 for (j = 1; j < n; j++) {
456 risc = cx_read(ch->ctrl_start + 4 * (i+j));
457 printk("%s: iq %x: 0x%08x [ arg #%d ]\n",
458 core->name, i+j, risc, j);
462 printk("%s: fifo: 0x%08x -> 0x%x\n",
463 core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
464 printk("%s: ctrl: 0x%08x -> 0x%x\n",
465 core->name, ch->ctrl_start, ch->ctrl_start+6*16);
466 printk("%s: ptr1_reg: 0x%08x\n",
467 core->name,cx_read(ch->ptr1_reg));
468 printk("%s: ptr2_reg: 0x%08x\n",
469 core->name,cx_read(ch->ptr2_reg));
470 printk("%s: cnt1_reg: 0x%08x\n",
471 core->name,cx_read(ch->cnt1_reg));
472 printk("%s: cnt2_reg: 0x%08x\n",
473 core->name,cx_read(ch->cnt2_reg));
476 static char *cx88_pci_irqs[32] = {
477 "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
478 "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
479 "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
480 "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
483 void cx88_print_irqbits(char *name, char *tag, char **strings,
484 int len, u32 bits, u32 mask)
486 unsigned int i;
488 printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
489 for (i = 0; i < len; i++) {
490 if (!(bits & (1 << i)))
491 continue;
492 if (strings[i])
493 printk(" %s", strings[i]);
494 else
495 printk(" %d", i);
496 if (!(mask & (1 << i)))
497 continue;
498 printk("*");
500 printk("\n");
503 /* ------------------------------------------------------------------ */
505 int cx88_core_irq(struct cx88_core *core, u32 status)
507 int handled = 0;
509 if (status & PCI_INT_IR_SMPINT) {
510 cx88_ir_irq(core);
511 handled++;
513 if (!handled)
514 cx88_print_irqbits(core->name, "irq pci",
515 cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs),
516 status, core->pci_irqmask);
517 return handled;
520 void cx88_wakeup(struct cx88_core *core,
521 struct cx88_dmaqueue *q, u32 count)
523 struct cx88_buffer *buf;
524 int bc;
526 for (bc = 0;; bc++) {
527 if (list_empty(&q->active))
528 break;
529 buf = list_entry(q->active.next,
530 struct cx88_buffer, vb.queue);
531 /* count comes from the hw and is is 16bit wide --
532 * this trick handles wrap-arounds correctly for
533 * up to 32767 buffers in flight... */
534 if ((s16) (count - buf->count) < 0)
535 break;
536 do_gettimeofday(&buf->vb.ts);
537 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
538 count, buf->count);
539 buf->vb.state = STATE_DONE;
540 list_del(&buf->vb.queue);
541 wake_up(&buf->vb.done);
543 if (list_empty(&q->active)) {
544 del_timer(&q->timeout);
545 } else {
546 mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
548 if (bc != 1)
549 printk("%s: %d buffers handled (should be 1)\n",__FUNCTION__,bc);
552 void cx88_shutdown(struct cx88_core *core)
554 /* disable RISC controller + IRQs */
555 cx_write(MO_DEV_CNTRL2, 0);
557 /* stop dma transfers */
558 cx_write(MO_VID_DMACNTRL, 0x0);
559 cx_write(MO_AUD_DMACNTRL, 0x0);
560 cx_write(MO_TS_DMACNTRL, 0x0);
561 cx_write(MO_VIP_DMACNTRL, 0x0);
562 cx_write(MO_GPHST_DMACNTRL, 0x0);
564 /* stop interrupts */
565 cx_write(MO_PCI_INTMSK, 0x0);
566 cx_write(MO_VID_INTMSK, 0x0);
567 cx_write(MO_AUD_INTMSK, 0x0);
568 cx_write(MO_TS_INTMSK, 0x0);
569 cx_write(MO_VIP_INTMSK, 0x0);
570 cx_write(MO_GPHST_INTMSK, 0x0);
572 /* stop capturing */
573 cx_write(VID_CAPTURE_CONTROL, 0);
576 int cx88_reset(struct cx88_core *core)
578 dprintk(1,"%s\n",__FUNCTION__);
579 cx88_shutdown(core);
581 /* clear irq status */
582 cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
583 cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
584 cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
586 /* wait a bit */
587 msleep(100);
589 /* init sram */
590 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
591 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
592 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
