4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
62 * dentry->d_inode->i_lock
65 * dcache_hash_bucket lock
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
71 * dentry->d_parent->d_lock
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
79 int sysctl_vfs_cache_pressure __read_mostly
= 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
82 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
83 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
85 EXPORT_SYMBOL(rename_lock
);
87 static struct kmem_cache
*dentry_cache __read_mostly
;
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(struct dentry
*parent
,
108 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
109 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
110 return dentry_hashtable
+ (hash
& D_HASHMASK
);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat
= {
118 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
125 for_each_possible_cpu(i
)
126 sum
+= per_cpu(nr_dentry
, i
);
127 return sum
< 0 ? 0 : sum
;
130 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
131 size_t *lenp
, loff_t
*ppos
)
133 dentry_stat
.nr_dentry
= get_nr_dentry();
134 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
138 static void __d_free(struct rcu_head
*head
)
140 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
142 WARN_ON(!list_empty(&dentry
->d_alias
));
143 if (dname_external(dentry
))
144 kfree(dentry
->d_name
.name
);
145 kmem_cache_free(dentry_cache
, dentry
);
151 static void d_free(struct dentry
*dentry
)
153 BUG_ON(dentry
->d_count
);
154 this_cpu_dec(nr_dentry
);
155 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
156 dentry
->d_op
->d_release(dentry
);
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
160 __d_free(&dentry
->d_u
.d_rcu
);
162 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
172 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
174 assert_spin_locked(&dentry
->d_lock
);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry
->d_seq
);
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
184 static void dentry_iput(struct dentry
* dentry
)
185 __releases(dentry
->d_lock
)
186 __releases(dentry
->d_inode
->i_lock
)
188 struct inode
*inode
= dentry
->d_inode
;
190 dentry
->d_inode
= NULL
;
191 list_del_init(&dentry
->d_alias
);
192 spin_unlock(&dentry
->d_lock
);
193 spin_unlock(&inode
->i_lock
);
195 fsnotify_inoderemove(inode
);
196 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
197 dentry
->d_op
->d_iput(dentry
, inode
);
201 spin_unlock(&dentry
->d_lock
);
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
209 static void dentry_unlink_inode(struct dentry
* dentry
)
210 __releases(dentry
->d_lock
)
211 __releases(dentry
->d_inode
->i_lock
)
213 struct inode
*inode
= dentry
->d_inode
;
214 dentry
->d_inode
= NULL
;
215 list_del_init(&dentry
->d_alias
);
216 dentry_rcuwalk_barrier(dentry
);
217 spin_unlock(&dentry
->d_lock
);
218 spin_unlock(&inode
->i_lock
);
220 fsnotify_inoderemove(inode
);
221 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
222 dentry
->d_op
->d_iput(dentry
, inode
);
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
230 static void dentry_lru_add(struct dentry
*dentry
)
232 if (list_empty(&dentry
->d_lru
)) {
233 spin_lock(&dcache_lru_lock
);
234 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
235 dentry
->d_sb
->s_nr_dentry_unused
++;
236 dentry_stat
.nr_unused
++;
237 spin_unlock(&dcache_lru_lock
);
241 static void __dentry_lru_del(struct dentry
*dentry
)
243 list_del_init(&dentry
->d_lru
);
244 dentry
->d_sb
->s_nr_dentry_unused
--;
245 dentry_stat
.nr_unused
--;
248 static void dentry_lru_del(struct dentry
*dentry
)
250 if (!list_empty(&dentry
->d_lru
)) {
251 spin_lock(&dcache_lru_lock
);
252 __dentry_lru_del(dentry
);
253 spin_unlock(&dcache_lru_lock
);
257 static void dentry_lru_move_tail(struct dentry
*dentry
)
259 spin_lock(&dcache_lru_lock
);
260 if (list_empty(&dentry
->d_lru
)) {
261 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
262 dentry
->d_sb
->s_nr_dentry_unused
++;
263 dentry_stat
.nr_unused
++;
265 list_move_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
267 spin_unlock(&dcache_lru_lock
);
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
273 * @parent: parent dentry
275 * The dentry must already be unhashed and removed from the LRU.
277 * If this is the root of the dentry tree, return NULL.
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
282 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
283 __releases(dentry
->d_lock
)
284 __releases(parent
->d_lock
)
285 __releases(dentry
->d_inode
->i_lock
)
287 list_del(&dentry
->d_u
.d_child
);
289 * Inform try_to_ascend() that we are no longer attached to the
292 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
294 spin_unlock(&parent
->d_lock
);
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
305 * d_drop - drop a dentry
306 * @dentry: dentry to drop
308 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309 * be found through a VFS lookup any more. Note that this is different from
310 * deleting the dentry - d_delete will try to mark the dentry negative if
311 * possible, giving a successful _negative_ lookup, while d_drop will
312 * just make the cache lookup fail.
314 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315 * reason (NFS timeouts or autofs deletes).
317 * __d_drop requires dentry->d_lock.
319 void __d_drop(struct dentry
*dentry
)
321 if (!d_unhashed(dentry
)) {
322 struct hlist_bl_head
*b
;
323 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
324 b
= &dentry
->d_sb
->s_anon
;
326 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
329 __hlist_bl_del(&dentry
->d_hash
);
330 dentry
->d_hash
.pprev
= NULL
;
333 dentry_rcuwalk_barrier(dentry
);
336 EXPORT_SYMBOL(__d_drop
);
338 void d_drop(struct dentry
*dentry
)
340 spin_lock(&dentry
->d_lock
);
342 spin_unlock(&dentry
->d_lock
);
344 EXPORT_SYMBOL(d_drop
);
347 * Finish off a dentry we've decided to kill.
348 * dentry->d_lock must be held, returns with it unlocked.
349 * If ref is non-zero, then decrement the refcount too.
350 * Returns dentry requiring refcount drop, or NULL if we're done.
352 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
353 __releases(dentry
->d_lock
)
356 struct dentry
*parent
;
358 inode
= dentry
->d_inode
;
359 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
361 spin_unlock(&dentry
->d_lock
);
363 return dentry
; /* try again with same dentry */
368 parent
= dentry
->d_parent
;
369 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
371 spin_unlock(&inode
->i_lock
);
377 /* if dentry was on the d_lru list delete it from there */
378 dentry_lru_del(dentry
);
379 /* if it was on the hash then remove it */
381 return d_kill(dentry
, parent
);
387 * This is complicated by the fact that we do not want to put
388 * dentries that are no longer on any hash chain on the unused
389 * list: we'd much rather just get rid of them immediately.
391 * However, that implies that we have to traverse the dentry
392 * tree upwards to the parents which might _also_ now be
393 * scheduled for deletion (it may have been only waiting for
394 * its last child to go away).
396 * This tail recursion is done by hand as we don't want to depend
397 * on the compiler to always get this right (gcc generally doesn't).
398 * Real recursion would eat up our stack space.
402 * dput - release a dentry
403 * @dentry: dentry to release
405 * Release a dentry. This will drop the usage count and if appropriate
406 * call the dentry unlink method as well as removing it from the queues and
407 * releasing its resources. If the parent dentries were scheduled for release
408 * they too may now get deleted.
410 void dput(struct dentry
*dentry
)
416 if (dentry
->d_count
== 1)
418 spin_lock(&dentry
->d_lock
);
419 BUG_ON(!dentry
->d_count
);
420 if (dentry
->d_count
> 1) {
422 spin_unlock(&dentry
->d_lock
);
426 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
427 if (dentry
->d_op
->d_delete(dentry
))
431 /* Unreachable? Get rid of it */
432 if (d_unhashed(dentry
))
435 /* Otherwise leave it cached and ensure it's on the LRU */
436 dentry
->d_flags
|= DCACHE_REFERENCED
;
437 dentry_lru_add(dentry
);
440 spin_unlock(&dentry
->d_lock
);
444 dentry
= dentry_kill(dentry
, 1);
451 * d_invalidate - invalidate a dentry
452 * @dentry: dentry to invalidate
454 * Try to invalidate the dentry if it turns out to be
455 * possible. If there are other dentries that can be
456 * reached through this one we can't delete it and we
457 * return -EBUSY. On success we return 0.
462 int d_invalidate(struct dentry
* dentry
)
465 * If it's already been dropped, return OK.
467 spin_lock(&dentry
->d_lock
);
468 if (d_unhashed(dentry
)) {
469 spin_unlock(&dentry
->d_lock
);
473 * Check whether to do a partial shrink_dcache
474 * to get rid of unused child entries.
476 if (!list_empty(&dentry
->d_subdirs
)) {
477 spin_unlock(&dentry
->d_lock
);
478 shrink_dcache_parent(dentry
);
479 spin_lock(&dentry
->d_lock
);
483 * Somebody else still using it?
