bcma: inform drivers about translation bits needed for the core
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / dcache.c
blob18b2a1f10ed89cab1562f696adebf391bf2a8763
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include "internal.h"
42 * Usage:
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
55 * - d_count
56 * - d_unhashed()
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
59 * - d_alias, d_inode
61 * Ordering:
62 * dentry->d_inode->i_lock
63 * dentry->d_lock
64 * dcache_lru_lock
65 * dcache_hash_bucket lock
66 * s_anon lock
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
79 int sysctl_vfs_cache_pressure __read_mostly = 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
85 EXPORT_SYMBOL(rename_lock);
87 static struct kmem_cache *dentry_cache __read_mostly;
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
105 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
106 unsigned long hash)
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
118 static DEFINE_PER_CPU(unsigned int, nr_dentry);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
130 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
133 dentry_stat.nr_dentry = get_nr_dentry();
134 return proc_dointvec(table, write, buffer, lenp, ppos);
136 #endif
138 static void __d_free(struct rcu_head *head)
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
142 WARN_ON(!list_empty(&dentry->d_alias));
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
149 * no locks, please.
151 static void d_free(struct dentry *dentry)
153 BUG_ON(dentry->d_count);
154 this_cpu_dec(nr_dentry);
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
160 __d_free(&dentry->d_u.d_rcu);
161 else
162 call_rcu(&dentry->d_u.d_rcu, __d_free);
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
172 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
184 static void dentry_iput(struct dentry * dentry)
185 __releases(dentry->d_lock)
186 __releases(dentry->d_inode->i_lock)
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
193 spin_unlock(&inode->i_lock);
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
209 static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
211 __releases(dentry->d_inode->i_lock)
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
218 spin_unlock(&inode->i_lock);
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
230 static void dentry_lru_add(struct dentry *dentry)
232 if (list_empty(&dentry->d_lru)) {
233 spin_lock(&dcache_lru_lock);
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
236 dentry_stat.nr_unused++;
237 spin_unlock(&dcache_lru_lock);
241 static void __dentry_lru_del(struct dentry *dentry)
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
248 static void dentry_lru_del(struct dentry *dentry)
250 if (!list_empty(&dentry->d_lru)) {
251 spin_lock(&dcache_lru_lock);
252 __dentry_lru_del(dentry);
253 spin_unlock(&dcache_lru_lock);
257 static void dentry_lru_move_tail(struct dentry *dentry)
259 spin_lock(&dcache_lru_lock);
260 if (list_empty(&dentry->d_lru)) {
261 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 dentry->d_sb->s_nr_dentry_unused++;
263 dentry_stat.nr_unused++;
264 } else {
265 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
267 spin_unlock(&dcache_lru_lock);
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
273 * @parent: parent dentry
275 * The dentry must already be unhashed and removed from the LRU.
277 * If this is the root of the dentry tree, return NULL.
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280 * d_kill.
282 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
283 __releases(dentry->d_lock)
284 __releases(parent->d_lock)
285 __releases(dentry->d_inode->i_lock)
287 list_del(&dentry->d_u.d_child);
289 * Inform try_to_ascend() that we are no longer attached to the
290 * dentry tree
292 dentry->d_flags |= DCACHE_DISCONNECTED;
293 if (parent)
294 spin_unlock(&parent->d_lock);
295 dentry_iput(dentry);
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
300 d_free(dentry);
301 return parent;
305 * d_drop - drop a dentry
306 * @dentry: dentry to drop
308 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309 * be found through a VFS lookup any more. Note that this is different from
310 * deleting the dentry - d_delete will try to mark the dentry negative if
311 * possible, giving a successful _negative_ lookup, while d_drop will
312 * just make the cache lookup fail.
314 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315 * reason (NFS timeouts or autofs deletes).
317 * __d_drop requires dentry->d_lock.
319 void __d_drop(struct dentry *dentry)
321 if (!d_unhashed(dentry)) {
322 struct hlist_bl_head *b;
323 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
324 b = &dentry->d_sb->s_anon;
325 else
326 b = d_hash(dentry->d_parent, dentry->d_name.hash);
328 hlist_bl_lock(b);
329 __hlist_bl_del(&dentry->d_hash);
330 dentry->d_hash.pprev = NULL;
331 hlist_bl_unlock(b);
333 dentry_rcuwalk_barrier(dentry);
336 EXPORT_SYMBOL(__d_drop);
338 void d_drop(struct dentry *dentry)
340 spin_lock(&dentry->d_lock);
341 __d_drop(dentry);
342 spin_unlock(&dentry->d_lock);
344 EXPORT_SYMBOL(d_drop);
347 * Finish off a dentry we've decided to kill.
348 * dentry->d_lock must be held, returns with it unlocked.
349 * If ref is non-zero, then decrement the refcount too.
350 * Returns dentry requiring refcount drop, or NULL if we're done.
352 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
353 __releases(dentry->d_lock)
355 struct inode *inode;
356 struct dentry *parent;
358 inode = dentry->d_inode;
359 if (inode && !spin_trylock(&inode->i_lock)) {
360 relock:
361 spin_unlock(&dentry->d_lock);
362 cpu_relax();
363 return dentry; /* try again with same dentry */
365 if (IS_ROOT(dentry))
366 parent = NULL;
367 else
368 parent = dentry->d_parent;
369 if (parent && !spin_trylock(&parent->d_lock)) {
370 if (inode)
371 spin_unlock(&inode->i_lock);
372 goto relock;
375 if (ref)
376 dentry->d_count--;
377 /* if dentry was on the d_lru list delete it from there */
378 dentry_lru_del(dentry);
379 /* if it was on the hash then remove it */
380 __d_drop(dentry);
381 return d_kill(dentry, parent);
385 * This is dput
387 * This is complicated by the fact that we do not want to put
388 * dentries that are no longer on any hash chain on the unused
389 * list: we'd much rather just get rid of them immediately.
391 * However, that implies that we have to traverse the dentry
392 * tree upwards to the parents which might _also_ now be
393 * scheduled for deletion (it may have been only waiting for
394 * its last child to go away).
396 * This tail recursion is done by hand as we don't want to depend
397 * on the compiler to always get this right (gcc generally doesn't).
398 * Real recursion would eat up our stack space.
402 * dput - release a dentry
403 * @dentry: dentry to release
405 * Release a dentry. This will drop the usage count and if appropriate
406 * call the dentry unlink method as well as removing it from the queues and
407 * releasing its resources. If the parent dentries were scheduled for release
408 * they too may now get deleted.
410 void dput(struct dentry *dentry)
412 if (!dentry)
413 return;
415 repeat:
416 if (dentry->d_count == 1)
417 might_sleep();
418 spin_lock(&dentry->d_lock);
419 BUG_ON(!dentry->d_count);
420 if (dentry->d_count > 1) {
421 dentry->d_count--;
422 spin_unlock(&dentry->d_lock);
423 return;
426 if (dentry->d_flags & DCACHE_OP_DELETE) {
427 if (dentry->d_op->d_delete(dentry))
428 goto kill_it;
431 /* Unreachable? Get rid of it */
432 if (d_unhashed(dentry))
433 goto kill_it;
435 /* Otherwise leave it cached and ensure it's on the LRU */
436 dentry->d_flags |= DCACHE_REFERENCED;
437 dentry_lru_add(dentry);
439 dentry->d_count--;
440 spin_unlock(&dentry->d_lock);
441 return;
443 kill_it:
444 dentry = dentry_kill(dentry, 1);
445 if (dentry)
446 goto repeat;
448 EXPORT_SYMBOL(dput);
451 * d_invalidate - invalidate a dentry
452 * @dentry: dentry to invalidate
454 * Try to invalidate the dentry if it turns out to be
455 * possible. If there are other dentries that can be
456 * reached through this one we can't delete it and we
457 * return -EBUSY. On success we return 0.
459 * no dcache lock.
462 int d_invalidate(struct dentry * dentry)
465 * If it's already been dropped, return OK.
467 spin_lock(&dentry->d_lock);
468 if (d_unhashed(dentry)) {
469 spin_unlock(&dentry->d_lock);
470 return 0;
473 * Check whether to do a partial shrink_dcache
474 * to get rid of unused child entries.
476 if (!list_empty(&dentry->d_subdirs)) {
477 spin_unlock(&dentry->d_lock);
478 shrink_dcache_parent(dentry);
479 spin_lock(&dentry->d_lock);
483 * Somebody else still using it?
485 * If it's a directory, we can't drop it
486 * for fear of somebody re-populating it
487 * with children (even though dropping it
488 * would make it unreachable from the root,
489 * we might still populate it if it was a
490 * working directory or similar).
492 if (dentry->d_count > 1) {
493 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
494 spin_unlock(&dentry->d_lock);
495 return -EBUSY;
499 __d_drop(dentry);
500 spin_unlock(&dentry->d_lock);
501 return 0;
503 EXPORT_SYMBOL(d_invalidate);
505 /* This must be called with d_lock held */
506 static inline void __dget_dlock(struct dentry *dentry)
508 dentry->d_count++;
511 static inline void __dget(struct dentry *dentry)
513 spin_lock(&dentry->d_lock);
514 __dget_dlock(dentry);
515 spin_unlock(&dentry->d_lock);
518 struct dentry *dget_parent(struct dentry *dentry)
520 struct dentry *ret;
522 repeat:
524 * Don't need rcu_dereference because we re-check it was correct under
525 * the lock.
527 rcu_read_lock();
528 ret = dentry->d_parent;
529 if (!ret) {
530 rcu_read_unlock();
531 goto out;
533 spin_lock(&ret->d_lock);
534 if (unlikely(ret != dentry->d_parent)) {
535 spin_unlock(&ret->d_lock);
536 rcu_read_unlock();
537 goto repeat;
539 rcu_read_unlock();
540 BUG_ON(!ret->d_count);
541 ret->d_count++;
542 spin_unlock(&ret->d_lock);
543 out:
544 return ret;
546 EXPORT_SYMBOL(dget_parent);
549 * d_find_alias - grab a hashed alias of inode
550 * @inode: inode in question
551 * @want_discon: flag, used by d_splice_alias, to request
552 * that only a DISCONNECTED alias be returned.