593 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
594 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
595 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
596 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
598 /* misc init ... */
599 cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable
600 (1 << 12) | // agc gain
601 (1 << 11) | // adaptibe agc
602 (0 << 10) | // chroma agc
603 (0 << 9) | // ckillen
604 (7)));
606 /* setup image format */
607 cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
609 /* setup FIFO Threshholds */
610 cx_write(MO_PDMA_STHRSH, 0x0807);
611 cx_write(MO_PDMA_DTHRSH, 0x0807);
613 /* fixes flashing of image */
614 cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
615 cx_write(MO_AGC_BACK_VBI, 0x00E00555);
617 cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
618 cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
619 cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
621 /* Reset on-board parts */
622 cx_write(MO_SRST_IO, 0);
623 msleep(10);
624 cx_write(MO_SRST_IO, 1);
626 return 0;
629 /* ------------------------------------------------------------------ */
631 static unsigned int inline norm_swidth(v4l2_std_id norm)
633 return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922;
636 static unsigned int inline norm_hdelay(v4l2_std_id norm)
638 return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186;
641 static unsigned int inline norm_vdelay(v4l2_std_id norm)
643 return (norm & V4L2_STD_625_50) ? 0x24 : 0x18;
646 static unsigned int inline norm_fsc8(v4l2_std_id norm)
648 if (norm & V4L2_STD_PAL_M)
649 return 28604892; // 3.575611 MHz
651 if (norm & (V4L2_STD_PAL_Nc))
652 return 28656448; // 3.582056 MHz
654 if (norm & V4L2_STD_NTSC) // All NTSC/M and variants
655 return 28636360; // 3.57954545 MHz +/- 10 Hz
657 /* SECAM have also different sub carrier for chroma,
658 but step_db and step_dr, at cx88_set_tvnorm already handles that.
660 The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
663 return 35468950; // 4.43361875 MHz +/- 5 Hz
666 static unsigned int inline norm_htotal(v4l2_std_id norm)
669 unsigned int fsc4=norm_fsc8(norm)/2;
671 /* returns 4*FSC / vtotal / frames per seconds */
672 return (norm & V4L2_STD_625_50) ?
673 ((fsc4+312)/625+12)/25 :
674 ((fsc4+262)/525*1001+15000)/30000;
677 static unsigned int inline norm_vbipack(v4l2_std_id norm)
679 return (norm & V4L2_STD_625_50) ? 511 : 400;
682 int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
683 enum v4l2_field field)
685 unsigned int swidth = norm_swidth(core->tvnorm);
686 unsigned int sheight = norm_maxh(core->tvnorm);
687 u32 value;
689 dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
690 V4L2_FIELD_HAS_TOP(field) ? "T" : "",
691 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
692 v4l2_norm_to_name(core->tvnorm));
693 if (!V4L2_FIELD_HAS_BOTH(field))
694 height *= 2;
696 // recalc H delay and scale registers
697 value = (width * norm_hdelay(core->tvnorm)) / swidth;
698 value &= 0x3fe;
699 cx_write(MO_HDELAY_EVEN, value);
700 cx_write(MO_HDELAY_ODD, value);
701 dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value,swidth);
703 value = (swidth * 4096 / width) - 4096;
704 cx_write(MO_HSCALE_EVEN, value);
705 cx_write(MO_HSCALE_ODD, value);
706 dprintk(1,"set_scale: hscale 0x%04x\n", value);
708 cx_write(MO_HACTIVE_EVEN, width);
709 cx_write(MO_HACTIVE_ODD, width);
710 dprintk(1,"set_scale: hactive 0x%04x\n", width);
712 // recalc V scale Register (delay is constant)
713 cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
714 cx_write(MO_VDELAY_ODD, norm_vdelay(core->tvnorm));
715 dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core->tvnorm));
717 value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
718 cx_write(MO_VSCALE_EVEN, value);
719 cx_write(MO_VSCALE_ODD, value);