485 * If it's a directory, we can't drop it
486 * for fear of somebody re-populating it
487 * with children (even though dropping it
488 * would make it unreachable from the root,
489 * we might still populate it if it was a
490 * working directory or similar).
492 if (dentry
->d_count
> 1) {
493 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
494 spin_unlock(&dentry
->d_lock
);
500 spin_unlock(&dentry
->d_lock
);
503 EXPORT_SYMBOL(d_invalidate
);
505 /* This must be called with d_lock held */
506 static inline void __dget_dlock(struct dentry
*dentry
)
511 static inline void __dget(struct dentry
*dentry
)
513 spin_lock(&dentry
->d_lock
);
514 __dget_dlock(dentry
);
515 spin_unlock(&dentry
->d_lock
);
518 struct dentry
*dget_parent(struct dentry
*dentry
)
524 * Don't need rcu_dereference because we re-check it was correct under
528 ret
= dentry
->d_parent
;
533 spin_lock(&ret
->d_lock
);
534 if (unlikely(ret
!= dentry
->d_parent
)) {
535 spin_unlock(&ret
->d_lock
);
540 BUG_ON(!ret
->d_count
);
542 spin_unlock(&ret
->d_lock
);
546 EXPORT_SYMBOL(dget_parent
);
549 * d_find_alias - grab a hashed alias of inode
550 * @inode: inode in question
551 * @want_discon: flag, used by d_splice_alias, to request
552 * that only a DISCONNECTED alias be returned.
554 * If inode has a hashed alias, or is a directory and has any alias,
555 * acquire the reference to alias and return it. Otherwise return NULL.
556 * Notice that if inode is a directory there can be only one alias and
557 * it can be unhashed only if it has no children, or if it is the root
560 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
561 * any other hashed alias over that one unless @want_discon is set,
562 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
564 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
566 struct dentry
*alias
, *discon_alias
;
570 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
571 spin_lock(&alias
->d_lock
);
572 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
573 if (IS_ROOT(alias
) &&
574 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
575 discon_alias
= alias
;
576 } else if (!want_discon
) {
578 spin_unlock(&alias
->d_lock
);
582 spin_unlock(&alias
->d_lock
);
585 alias
= discon_alias
;
586 spin_lock(&alias
->d_lock
);
587 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
588 if (IS_ROOT(alias
) &&
589 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
591 spin_unlock(&alias
->d_lock
);
595 spin_unlock(&alias
->d_lock
);
601 struct dentry
*d_find_alias(struct inode
*inode
)
603 struct dentry
*de
= NULL
;
605 if (!list_empty(&inode
->i_dentry
)) {
606 spin_lock(&inode
->i_lock
);
607 de
= __d_find_alias(inode
, 0);
608 spin_unlock(&inode
->i_lock
);
612 EXPORT_SYMBOL(d_find_alias
);
615 * Try to kill dentries associated with this inode.
616 * WARNING: you must own a reference to inode.
618 void d_prune_aliases(struct inode
*inode
)
620 struct dentry
*dentry
;
622 spin_lock(&inode
->i_lock
);
623 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
624 spin_lock(&dentry
->d_lock
);
625 if (!dentry
->d_count
) {
626 __dget_dlock(dentry
);
628 spin_unlock(&dentry
->d_lock
);
629 spin_unlock(&inode
->i_lock
);
633 spin_unlock(&dentry
->d_lock
);
635 spin_unlock(&inode
->i_lock
);
637 EXPORT_SYMBOL(d_prune_aliases
);
640 * Try to throw away a dentry - free the inode, dput the parent.
641 * Requires dentry->d_lock is held, and dentry->d_count == 0.
642 * Releases dentry->d_lock.
644 * This may fail if locks cannot be acquired no problem, just try again.
646 static void try_prune_one_dentry(struct dentry
*dentry
)
647 __releases(dentry
->d_lock
)
649 struct dentry
*parent
;
651 parent
= dentry_kill(dentry
, 0);
653 * If dentry_kill returns NULL, we have nothing more to do.
654 * if it returns the same dentry, trylocks failed. In either
655 * case, just loop again.
657 * Otherwise, we need to prune ancestors too. This is necessary
658 * to prevent quadratic behavior of shrink_dcache_parent(), but
659 * is also expected to be beneficial in reducing dentry cache
664 if (parent
== dentry
)
667 /* Prune ancestors. */
670 spin_lock(&dentry
->d_lock
);
671 if (dentry
->d_count
> 1) {
673 spin_unlock(&dentry
->d_lock
);
676 dentry
= dentry_kill(dentry
, 1);
680 static void shrink_dentry_list(struct list_head
*list
)
682 struct dentry
*dentry
;
686 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
687 if (&dentry
->d_lru
== list
)
689 spin_lock(&dentry
->d_lock
);
690 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
691 spin_unlock(&dentry
->d_lock
);
696 * We found an inuse dentry which was not removed from
697 * the LRU because of laziness during lookup. Do not free
698 * it - just keep it off the LRU list.
700 if (dentry
->d_count
) {
701 dentry_lru_del(dentry
);
702 spin_unlock(&dentry
->d_lock
);
708 try_prune_one_dentry(dentry
);
716 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
717 * @sb: superblock to shrink dentry LRU.
718 * @count: number of entries to prune
719 * @flags: flags to control the dentry processing
721 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
723 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
725 /* called from prune_dcache() and shrink_dcache_parent() */
726 struct dentry
*dentry
;
727 LIST_HEAD(referenced
);
732 spin_lock(&dcache_lru_lock
);
733 while (!list_empty(&sb
->s_dentry_lru
)) {
734 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
735 struct dentry
, d_lru
);
736 BUG_ON(dentry
->d_sb
!= sb
);
738 if (!spin_trylock(&dentry
->d_lock
)) {
739 spin_unlock(&dcache_lru_lock
);
745 * If we are honouring the DCACHE_REFERENCED flag and the
746 * dentry has this flag set, don't free it. Clear the flag
747 * and put it back on the LRU.
749 if (flags
& DCACHE_REFERENCED
&&
750 dentry
->d_flags
& DCACHE_REFERENCED
) {
751 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
752 list_move(&dentry
->d_lru
, &referenced
);
753 spin_unlock(&dentry
->d_lock
);
755 list_move_tail(&dentry
->d_lru
, &tmp
);
756 spin_unlock(&dentry
->d_lock
);
760 cond_resched_lock(&dcache_lru_lock
);
762 if (!list_empty(&referenced
))
763 list_splice(&referenced
, &sb
->s_dentry_lru
);
764 spin_unlock(&dcache_lru_lock
);
766 shrink_dentry_list(&tmp
);
772 * prune_dcache - shrink the dcache
773 * @count: number of entries to try to free
775 * Shrink the dcache. This is done when we need more memory, or simply when we
776 * need to unmount something (at which point we need to unuse all dentries).
778 * This function may fail to free any resources if all the dentries are in use.
780 static void prune_dcache(int count
)
782 struct super_block
*sb
, *p
= NULL
;
784 int unused
= dentry_stat
.nr_unused
;
788 if (unused
== 0 || count
== 0)
793 prune_ratio
= unused
/ count
;
795 list_for_each_entry(sb
, &super_blocks
, s_list
) {
796 if (list_empty(&sb
->s_instances
))
798 if (sb
->s_nr_dentry_unused
== 0)
801 /* Now, we reclaim unused dentrins with fairness.
802 * We reclaim them same percentage from each superblock.
803 * We calculate number of dentries to scan on this sb
804 * as follows, but the implementation is arranged to avoid
806 * number of dentries to scan on this sb =
807 * count * (number of dentries on this sb /
808 * number of dentries in the machine)
810 spin_unlock(&sb_lock
);
811 if (prune_ratio
!= 1)
812 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
814 w_count
= sb
->s_nr_dentry_unused
;
817 * We need to be sure this filesystem isn't being unmounted,
818 * otherwise we could race with generic_shutdown_super(), and
819 * end up holding a reference to an inode while the filesystem
820 * is unmounted. So we try to get s_umount, and make sure
823 if (down_read_trylock(&sb
->s_umount
)) {
824 if ((sb
->s_root
!= NULL
) &&
825 (!list_empty(&sb
->s_dentry_lru
))) {
826 __shrink_dcache_sb(sb
, &w_count
,
830 up_read(&sb
->s_umount
);
837 /* more work left to do? */
843 spin_unlock(&sb_lock
);
847 * shrink_dcache_sb - shrink dcache for a superblock
850 * Shrink the dcache for the specified super block. This is used to free
851 * the dcache before unmounting a file system.
