MIPS: math-emu: Checkpatch cleanup
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / percpu.c
blob6470e7710231a84d75dc793831bc9f92e178f8bb
1 /*
2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be eqaul to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
46 * To use this allocator, arch code should do the followings.
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
71 #include <asm/cacheflush.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/io.h>
76 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
77 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
80 #ifndef __addr_to_pcpu_ptr
81 #define __addr_to_pcpu_ptr(addr) \
82 (void __percpu *)((unsigned long)(addr) - \
83 (unsigned long)pcpu_base_addr + \
84 (unsigned long)__per_cpu_start)
85 #endif
86 #ifndef __pcpu_ptr_to_addr
87 #define __pcpu_ptr_to_addr(ptr) \
88 (void __force *)((unsigned long)(ptr) + \
89 (unsigned long)pcpu_base_addr - \
90 (unsigned long)__per_cpu_start)
91 #endif
93 struct pcpu_chunk {
94 struct list_head list; /* linked to pcpu_slot lists */
95 int free_size; /* free bytes in the chunk */
96 int contig_hint; /* max contiguous size hint */
97 void *base_addr; /* base address of this chunk */
98 int map_used; /* # of map entries used */
99 int map_alloc; /* # of map entries allocated */
100 int *map; /* allocation map */
101 void *data; /* chunk data */
102 bool immutable; /* no [de]population allowed */
103 unsigned long populated[]; /* populated bitmap */
106 static int pcpu_unit_pages __read_mostly;
107 static int pcpu_unit_size __read_mostly;
108 static int pcpu_nr_units __read_mostly;
109 static int pcpu_atom_size __read_mostly;
110 static int pcpu_nr_slots __read_mostly;
111 static size_t pcpu_chunk_struct_size __read_mostly;
113 /* cpus with the lowest and highest unit numbers */
114 static unsigned int pcpu_first_unit_cpu __read_mostly;
115 static unsigned int pcpu_last_unit_cpu __read_mostly;
117 /* the address of the first chunk which starts with the kernel static area */
118 void *pcpu_base_addr __read_mostly;
119 EXPORT_SYMBOL_GPL(pcpu_base_addr);
121 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
122 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
124 /* group information, used for vm allocation */
125 static int pcpu_nr_groups __read_mostly;
126 static const unsigned long *pcpu_group_offsets __read_mostly;
127 static const size_t *pcpu_group_sizes __read_mostly;
130 * The first chunk which always exists. Note that unlike other
131 * chunks, this one can be allocated and mapped in several different
132 * ways and thus often doesn't live in the vmalloc area.
134 static struct pcpu_chunk *pcpu_first_chunk;
137 * Optional reserved chunk. This chunk reserves part of the first
138 * chunk and serves it for reserved allocations. The amount of
139 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
140 * area doesn't exist, the following variables contain NULL and 0
141 * respectively.
143 static struct pcpu_chunk *pcpu_reserved_chunk;
144 static int pcpu_reserved_chunk_limit;
147 * Synchronization rules.
149 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
150 * protects allocation/reclaim paths, chunks, populated bitmap and
151 * vmalloc mapping. The latter is a spinlock and protects the index
152 * data structures - chunk slots, chunks and area maps in chunks.
154 * During allocation, pcpu_alloc_mutex is kept locked all the time and
155 * pcpu_lock is grabbed and released as necessary. All actual memory
156 * allocations are done using GFP_KERNEL with pcpu_lock released. In
157 * general, percpu memory can't be allocated with irq off but
158 * irqsave/restore are still used in alloc path so that it can be used
159 * from early init path - sched_init() specifically.
161 * Free path accesses and alters only the index data structures, so it
162 * can be safely called from atomic context. When memory needs to be
163 * returned to the system, free path schedules reclaim_work which
164 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
165 * reclaimed, release both locks and frees the chunks. Note that it's
166 * necessary to grab both locks to remove a chunk from circulation as
167 * allocation path might be referencing the chunk with only
168 * pcpu_alloc_mutex locked.