554 * If inode has a hashed alias, or is a directory and has any alias,
555 * acquire the reference to alias and return it. Otherwise return NULL.
556 * Notice that if inode is a directory there can be only one alias and
557 * it can be unhashed only if it has no children, or if it is the root
558 * of a filesystem.
560 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
561 * any other hashed alias over that one unless @want_discon is set,
562 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
564 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
566 struct dentry *alias, *discon_alias;
568 again:
569 discon_alias = NULL;
570 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
571 spin_lock(&alias->d_lock);
572 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
573 if (IS_ROOT(alias) &&
574 (alias->d_flags & DCACHE_DISCONNECTED)) {
575 discon_alias = alias;
576 } else if (!want_discon) {
577 __dget_dlock(alias);
578 spin_unlock(&alias->d_lock);
579 return alias;
582 spin_unlock(&alias->d_lock);
584 if (discon_alias) {
585 alias = discon_alias;
586 spin_lock(&alias->d_lock);
587 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
588 if (IS_ROOT(alias) &&
589 (alias->d_flags & DCACHE_DISCONNECTED)) {
590 __dget_dlock(alias);
591 spin_unlock(&alias->d_lock);
592 return alias;
595 spin_unlock(&alias->d_lock);
596 goto again;
598 return NULL;
601 struct dentry *d_find_alias(struct inode *inode)
603 struct dentry *de = NULL;
605 if (!list_empty(&inode->i_dentry)) {
606 spin_lock(&inode->i_lock);
607 de = __d_find_alias(inode, 0);
608 spin_unlock(&inode->i_lock);
610 return de;
612 EXPORT_SYMBOL(d_find_alias);
615 * Try to kill dentries associated with this inode.
616 * WARNING: you must own a reference to inode.
618 void d_prune_aliases(struct inode *inode)
620 struct dentry *dentry;
621 restart:
622 spin_lock(&inode->i_lock);
623 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
624 spin_lock(&dentry->d_lock);
625 if (!dentry->d_count) {
626 __dget_dlock(dentry);
627 __d_drop(dentry);
628 spin_unlock(&dentry->d_lock);
629 spin_unlock(&inode->i_lock);
630 dput(dentry);
631 goto restart;
633 spin_unlock(&dentry->d_lock);
635 spin_unlock(&inode->i_lock);
637 EXPORT_SYMBOL(d_prune_aliases);
640 * Try to throw away a dentry - free the inode, dput the parent.
641 * Requires dentry->d_lock is held, and dentry->d_count == 0.
642 * Releases dentry->d_lock.
644 * This may fail if locks cannot be acquired no problem, just try again.
646 static void try_prune_one_dentry(struct dentry *dentry)
647 __releases(dentry->d_lock)
649 struct dentry *parent;
651 parent = dentry_kill(dentry, 0);
653 * If dentry_kill returns NULL, we have nothing more to do.
654 * if it returns the same dentry, trylocks failed. In either
655 * case, just loop again.
657 * Otherwise, we need to prune ancestors too. This is necessary
658 * to prevent quadratic behavior of shrink_dcache_parent(), but
659 * is also expected to be beneficial in reducing dentry cache
660 * fragmentation.
662 if (!parent)
663 return;
664 if (parent == dentry)
665 return;
667 /* Prune ancestors. */
668 dentry = parent;
669 while (dentry) {
670 spin_lock(&dentry->d_lock);
671 if (dentry->d_count > 1) {
672 dentry->d_count--;
673 spin_unlock(&dentry->d_lock);
674 return;
676 dentry = dentry_kill(dentry, 1);
680 static void shrink_dentry_list(struct list_head *list)
682 struct dentry *dentry;
684 rcu_read_lock();
685 for (;;) {
686 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
687 if (&dentry->d_lru == list)
688 break; /* empty */
689 spin_lock(&dentry->d_lock);
690 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
691 spin_unlock(&dentry->d_lock);
692 continue;
696 * We found an inuse dentry which was not removed from
697 * the LRU because of laziness during lookup. Do not free
698 * it - just keep it off the LRU list.
700 if (dentry->d_count) {
701 dentry_lru_del(dentry);
702 spin_unlock(&dentry->d_lock);
703 continue;
706 rcu_read_unlock();
708 try_prune_one_dentry(dentry);
710 rcu_read_lock();
712 rcu_read_unlock();
716 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
717 * @sb: superblock to shrink dentry LRU.
718 * @count: number of entries to prune
719 * @flags: flags to control the dentry processing
721 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
723 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
725 /* called from prune_dcache() and shrink_dcache_parent() */
726 struct dentry *dentry;
727 LIST_HEAD(referenced);
728 LIST_HEAD(tmp);
729 int cnt = *count;
731 relock:
732 spin_lock(&dcache_lru_lock);
733 while (!list_empty(&sb->s_dentry_lru)) {
734 dentry = list_entry(sb->s_dentry_lru.prev,
735 struct dentry, d_lru);
736 BUG_ON(dentry->d_sb != sb);
738 if (!spin_trylock(&dentry->d_lock)) {
739 spin_unlock(&dcache_lru_lock);
740 cpu_relax();
741 goto relock;
745 * If we are honouring the DCACHE_REFERENCED flag and the
746 * dentry has this flag set, don't free it. Clear the flag
747 * and put it back on the LRU.
749 if (flags & DCACHE_REFERENCED &&
750 dentry->d_flags & DCACHE_REFERENCED) {
751 dentry->d_flags &= ~DCACHE_REFERENCED;
752 list_move(&dentry->d_lru, &referenced);
753 spin_unlock(&dentry->d_lock);
754 } else {
755 list_move_tail(&dentry->d_lru, &tmp);
756 spin_unlock(&dentry->d_lock);
757 if (!--cnt)
758 break;
760 cond_resched_lock(&dcache_lru_lock);
762 if (!list_empty(&referenced))
763 list_splice(&referenced, &sb->s_dentry_lru);
764 spin_unlock(&dcache_lru_lock);
766 shrink_dentry_list(&tmp);
768 *count = cnt;
772 * prune_dcache - shrink the dcache
773 * @count: number of entries to try to free
775 * Shrink the dcache. This is done when we need more memory, or simply when we
776 * need to unmount something (at which point we need to unuse all dentries).
778 * This function may fail to free any resources if all the dentries are in use.
780 static void prune_dcache(int count)
782 struct super_block *sb, *p = NULL;
783 int w_count;
784 int unused = dentry_stat.nr_unused;
785 int prune_ratio;
786 int pruned;
788 if (unused == 0 || count == 0)
789 return;
790 if (count >= unused)
791 prune_ratio = 1;
792 else
793 prune_ratio = unused / count;
794 spin_lock(&sb_lock);
795 list_for_each_entry(sb, &super_blocks, s_list) {
796 if (list_empty(&sb->s_instances))
797 continue;
798 if (sb->s_nr_dentry_unused == 0)
799 continue;
800 sb->s_count++;
801 /* Now, we reclaim unused dentrins with fairness.
802 * We reclaim them same percentage from each superblock.
803 * We calculate number of dentries to scan on this sb
804 * as follows, but the implementation is arranged to avoid
805 * overflows:
806 * number of dentries to scan on this sb =
807 * count * (number of dentries on this sb /
808 * number of dentries in the machine)
810 spin_unlock(&sb_lock);
811 if (prune_ratio != 1)
812 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
813 else
814 w_count = sb->s_nr_dentry_unused;
815 pruned = w_count;
817 * We need to be sure this filesystem isn't being unmounted,
818 * otherwise we could race with generic_shutdown_super(), and
819 * end up holding a reference to an inode while the filesystem
820 * is unmounted. So we try to get s_umount, and make sure
821 * s_root isn't NULL.
823 if (down_read_trylock(&sb->s_umount)) {
824 if ((sb->s_root != NULL) &&
825 (!list_empty(&sb->s_dentry_lru))) {
826 __shrink_dcache_sb(sb, &w_count,
827 DCACHE_REFERENCED);
828 pruned -= w_count;
830 up_read(&sb->s_umount);
832 spin_lock(&sb_lock);
833 if (p)
834 __put_super(p);
835 count -= pruned;
836 p = sb;
837 /* more work left to do? */
838 if (count <= 0)
839 break;
841 if (p)
842 __put_super(p);
843 spin_unlock(&sb_lock);
847 * shrink_dcache_sb - shrink dcache for a superblock
848 * @sb: superblock
850 * Shrink the dcache for the specified super block. This is used to free
851 * the dcache before unmounting a file system.
853 void shrink_dcache_sb(struct super_block *sb)
855 LIST_HEAD(tmp);
857 spin_lock(&dcache_lru_lock);
858 while (!list_empty(&sb->s_dentry_lru)) {
859 list_splice_init(&sb->s_dentry_lru, &tmp);
860 spin_unlock(&dcache_lru_lock);
861 shrink_dentry_list(&tmp);
862 spin_lock(&dcache_lru_lock);
864 spin_unlock(&dcache_lru_lock);
866 EXPORT_SYMBOL(shrink_dcache_sb);
869 * destroy a single subtree of dentries for unmount
870 * - see the comments on shrink_dcache_for_umount() for a description of the
871 * locking
873 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
875 struct dentry *parent;
876 unsigned detached = 0;
878 BUG_ON(!IS_ROOT(dentry));
880 /* detach this root from the system */
881 spin_lock(&dentry->d_lock);
882 dentry_lru_del(dentry);
883 __d_drop(dentry);
884 spin_unlock(&dentry->d_lock);
886 for (;;) {
887 /* descend to the first leaf in the current subtree */
888 while (!list_empty(&dentry->d_subdirs)) {
889 struct dentry *loop;
891 /* this is a branch with children - detach all of them
892 * from the system in one go */
893 spin_lock(&dentry->d_lock);
894 list_for_each_entry(loop, &dentry->d_subdirs,
895 d_u.d_child) {
896 spin_lock_nested(&loop->d_lock,
897 DENTRY_D_LOCK_NESTED);
898 dentry_lru_del(loop);
899 __d_drop(loop);
900 spin_unlock(&loop->d_lock);
902 spin_unlock(&dentry->d_lock);
904 /* move to the first child */
905 dentry = list_entry(dentry->d_subdirs.next,
906 struct dentry, d_u.d_child);
909 /* consume the dentries from this leaf up through its parents
910 * until we find one with children or run out altogether */
911 do {
912 struct inode *inode;
914 if (dentry->d_count != 0) {
915 printk(KERN_ERR
916 "BUG: Dentry %p{i=%lx,n=%s}"
917 " still in use (%d)"
918 " [unmount of %s %s]\n",
919 dentry,
920 dentry->d_inode ?