720 dprintk(1,"set_scale: vscale 0x%04x\n", value);
722 cx_write(MO_VACTIVE_EVEN, sheight);
723 cx_write(MO_VACTIVE_ODD, sheight);
724 dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
726 // setup filters
727 value = 0;
728 value |= (1 << 19); // CFILT (default)
729 if (core->tvnorm & V4L2_STD_SECAM) {
730 value |= (1 << 15);
731 value |= (1 << 16);
733 if (INPUT(core->input).type == CX88_VMUX_SVIDEO)
734 value |= (1 << 13) | (1 << 5);
735 if (V4L2_FIELD_INTERLACED == field)
736 value |= (1 << 3); // VINT (interlaced vertical scaling)
737 if (width < 385)
738 value |= (1 << 0); // 3-tap interpolation
739 if (width < 193)
740 value |= (1 << 1); // 5-tap interpolation
741 if (nocomb)
742 value |= (3 << 5); // disable comb filter
744 cx_write(MO_FILTER_EVEN, value);
745 cx_write(MO_FILTER_ODD, value);
746 dprintk(1,"set_scale: filter 0x%04x\n", value);
748 return 0;
751 static const u32 xtal = 28636363;
753 static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
755 static u32 pre[] = { 0, 0, 0, 3, 2, 1 };
756 u64 pll;
757 u32 reg;
758 int i;
760 if (prescale < 2)
761 prescale = 2;
762 if (prescale > 5)
763 prescale = 5;
765 pll = ofreq * 8 * prescale * (u64)(1 << 20);
766 do_div(pll,xtal);
767 reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
768 if (((reg >> 20) & 0x3f) < 14) {
769 printk("%s/0: pll out of range\n",core->name);
770 return -1;
773 dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
774 reg, cx_read(MO_PLL_REG), ofreq);
775 cx_write(MO_PLL_REG, reg);
776 for (i = 0; i < 100; i++) {
777 reg = cx_read(MO_DEVICE_STATUS);
778 if (reg & (1<<2)) {
779 dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
780 prescale,ofreq);
781 return 0;
783 dprintk(1,"pll not locked yet, waiting ...\n");
784 msleep(10);
786 dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
787 return -1;
790 int cx88_start_audio_dma(struct cx88_core *core)
792 /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
793 int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
795 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
796 if (cx_read(MO_AUD_DMACNTRL) & 0x10)
797 return 0;
799 /* setup fifo + format */
800 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
801 cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
803 cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
804 cx_write(MO_AUDR_LNGTH, bpl); /* fifo bpl size */
806 /* start dma */
807 cx_write(MO_AUD_DMACNTRL, 0x0003); /* Up and Down fifo enable */
809 return 0;
812 int cx88_stop_audio_dma(struct cx88_core *core)
814 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
815 if (cx_read(MO_AUD_DMACNTRL) & 0x10)
816 return 0;
818 /* stop dma */
819 cx_write(MO_AUD_DMACNTRL, 0x0000);
821 return 0;
824 static int set_tvaudio(struct cx88_core *core)
826 v4l2_std_id norm = core->tvnorm;
828 if (CX88_VMUX_TELEVISION != INPUT(core->input).type)
829 return 0;
831 if (V4L2_STD_PAL_BG & norm) {
832 core->tvaudio = WW_BG;
834 } else if (V4L2_STD_PAL_DK & norm) {
835 core->tvaudio = WW_DK;
837 } else if (V4L2_STD_PAL_I & norm) {
838 core->tvaudio = WW_I;
840 } else if (V4L2_STD_SECAM_L & norm) {
841 core->tvaudio = WW_L;
843 } else if (V4L2_STD_SECAM_DK & norm) {
844 core->tvaudio = WW_DK;
846 } else if ((V4L2_STD_NTSC_M & norm) ||
847 (V4L2_STD_PAL_M & norm)) {
848 core->tvaudio = WW_BTSC;
850 } else if (V4L2_STD_NTSC_M_JP & norm) {
851 core->tvaudio = WW_EIAJ;
853 } else {
854 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
855 core->name, v4l2_norm_to_name(core->tvnorm));
856 core->tvaudio = 0;
857 return 0;
860 cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
861 cx88_set_tvaudio(core);
862 /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
865 This should be needed only on cx88-alsa. It seems that some cx88 chips have
866 bugs and does require DMA enabled for it to work.