170 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
171 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
173 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
175 /* reclaim work to release fully free chunks, scheduled from free path */
176 static void pcpu_reclaim(struct work_struct *work);
177 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
179 static bool pcpu_addr_in_first_chunk(void *addr)
181 void *first_start = pcpu_first_chunk->base_addr;
183 return addr >= first_start && addr < first_start + pcpu_unit_size;
186 static bool pcpu_addr_in_reserved_chunk(void *addr)
188 void *first_start = pcpu_first_chunk->base_addr;
190 return addr >= first_start &&
191 addr < first_start + pcpu_reserved_chunk_limit;
194 static int __pcpu_size_to_slot(int size)
196 int highbit = fls(size); /* size is in bytes */
197 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
200 static int pcpu_size_to_slot(int size)
202 if (size == pcpu_unit_size)
203 return pcpu_nr_slots - 1;
204 return __pcpu_size_to_slot(size);
207 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
209 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
210 return 0;
212 return pcpu_size_to_slot(chunk->free_size);
215 /* set the pointer to a chunk in a page struct */
216 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
218 page->index = (unsigned long)pcpu;
221 /* obtain pointer to a chunk from a page struct */
222 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
224 return (struct pcpu_chunk *)page->index;
227 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
229 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
232 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
233 unsigned int cpu, int page_idx)
235 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
236 (page_idx << PAGE_SHIFT);
239 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
240 int *rs, int *re, int end)
242 *rs = find_next_zero_bit(chunk->populated, end, *rs);
243 *re = find_next_bit(chunk->populated, end, *rs + 1);
246 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
247 int *rs, int *re, int end)
249 *rs = find_next_bit(chunk->populated, end, *rs);
250 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
254 * (Un)populated page region iterators. Iterate over (un)populated
255 * page regions betwen @start and @end in @chunk. @rs and @re should
256 * be integer variables and will be set to start and end page index of
257 * the current region.
259 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
260 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
261 (rs) < (re); \
262 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
264 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
265 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
266 (rs) < (re); \
267 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
270 * pcpu_mem_alloc - allocate memory
271 * @size: bytes to allocate
273 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
274 * kzalloc() is used; otherwise, vmalloc() is used. The returned
275 * memory is always zeroed.
277 * CONTEXT:
278 * Does GFP_KERNEL allocation.
280 * RETURNS:
281 * Pointer to the allocated area on success, NULL on failure.
283 static void *pcpu_mem_alloc(size_t size)
285 if (size <= PAGE_SIZE)
286 return kzalloc(size, GFP_KERNEL);
287 else {
288 void *ptr = vmalloc(size);
289 if (ptr)
290 memset(ptr, 0, size);
291 return ptr;
296 * pcpu_mem_free - free memory
297 * @ptr: memory to free
298 * @size: size of the area
300 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
302 static void pcpu_mem_free(void *ptr, size_t size)
304 if (size <= PAGE_SIZE)
305 kfree(ptr);
306 else
307 vfree(ptr);
311 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
312 * @chunk: chunk of interest
313 * @oslot: the previous slot it was on
315 * This function is called after an allocation or free changed @chunk.
316 * New slot according to the changed state is determined and @chunk is
317 * moved to the slot. Note that the reserved chunk is never put on
318 * chunk slots.
320 * CONTEXT:
321 * pcpu_lock.
323 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
325 int nslot = pcpu_chunk_slot(chunk);
327 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
328 if (oslot < nslot)
329 list_move(&chunk->list, &pcpu_slot[nslot]);
330 else
331 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
336 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
337 * @chunk: chunk of interest
339 * Determine whether area map of @chunk needs to be extended to
340 * accomodate a new allocation.
342 * CONTEXT:
343 * pcpu_lock.
345 * RETURNS:
346 * New target map allocation length if extension is necessary, 0
347 * otherwise.
349 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
351 int new_alloc;
353 if (chunk->map_alloc >= chunk->map_used + 2)
354 return 0;
356 new_alloc = PCPU_DFL_MAP_ALLOC;
357 while (new_alloc < chunk->map_used + 2)
358 new_alloc *= 2;
360 return new_alloc;
364 * pcpu_extend_area_map - extend area map of a chunk
365 * @chunk: chunk of interest
366 * @new_alloc: new target allocation length of the area map
368 * Extend area map of @chunk to have @new_alloc entries.
370 * CONTEXT:
371 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
373 * RETURNS:
374 * 0 on success, -errno on failure.
376 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
378 int *old = NULL, *new = NULL;
379 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
380 unsigned long flags;
382 new = pcpu_mem_alloc(new_size);
383 if (!new)
384 return -ENOMEM;
386 /* acquire pcpu_lock and switch to new area map */
387 spin_lock_irqsave(&pcpu_lock, flags);
389 if (new_alloc <= chunk->map_alloc)
390 goto out_unlock;
392 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
393 memcpy(new, chunk->map, old_size);
396 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
397 * one of the first chunks and still using static map.