921 dentry->d_inode->i_ino : 0UL,
922 dentry->d_name.name,
923 dentry->d_count,
924 dentry->d_sb->s_type->name,
925 dentry->d_sb->s_id);
926 BUG();
929 if (IS_ROOT(dentry)) {
930 parent = NULL;
931 list_del(&dentry->d_u.d_child);
932 } else {
933 parent = dentry->d_parent;
934 spin_lock(&parent->d_lock);
935 parent->d_count--;
936 list_del(&dentry->d_u.d_child);
937 spin_unlock(&parent->d_lock);
940 detached++;
942 inode = dentry->d_inode;
943 if (inode) {
944 dentry->d_inode = NULL;
945 list_del_init(&dentry->d_alias);
946 if (dentry->d_op && dentry->d_op->d_iput)
947 dentry->d_op->d_iput(dentry, inode);
948 else
949 iput(inode);
952 d_free(dentry);
954 /* finished when we fall off the top of the tree,
955 * otherwise we ascend to the parent and move to the
956 * next sibling if there is one */
957 if (!parent)
958 return;
959 dentry = parent;
960 } while (list_empty(&dentry->d_subdirs));
962 dentry = list_entry(dentry->d_subdirs.next,
963 struct dentry, d_u.d_child);
968 * destroy the dentries attached to a superblock on unmounting
969 * - we don't need to use dentry->d_lock because:
970 * - the superblock is detached from all mountings and open files, so the
971 * dentry trees will not be rearranged by the VFS
972 * - s_umount is write-locked, so the memory pressure shrinker will ignore
973 * any dentries belonging to this superblock that it comes across
974 * - the filesystem itself is no longer permitted to rearrange the dentries
975 * in this superblock
977 void shrink_dcache_for_umount(struct super_block *sb)
979 struct dentry *dentry;
981 if (down_read_trylock(&sb->s_umount))
982 BUG();
984 dentry = sb->s_root;
985 sb->s_root = NULL;
986 spin_lock(&dentry->d_lock);
987 dentry->d_count--;
988 spin_unlock(&dentry->d_lock);
989 shrink_dcache_for_umount_subtree(dentry);
991 while (!hlist_bl_empty(&sb->s_anon)) {
992 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
993 shrink_dcache_for_umount_subtree(dentry);
998 * This tries to ascend one level of parenthood, but
999 * we can race with renaming, so we need to re-check
1000 * the parenthood after dropping the lock and check
1001 * that the sequence number still matches.
1003 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1005 struct dentry *new = old->d_parent;
1007 rcu_read_lock();
1008 spin_unlock(&old->d_lock);
1009 spin_lock(&new->d_lock);
1012 * might go back up the wrong parent if we have had a rename
1013 * or deletion
1015 if (new != old->d_parent ||
1016 (old->d_flags & DCACHE_DISCONNECTED) ||
1017 (!locked && read_seqretry(&rename_lock, seq))) {
1018 spin_unlock(&new->d_lock);
1019 new = NULL;
1021 rcu_read_unlock();
1022 return new;
1027 * Search for at least 1 mount point in the dentry's subdirs.
1028 * We descend to the next level whenever the d_subdirs
1029 * list is non-empty and continue searching.
1033 * have_submounts - check for mounts over a dentry
1034 * @parent: dentry to check.
1036 * Return true if the parent or its subdirectories contain
1037 * a mount point
1039 int have_submounts(struct dentry *parent)
1041 struct dentry *this_parent;
1042 struct list_head *next;
1043 unsigned seq;
1044 int locked = 0;
1046 seq = read_seqbegin(&rename_lock);
1047 again:
1048 this_parent = parent;
1050 if (d_mountpoint(parent))
1051 goto positive;
1052 spin_lock(&this_parent->d_lock);
1053 repeat:
1054 next = this_parent->d_subdirs.next;
1055 resume:
1056 while (next != &this_parent->d_subdirs) {
1057 struct list_head *tmp = next;
1058 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1059 next = tmp->next;
1061 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1062 /* Have we found a mount point ? */
1063 if (d_mountpoint(dentry)) {
1064 spin_unlock(&dentry->d_lock);
1065 spin_unlock(&this_parent->d_lock);
1066 goto positive;
1068 if (!list_empty(&dentry->d_subdirs)) {
1069 spin_unlock(&this_parent->d_lock);
1070 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1071 this_parent = dentry;
1072 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1073 goto repeat;
1075 spin_unlock(&dentry->d_lock);
1078 * All done at this level ... ascend and resume the search.
1080 if (this_parent != parent) {
1081 struct dentry *child = this_parent;
1082 this_parent = try_to_ascend(this_parent, locked, seq);
1083 if (!this_parent)
1084 goto rename_retry;
1085 next = child->d_u.d_child.next;
1086 goto resume;
1088 spin_unlock(&this_parent->d_lock);
1089 if (!locked && read_seqretry(&rename_lock, seq))
1090 goto rename_retry;
1091 if (locked)
1092 write_sequnlock(&rename_lock);
1093 return 0; /* No mount points found in tree */
1094 positive:
1095 if (!locked && read_seqretry(&rename_lock, seq))
1096 goto rename_retry;
1097 if (locked)
1098 write_sequnlock(&rename_lock);
1099 return 1;
1101 rename_retry:
1102 locked = 1;
1103 write_seqlock(&rename_lock);
1104 goto again;
1106 EXPORT_SYMBOL(have_submounts);
1109 * Search the dentry child list for the specified parent,
1110 * and move any unused dentries to the end of the unused
1111 * list for prune_dcache(). We descend to the next level
1112 * whenever the d_subdirs list is non-empty and continue
1113 * searching.
1115 * It returns zero iff there are no unused children,
1116 * otherwise it returns the number of children moved to
1117 * the end of the unused list. This may not be the total
1118 * number of unused children, because select_parent can
1119 * drop the lock and return early due to latency
1120 * constraints.
1122 static int select_parent(struct dentry * parent)
1124 struct dentry *this_parent;
1125 struct list_head *next;
1126 unsigned seq;
1127 int found = 0;
1128 int locked = 0;
1130 seq = read_seqbegin(&rename_lock);
1131 again:
1132 this_parent = parent;
1133 spin_lock(&this_parent->d_lock);
1134 repeat:
1135 next = this_parent->d_subdirs.next;
1136 resume:
1137 while (next != &this_parent->d_subdirs) {
1138 struct list_head *tmp = next;
1139 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1140 next = tmp->next;
1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1145 * move only zero ref count dentries to the end
1146 * of the unused list for prune_dcache
1148 if (!dentry->d_count) {
1149 dentry_lru_move_tail(dentry);
1150 found++;
1151 } else {
1152 dentry_lru_del(dentry);
1156 * We can return to the caller if we have found some (this
1157 * ensures forward progress). We'll be coming back to find
1158 * the rest.
1160 if (found && need_resched()) {
1161 spin_unlock(&dentry->d_lock);
1162 goto out;
1166 * Descend a level if the d_subdirs list is non-empty.
1168 if (!list_empty(&dentry->d_subdirs)) {
1169 spin_unlock(&this_parent->d_lock);
1170 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1171 this_parent = dentry;
1172 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1173 goto repeat;
1176 spin_unlock(&dentry->d_lock);
1179 * All done at this level ... ascend and resume the search.
1181 if (this_parent != parent) {
1182 struct dentry *child = this_parent;
1183 this_parent = try_to_ascend(this_parent, locked, seq);
1184 if (!this_parent)
1185 goto rename_retry;
1186 next = child->d_u.d_child.next;
1187 goto resume;
1189 out:
1190 spin_unlock(&this_parent->d_lock);
1191 if (!locked && read_seqretry(&rename_lock, seq))
1192 goto rename_retry;
1193 if (locked)
1194 write_sequnlock(&rename_lock);
1195 return found;
1197 rename_retry:
1198 if (found)
1199 return found;
1200 locked = 1;
1201 write_seqlock(&rename_lock);
1202 goto again;
1206 * shrink_dcache_parent - prune dcache
1207 * @parent: parent of entries to prune
1209 * Prune the dcache to remove unused children of the parent dentry.
1212 void shrink_dcache_parent(struct dentry * parent)
1214 struct super_block *sb = parent->d_sb;
1215 int found;
1217 while ((found = select_parent(parent)) != 0)
1218 __shrink_dcache_sb(sb, &found, 0);
1220 EXPORT_SYMBOL(shrink_dcache_parent);
1223 * Scan `nr' dentries and return the number which remain.
1225 * We need to avoid reentering the filesystem if the caller is performing a
1226 * GFP_NOFS allocation attempt. One example deadlock is:
1228 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1229 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1230 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1232 * In this case we return -1 to tell the caller that we baled.
1234 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1236 if (nr) {
1237 if (!(gfp_mask & __GFP_FS))
1238 return -1;
1239 prune_dcache(nr);
1242 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1245 static struct shrinker dcache_shrinker = {
1246 .shrink = shrink_dcache_memory,
1247 .seeks = DEFAULT_SEEKS,
1251 * d_alloc - allocate a dcache entry
1252 * @parent: parent of entry to allocate
1253 * @name: qstr of the name
1255 * Allocates a dentry. It returns %NULL if there is insufficient memory
1256 * available. On a success the dentry is returned. The name passed in is
1257 * copied and the copy passed in may be reused after this call.