868 cx88_start_audio_dma(core);
869 return 0;
874 int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm)
876 u32 fsc8;
877 u32 adc_clock;
878 u32 vdec_clock;
879 u32 step_db,step_dr;
880 u64 tmp64;
881 u32 bdelay,agcdelay,htotal;
882 u32 cxiformat, cxoformat;
884 core->tvnorm = norm;
885 fsc8 = norm_fsc8(norm);
886 adc_clock = xtal;
887 vdec_clock = fsc8;
888 step_db = fsc8;
889 step_dr = fsc8;
891 if (norm & V4L2_STD_NTSC_M_JP) {
892 cxiformat = VideoFormatNTSCJapan;
893 cxoformat = 0x181f0008;
894 } else if (norm & V4L2_STD_NTSC_443) {
895 cxiformat = VideoFormatNTSC443;
896 cxoformat = 0x181f0008;
897 } else if (norm & V4L2_STD_PAL_M) {
898 cxiformat = VideoFormatPALM;
899 cxoformat = 0x1c1f0008;
900 } else if (norm & V4L2_STD_PAL_N) {
901 cxiformat = VideoFormatPALN;
902 cxoformat = 0x1c1f0008;
903 } else if (norm & V4L2_STD_PAL_Nc) {
904 cxiformat = VideoFormatPALNC;
905 cxoformat = 0x1c1f0008;
906 } else if (norm & V4L2_STD_PAL_60) {
907 cxiformat = VideoFormatPAL60;
908 cxoformat = 0x181f0008;
909 } else if (norm & V4L2_STD_NTSC) {
910 cxiformat = VideoFormatNTSC;
911 cxoformat = 0x181f0008;
912 } else if (norm & V4L2_STD_SECAM) {
913 step_db = 4250000 * 8;
914 step_dr = 4406250 * 8;
916 cxiformat = VideoFormatSECAM;
917 cxoformat = 0x181f0008;
918 } else { /* PAL */
919 cxiformat = VideoFormatPAL;
920 cxoformat = 0x181f0008;
923 dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
924 v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock,
925 step_db, step_dr);
926 set_pll(core,2,vdec_clock);
928 dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
929 cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
930 cx_andor(MO_INPUT_FORMAT, 0xf, cxiformat);
932 // FIXME: as-is from DScaler
933 dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
934 cxoformat, cx_read(MO_OUTPUT_FORMAT));
935 cx_write(MO_OUTPUT_FORMAT, cxoformat);
937 // MO_SCONV_REG = adc clock / video dec clock * 2^17
938 tmp64 = adc_clock * (u64)(1 << 17);
939 do_div(tmp64, vdec_clock);
940 dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
941 (u32)tmp64, cx_read(MO_SCONV_REG));
942 cx_write(MO_SCONV_REG, (u32)tmp64);
944 // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
945 tmp64 = step_db * (u64)(1 << 22);
946 do_div(tmp64, vdec_clock);
947 dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
948 (u32)tmp64, cx_read(MO_SUB_STEP));
949 cx_write(MO_SUB_STEP, (u32)tmp64);
951 // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
952 tmp64 = step_dr * (u64)(1 << 22);
953 do_div(tmp64, vdec_clock);
954 dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
955 (u32)tmp64, cx_read(MO_SUB_STEP_DR));
956 cx_write(MO_SUB_STEP_DR, (u32)tmp64);
958 // bdelay + agcdelay
959 bdelay = vdec_clock * 65 / 20000000 + 21;
960 agcdelay = vdec_clock * 68 / 20000000 + 15;
961 dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
962 (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
963 cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
965 // htotal
966 tmp64 = norm_htotal(norm) * (u64)vdec_clock;
967 do_div(tmp64, fsc8);
968 htotal = (u32)tmp64 | (HLNotchFilter4xFsc << 11);