853 void shrink_dcache_sb(struct super_block
*sb
)
857 spin_lock(&dcache_lru_lock
);
858 while (!list_empty(&sb
->s_dentry_lru
)) {
859 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
860 spin_unlock(&dcache_lru_lock
);
861 shrink_dentry_list(&tmp
);
862 spin_lock(&dcache_lru_lock
);
864 spin_unlock(&dcache_lru_lock
);
866 EXPORT_SYMBOL(shrink_dcache_sb
);
869 * destroy a single subtree of dentries for unmount
870 * - see the comments on shrink_dcache_for_umount() for a description of the
873 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
875 struct dentry
*parent
;
876 unsigned detached
= 0;
878 BUG_ON(!IS_ROOT(dentry
));
880 /* detach this root from the system */
881 spin_lock(&dentry
->d_lock
);
882 dentry_lru_del(dentry
);
884 spin_unlock(&dentry
->d_lock
);
887 /* descend to the first leaf in the current subtree */
888 while (!list_empty(&dentry
->d_subdirs
)) {
891 /* this is a branch with children - detach all of them
892 * from the system in one go */
893 spin_lock(&dentry
->d_lock
);
894 list_for_each_entry(loop
, &dentry
->d_subdirs
,
896 spin_lock_nested(&loop
->d_lock
,
897 DENTRY_D_LOCK_NESTED
);
898 dentry_lru_del(loop
);
900 spin_unlock(&loop
->d_lock
);
902 spin_unlock(&dentry
->d_lock
);
904 /* move to the first child */
905 dentry
= list_entry(dentry
->d_subdirs
.next
,
906 struct dentry
, d_u
.d_child
);
909 /* consume the dentries from this leaf up through its parents
910 * until we find one with children or run out altogether */
914 if (dentry
->d_count
!= 0) {
916 "BUG: Dentry %p{i=%lx,n=%s}"
918 " [unmount of %s %s]\n",
921 dentry
->d_inode
->i_ino
: 0UL,
924 dentry
->d_sb
->s_type
->name
,
929 if (IS_ROOT(dentry
)) {
931 list_del(&dentry
->d_u
.d_child
);
933 parent
= dentry
->d_parent
;
934 spin_lock(&parent
->d_lock
);
936 list_del(&dentry
->d_u
.d_child
);
937 spin_unlock(&parent
->d_lock
);
942 inode
= dentry
->d_inode
;
944 dentry
->d_inode
= NULL
;
945 list_del_init(&dentry
->d_alias
);
946 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
947 dentry
->d_op
->d_iput(dentry
, inode
);
954 /* finished when we fall off the top of the tree,
955 * otherwise we ascend to the parent and move to the
956 * next sibling if there is one */
960 } while (list_empty(&dentry
->d_subdirs
));
962 dentry
= list_entry(dentry
->d_subdirs
.next
,
963 struct dentry
, d_u
.d_child
);
968 * destroy the dentries attached to a superblock on unmounting
969 * - we don't need to use dentry->d_lock because:
970 * - the superblock is detached from all mountings and open files, so the
971 * dentry trees will not be rearranged by the VFS
972 * - s_umount is write-locked, so the memory pressure shrinker will ignore
973 * any dentries belonging to this superblock that it comes across
974 * - the filesystem itself is no longer permitted to rearrange the dentries
977 void shrink_dcache_for_umount(struct super_block
*sb
)
979 struct dentry
*dentry
;
981 if (down_read_trylock(&sb
->s_umount
))
986 spin_lock(&dentry
->d_lock
);
988 spin_unlock(&dentry
->d_lock
);
989 shrink_dcache_for_umount_subtree(dentry
);
991 while (!hlist_bl_empty(&sb
->s_anon
)) {
992 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
993 shrink_dcache_for_umount_subtree(dentry
);
998 * This tries to ascend one level of parenthood, but
999 * we can race with renaming, so we need to re-check
1000 * the parenthood after dropping the lock and check
1001 * that the sequence number still matches.
1003 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
1005 struct dentry
*new = old
->d_parent
;
1008 spin_unlock(&old
->d_lock
);
1009 spin_lock(&new->d_lock
);
1012 * might go back up the wrong parent if we have had a rename
1015 if (new != old
->d_parent
||
1016 (old
->d_flags
& DCACHE_DISCONNECTED
) ||
1017 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
1018 spin_unlock(&new->d_lock
);
1027 * Search for at least 1 mount point in the dentry's subdirs.
1028 * We descend to the next level whenever the d_subdirs
1029 * list is non-empty and continue searching.
1033 * have_submounts - check for mounts over a dentry
1034 * @parent: dentry to check.
1036 * Return true if the parent or its subdirectories contain
1039 int have_submounts(struct dentry
*parent
)
1041 struct dentry
*this_parent
;
1042 struct list_head
*next
;
1046 seq
= read_seqbegin(&rename_lock
);
1048 this_parent
= parent
;
1050 if (d_mountpoint(parent
))
1052 spin_lock(&this_parent
->d_lock
);
1054 next
= this_parent
->d_subdirs
.next
;
1056 while (next
!= &this_parent
->d_subdirs
) {
1057 struct list_head
*tmp
= next
;
1058 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1061 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1062 /* Have we found a mount point ? */
1063 if (d_mountpoint(dentry
)) {
1064 spin_unlock(&dentry
->d_lock
);
1065 spin_unlock(&this_parent
->d_lock
);
1068 if (!list_empty(&dentry
->d_subdirs
)) {
1069 spin_unlock(&this_parent
->d_lock
);
1070 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1071 this_parent
= dentry
;
1072 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1075 spin_unlock(&dentry
->d_lock
);
1078 * All done at this level ... ascend and resume the search.
1080 if (this_parent
!= parent
) {
1081 struct dentry
*child
= this_parent
;
1082 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1085 next
= child
->d_u
.d_child
.next
;
1088 spin_unlock(&this_parent
->d_lock
);
1089 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1092 write_sequnlock(&rename_lock
);
1093 return 0; /* No mount points found in tree */
1095 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1098 write_sequnlock(&rename_lock
);
1103 write_seqlock(&rename_lock
);
1106 EXPORT_SYMBOL(have_submounts
);
1109 * Search the dentry child list for the specified parent,
1110 * and move any unused dentries to the end of the unused
1111 * list for prune_dcache(). We descend to the next level
1112 * whenever the d_subdirs list is non-empty and continue
1115 * It returns zero iff there are no unused children,
1116 * otherwise it returns the number of children moved to
1117 * the end of the unused list. This may not be the total
1118 * number of unused children, because select_parent can
1119 * drop the lock and return early due to latency
1122 static int select_parent(struct dentry
* parent
)
1124 struct dentry
*this_parent
;
1125 struct list_head
*next
;
1130 seq
= read_seqbegin(&rename_lock
);
1132 this_parent
= parent
;
1133 spin_lock(&this_parent
->d_lock
);
1135 next
= this_parent
->d_subdirs
.next
;
1137 while (next
!= &this_parent
->d_subdirs
) {
1138 struct list_head
*tmp
= next
;
1139 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1142 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1145 * move only zero ref count dentries to the end
1146 * of the unused list for prune_dcache
1148 if (!dentry
->d_count
) {
1149 dentry_lru_move_tail(dentry
);
1152 dentry_lru_del(dentry
);
1156 * We can return to the caller if we have found some (this
1157 * ensures forward progress). We'll be coming back to find
1160 if (found
&& need_resched()) {
1161 spin_unlock(&dentry
->d_lock
);
1166 * Descend a level if the d_subdirs list is non-empty.
1168 if (!list_empty(&dentry
->d_subdirs
)) {
1169 spin_unlock(&this_parent
->d_lock
);
1170 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1171 this_parent
= dentry
;
1172 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1176 spin_unlock(&dentry
->d_lock
);
1179 * All done at this level ... ascend and resume the search.
1181 if (this_parent
!= parent
) {
1182 struct dentry
*child
= this_parent
;
1183 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1186 next
= child
->d_u
.d_child
.next
;
1190 spin_unlock(&this_parent
->d_lock
);
1191 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1194 write_sequnlock(&rename_lock
);
1201 write_seqlock(&rename_lock
);
1206 * shrink_dcache_parent - prune dcache
1207 * @parent: parent of entries to prune
1209 * Prune the dcache to remove unused children of the parent dentry.
1212 void shrink_dcache_parent(struct dentry
* parent
)
1214 struct super_block
*sb
= parent
->d_sb
;
1217 while ((found
= select_parent(parent
)) != 0)
1218 __shrink_dcache_sb(sb
, &found
, 0);
1220 EXPORT_SYMBOL(shrink_dcache_parent
);
1223 * Scan `nr' dentries and return the number which remain.