1260 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1262 struct dentry *dentry;
1263 char *dname;
1265 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1266 if (!dentry)
1267 return NULL;
1269 if (name->len > DNAME_INLINE_LEN-1) {
1270 dname = kmalloc(name->len + 1, GFP_KERNEL);
1271 if (!dname) {
1272 kmem_cache_free(dentry_cache, dentry);
1273 return NULL;
1275 } else {
1276 dname = dentry->d_iname;
1278 dentry->d_name.name = dname;
1280 dentry->d_name.len = name->len;
1281 dentry->d_name.hash = name->hash;
1282 memcpy(dname, name->name, name->len);
1283 dname[name->len] = 0;
1285 dentry->d_count = 1;
1286 dentry->d_flags = 0;
1287 spin_lock_init(&dentry->d_lock);
1288 seqcount_init(&dentry->d_seq);
1289 dentry->d_inode = NULL;
1290 dentry->d_parent = NULL;
1291 dentry->d_sb = NULL;
1292 dentry->d_op = NULL;
1293 dentry->d_fsdata = NULL;
1294 INIT_HLIST_BL_NODE(&dentry->d_hash);
1295 INIT_LIST_HEAD(&dentry->d_lru);
1296 INIT_LIST_HEAD(&dentry->d_subdirs);
1297 INIT_LIST_HEAD(&dentry->d_alias);
1298 INIT_LIST_HEAD(&dentry->d_u.d_child);
1300 if (parent) {
1301 spin_lock(&parent->d_lock);
1303 * don't need child lock because it is not subject
1304 * to concurrency here
1306 __dget_dlock(parent);
1307 dentry->d_parent = parent;
1308 dentry->d_sb = parent->d_sb;
1309 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1310 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1311 spin_unlock(&parent->d_lock);
1314 this_cpu_inc(nr_dentry);
1316 return dentry;
1318 EXPORT_SYMBOL(d_alloc);
1320 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1322 struct dentry *dentry = d_alloc(NULL, name);
1323 if (dentry) {
1324 dentry->d_sb = sb;
1325 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1326 dentry->d_parent = dentry;
1327 dentry->d_flags |= DCACHE_DISCONNECTED;
1329 return dentry;
1331 EXPORT_SYMBOL(d_alloc_pseudo);
1333 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1335 struct qstr q;
1337 q.name = name;
1338 q.len = strlen(name);
1339 q.hash = full_name_hash(q.name, q.len);
1340 return d_alloc(parent, &q);
1342 EXPORT_SYMBOL(d_alloc_name);
1344 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1346 WARN_ON_ONCE(dentry->d_op);
1347 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1348 DCACHE_OP_COMPARE |
1349 DCACHE_OP_REVALIDATE |
1350 DCACHE_OP_DELETE ));
1351 dentry->d_op = op;
1352 if (!op)
1353 return;
1354 if (op->d_hash)
1355 dentry->d_flags |= DCACHE_OP_HASH;
1356 if (op->d_compare)
1357 dentry->d_flags |= DCACHE_OP_COMPARE;
1358 if (op->d_revalidate)
1359 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1360 if (op->d_delete)
1361 dentry->d_flags |= DCACHE_OP_DELETE;
1364 EXPORT_SYMBOL(d_set_d_op);
1366 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1368 spin_lock(&dentry->d_lock);
1369 if (inode) {
1370 if (unlikely(IS_AUTOMOUNT(inode)))
1371 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1372 list_add(&dentry->d_alias, &inode->i_dentry);
1374 dentry->d_inode = inode;
1375 dentry_rcuwalk_barrier(dentry);
1376 spin_unlock(&dentry->d_lock);
1377 fsnotify_d_instantiate(dentry, inode);
1381 * d_instantiate - fill in inode information for a dentry
1382 * @entry: dentry to complete
1383 * @inode: inode to attach to this dentry
1385 * Fill in inode information in the entry.
1387 * This turns negative dentries into productive full members
1388 * of society.
1390 * NOTE! This assumes that the inode count has been incremented
1391 * (or otherwise set) by the caller to indicate that it is now
1392 * in use by the dcache.
1395 void d_instantiate(struct dentry *entry, struct inode * inode)
1397 BUG_ON(!list_empty(&entry->d_alias));
1398 if (inode)
1399 spin_lock(&inode->i_lock);
1400 __d_instantiate(entry, inode);
1401 if (inode)
1402 spin_unlock(&inode->i_lock);
1403 security_d_instantiate(entry, inode);
1405 EXPORT_SYMBOL(d_instantiate);
1408 * d_instantiate_unique - instantiate a non-aliased dentry
1409 * @entry: dentry to instantiate
1410 * @inode: inode to attach to this dentry
1412 * Fill in inode information in the entry. On success, it returns NULL.
1413 * If an unhashed alias of "entry" already exists, then we return the
1414 * aliased dentry instead and drop one reference to inode.
1416 * Note that in order to avoid conflicts with rename() etc, the caller
1417 * had better be holding the parent directory semaphore.
1419 * This also assumes that the inode count has been incremented
1420 * (or otherwise set) by the caller to indicate that it is now
1421 * in use by the dcache.
1423 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1424 struct inode *inode)
1426 struct dentry *alias;
1427 int len = entry->d_name.len;
1428 const char *name = entry->d_name.name;
1429 unsigned int hash = entry->d_name.hash;
1431 if (!inode) {
1432 __d_instantiate(entry, NULL);
1433 return NULL;
1436 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1437 struct qstr *qstr = &alias->d_name;
1440 * Don't need alias->d_lock here, because aliases with
1441 * d_parent == entry->d_parent are not subject to name or
1442 * parent changes, because the parent inode i_mutex is held.
1444 if (qstr->hash != hash)
1445 continue;
1446 if (alias->d_parent != entry->d_parent)
1447 continue;
1448 if (dentry_cmp(qstr->name, qstr->len, name, len))
1449 continue;
1450 __dget(alias);
1451 return alias;
1454 __d_instantiate(entry, inode);
1455 return NULL;
1458 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1460 struct dentry *result;
1462 BUG_ON(!list_empty(&entry->d_alias));
1464 if (inode)
1465 spin_lock(&inode->i_lock);
1466 result = __d_instantiate_unique(entry, inode);
1467 if (inode)
1468 spin_unlock(&inode->i_lock);
1470 if (!result) {
1471 security_d_instantiate(entry, inode);
1472 return NULL;
1475 BUG_ON(!d_unhashed(result));
1476 iput(inode);
1477 return result;
1480 EXPORT_SYMBOL(d_instantiate_unique);
1483 * d_alloc_root - allocate root dentry
1484 * @root_inode: inode to allocate the root for
1486 * Allocate a root ("/") dentry for the inode given. The inode is
1487 * instantiated and returned. %NULL is returned if there is insufficient
1488 * memory or the inode passed is %NULL.
1491 struct dentry * d_alloc_root(struct inode * root_inode)
1493 struct dentry *res = NULL;
1495 if (root_inode) {
1496 static const struct qstr name = { .name = "/", .len = 1 };
1498 res = d_alloc(NULL, &name);
1499 if (res) {
1500 res->d_sb = root_inode->i_sb;
1501 d_set_d_op(res, res->d_sb->s_d_op);
1502 res->d_parent = res;
1503 d_instantiate(res, root_inode);
1506 return res;
1508 EXPORT_SYMBOL(d_alloc_root);
1510 static struct dentry * __d_find_any_alias(struct inode *inode)
1512 struct dentry *alias;
1514 if (list_empty(&inode->i_dentry))
1515 return NULL;
1516 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1517 __dget(alias);
1518 return alias;
1521 static struct dentry * d_find_any_alias(struct inode *inode)
1523 struct dentry *de;
1525 spin_lock(&inode->i_lock);
1526 de = __d_find_any_alias(inode);
1527 spin_unlock(&inode->i_lock);
1528 return de;
1533 * d_obtain_alias - find or allocate a dentry for a given inode
1534 * @inode: inode to allocate the dentry for
1536 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1537 * similar open by handle operations. The returned dentry may be anonymous,
1538 * or may have a full name (if the inode was already in the cache).
1540 * When called on a directory inode, we must ensure that the inode only ever
1541 * has one dentry. If a dentry is found, that is returned instead of
1542 * allocating a new one.
1544 * On successful return, the reference to the inode has been transferred
1545 * to the dentry. In case of an error the reference on the inode is released.
1546 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1547 * be passed in and will be the error will be propagate to the return value,
1548 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1550 struct dentry *d_obtain_alias(struct inode *inode)
1552 static const struct qstr anonstring = { .name = "" };
1553 struct dentry *tmp;
1554 struct dentry *res;
1556 if (!inode)
1557 return ERR_PTR(-ESTALE);
1558 if (IS_ERR(inode))
1559 return ERR_CAST(inode);
1561 res = d_find_any_alias(inode);
1562 if (res)
1563 goto out_iput;
1565 tmp = d_alloc(NULL, &anonstring);
1566 if (!tmp) {
1567 res = ERR_PTR(-ENOMEM);
1568 goto out_iput;
1570 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1573 spin_lock(&inode->i_lock);
1574 res = __d_find_any_alias(inode);
1575 if (res) {
1576 spin_unlock(&inode->i_lock);
1577 dput(tmp);
1578 goto out_iput;
1581 /* attach a disconnected dentry */
1582 spin_lock(&tmp->d_lock);
1583 tmp->d_sb = inode->i_sb;
1584 d_set_d_op(tmp, tmp->d_sb->s_d_op);
1585 tmp->d_inode = inode;
1586 tmp->d_flags |= DCACHE_DISCONNECTED;
1587 list_add(&tmp->d_alias, &inode->i_dentry);
1588 hlist_bl_lock(&tmp->d_sb->s_anon);
1589 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1590 hlist_bl_unlock(&tmp->d_sb->s_anon);
1591 spin_unlock(&tmp->d_lock);
1592 spin_unlock(&inode->i_lock);
1593 security_d_instantiate(tmp, inode);
1595 return tmp;
1597 out_iput:
1598 if (res && !IS_ERR(res))
1599 security_d_instantiate(res, inode);
1600 iput(inode);
1601 return res;
1603 EXPORT_SYMBOL(d_obtain_alias);
1606 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1607 * @inode: the inode which may have a disconnected dentry
1608 * @dentry: a negative dentry which we want to point to the inode.
1610 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1611 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1612 * and return it, else simply d_add the inode to the dentry and return NULL.
1614 * This is needed in the lookup routine of any filesystem that is exportable
1615 * (via knfsd) so that we can build dcache paths to directories effectively.