969 dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
970 htotal, cx_read(MO_HTOTAL), (u32)tmp64);
971 cx_write(MO_HTOTAL, htotal);
973 // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
974 // the effective vbi offset ~244 samples, the same as the Bt8x8
975 cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm));
977 // this is needed as well to set all tvnorm parameter
978 cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
980 // audio
981 set_tvaudio(core);
983 // tell i2c chips
984 cx88_call_i2c_clients(core,VIDIOC_S_STD,&norm);
986 // done
987 return 0;
990 /* ------------------------------------------------------------------ */
992 struct video_device *cx88_vdev_init(struct cx88_core *core,
993 struct pci_dev *pci,
994 struct video_device *template,
995 char *type)
997 struct video_device *vfd;
999 vfd = video_device_alloc();
1000 if (NULL == vfd)
1001 return NULL;
1002 *vfd = *template;
1003 vfd->minor = -1;
1004 vfd->dev = &pci->dev;
1005 vfd->release = video_device_release;
1006 snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
1007 core->name, type, core->board.name);
1008 return vfd;
1011 struct cx88_core* cx88_core_get(struct pci_dev *pci)
1013 struct cx88_core *core;
1014 struct list_head *item;
1016 mutex_lock(&devlist);
1017 list_for_each(item,&cx88_devlist) {
1018 core = list_entry(item, struct cx88_core, devlist);
1019 if (pci->bus->number != core->pci_bus)
1020 continue;
1021 if (PCI_SLOT(pci->devfn) != core->pci_slot)
1022 continue;
1024 if (0 != cx88_get_resources(core, pci)) {
1025 mutex_unlock(&devlist);
1026 return NULL;
1028 atomic_inc(&core->refcount);
1029 mutex_unlock(&devlist);
1030 return core;
1033 core = cx88_core_create(pci, cx88_devcount);
1034 if (NULL != core) {
1035 cx88_devcount++;
1036 list_add_tail(&core->devlist, &cx88_devlist);
1039 mutex_unlock(&devlist);
1040 return core;
1043 void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
1045 release_mem_region(pci_resource_start(pci,0),
1046 pci_resource_len(pci,0));
1048 if (!atomic_dec_and_test(&core->refcount))
1049 return;
1051 mutex_lock(&devlist);
1052 cx88_ir_fini(core);
1053 if (0 == core->i2c_rc)
1054 i2c_del_adapter(&core->i2c_adap);
1055 list_del(&core->devlist);
1056 iounmap(core->lmmio);
1057 cx88_devcount--;
1058 mutex_unlock(&devlist);
1059 kfree(core);
1062 /* ------------------------------------------------------------------ */
1064 EXPORT_SYMBOL(cx88_print_irqbits);
1066 EXPORT_SYMBOL(cx88_core_irq);
1067 EXPORT_SYMBOL(cx88_wakeup);
1068 EXPORT_SYMBOL(cx88_reset);
1069 EXPORT_SYMBOL(cx88_shutdown);
1071 EXPORT_SYMBOL(cx88_risc_buffer);
1072 EXPORT_SYMBOL(cx88_risc_databuffer);
1073 EXPORT_SYMBOL(cx88_risc_stopper);
1074 EXPORT_SYMBOL(cx88_free_buffer);
1076 EXPORT_SYMBOL(cx88_sram_channels);
1077 EXPORT_SYMBOL(cx88_sram_channel_setup);
1078 EXPORT_SYMBOL(cx88_sram_channel_dump);
1080 EXPORT_SYMBOL(cx88_set_tvnorm);
1081 EXPORT_SYMBOL(cx88_set_scale);
1083 EXPORT_SYMBOL(cx88_vdev_init);
1084 EXPORT_SYMBOL(cx88_core_get);
1085 EXPORT_SYMBOL(cx88_core_put);
1088 * Local variables:
1089 * c-basic-offset: 8
1090 * End:
1091 * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off