1225 * We need to avoid reentering the filesystem if the caller is performing a
1226 * GFP_NOFS allocation attempt. One example deadlock is:
1228 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1229 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1230 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1232 * In this case we return -1 to tell the caller that we baled.
1234 static int shrink_dcache_memory(struct shrinker
*shrink
, int nr
, gfp_t gfp_mask
)
1237 if (!(gfp_mask
& __GFP_FS
))
1242 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
1245 static struct shrinker dcache_shrinker
= {
1246 .shrink
= shrink_dcache_memory
,
1247 .seeks
= DEFAULT_SEEKS
,
1251 * d_alloc - allocate a dcache entry
1252 * @parent: parent of entry to allocate
1253 * @name: qstr of the name
1255 * Allocates a dentry. It returns %NULL if there is insufficient memory
1256 * available. On a success the dentry is returned. The name passed in is
1257 * copied and the copy passed in may be reused after this call.
1260 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1262 struct dentry
*dentry
;
1265 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1269 if (name
->len
> DNAME_INLINE_LEN
-1) {
1270 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1272 kmem_cache_free(dentry_cache
, dentry
);
1276 dname
= dentry
->d_iname
;
1278 dentry
->d_name
.name
= dname
;
1280 dentry
->d_name
.len
= name
->len
;
1281 dentry
->d_name
.hash
= name
->hash
;
1282 memcpy(dname
, name
->name
, name
->len
);
1283 dname
[name
->len
] = 0;
1285 dentry
->d_count
= 1;
1286 dentry
->d_flags
= 0;
1287 spin_lock_init(&dentry
->d_lock
);
1288 seqcount_init(&dentry
->d_seq
);
1289 dentry
->d_inode
= NULL
;
1290 dentry
->d_parent
= NULL
;
1291 dentry
->d_sb
= NULL
;
1292 dentry
->d_op
= NULL
;
1293 dentry
->d_fsdata
= NULL
;
1294 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1295 INIT_LIST_HEAD(&dentry
->d_lru
);
1296 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1297 INIT_LIST_HEAD(&dentry
->d_alias
);
1298 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1301 spin_lock(&parent
->d_lock
);
1303 * don't need child lock because it is not subject
1304 * to concurrency here
1306 __dget_dlock(parent
);
1307 dentry
->d_parent
= parent
;
1308 dentry
->d_sb
= parent
->d_sb
;
1309 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1310 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1311 spin_unlock(&parent
->d_lock
);
1314 this_cpu_inc(nr_dentry
);
1318 EXPORT_SYMBOL(d_alloc
);
1320 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1322 struct dentry
*dentry
= d_alloc(NULL
, name
);
1325 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1326 dentry
->d_parent
= dentry
;
1327 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1331 EXPORT_SYMBOL(d_alloc_pseudo
);
1333 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1338 q
.len
= strlen(name
);
1339 q
.hash
= full_name_hash(q
.name
, q
.len
);
1340 return d_alloc(parent
, &q
);
1342 EXPORT_SYMBOL(d_alloc_name
);
1344 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1346 WARN_ON_ONCE(dentry
->d_op
);
1347 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1349 DCACHE_OP_REVALIDATE
|
1350 DCACHE_OP_DELETE
));
1355 dentry
->d_flags
|= DCACHE_OP_HASH
;
1357 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1358 if (op
->d_revalidate
)
1359 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1361 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1364 EXPORT_SYMBOL(d_set_d_op
);
1366 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1368 spin_lock(&dentry
->d_lock
);
1370 if (unlikely(IS_AUTOMOUNT(inode
)))
1371 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1372 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1374 dentry
->d_inode
= inode
;
1375 dentry_rcuwalk_barrier(dentry
);
1376 spin_unlock(&dentry
->d_lock
);
1377 fsnotify_d_instantiate(dentry
, inode
);
1381 * d_instantiate - fill in inode information for a dentry
1382 * @entry: dentry to complete
1383 * @inode: inode to attach to this dentry
1385 * Fill in inode information in the entry.
1387 * This turns negative dentries into productive full members
1390 * NOTE! This assumes that the inode count has been incremented
1391 * (or otherwise set) by the caller to indicate that it is now
1392 * in use by the dcache.
1395 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1397 BUG_ON(!list_empty(&entry
->d_alias
));
1399 spin_lock(&inode
->i_lock
);
1400 __d_instantiate(entry
, inode
);
1402 spin_unlock(&inode
->i_lock
);
1403 security_d_instantiate(entry
, inode
);
1405 EXPORT_SYMBOL(d_instantiate
);
1408 * d_instantiate_unique - instantiate a non-aliased dentry
1409 * @entry: dentry to instantiate
1410 * @inode: inode to attach to this dentry
1412 * Fill in inode information in the entry. On success, it returns NULL.
1413 * If an unhashed alias of "entry" already exists, then we return the
1414 * aliased dentry instead and drop one reference to inode.
1416 * Note that in order to avoid conflicts with rename() etc, the caller
1417 * had better be holding the parent directory semaphore.
1419 * This also assumes that the inode count has been incremented
1420 * (or otherwise set) by the caller to indicate that it is now
1421 * in use by the dcache.
1423 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1424 struct inode
*inode
)
1426 struct dentry
*alias
;
1427 int len
= entry
->d_name
.len
;
1428 const char *name
= entry
->d_name
.name
;
1429 unsigned int hash
= entry
->d_name
.hash
;
1432 __d_instantiate(entry
, NULL
);
1436 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1437 struct qstr
*qstr
= &alias
->d_name
;
1440 * Don't need alias->d_lock here, because aliases with
1441 * d_parent == entry->d_parent are not subject to name or
1442 * parent changes, because the parent inode i_mutex is held.
1444 if (qstr
->hash
!= hash
)
1446 if (alias
->d_parent
!= entry
->d_parent
)
1448 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1454 __d_instantiate(entry
, inode
);
1458 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1460 struct dentry
*result
;
1462 BUG_ON(!list_empty(&entry
->d_alias
));
1465 spin_lock(&inode
->i_lock
);
1466 result
= __d_instantiate_unique(entry
, inode
);
1468 spin_unlock(&inode
->i_lock
);
1471 security_d_instantiate(entry
, inode
);
1475 BUG_ON(!d_unhashed(result
));
1480 EXPORT_SYMBOL(d_instantiate_unique
);
1483 * d_alloc_root - allocate root dentry
1484 * @root_inode: inode to allocate the root for
1486 * Allocate a root ("/") dentry for the inode given. The inode is
1487 * instantiated and returned. %NULL is returned if there is insufficient
1488 * memory or the inode passed is %NULL.
1491 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1493 struct dentry
*res
= NULL
;
1496 static const struct qstr name
= { .name
= "/", .len
= 1 };
1498 res
= d_alloc(NULL
, &name
);
1500 res
->d_sb
= root_inode
->i_sb
;
1501 d_set_d_op(res
, res
->d_sb
->s_d_op
);
1502 res
->d_parent
= res
;
1503 d_instantiate(res
, root_inode
);
1508 EXPORT_SYMBOL(d_alloc_root
);
1510 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1512 struct dentry
*alias
;
1514 if (list_empty(&inode
->i_dentry
))
1516 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_alias
);
1521 static struct dentry
* d_find_any_alias(struct inode
*inode
)
1525 spin_lock(&inode
->i_lock
);
1526 de
= __d_find_any_alias(inode
);
1527 spin_unlock(&inode
->i_lock
);
1533 * d_obtain_alias - find or allocate a dentry for a given inode
1534 * @inode: inode to allocate the dentry for
1536 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1537 * similar open by handle operations. The returned dentry may be anonymous,
1538 * or may have a full name (if the inode was already in the cache).
1540 * When called on a directory inode, we must ensure that the inode only ever
1541 * has one dentry. If a dentry is found, that is returned instead of
1542 * allocating a new one.
1544 * On successful return, the reference to the inode has been transferred
1545 * to the dentry. In case of an error the reference on the inode is released.