1617 * If a dentry was found and moved, then it is returned. Otherwise NULL
1618 * is returned. This matches the expected return value of ->lookup.
1621 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1623 struct dentry *new = NULL;
1625 if (inode && S_ISDIR(inode->i_mode)) {
1626 spin_lock(&inode->i_lock);
1627 new = __d_find_alias(inode, 1);
1628 if (new) {
1629 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1630 spin_unlock(&inode->i_lock);
1631 security_d_instantiate(new, inode);
1632 d_move(new, dentry);
1633 iput(inode);
1634 } else {
1635 /* already taking inode->i_lock, so d_add() by hand */
1636 __d_instantiate(dentry, inode);
1637 spin_unlock(&inode->i_lock);
1638 security_d_instantiate(dentry, inode);
1639 d_rehash(dentry);
1641 } else
1642 d_add(dentry, inode);
1643 return new;
1645 EXPORT_SYMBOL(d_splice_alias);
1648 * d_add_ci - lookup or allocate new dentry with case-exact name
1649 * @inode: the inode case-insensitive lookup has found
1650 * @dentry: the negative dentry that was passed to the parent's lookup func
1651 * @name: the case-exact name to be associated with the returned dentry
1653 * This is to avoid filling the dcache with case-insensitive names to the
1654 * same inode, only the actual correct case is stored in the dcache for
1655 * case-insensitive filesystems.
1657 * For a case-insensitive lookup match and if the the case-exact dentry
1658 * already exists in in the dcache, use it and return it.
1660 * If no entry exists with the exact case name, allocate new dentry with
1661 * the exact case, and return the spliced entry.
1663 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1664 struct qstr *name)
1666 int error;
1667 struct dentry *found;
1668 struct dentry *new;
1671 * First check if a dentry matching the name already exists,
1672 * if not go ahead and create it now.
1674 found = d_hash_and_lookup(dentry->d_parent, name);
1675 if (!found) {
1676 new = d_alloc(dentry->d_parent, name);
1677 if (!new) {
1678 error = -ENOMEM;
1679 goto err_out;
1682 found = d_splice_alias(inode, new);
1683 if (found) {
1684 dput(new);
1685 return found;
1687 return new;
1691 * If a matching dentry exists, and it's not negative use it.
1693 * Decrement the reference count to balance the iget() done
1694 * earlier on.
1696 if (found->d_inode) {
1697 if (unlikely(found->d_inode != inode)) {
1698 /* This can't happen because bad inodes are unhashed. */
1699 BUG_ON(!is_bad_inode(inode));
1700 BUG_ON(!is_bad_inode(found->d_inode));
1702 iput(inode);
1703 return found;
1707 * Negative dentry: instantiate it unless the inode is a directory and
1708 * already has a dentry.
1710 spin_lock(&inode->i_lock);
1711 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1712 __d_instantiate(found, inode);
1713 spin_unlock(&inode->i_lock);
1714 security_d_instantiate(found, inode);
1715 return found;
1719 * In case a directory already has a (disconnected) entry grab a
1720 * reference to it, move it in place and use it.
1722 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1723 __dget(new);
1724 spin_unlock(&inode->i_lock);
1725 security_d_instantiate(found, inode);
1726 d_move(new, found);
1727 iput(inode);
1728 dput(found);
1729 return new;
1731 err_out:
1732 iput(inode);
1733 return ERR_PTR(error);
1735 EXPORT_SYMBOL(d_add_ci);
1738 * __d_lookup_rcu - search for a dentry (racy, store-free)
1739 * @parent: parent dentry
1740 * @name: qstr of name we wish to find
1741 * @seq: returns d_seq value at the point where the dentry was found
1742 * @inode: returns dentry->d_inode when the inode was found valid.
1743 * Returns: dentry, or NULL
1745 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1746 * resolution (store-free path walking) design described in
1747 * Documentation/filesystems/path-lookup.txt.
1749 * This is not to be used outside core vfs.
1751 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1752 * held, and rcu_read_lock held. The returned dentry must not be stored into
1753 * without taking d_lock and checking d_seq sequence count against @seq
1754 * returned here.
1756 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1757 * function.
1759 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1760 * the returned dentry, so long as its parent's seqlock is checked after the
1761 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1762 * is formed, giving integrity down the path walk.
1764 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1765 unsigned *seq, struct inode **inode)
1767 unsigned int len = name->len;
1768 unsigned int hash = name->hash;
1769 const unsigned char *str = name->name;
1770 struct hlist_bl_head *b = d_hash(parent, hash);
1771 struct hlist_bl_node *node;
1772 struct dentry *dentry;
1775 * Note: There is significant duplication with __d_lookup_rcu which is
1776 * required to prevent single threaded performance regressions
1777 * especially on architectures where smp_rmb (in seqcounts) are costly.
1778 * Keep the two functions in sync.
1782 * The hash list is protected using RCU.
1784 * Carefully use d_seq when comparing a candidate dentry, to avoid
1785 * races with d_move().
1787 * It is possible that concurrent renames can mess up our list
1788 * walk here and result in missing our dentry, resulting in the
1789 * false-negative result. d_lookup() protects against concurrent
1790 * renames using rename_lock seqlock.
1792 * See Documentation/filesystems/path-lookup.txt for more details.
1794 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1795 struct inode *i;
1796 const char *tname;
1797 int tlen;
1799 if (dentry->d_name.hash != hash)
1800 continue;
1802 seqretry:
1803 *seq = read_seqcount_begin(&dentry->d_seq);
1804 if (dentry->d_parent != parent)
1805 continue;
1806 if (d_unhashed(dentry))
1807 continue;
1808 tlen = dentry->d_name.len;
1809 tname = dentry->d_name.name;
1810 i = dentry->d_inode;
1811 prefetch(tname);
1812 if (i)
1813 prefetch(i);
1815 * This seqcount check is required to ensure name and
1816 * len are loaded atomically, so as not to walk off the
1817 * edge of memory when walking. If we could load this
1818 * atomically some other way, we could drop this check.
1820 if (read_seqcount_retry(&dentry->d_seq, *seq))
1821 goto seqretry;
1822 if (parent->d_flags & DCACHE_OP_COMPARE) {
1823 if (parent->d_op->d_compare(parent, *inode,
1824 dentry, i,
1825 tlen, tname, name))
1826 continue;
1827 } else {
1828 if (dentry_cmp(tname, tlen, str, len))
1829 continue;
1832 * No extra seqcount check is required after the name
1833 * compare. The caller must perform a seqcount check in
1834 * order to do anything useful with the returned dentry
1835 * anyway.
1837 *inode = i;
1838 return dentry;
1840 return NULL;
1844 * d_lookup - search for a dentry
1845 * @parent: parent dentry
1846 * @name: qstr of name we wish to find
1847 * Returns: dentry, or NULL
1849 * d_lookup searches the children of the parent dentry for the name in
1850 * question. If the dentry is found its reference count is incremented and the
1851 * dentry is returned. The caller must use dput to free the entry when it has
1852 * finished using it. %NULL is returned if the dentry does not exist.
1854 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1856 struct dentry *dentry;
1857 unsigned seq;
1859 do {
1860 seq = read_seqbegin(&rename_lock);
1861 dentry = __d_lookup(parent, name);
1862 if (dentry)
1863 break;
1864 } while (read_seqretry(&rename_lock, seq));
1865 return dentry;
1867 EXPORT_SYMBOL(d_lookup);
1870 * __d_lookup - search for a dentry (racy)
1871 * @parent: parent dentry
1872 * @name: qstr of name we wish to find
1873 * Returns: dentry, or NULL
1875 * __d_lookup is like d_lookup, however it may (rarely) return a
1876 * false-negative result due to unrelated rename activity.
1878 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1879 * however it must be used carefully, eg. with a following d_lookup in
1880 * the case of failure.
1882 * __d_lookup callers must be commented.
1884 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1886 unsigned int len = name->len;
1887 unsigned int hash = name->hash;
1888 const unsigned char *str = name->name;
1889 struct hlist_bl_head *b = d_hash(parent, hash);
1890 struct hlist_bl_node *node;
1891 struct dentry *found = NULL;
1892 struct dentry *dentry;
1895 * Note: There is significant duplication with __d_lookup_rcu which is
1896 * required to prevent single threaded performance regressions
1897 * especially on architectures where smp_rmb (in seqcounts) are costly.
1898 * Keep the two functions in sync.
1902 * The hash list is protected using RCU.
1904 * Take d_lock when comparing a candidate dentry, to avoid races
1905 * with d_move().
1907 * It is possible that concurrent renames can mess up our list
1908 * walk here and result in missing our dentry, resulting in the
1909 * false-negative result. d_lookup() protects against concurrent
1910 * renames using rename_lock seqlock.
1912 * See Documentation/filesystems/path-lookup.txt for more details.
1914 rcu_read_lock();
1916 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1917 const char *tname;
1918 int tlen;
1920 if (dentry->d_name.hash != hash)
1921 continue;
1923 spin_lock(&dentry->d_lock);
1924 if (dentry->d_parent != parent)
1925 goto next;
1926 if (d_unhashed(dentry))
1927 goto next;
1930 * It is safe to compare names since d_move() cannot
1931 * change the qstr (protected by d_lock).
1933 tlen = dentry->d_name.len;
1934 tname = dentry->d_name.name;
1935 if (parent->d_flags & DCACHE_OP_COMPARE) {
1936 if (parent->d_op->d_compare(parent, parent->d_inode,
1937 dentry, dentry->d_inode,
1938 tlen, tname, name))
1939 goto next;
1940 } else {
1941 if (dentry_cmp(tname, tlen, str, len))
1942 goto next;
1945 dentry->d_count++;
1946 found = dentry;
1947 spin_unlock(&dentry->d_lock);
1948 break;
1949 next:
1950 spin_unlock(&dentry->d_lock);
1952 rcu_read_unlock();
1954 return found;
1958 * d_hash_and_lookup - hash the qstr then search for a dentry
1959 * @dir: Directory to search in
1960 * @name: qstr of name we wish to find
1962 * On hash failure or on lookup failure NULL is returned.