1546 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1547 * be passed in and will be the error will be propagate to the return value,
1548 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1550 struct dentry
*d_obtain_alias(struct inode
*inode
)
1552 static const struct qstr anonstring
= { .name
= "" };
1557 return ERR_PTR(-ESTALE
);
1559 return ERR_CAST(inode
);
1561 res
= d_find_any_alias(inode
);
1565 tmp
= d_alloc(NULL
, &anonstring
);
1567 res
= ERR_PTR(-ENOMEM
);
1570 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1573 spin_lock(&inode
->i_lock
);
1574 res
= __d_find_any_alias(inode
);
1576 spin_unlock(&inode
->i_lock
);
1581 /* attach a disconnected dentry */
1582 spin_lock(&tmp
->d_lock
);
1583 tmp
->d_sb
= inode
->i_sb
;
1584 d_set_d_op(tmp
, tmp
->d_sb
->s_d_op
);
1585 tmp
->d_inode
= inode
;
1586 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1587 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1588 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1589 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1590 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1591 spin_unlock(&tmp
->d_lock
);
1592 spin_unlock(&inode
->i_lock
);
1593 security_d_instantiate(tmp
, inode
);
1598 if (res
&& !IS_ERR(res
))
1599 security_d_instantiate(res
, inode
);
1603 EXPORT_SYMBOL(d_obtain_alias
);
1606 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1607 * @inode: the inode which may have a disconnected dentry
1608 * @dentry: a negative dentry which we want to point to the inode.
1610 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1611 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1612 * and return it, else simply d_add the inode to the dentry and return NULL.
1614 * This is needed in the lookup routine of any filesystem that is exportable
1615 * (via knfsd) so that we can build dcache paths to directories effectively.
1617 * If a dentry was found and moved, then it is returned. Otherwise NULL
1618 * is returned. This matches the expected return value of ->lookup.
1621 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1623 struct dentry
*new = NULL
;
1625 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1626 spin_lock(&inode
->i_lock
);
1627 new = __d_find_alias(inode
, 1);
1629 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1630 spin_unlock(&inode
->i_lock
);
1631 security_d_instantiate(new, inode
);
1632 d_move(new, dentry
);
1635 /* already taking inode->i_lock, so d_add() by hand */
1636 __d_instantiate(dentry
, inode
);
1637 spin_unlock(&inode
->i_lock
);
1638 security_d_instantiate(dentry
, inode
);
1642 d_add(dentry
, inode
);
1645 EXPORT_SYMBOL(d_splice_alias
);
1648 * d_add_ci - lookup or allocate new dentry with case-exact name
1649 * @inode: the inode case-insensitive lookup has found
1650 * @dentry: the negative dentry that was passed to the parent's lookup func
1651 * @name: the case-exact name to be associated with the returned dentry
1653 * This is to avoid filling the dcache with case-insensitive names to the
1654 * same inode, only the actual correct case is stored in the dcache for
1655 * case-insensitive filesystems.
1657 * For a case-insensitive lookup match and if the the case-exact dentry
1658 * already exists in in the dcache, use it and return it.
1660 * If no entry exists with the exact case name, allocate new dentry with
1661 * the exact case, and return the spliced entry.
1663 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1667 struct dentry
*found
;
1671 * First check if a dentry matching the name already exists,
1672 * if not go ahead and create it now.
1674 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1676 new = d_alloc(dentry
->d_parent
, name
);
1682 found
= d_splice_alias(inode
, new);
1691 * If a matching dentry exists, and it's not negative use it.
1693 * Decrement the reference count to balance the iget() done
1696 if (found
->d_inode
) {
1697 if (unlikely(found
->d_inode
!= inode
)) {
1698 /* This can't happen because bad inodes are unhashed. */
1699 BUG_ON(!is_bad_inode(inode
));
1700 BUG_ON(!is_bad_inode(found
->d_inode
));
1707 * Negative dentry: instantiate it unless the inode is a directory and
1708 * already has a dentry.
1710 spin_lock(&inode
->i_lock
);
1711 if (!S_ISDIR(inode
->i_mode
) || list_empty(&inode
->i_dentry
)) {
1712 __d_instantiate(found
, inode
);
1713 spin_unlock(&inode
->i_lock
);
1714 security_d_instantiate(found
, inode
);
1719 * In case a directory already has a (disconnected) entry grab a
1720 * reference to it, move it in place and use it.
1722 new = list_entry(inode
->i_dentry
.next
, struct dentry
, d_alias
);
1724 spin_unlock(&inode
->i_lock
);
1725 security_d_instantiate(found
, inode
);
1733 return ERR_PTR(error
);
1735 EXPORT_SYMBOL(d_add_ci
);
1738 * __d_lookup_rcu - search for a dentry (racy, store-free)
1739 * @parent: parent dentry
1740 * @name: qstr of name we wish to find
1741 * @seq: returns d_seq value at the point where the dentry was found
1742 * @inode: returns dentry->d_inode when the inode was found valid.
1743 * Returns: dentry, or NULL
1745 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1746 * resolution (store-free path walking) design described in
1747 * Documentation/filesystems/path-lookup.txt.
1749 * This is not to be used outside core vfs.
1751 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1752 * held, and rcu_read_lock held. The returned dentry must not be stored into
1753 * without taking d_lock and checking d_seq sequence count against @seq
1756 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1759 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1760 * the returned dentry, so long as its parent's seqlock is checked after the
1761 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1762 * is formed, giving integrity down the path walk.
1764 struct dentry
*__d_lookup_rcu(struct dentry
*parent
, struct qstr
*name
,
1765 unsigned *seq
, struct inode
**inode
)
1767 unsigned int len
= name
->len
;
1768 unsigned int hash
= name
->hash
;
1769 const unsigned char *str
= name
->name
;
1770 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1771 struct hlist_bl_node
*node
;
1772 struct dentry
*dentry
;
1775 * Note: There is significant duplication with __d_lookup_rcu which is
1776 * required to prevent single threaded performance regressions
1777 * especially on architectures where smp_rmb (in seqcounts) are costly.
1778 * Keep the two functions in sync.
1782 * The hash list is protected using RCU.
1784 * Carefully use d_seq when comparing a candidate dentry, to avoid
1785 * races with d_move().
1787 * It is possible that concurrent renames can mess up our list
1788 * walk here and result in missing our dentry, resulting in the
1789 * false-negative result. d_lookup() protects against concurrent
1790 * renames using rename_lock seqlock.
1792 * See Documentation/filesystems/path-lookup.txt for more details.
1794 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1799 if (dentry
->d_name
.hash
!= hash
)
1803 *seq
= read_seqcount_begin(&dentry
->d_seq
);
1804 if (dentry
->d_parent
!= parent
)
1806 if (d_unhashed(dentry
))
1808 tlen
= dentry
->d_name
.len
;
1809 tname
= dentry
->d_name
.name
;
1810 i
= dentry
->d_inode
;
1815 * This seqcount check is required to ensure name and
1816 * len are loaded atomically, so as not to walk off the
1817 * edge of memory when walking. If we could load this
1818 * atomically some other way, we could drop this check.
1820 if (read_seqcount_retry(&dentry
->d_seq
, *seq
))
1822 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1823 if (parent
->d_op
->d_compare(parent
, *inode
,
1828 if (dentry_cmp(tname
, tlen
, str
, len
))
1832 * No extra seqcount check is required after the name
1833 * compare. The caller must perform a seqcount check in
1834 * order to do anything useful with the returned dentry
1844 * d_lookup - search for a dentry
1845 * @parent: parent dentry
1846 * @name: qstr of name we wish to find
1847 * Returns: dentry, or NULL
1849 * d_lookup searches the children of the parent dentry for the name in
1850 * question. If the dentry is found its reference count is incremented and the
1851 * dentry is returned. The caller must use dput to free the entry when it has
1852 * finished using it. %NULL is returned if the dentry does not exist.
1854 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1856 struct dentry
*dentry
;
1860 seq
= read_seqbegin(&rename_lock
);
1861 dentry
= __d_lookup(parent
, name
);
1864 } while (read_seqretry(&rename_lock
, seq
));
1867 EXPORT_SYMBOL(d_lookup
);
1870 * __d_lookup - search for a dentry (racy)
1871 * @parent: parent dentry
1872 * @name: qstr of name we wish to find
1873 * Returns: dentry, or NULL
1875 * __d_lookup is like d_lookup, however it may (rarely) return a
1876 * false-negative result due to unrelated rename activity.
1878 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1879 * however it must be used carefully, eg. with a following d_lookup in
1880 * the case of failure.
1882 * __d_lookup callers must be commented.
1884 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1886 unsigned int len
= name
->len
;
1887 unsigned int hash
= name
->hash
;
1888 const unsigned char *str
= name
->name
;
1889 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1890 struct hlist_bl_node
*node
;
1891 struct dentry
*found
= NULL
;
1892 struct dentry
*dentry
;
1895 * Note: There is significant duplication with __d_lookup_rcu which is
1896 * required to prevent single threaded performance regressions
1897 * especially on architectures where smp_rmb (in seqcounts) are costly.
1898 * Keep the two functions in sync.
1902 * The hash list is protected using RCU.
1904 * Take d_lock when comparing a candidate dentry, to avoid races
1907 * It is possible that concurrent renames can mess up our list
1908 * walk here and result in missing our dentry, resulting in the
1909 * false-negative result. d_lookup() protects against concurrent
1910 * renames using rename_lock seqlock.
1912 * See Documentation/filesystems/path-lookup.txt for more details.
1916 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1920 if (dentry
->d_name
.hash
!= hash
)
1923 spin_lock(&dentry
->d_lock
);
1924 if (dentry
->d_parent
!= parent
)
1926 if (d_unhashed(dentry
))
1930 * It is safe to compare names since d_move() cannot
1931 * change the qstr (protected by d_lock).
1933 tlen
= dentry
->d_name
.len
;
1934 tname
= dentry
->d_name
.name
;
1935 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1936 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1937 dentry
, dentry
->d_inode
,
1941 if (dentry_cmp(tname
, tlen
, str
, len
))
1947 spin_unlock(&dentry
->d_lock
);
1950 spin_unlock(&dentry
->d_lock
);
1958 * d_hash_and_lookup - hash the qstr then search for a dentry
1959 * @dir: Directory to search in
1960 * @name: qstr of name we wish to find
1962 * On hash failure or on lookup failure NULL is returned.
1964 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1966 struct dentry
*dentry
= NULL
;
1969 * Check for a fs-specific hash function. Note that we must
1970 * calculate the standard hash first, as the d_op->d_hash()
1971 * routine may choose to leave the hash value unchanged.
1973 name
->hash
= full_name_hash(name
->name
, name
->len
);
1974 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1975 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1978 dentry
= d_lookup(dir
, name
);
1984 * d_validate - verify dentry provided from insecure source (deprecated)
1985 * @dentry: The dentry alleged to be valid child of @dparent
1986 * @dparent: The parent dentry (known to be valid)
1988 * An insecure source has sent us a dentry, here we verify it and dget() it.
1989 * This is used by ncpfs in its readdir implementation.
1990 * Zero is returned in the dentry is invalid.
1992 * This function is slow for big directories, and deprecated, do not use it.
1994 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1996 struct dentry
*child
;
1998 spin_lock(&dparent
->d_lock
);
1999 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2000 if (dentry
== child
) {
2001 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2002 __dget_dlock(dentry
);
2003 spin_unlock(&dentry
->d_lock
);
2004 spin_unlock(&dparent
->d_lock
);
2008 spin_unlock(&dparent
->d_lock
);
2012 EXPORT_SYMBOL(d_validate
);
2015 * When a file is deleted, we have two options:
2016 * - turn this dentry into a negative dentry
2017 * - unhash this dentry and free it.
2019 * Usually, we want to just turn this into
2020 * a negative dentry, but if anybody else is
2021 * currently using the dentry or the inode
2022 * we can't do that and we fall back on removing
2023 * it from the hash queues and waiting for
2024 * it to be deleted later when it has no users
2028 * d_delete - delete a dentry
2029 * @dentry: The dentry to delete
2031 * Turn the dentry into a negative dentry if possible, otherwise
2032 * remove it from the hash queues so it can be deleted later
2035 void d_delete(struct dentry
* dentry
)
2037 struct inode
*inode
;
2040 * Are we the only user?
2043 spin_lock(&dentry
->d_lock
);
2044 inode
= dentry
->d_inode
;
2045 isdir
= S_ISDIR(inode
->i_mode
);
2046 if (dentry
->d_count
== 1) {
2047 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
2048 spin_unlock(&dentry
->d_lock
);
2052 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2053 dentry_unlink_inode(dentry
);
2054 fsnotify_nameremove(dentry
, isdir
);
2058 if (!d_unhashed(dentry
))
2061 spin_unlock(&dentry
->d_lock
);
2063 fsnotify_nameremove(dentry
, isdir
);
2065 EXPORT_SYMBOL(d_delete
);
2067 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2069 BUG_ON(!d_unhashed(entry
));
2071 entry
->d_flags
|= DCACHE_RCUACCESS
;
2072 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2076 static void _d_rehash(struct dentry
* entry
)
2078 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2082 * d_rehash - add an entry back to the hash
2083 * @entry: dentry to add to the hash
2085 * Adds a dentry to the hash according to its name.
2088 void d_rehash(struct dentry
* entry
)
2090 spin_lock(&entry
->d_lock
);
2092 spin_unlock(&entry
->d_lock
);
2094 EXPORT_SYMBOL(d_rehash
);
2097 * dentry_update_name_case - update case insensitive dentry with a new name
2098 * @dentry: dentry to be updated
2101 * Update a case insensitive dentry with new case of name.
2103 * dentry must have been returned by d_lookup with name @name. Old and new
2104 * name lengths must match (ie. no d_compare which allows mismatched name
2107 * Parent inode i_mutex must be held over d_lookup and into this call (to
2108 * keep renames and concurrent inserts, and readdir(2) away).
2110 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2112 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2113 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2115 spin_lock(&dentry
->d_lock
);
2116 write_seqcount_begin(&dentry
->d_seq
);
2117 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2118 write_seqcount_end(&dentry
->d_seq
);
2119 spin_unlock(&dentry
->d_lock
);
2121 EXPORT_SYMBOL(dentry_update_name_case
);
2123 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2125 if (dname_external(target
)) {
2126 if (dname_external(dentry
)) {
2128 * Both external: swap the pointers
2130 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2133 * dentry:internal, target:external. Steal target's
2134 * storage and make target internal.
2136 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2137 dentry
->d_name
.len
+ 1);
2138 dentry
->d_name
.name
= target
->d_name
.name
;
2139 target
->d_name
.name
= target
->d_iname
;
2142 if (dname_external(dentry
)) {
2144 * dentry:external, target:internal. Give dentry's
2145 * storage to target and make dentry internal
2147 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2148 target
->d_name
.len
+ 1);
2149 target
->d_name
.name
= dentry
->d_name
.name
;
2150 dentry
->d_name
.name
= dentry
->d_iname
;
2153 * Both are internal. Just copy target to dentry
2155 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2156 target
->d_name
.len
+ 1);
2157 dentry
->d_name
.len
= target
->d_name
.len
;
2161 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2164 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2167 * XXXX: do we really need to take target->d_lock?
2169 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2170 spin_lock(&target
->d_parent
->d_lock
);
2172 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2173 spin_lock(&dentry
->d_parent
->d_lock
);
2174 spin_lock_nested(&target
->d_parent
->d_lock
,
2175 DENTRY_D_LOCK_NESTED
);
2177 spin_lock(&target
->d_parent
->d_lock
);
2178 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2179 DENTRY_D_LOCK_NESTED
);
2182 if (target
< dentry
) {
2183 spin_lock_nested(&target
->d_lock
, 2);
2184 spin_lock_nested(&dentry
->d_lock
, 3);
2186 spin_lock_nested(&dentry
->d_lock
, 2);
2187 spin_lock_nested(&target
->d_lock
, 3);
2191 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2192 struct dentry
*target
)
2194 if (target
->d_parent
!= dentry
->d_parent
)
2195 spin_unlock(&dentry
->d_parent
->d_lock
);
2196 if (target
->d_parent
!= target
)
2197 spin_unlock(&target
->d_parent
->d_lock
);
2201 * When switching names, the actual string doesn't strictly have to
2202 * be preserved in the target - because we're dropping the target
2203 * anyway. As such, we can just do a simple memcpy() to copy over
2204 * the new name before we switch.
2206 * Note that we have to be a lot more careful about getting the hash
2207 * switched - we have to switch the hash value properly even if it
2208 * then no longer matches the actual (corrupted) string of the target.
2209 * The hash value has to match the hash queue that the dentry is on..
2212 * d_move - move a dentry
2213 * @dentry: entry to move
2214 * @target: new dentry
2216 * Update the dcache to reflect the move of a file name. Negative
2217 * dcache entries should not be moved in this way.
2219 void d_move(struct dentry
* dentry
, struct dentry
* target
)
2221 if (!dentry
->d_inode
)
2222 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2224 BUG_ON(d_ancestor(dentry
, target
));
2225 BUG_ON(d_ancestor(target
, dentry
));
2227 write_seqlock(&rename_lock
);
2229 dentry_lock_for_move(dentry
, target
);
2231 write_seqcount_begin(&dentry
->d_seq
);
2232 write_seqcount_begin(&target
->d_seq
);
2234 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2237 * Move the dentry to the target hash queue. Don't bother checking
2238 * for the same hash queue because of how unlikely it is.