1964 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1966 struct dentry *dentry = NULL;
1969 * Check for a fs-specific hash function. Note that we must
1970 * calculate the standard hash first, as the d_op->d_hash()
1971 * routine may choose to leave the hash value unchanged.
1973 name->hash = full_name_hash(name->name, name->len);
1974 if (dir->d_flags & DCACHE_OP_HASH) {
1975 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1976 goto out;
1978 dentry = d_lookup(dir, name);
1979 out:
1980 return dentry;
1984 * d_validate - verify dentry provided from insecure source (deprecated)
1985 * @dentry: The dentry alleged to be valid child of @dparent
1986 * @dparent: The parent dentry (known to be valid)
1988 * An insecure source has sent us a dentry, here we verify it and dget() it.
1989 * This is used by ncpfs in its readdir implementation.
1990 * Zero is returned in the dentry is invalid.
1992 * This function is slow for big directories, and deprecated, do not use it.
1994 int d_validate(struct dentry *dentry, struct dentry *dparent)
1996 struct dentry *child;
1998 spin_lock(&dparent->d_lock);
1999 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2000 if (dentry == child) {
2001 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2002 __dget_dlock(dentry);
2003 spin_unlock(&dentry->d_lock);
2004 spin_unlock(&dparent->d_lock);
2005 return 1;
2008 spin_unlock(&dparent->d_lock);
2010 return 0;
2012 EXPORT_SYMBOL(d_validate);
2015 * When a file is deleted, we have two options:
2016 * - turn this dentry into a negative dentry
2017 * - unhash this dentry and free it.
2019 * Usually, we want to just turn this into
2020 * a negative dentry, but if anybody else is
2021 * currently using the dentry or the inode
2022 * we can't do that and we fall back on removing
2023 * it from the hash queues and waiting for
2024 * it to be deleted later when it has no users
2028 * d_delete - delete a dentry
2029 * @dentry: The dentry to delete
2031 * Turn the dentry into a negative dentry if possible, otherwise
2032 * remove it from the hash queues so it can be deleted later
2035 void d_delete(struct dentry * dentry)
2037 struct inode *inode;
2038 int isdir = 0;
2040 * Are we the only user?
2042 again:
2043 spin_lock(&dentry->d_lock);
2044 inode = dentry->d_inode;
2045 isdir = S_ISDIR(inode->i_mode);
2046 if (dentry->d_count == 1) {
2047 if (inode && !spin_trylock(&inode->i_lock)) {
2048 spin_unlock(&dentry->d_lock);
2049 cpu_relax();
2050 goto again;
2052 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2053 dentry_unlink_inode(dentry);
2054 fsnotify_nameremove(dentry, isdir);
2055 return;
2058 if (!d_unhashed(dentry))
2059 __d_drop(dentry);
2061 spin_unlock(&dentry->d_lock);
2063 fsnotify_nameremove(dentry, isdir);
2065 EXPORT_SYMBOL(d_delete);
2067 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2069 BUG_ON(!d_unhashed(entry));
2070 hlist_bl_lock(b);
2071 entry->d_flags |= DCACHE_RCUACCESS;
2072 hlist_bl_add_head_rcu(&entry->d_hash, b);
2073 hlist_bl_unlock(b);
2076 static void _d_rehash(struct dentry * entry)
2078 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2082 * d_rehash - add an entry back to the hash
2083 * @entry: dentry to add to the hash
2085 * Adds a dentry to the hash according to its name.
2088 void d_rehash(struct dentry * entry)
2090 spin_lock(&entry->d_lock);
2091 _d_rehash(entry);
2092 spin_unlock(&entry->d_lock);
2094 EXPORT_SYMBOL(d_rehash);
2097 * dentry_update_name_case - update case insensitive dentry with a new name
2098 * @dentry: dentry to be updated
2099 * @name: new name
2101 * Update a case insensitive dentry with new case of name.
2103 * dentry must have been returned by d_lookup with name @name. Old and new
2104 * name lengths must match (ie. no d_compare which allows mismatched name
2105 * lengths).
2107 * Parent inode i_mutex must be held over d_lookup and into this call (to
2108 * keep renames and concurrent inserts, and readdir(2) away).
2110 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2112 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2113 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2115 spin_lock(&dentry->d_lock);
2116 write_seqcount_begin(&dentry->d_seq);
2117 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2118 write_seqcount_end(&dentry->d_seq);
2119 spin_unlock(&dentry->d_lock);
2121 EXPORT_SYMBOL(dentry_update_name_case);
2123 static void switch_names(struct dentry *dentry, struct dentry *target)
2125 if (dname_external(target)) {
2126 if (dname_external(dentry)) {
2128 * Both external: swap the pointers
2130 swap(target->d_name.name, dentry->d_name.name);
2131 } else {
2133 * dentry:internal, target:external. Steal target's
2134 * storage and make target internal.
2136 memcpy(target->d_iname, dentry->d_name.name,
2137 dentry->d_name.len + 1);
2138 dentry->d_name.name = target->d_name.name;
2139 target->d_name.name = target->d_iname;
2141 } else {
2142 if (dname_external(dentry)) {
2144 * dentry:external, target:internal. Give dentry's
2145 * storage to target and make dentry internal
2147 memcpy(dentry->d_iname, target->d_name.name,
2148 target->d_name.len + 1);
2149 target->d_name.name = dentry->d_name.name;
2150 dentry->d_name.name = dentry->d_iname;
2151 } else {
2153 * Both are internal. Just copy target to dentry
2155 memcpy(dentry->d_iname, target->d_name.name,
2156 target->d_name.len + 1);
2157 dentry->d_name.len = target->d_name.len;
2158 return;
2161 swap(dentry->d_name.len, target->d_name.len);
2164 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2167 * XXXX: do we really need to take target->d_lock?
2169 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2170 spin_lock(&target->d_parent->d_lock);
2171 else {
2172 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2173 spin_lock(&dentry->d_parent->d_lock);
2174 spin_lock_nested(&target->d_parent->d_lock,
2175 DENTRY_D_LOCK_NESTED);
2176 } else {
2177 spin_lock(&target->d_parent->d_lock);
2178 spin_lock_nested(&dentry->d_parent->d_lock,
2179 DENTRY_D_LOCK_NESTED);
2182 if (target < dentry) {
2183 spin_lock_nested(&target->d_lock, 2);
2184 spin_lock_nested(&dentry->d_lock, 3);
2185 } else {
2186 spin_lock_nested(&dentry->d_lock, 2);
2187 spin_lock_nested(&target->d_lock, 3);
2191 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2192 struct dentry *target)
2194 if (target->d_parent != dentry->d_parent)
2195 spin_unlock(&dentry->d_parent->d_lock);
2196 if (target->d_parent != target)
2197 spin_unlock(&target->d_parent->d_lock);
2201 * When switching names, the actual string doesn't strictly have to
2202 * be preserved in the target - because we're dropping the target
2203 * anyway. As such, we can just do a simple memcpy() to copy over
2204 * the new name before we switch.
2206 * Note that we have to be a lot more careful about getting the hash
2207 * switched - we have to switch the hash value properly even if it
2208 * then no longer matches the actual (corrupted) string of the target.
2209 * The hash value has to match the hash queue that the dentry is on..
2212 * d_move - move a dentry
2213 * @dentry: entry to move
2214 * @target: new dentry
2216 * Update the dcache to reflect the move of a file name. Negative
2217 * dcache entries should not be moved in this way.
2219 void d_move(struct dentry * dentry, struct dentry * target)
2221 if (!dentry->d_inode)
2222 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2224 BUG_ON(d_ancestor(dentry, target));
2225 BUG_ON(d_ancestor(target, dentry));
2227 write_seqlock(&rename_lock);
2229 dentry_lock_for_move(dentry, target);
2231 write_seqcount_begin(&dentry->d_seq);
2232 write_seqcount_begin(&target->d_seq);
2234 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2237 * Move the dentry to the target hash queue. Don't bother checking
2238 * for the same hash queue because of how unlikely it is.
2240 __d_drop(dentry);
2241 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2243 /* Unhash the target: dput() will then get rid of it */
2244 __d_drop(target);
2246 list_del(&dentry->d_u.d_child);
2247 list_del(&target->d_u.d_child);
2249 /* Switch the names.. */
2250 switch_names(dentry, target);
2251 swap(dentry->d_name.hash, target->d_name.hash);
2253 /* ... and switch the parents */
2254 if (IS_ROOT(dentry)) {
2255 dentry->d_parent = target->d_parent;
2256 target->d_parent = target;
2257 INIT_LIST_HEAD(&target->d_u.d_child);
2258 } else {
2259 swap(dentry->d_parent, target->d_parent);
2261 /* And add them back to the (new) parent lists */
2262 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2265 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2267 write_seqcount_end(&target->d_seq);
2268 write_seqcount_end(&dentry->d_seq);
2270 dentry_unlock_parents_for_move(dentry, target);
2271 spin_unlock(&target->d_lock);
2272 fsnotify_d_move(dentry);
2273 spin_unlock(&dentry->d_lock);
2274 write_sequnlock(&rename_lock);
2276 EXPORT_SYMBOL(d_move);
2279 * d_ancestor - search for an ancestor
2280 * @p1: ancestor dentry
2281 * @p2: child dentry
2283 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2284 * an ancestor of p2, else NULL.
2286 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2288 struct dentry *p;
2290 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2291 if (p->d_parent == p1)
2292 return p;
2294 return NULL;
2298 * This helper attempts to cope with remotely renamed directories
2300 * It assumes that the caller is already holding
2301 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2303 * Note: If ever the locking in lock_rename() changes, then please
2304 * remember to update this too...
2306 static struct dentry *__d_unalias(struct inode *inode,
2307 struct dentry *dentry, struct dentry *alias)
2309 struct mutex *m1 = NULL, *m2 = NULL;
2310 struct dentry *ret;
2312 /* If alias and dentry share a parent, then no extra locks required */
2313 if (alias->d_parent == dentry->d_parent)
2314 goto out_unalias;
2316 /* Check for loops */
2317 ret = ERR_PTR(-ELOOP);
2318 if (d_ancestor(alias, dentry))
2319 goto out_err;
2321 /* See lock_rename() */
2322 ret = ERR_PTR(-EBUSY);
2323 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2324 goto out_err;
2325 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2326 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2327 goto out_err;
2328 m2 = &alias->d_parent->d_inode->i_mutex;
2329 out_unalias:
2330 d_move(alias, dentry);
2331 ret = alias;
2332 out_err:
2333 spin_unlock(&inode->i_lock);
2334 if (m2)
2335 mutex_unlock(m2);
2336 if (m1)
2337 mutex_unlock(m1);
2338 return ret;
2342 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2343 * named dentry in place of the dentry to be replaced.