2241 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2243 /* Unhash the target: dput() will then get rid of it */
2246 list_del(&dentry
->d_u
.d_child
);
2247 list_del(&target
->d_u
.d_child
);
2249 /* Switch the names.. */
2250 switch_names(dentry
, target
);
2251 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2253 /* ... and switch the parents */
2254 if (IS_ROOT(dentry
)) {
2255 dentry
->d_parent
= target
->d_parent
;
2256 target
->d_parent
= target
;
2257 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2259 swap(dentry
->d_parent
, target
->d_parent
);
2261 /* And add them back to the (new) parent lists */
2262 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2265 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2267 write_seqcount_end(&target
->d_seq
);
2268 write_seqcount_end(&dentry
->d_seq
);
2270 dentry_unlock_parents_for_move(dentry
, target
);
2271 spin_unlock(&target
->d_lock
);
2272 fsnotify_d_move(dentry
);
2273 spin_unlock(&dentry
->d_lock
);
2274 write_sequnlock(&rename_lock
);
2276 EXPORT_SYMBOL(d_move
);
2279 * d_ancestor - search for an ancestor
2280 * @p1: ancestor dentry
2283 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2284 * an ancestor of p2, else NULL.
2286 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2290 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2291 if (p
->d_parent
== p1
)
2298 * This helper attempts to cope with remotely renamed directories
2300 * It assumes that the caller is already holding
2301 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2303 * Note: If ever the locking in lock_rename() changes, then please
2304 * remember to update this too...
2306 static struct dentry
*__d_unalias(struct inode
*inode
,
2307 struct dentry
*dentry
, struct dentry
*alias
)
2309 struct mutex
*m1
= NULL
, *m2
= NULL
;
2312 /* If alias and dentry share a parent, then no extra locks required */
2313 if (alias
->d_parent
== dentry
->d_parent
)
2316 /* Check for loops */
2317 ret
= ERR_PTR(-ELOOP
);
2318 if (d_ancestor(alias
, dentry
))
2321 /* See lock_rename() */
2322 ret
= ERR_PTR(-EBUSY
);
2323 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2325 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2326 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2328 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2330 d_move(alias
, dentry
);
2333 spin_unlock(&inode
->i_lock
);
2342 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2343 * named dentry in place of the dentry to be replaced.
2344 * returns with anon->d_lock held!
2346 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2348 struct dentry
*dparent
, *aparent
;
2350 dentry_lock_for_move(anon
, dentry
);
2352 write_seqcount_begin(&dentry
->d_seq
);
2353 write_seqcount_begin(&anon
->d_seq
);
2355 dparent
= dentry
->d_parent
;
2356 aparent
= anon
->d_parent
;
2358 switch_names(dentry
, anon
);
2359 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2361 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2362 list_del(&dentry
->d_u
.d_child
);
2363 if (!IS_ROOT(dentry
))
2364 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2366 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2368 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2369 list_del(&anon
->d_u
.d_child
);
2371 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2373 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2375 write_seqcount_end(&dentry
->d_seq
);
2376 write_seqcount_end(&anon
->d_seq
);
2378 dentry_unlock_parents_for_move(anon
, dentry
);
2379 spin_unlock(&dentry
->d_lock
);
2381 /* anon->d_lock still locked, returns locked */
2382 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2386 * d_materialise_unique - introduce an inode into the tree
2387 * @dentry: candidate dentry
2388 * @inode: inode to bind to the dentry, to which aliases may be attached
2390 * Introduces an dentry into the tree, substituting an extant disconnected
2391 * root directory alias in its place if there is one
2393 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2395 struct dentry
*actual
;
2397 BUG_ON(!d_unhashed(dentry
));
2401 __d_instantiate(dentry
, NULL
);
2406 spin_lock(&inode
->i_lock
);
2408 if (S_ISDIR(inode
->i_mode
)) {
2409 struct dentry
*alias
;
2411 /* Does an aliased dentry already exist? */
2412 alias
= __d_find_alias(inode
, 0);
2415 /* Is this an anonymous mountpoint that we could splice
2417 if (IS_ROOT(alias
)) {
2418 __d_materialise_dentry(dentry
, alias
);
2422 /* Nope, but we must(!) avoid directory aliasing */
2423 actual
= __d_unalias(inode
, dentry
, alias
);
2430 /* Add a unique reference */
2431 actual
= __d_instantiate_unique(dentry
, inode
);
2435 BUG_ON(!d_unhashed(actual
));
2437 spin_lock(&actual
->d_lock
);
2440 spin_unlock(&actual
->d_lock
);
2441 spin_unlock(&inode
->i_lock
);
2443 if (actual
== dentry
) {
2444 security_d_instantiate(dentry
, inode
);
2451 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2453 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2457 return -ENAMETOOLONG
;
2459 memcpy(*buffer
, str
, namelen
);
2463 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2465 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2469 * prepend_path - Prepend path string to a buffer
2470 * @path: the dentry/vfsmount to report
2471 * @root: root vfsmnt/dentry (may be modified by this function)
2472 * @buffer: pointer to the end of the buffer
2473 * @buflen: pointer to buffer length
2475 * Caller holds the rename_lock.
2477 * If path is not reachable from the supplied root, then the value of
2478 * root is changed (without modifying refcounts).
2480 static int prepend_path(const struct path
*path
, struct path
*root
,
2481 char **buffer
, int *buflen
)
2483 struct dentry
*dentry
= path
->dentry
;
2484 struct vfsmount
*vfsmnt
= path
->mnt
;
2488 br_read_lock(vfsmount_lock
);
2489 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2490 struct dentry
* parent
;
2492 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2494 if (vfsmnt
->mnt_parent
== vfsmnt
) {
2497 dentry
= vfsmnt
->mnt_mountpoint
;
2498 vfsmnt
= vfsmnt
->mnt_parent
;
2501 parent
= dentry
->d_parent
;
2503 spin_lock(&dentry
->d_lock
);
2504 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2505 spin_unlock(&dentry
->d_lock
);
2507 error
= prepend(buffer
, buflen
, "/", 1);
2516 if (!error
&& !slash
)
2517 error
= prepend(buffer
, buflen
, "/", 1);
2519 br_read_unlock(vfsmount_lock
);
2524 * Filesystems needing to implement special "root names"
2525 * should do so with ->d_dname()
2527 if (IS_ROOT(dentry
) &&
2528 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2529 WARN(1, "Root dentry has weird name <%.*s>\n",
2530 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2533 root
->dentry
= dentry
;
2538 * __d_path - return the path of a dentry
2539 * @path: the dentry/vfsmount to report
2540 * @root: root vfsmnt/dentry (may be modified by this function)
2541 * @buf: buffer to return value in
2542 * @buflen: buffer length
2544 * Convert a dentry into an ASCII path name.
2546 * Returns a pointer into the buffer or an error code if the
2547 * path was too long.
2549 * "buflen" should be positive.
2551 * If path is not reachable from the supplied root, then the value of
2552 * root is changed (without modifying refcounts).
2554 char *__d_path(const struct path
*path
, struct path
*root
,
2555 char *buf
, int buflen
)
2557 char *res
= buf
+ buflen
;
2560 prepend(&res
, &buflen
, "\0", 1);
2561 write_seqlock(&rename_lock
);
2562 error
= prepend_path(path
, root
, &res
, &buflen
);
2563 write_sequnlock(&rename_lock
);
2566 return ERR_PTR(error
);
2571 * same as __d_path but appends "(deleted)" for unlinked files.
2573 static int path_with_deleted(const struct path
*path
, struct path
*root
,
2574 char **buf
, int *buflen
)
2576 prepend(buf
, buflen
, "\0", 1);
2577 if (d_unlinked(path
->dentry
)) {
2578 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2583 return prepend_path(path
, root
, buf
, buflen
);
2586 static int prepend_unreachable(char **buffer
, int *buflen
)
2588 return prepend(buffer
, buflen
, "(unreachable)", 13);
2592 * d_path - return the path of a dentry
2593 * @path: path to report
2594 * @buf: buffer to return value in
2595 * @buflen: buffer length
2597 * Convert a dentry into an ASCII path name. If the entry has been deleted
2598 * the string " (deleted)" is appended. Note that this is ambiguous.
2600 * Returns a pointer into the buffer or an error code if the path was
2601 * too long. Note: Callers should use the returned pointer, not the passed
2602 * in buffer, to use the name! The implementation often starts at an offset
2603 * into the buffer, and may leave 0 bytes at the start.
2605 * "buflen" should be positive.
2607 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2609 char *res
= buf
+ buflen
;
2615 * We have various synthetic filesystems that never get mounted. On
2616 * these filesystems dentries are never used for lookup purposes, and
2617 * thus don't need to be hashed. They also don't need a name until a
2618 * user wants to identify the object in /proc/pid/fd/. The little hack
2619 * below allows us to generate a name for these objects on demand:
2621 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2622 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2624 get_fs_root(current
->fs
, &root
);
2625 write_seqlock(&rename_lock
);
2627 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2629 res
= ERR_PTR(error
);
2630 write_sequnlock(&rename_lock
);
2634 EXPORT_SYMBOL(d_path
);
2637 * d_path_with_unreachable - return the path of a dentry
2638 * @path: path to report
2639 * @buf: buffer to return value in
2640 * @buflen: buffer length
2642 * The difference from d_path() is that this prepends "(unreachable)"
2643 * to paths which are unreachable from the current process' root.
2645 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2647 char *res
= buf
+ buflen
;
2652 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2653 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2655 get_fs_root(current
->fs
, &root
);
2656 write_seqlock(&rename_lock
);
2658 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2659 if (!error
&& !path_equal(&tmp
, &root
))
2660 error
= prepend_unreachable(&res
, &buflen
);
2661 write_sequnlock(&rename_lock
);
2664 res
= ERR_PTR(error
);
2670 * Helper function for dentry_operations.d_dname() members
2672 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2673 const char *fmt
, ...)
2679 va_start(args
, fmt
);
2680 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2683 if (sz
> sizeof(temp
) || sz
> buflen
)
2684 return ERR_PTR(-ENAMETOOLONG
);
2686 buffer
+= buflen
- sz
;
2687 return memcpy(buffer
, temp
, sz
);
2691 * Write full pathname from the root of the filesystem into the buffer.
2693 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2695 char *end
= buf
+ buflen
;
2698 prepend(&end
, &buflen
, "\0", 1);
2705 while (!IS_ROOT(dentry
)) {
2706 struct dentry
*parent
= dentry
->d_parent
;
2710 spin_lock(&dentry
->d_lock
);
2711 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2712 spin_unlock(&dentry
->d_lock
);
2713 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2721 return ERR_PTR(-ENAMETOOLONG
);
2724 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2728 write_seqlock(&rename_lock
);
2729 retval
= __dentry_path(dentry
, buf
, buflen
);
2730 write_sequnlock(&rename_lock
);
2734 EXPORT_SYMBOL(dentry_path_raw
);
2736 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2741 write_seqlock(&rename_lock
);
2742 if (d_unlinked(dentry
)) {
2744 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2748 retval
= __dentry_path(dentry
, buf
, buflen
);
2749 write_sequnlock(&rename_lock
);
2750 if (!IS_ERR(retval
) && p
)
2751 *p
= '/'; /* restore '/' overriden with '\0' */
2754 return ERR_PTR(-ENAMETOOLONG
);
2758 * NOTE! The user-level library version returns a
2759 * character pointer. The kernel system call just
2760 * returns the length of the buffer filled (which
2761 * includes the ending '\0' character), or a negative
2762 * error value. So libc would do something like
2764 * char *getcwd(char * buf, size_t size)
2768 * retval = sys_getcwd(buf, size);
2775 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2778 struct path pwd
, root
;
2779 char *page
= (char *) __get_free_page(GFP_USER
);
2784 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2787 write_seqlock(&rename_lock
);
2788 if (!d_unlinked(pwd
.dentry
)) {
2790 struct path tmp
= root
;
2791 char *cwd
= page
+ PAGE_SIZE
;
2792 int buflen
= PAGE_SIZE
;
2794 prepend(&cwd
, &buflen
, "\0", 1);
2795 error
= prepend_path(&pwd
, &tmp
, &cwd
, &buflen
);
2796 write_sequnlock(&rename_lock
);
2801 /* Unreachable from current root */
2802 if (!path_equal(&tmp
, &root
)) {
2803 error
= prepend_unreachable(&cwd
, &buflen
);
2809 len
= PAGE_SIZE
+ page
- cwd
;
2812 if (copy_to_user(buf
, cwd
, len
))
2816 write_sequnlock(&rename_lock
);
2822 free_page((unsigned long) page
);
2827 * Test whether new_dentry is a subdirectory of old_dentry.
2829 * Trivially implemented using the dcache structure
2833 * is_subdir - is new dentry a subdirectory of old_dentry
2834 * @new_dentry: new dentry
2835 * @old_dentry: old dentry
2837 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2838 * Returns 0 otherwise.
2839 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2842 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2847 if (new_dentry
== old_dentry
)
2851 /* for restarting inner loop in case of seq retry */
2852 seq
= read_seqbegin(&rename_lock
);
2854 * Need rcu_readlock to protect against the d_parent trashing
2858 if (d_ancestor(old_dentry
, new_dentry
))
2863 } while (read_seqretry(&rename_lock
, seq
));
2868 int path_is_under(struct path
*path1
, struct path
*path2
)
2870 struct vfsmount
*mnt
= path1
->mnt
;
2871 struct dentry
*dentry
= path1
->dentry
;
2874 br_read_lock(vfsmount_lock
);
2875 if (mnt
!= path2
->mnt
) {
2877 if (mnt
->mnt_parent
== mnt
) {
2878 br_read_unlock(vfsmount_lock
);
2881 if (mnt
->mnt_parent
== path2
->mnt
)
2883 mnt
= mnt
->mnt_parent
;
2885 dentry
= mnt
->mnt_mountpoint
;
2887 res
= is_subdir(dentry
, path2
->dentry
);
2888 br_read_unlock(vfsmount_lock
);
2891 EXPORT_SYMBOL(path_is_under
);
2893 void d_genocide(struct dentry
*root
)
2895 struct dentry
*this_parent
;
2896 struct list_head
*next
;
2900 seq
= read_seqbegin(&rename_lock
);
2903 spin_lock(&this_parent
->d_lock
);
2905 next
= this_parent
->d_subdirs
.next
;
2907 while (next
!= &this_parent
->d_subdirs
) {
2908 struct list_head
*tmp
= next
;
2909 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2912 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2913 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2914 spin_unlock(&dentry
->d_lock
);
2917 if (!list_empty(&dentry
->d_subdirs
)) {
2918 spin_unlock(&this_parent
->d_lock
);
2919 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2920 this_parent
= dentry
;
2921 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2924 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2925 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2928 spin_unlock(&dentry
->d_lock
);
2930 if (this_parent
!= root
) {
2931 struct dentry
*child
= this_parent
;
2932 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2933 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2934 this_parent
->d_count
--;
2936 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2939 next
= child
->d_u
.d_child
.next
;
2942 spin_unlock(&this_parent
->d_lock
);
2943 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2946 write_sequnlock(&rename_lock
);
2951 write_seqlock(&rename_lock
);
2956 * find_inode_number - check for dentry with name
2957 * @dir: directory to check
2958 * @name: Name to find.
2960 * Check whether a dentry already exists for the given name,
2961 * and return the inode number if it has an inode. Otherwise
2964 * This routine is used to post-process directory listings for
2965 * filesystems using synthetic inode numbers, and is necessary
2966 * to keep getcwd() working.
2969 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2971 struct dentry
* dentry
;
2974 dentry
= d_hash_and_lookup(dir
, name
);
2976 if (dentry
->d_inode
)
2977 ino
= dentry
->d_inode
->i_ino
;
2982 EXPORT_SYMBOL(find_inode_number
);
2984 static __initdata
unsigned long dhash_entries
;
2985 static int __init
set_dhash_entries(char *str
)
2989 dhash_entries
= simple_strtoul(str
, &str
, 0);
2992 __setup("dhash_entries=", set_dhash_entries
);
2994 static void __init
dcache_init_early(void)
2998 /* If hashes are distributed across NUMA nodes, defer
2999 * hash allocation until vmalloc space is available.
3005 alloc_large_system_hash("Dentry cache",
3006 sizeof(struct hlist_bl_head
),
3014 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3015 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3018 static void __init
dcache_init(void)
3023 * A constructor could be added for stable state like the lists,
3024 * but it is probably not worth it because of the cache nature
3027 dentry_cache
= KMEM_CACHE(dentry
,
3028 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3030 register_shrinker(&dcache_shrinker
);
3032 /* Hash may have been set up in dcache_init_early */
3037 alloc_large_system_hash("Dentry cache",
3038 sizeof(struct hlist_bl_head
),
3046 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3047 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3050 /* SLAB cache for __getname() consumers */
3051 struct kmem_cache
*names_cachep __read_mostly
;
3052 EXPORT_SYMBOL(names_cachep
);
3054 EXPORT_SYMBOL(d_genocide
);
3056 void __init
vfs_caches_init_early(void)
3058 dcache_init_early();
3062 void __init
vfs_caches_init(unsigned long mempages
)
3064 unsigned long reserve
;
3066 /* Base hash sizes on available memory, with a reserve equal to
3067 150% of current kernel size */
3069 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3070 mempages
-= reserve
;
3072 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3073 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3077 files_init(mempages
);