2344 * returns with anon->d_lock held!
2346 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2348 struct dentry *dparent, *aparent;
2350 dentry_lock_for_move(anon, dentry);
2352 write_seqcount_begin(&dentry->d_seq);
2353 write_seqcount_begin(&anon->d_seq);
2355 dparent = dentry->d_parent;
2356 aparent = anon->d_parent;
2358 switch_names(dentry, anon);
2359 swap(dentry->d_name.hash, anon->d_name.hash);
2361 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2362 list_del(&dentry->d_u.d_child);
2363 if (!IS_ROOT(dentry))
2364 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2365 else
2366 INIT_LIST_HEAD(&dentry->d_u.d_child);
2368 anon->d_parent = (dparent == dentry) ? anon : dparent;
2369 list_del(&anon->d_u.d_child);
2370 if (!IS_ROOT(anon))
2371 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2372 else
2373 INIT_LIST_HEAD(&anon->d_u.d_child);
2375 write_seqcount_end(&dentry->d_seq);
2376 write_seqcount_end(&anon->d_seq);
2378 dentry_unlock_parents_for_move(anon, dentry);
2379 spin_unlock(&dentry->d_lock);
2381 /* anon->d_lock still locked, returns locked */
2382 anon->d_flags &= ~DCACHE_DISCONNECTED;
2386 * d_materialise_unique - introduce an inode into the tree
2387 * @dentry: candidate dentry
2388 * @inode: inode to bind to the dentry, to which aliases may be attached
2390 * Introduces an dentry into the tree, substituting an extant disconnected
2391 * root directory alias in its place if there is one
2393 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2395 struct dentry *actual;
2397 BUG_ON(!d_unhashed(dentry));
2399 if (!inode) {
2400 actual = dentry;
2401 __d_instantiate(dentry, NULL);
2402 d_rehash(actual);
2403 goto out_nolock;
2406 spin_lock(&inode->i_lock);
2408 if (S_ISDIR(inode->i_mode)) {
2409 struct dentry *alias;
2411 /* Does an aliased dentry already exist? */
2412 alias = __d_find_alias(inode, 0);
2413 if (alias) {
2414 actual = alias;
2415 /* Is this an anonymous mountpoint that we could splice
2416 * into our tree? */
2417 if (IS_ROOT(alias)) {
2418 __d_materialise_dentry(dentry, alias);
2419 __d_drop(alias);
2420 goto found;
2422 /* Nope, but we must(!) avoid directory aliasing */
2423 actual = __d_unalias(inode, dentry, alias);
2424 if (IS_ERR(actual))
2425 dput(alias);
2426 goto out_nolock;
2430 /* Add a unique reference */
2431 actual = __d_instantiate_unique(dentry, inode);
2432 if (!actual)
2433 actual = dentry;
2434 else
2435 BUG_ON(!d_unhashed(actual));
2437 spin_lock(&actual->d_lock);
2438 found:
2439 _d_rehash(actual);
2440 spin_unlock(&actual->d_lock);
2441 spin_unlock(&inode->i_lock);
2442 out_nolock:
2443 if (actual == dentry) {
2444 security_d_instantiate(dentry, inode);
2445 return NULL;
2448 iput(inode);
2449 return actual;
2451 EXPORT_SYMBOL_GPL(d_materialise_unique);
2453 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2455 *buflen -= namelen;
2456 if (*buflen < 0)
2457 return -ENAMETOOLONG;
2458 *buffer -= namelen;
2459 memcpy(*buffer, str, namelen);
2460 return 0;
2463 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2465 return prepend(buffer, buflen, name->name, name->len);
2469 * prepend_path - Prepend path string to a buffer
2470 * @path: the dentry/vfsmount to report
2471 * @root: root vfsmnt/dentry (may be modified by this function)
2472 * @buffer: pointer to the end of the buffer
2473 * @buflen: pointer to buffer length
2475 * Caller holds the rename_lock.
2477 * If path is not reachable from the supplied root, then the value of
2478 * root is changed (without modifying refcounts).
2480 static int prepend_path(const struct path *path, struct path *root,
2481 char **buffer, int *buflen)
2483 struct dentry *dentry = path->dentry;
2484 struct vfsmount *vfsmnt = path->mnt;
2485 bool slash = false;
2486 int error = 0;
2488 br_read_lock(vfsmount_lock);
2489 while (dentry != root->dentry || vfsmnt != root->mnt) {
2490 struct dentry * parent;
2492 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2493 /* Global root? */
2494 if (vfsmnt->mnt_parent == vfsmnt) {
2495 goto global_root;
2497 dentry = vfsmnt->mnt_mountpoint;
2498 vfsmnt = vfsmnt->mnt_parent;
2499 continue;
2501 parent = dentry->d_parent;
2502 prefetch(parent);
2503 spin_lock(&dentry->d_lock);
2504 error = prepend_name(buffer, buflen, &dentry->d_name);
2505 spin_unlock(&dentry->d_lock);
2506 if (!error)
2507 error = prepend(buffer, buflen, "/", 1);
2508 if (error)
2509 break;
2511 slash = true;
2512 dentry = parent;
2515 out:
2516 if (!error && !slash)
2517 error = prepend(buffer, buflen, "/", 1);
2519 br_read_unlock(vfsmount_lock);
2520 return error;
2522 global_root:
2524 * Filesystems needing to implement special "root names"
2525 * should do so with ->d_dname()
2527 if (IS_ROOT(dentry) &&
2528 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2529 WARN(1, "Root dentry has weird name <%.*s>\n",
2530 (int) dentry->d_name.len, dentry->d_name.name);
2532 root->mnt = vfsmnt;
2533 root->dentry = dentry;
2534 goto out;
2538 * __d_path - return the path of a dentry
2539 * @path: the dentry/vfsmount to report
2540 * @root: root vfsmnt/dentry (may be modified by this function)
2541 * @buf: buffer to return value in
2542 * @buflen: buffer length
2544 * Convert a dentry into an ASCII path name.
2546 * Returns a pointer into the buffer or an error code if the
2547 * path was too long.
2549 * "buflen" should be positive.
2551 * If path is not reachable from the supplied root, then the value of
2552 * root is changed (without modifying refcounts).
2554 char *__d_path(const struct path *path, struct path *root,
2555 char *buf, int buflen)
2557 char *res = buf + buflen;
2558 int error;
2560 prepend(&res, &buflen, "\0", 1);
2561 write_seqlock(&rename_lock);
2562 error = prepend_path(path, root, &res, &buflen);
2563 write_sequnlock(&rename_lock);
2565 if (error)
2566 return ERR_PTR(error);
2567 return res;
2571 * same as __d_path but appends "(deleted)" for unlinked files.
2573 static int path_with_deleted(const struct path *path, struct path *root,
2574 char **buf, int *buflen)
2576 prepend(buf, buflen, "\0", 1);
2577 if (d_unlinked(path->dentry)) {
2578 int error = prepend(buf, buflen, " (deleted)", 10);
2579 if (error)
2580 return error;
2583 return prepend_path(path, root, buf, buflen);
2586 static int prepend_unreachable(char **buffer, int *buflen)
2588 return prepend(buffer, buflen, "(unreachable)", 13);
2592 * d_path - return the path of a dentry
2593 * @path: path to report
2594 * @buf: buffer to return value in
2595 * @buflen: buffer length
2597 * Convert a dentry into an ASCII path name. If the entry has been deleted
2598 * the string " (deleted)" is appended. Note that this is ambiguous.
2600 * Returns a pointer into the buffer or an error code if the path was
2601 * too long. Note: Callers should use the returned pointer, not the passed
2602 * in buffer, to use the name! The implementation often starts at an offset
2603 * into the buffer, and may leave 0 bytes at the start.
2605 * "buflen" should be positive.
2607 char *d_path(const struct path *path, char *buf, int buflen)
2609 char *res = buf + buflen;
2610 struct path root;
2611 struct path tmp;
2612 int error;
2615 * We have various synthetic filesystems that never get mounted. On
2616 * these filesystems dentries are never used for lookup purposes, and
2617 * thus don't need to be hashed. They also don't need a name until a
2618 * user wants to identify the object in /proc/pid/fd/. The little hack
2619 * below allows us to generate a name for these objects on demand:
2621 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2622 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2624 get_fs_root(current->fs, &root);
2625 write_seqlock(&rename_lock);
2626 tmp = root;
2627 error = path_with_deleted(path, &tmp, &res, &buflen);
2628 if (error)
2629 res = ERR_PTR(error);
2630 write_sequnlock(&rename_lock);
2631 path_put(&root);
2632 return res;
2634 EXPORT_SYMBOL(d_path);
2637 * d_path_with_unreachable - return the path of a dentry
2638 * @path: path to report
2639 * @buf: buffer to return value in
2640 * @buflen: buffer length
2642 * The difference from d_path() is that this prepends "(unreachable)"
2643 * to paths which are unreachable from the current process' root.
2645 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2647 char *res = buf + buflen;
2648 struct path root;
2649 struct path tmp;
2650 int error;
2652 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2653 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2655 get_fs_root(current->fs, &root);
2656 write_seqlock(&rename_lock);
2657 tmp = root;
2658 error = path_with_deleted(path, &tmp, &res, &buflen);
2659 if (!error && !path_equal(&tmp, &root))
2660 error = prepend_unreachable(&res, &buflen);
2661 write_sequnlock(&rename_lock);
2662 path_put(&root);
2663 if (error)
2664 res = ERR_PTR(error);
2666 return res;
2670 * Helper function for dentry_operations.d_dname() members
2672 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2673 const char *fmt, ...)
2675 va_list args;
2676 char temp[64];
2677 int sz;
2679 va_start(args, fmt);
2680 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2681 va_end(args);
2683 if (sz > sizeof(temp) || sz > buflen)
2684 return ERR_PTR(-ENAMETOOLONG);
2686 buffer += buflen - sz;
2687 return memcpy(buffer, temp, sz);
2691 * Write full pathname from the root of the filesystem into the buffer.
2693 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2695 char *end = buf + buflen;
2696 char *retval;
2698 prepend(&end, &buflen, "\0", 1);
2699 if (buflen < 1)
2700 goto Elong;
2701 /* Get '/' right */
2702 retval = end-1;
2703 *retval = '/';
2705 while (!IS_ROOT(dentry)) {
2706 struct dentry *parent = dentry->d_parent;
2707 int error;
2709 prefetch(parent);
2710 spin_lock(&dentry->d_lock);
2711 error = prepend_name(&end, &buflen, &dentry->d_name);
2712 spin_unlock(&dentry->d_lock);
2713 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2714 goto Elong;
2716 retval = end;
2717 dentry = parent;
2719 return retval;
2720 Elong:
2721 return ERR_PTR(-ENAMETOOLONG);
2724 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2726 char *retval;
2728 write_seqlock(&rename_lock);
2729 retval = __dentry_path(dentry, buf, buflen);
2730 write_sequnlock(&rename_lock);
2732 return retval;
2734 EXPORT_SYMBOL(dentry_path_raw);
2736 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2738 char *p = NULL;
2739 char *retval;
2741 write_seqlock(&rename_lock);
2742 if (d_unlinked(dentry)) {
2743 p = buf + buflen;
2744 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2745 goto Elong;
2746 buflen++;
2748 retval = __dentry_path(dentry, buf, buflen);
2749 write_sequnlock(&rename_lock);
2750 if (!IS_ERR(retval) && p)
2751 *p = '/'; /* restore '/' overriden with '\0' */
2752 return retval;
2753 Elong:
2754 return ERR_PTR(-ENAMETOOLONG);
2758 * NOTE! The user-level library version returns a
2759 * character pointer. The kernel system call just
2760 * returns the length of the buffer filled (which
2761 * includes the ending '\0' character), or a negative
2762 * error value. So libc would do something like
2764 * char *getcwd(char * buf, size_t size)
2766 * int retval;
2768 * retval = sys_getcwd(buf, size);
2769 * if (retval >= 0)
2770 * return buf;
2771 * errno = -retval;
2772 * return NULL;
2775 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2777 int error;
2778 struct path pwd, root;
2779 char *page = (char *) __get_free_page(GFP_USER);
2781 if (!page)
2782 return -ENOMEM;
2784 get_fs_root_and_pwd(current->fs, &root, &pwd);
2786 error = -ENOENT;
2787 write_seqlock(&rename_lock);
2788 if (!d_unlinked(pwd.dentry)) {
2789 unsigned long len;
2790 struct path tmp = root;
2791 char *cwd = page + PAGE_SIZE;
2792 int buflen = PAGE_SIZE;
2794 prepend(&cwd, &buflen, "\0", 1);
2795 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2796 write_sequnlock(&rename_lock);
2798 if (error)
2799 goto out;
2801 /* Unreachable from current root */
2802 if (!path_equal(&tmp, &root)) {
2803 error = prepend_unreachable(&cwd, &buflen);
2804 if (error)
2805 goto out;
2808 error = -ERANGE;
2809 len = PAGE_SIZE + page - cwd;
2810 if (len <= size) {
2811 error = len;
2812 if (copy_to_user(buf, cwd, len))
2813 error = -EFAULT;
2815 } else {
2816 write_sequnlock(&rename_lock);
2819 out:
2820 path_put(&pwd);
2821 path_put(&root);
2822 free_page((unsigned long) page);
2823 return error;
2827 * Test whether new_dentry is a subdirectory of old_dentry.
2829 * Trivially implemented using the dcache structure
2833 * is_subdir - is new dentry a subdirectory of old_dentry
2834 * @new_dentry: new dentry
2835 * @old_dentry: old dentry
2837 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2838 * Returns 0 otherwise.
2839 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2842 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2844 int result;
2845 unsigned seq;
2847 if (new_dentry == old_dentry)
2848 return 1;
2850 do {
2851 /* for restarting inner loop in case of seq retry */
2852 seq = read_seqbegin(&rename_lock);
2854 * Need rcu_readlock to protect against the d_parent trashing
2855 * due to d_move
2857 rcu_read_lock();
2858 if (d_ancestor(old_dentry, new_dentry))
2859 result = 1;
2860 else
2861 result = 0;
2862 rcu_read_unlock();
2863 } while (read_seqretry(&rename_lock, seq));
2865 return result;
2868 int path_is_under(struct path *path1, struct path *path2)
2870 struct vfsmount *mnt = path1->mnt;
2871 struct dentry *dentry = path1->dentry;
2872 int res;
2874 br_read_lock(vfsmount_lock);
2875 if (mnt != path2->mnt) {
2876 for (;;) {
2877 if (mnt->mnt_parent == mnt) {
2878 br_read_unlock(vfsmount_lock);
2879 return 0;
2881 if (mnt->mnt_parent == path2->mnt)
2882 break;
2883 mnt = mnt->mnt_parent;
2885 dentry = mnt->mnt_mountpoint;
2887 res = is_subdir(dentry, path2->dentry);
2888 br_read_unlock(vfsmount_lock);
2889 return res;
2891 EXPORT_SYMBOL(path_is_under);
2893 void d_genocide(struct dentry *root)
2895 struct dentry *this_parent;
2896 struct list_head *next;
2897 unsigned seq;
2898 int locked = 0;
2900 seq = read_seqbegin(&rename_lock);
2901 again:
2902 this_parent = root;
2903 spin_lock(&this_parent->d_lock);
2904 repeat:
2905 next = this_parent->d_subdirs.next;
2906 resume:
2907 while (next != &this_parent->d_subdirs) {
2908 struct list_head *tmp = next;
2909 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2910 next = tmp->next;
2912 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2913 if (d_unhashed(dentry) || !dentry->d_inode) {
2914 spin_unlock(&dentry->d_lock);
2915 continue;
2917 if (!list_empty(&dentry->d_subdirs)) {
2918 spin_unlock(&this_parent->d_lock);
2919 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2920 this_parent = dentry;
2921 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2922 goto repeat;
2924 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2925 dentry->d_flags |= DCACHE_GENOCIDE;
2926 dentry->d_count--;
2928 spin_unlock(&dentry->d_lock);
2930 if (this_parent != root) {
2931 struct dentry *child = this_parent;
2932 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2933 this_parent->d_flags |= DCACHE_GENOCIDE;
2934 this_parent->d_count--;
2936 this_parent = try_to_ascend(this_parent, locked, seq);
2937 if (!this_parent)
2938 goto rename_retry;
2939 next = child->d_u.d_child.next;
2940 goto resume;
2942 spin_unlock(&this_parent->d_lock);
2943 if (!locked && read_seqretry(&rename_lock, seq))
2944 goto rename_retry;
2945 if (locked)
2946 write_sequnlock(&rename_lock);
2947 return;
2949 rename_retry:
2950 locked = 1;
2951 write_seqlock(&rename_lock);
2952 goto again;
2956 * find_inode_number - check for dentry with name
2957 * @dir: directory to check
2958 * @name: Name to find.
2960 * Check whether a dentry already exists for the given name,
2961 * and return the inode number if it has an inode. Otherwise
2962 * 0 is returned.
2964 * This routine is used to post-process directory listings for
2965 * filesystems using synthetic inode numbers, and is necessary
2966 * to keep getcwd() working.
2969 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2971 struct dentry * dentry;
2972 ino_t ino = 0;
2974 dentry = d_hash_and_lookup(dir, name);
2975 if (dentry) {
2976 if (dentry->d_inode)
2977 ino = dentry->d_inode->i_ino;
2978 dput(dentry);
2980 return ino;
2982 EXPORT_SYMBOL(find_inode_number);
2984 static __initdata unsigned long dhash_entries;
2985 static int __init set_dhash_entries(char *str)
2987 if (!str)
2988 return 0;
2989 dhash_entries = simple_strtoul(str, &str, 0);
2990 return 1;
2992 __setup("dhash_entries=", set_dhash_entries);
2994 static void __init dcache_init_early(void)
2996 int loop;
2998 /* If hashes are distributed across NUMA nodes, defer
2999 * hash allocation until vmalloc space is available.
3001 if (hashdist)
3002 return;
3004 dentry_hashtable =
3005 alloc_large_system_hash("Dentry cache",
3006 sizeof(struct hlist_bl_head),
3007 dhash_entries,
3009 HASH_EARLY,
3010 &d_hash_shift,
3011 &d_hash_mask,
3014 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3015 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3018 static void __init dcache_init(void)
3020 int loop;
3023 * A constructor could be added for stable state like the lists,
3024 * but it is probably not worth it because of the cache nature
3025 * of the dcache.
3027 dentry_cache = KMEM_CACHE(dentry,
3028 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3030 register_shrinker(&dcache_shrinker);
3032 /* Hash may have been set up in dcache_init_early */
3033 if (!hashdist)
3034 return;
3036 dentry_hashtable =
3037 alloc_large_system_hash("Dentry cache",
3038 sizeof(struct hlist_bl_head),
3039 dhash_entries,
3042 &d_hash_shift,
3043 &d_hash_mask,
3046 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3047 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3050 /* SLAB cache for __getname() consumers */
3051 struct kmem_cache *names_cachep __read_mostly;
3052 EXPORT_SYMBOL(names_cachep);
3054 EXPORT_SYMBOL(d_genocide);
3056 void __init vfs_caches_init_early(void)
3058 dcache_init_early();
3059 inode_init_early();
3062 void __init vfs_caches_init(unsigned long mempages)
3064 unsigned long reserve;
3066 /* Base hash sizes on available memory, with a reserve equal to
3067 150% of current kernel size */
3069 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3070 mempages -= reserve;
3072 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3073 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3075 dcache_init();
3076 inode_init();
3077 files_init(mempages);
3078 mnt_init();
3079 bdev_cache_init();
3080 chrdev_init();