399 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
400 old = chunk->map;
402 chunk->map_alloc = new_alloc;
403 chunk->map = new;
404 new = NULL;
406 out_unlock:
407 spin_unlock_irqrestore(&pcpu_lock, flags);
410 * pcpu_mem_free() might end up calling vfree() which uses
411 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
413 pcpu_mem_free(old, old_size);
414 pcpu_mem_free(new, new_size);
416 return 0;
420 * pcpu_split_block - split a map block
421 * @chunk: chunk of interest
422 * @i: index of map block to split
423 * @head: head size in bytes (can be 0)
424 * @tail: tail size in bytes (can be 0)
426 * Split the @i'th map block into two or three blocks. If @head is
427 * non-zero, @head bytes block is inserted before block @i moving it
428 * to @i+1 and reducing its size by @head bytes.
430 * If @tail is non-zero, the target block, which can be @i or @i+1
431 * depending on @head, is reduced by @tail bytes and @tail byte block
432 * is inserted after the target block.
434 * @chunk->map must have enough free slots to accomodate the split.
436 * CONTEXT:
437 * pcpu_lock.
439 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
440 int head, int tail)
442 int nr_extra = !!head + !!tail;
444 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
446 /* insert new subblocks */
447 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
448 sizeof(chunk->map[0]) * (chunk->map_used - i));
449 chunk->map_used += nr_extra;
451 if (head) {
452 chunk->map[i + 1] = chunk->map[i] - head;
453 chunk->map[i++] = head;
455 if (tail) {
456 chunk->map[i++] -= tail;
457 chunk->map[i] = tail;
462 * pcpu_alloc_area - allocate area from a pcpu_chunk
463 * @chunk: chunk of interest
464 * @size: wanted size in bytes
465 * @align: wanted align
467 * Try to allocate @size bytes area aligned at @align from @chunk.
468 * Note that this function only allocates the offset. It doesn't
469 * populate or map the area.
471 * @chunk->map must have at least two free slots.
473 * CONTEXT:
474 * pcpu_lock.
476 * RETURNS:
477 * Allocated offset in @chunk on success, -1 if no matching area is
478 * found.
480 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
482 int oslot = pcpu_chunk_slot(chunk);
483 int max_contig = 0;
484 int i, off;
486 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
487 bool is_last = i + 1 == chunk->map_used;
488 int head, tail;
490 /* extra for alignment requirement */
491 head = ALIGN(off, align) - off;
492 BUG_ON(i == 0 && head != 0);
494 if (chunk->map[i] < 0)
495 continue;
496 if (chunk->map[i] < head + size) {
497 max_contig = max(chunk->map[i], max_contig);
498 continue;
502 * If head is small or the previous block is free,
503 * merge'em. Note that 'small' is defined as smaller
504 * than sizeof(int), which is very small but isn't too
505 * uncommon for percpu allocations.
507 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
508 if (chunk->map[i - 1] > 0)
509 chunk->map[i - 1] += head;
510 else {
511 chunk->map[i - 1] -= head;
512 chunk->free_size -= head;
514 chunk->map[i] -= head;
515 off += head;
516 head = 0;
519 /* if tail is small, just keep it around */
520 tail = chunk->map[i] - head - size;
521 if (tail < sizeof(int))
522 tail = 0;
524 /* split if warranted */
525 if (head || tail) {
526 pcpu_split_block(chunk, i, head, tail);
527 if (head) {
528 i++;
529 off += head;
530 max_contig = max(chunk->map[i - 1], max_contig);
532 if (tail)
533 max_contig = max(chunk->map[i + 1], max_contig);
536 /* update hint and mark allocated */
537 if (is_last)
538 chunk->contig_hint = max_contig; /* fully scanned */
539 else
540 chunk->contig_hint = max(chunk->contig_hint,
541 max_contig);
543 chunk->free_size -= chunk->map[i];
544 chunk->map[i] = -chunk->map[i];
546 pcpu_chunk_relocate(chunk, oslot);
547 return off;
550 chunk->contig_hint = max_contig; /* fully scanned */
551 pcpu_chunk_relocate(chunk, oslot);
553 /* tell the upper layer that this chunk has no matching area */
554 return -1;
558 * pcpu_free_area - free area to a pcpu_chunk
559 * @chunk: chunk of interest
560 * @freeme: offset of area to free
562 * Free area starting from @freeme to @chunk. Note that this function
563 * only modifies the allocation map. It doesn't depopulate or unmap
564 * the area.
566 * CONTEXT:
567 * pcpu_lock.
569 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
571 int oslot = pcpu_chunk_slot(chunk);
572 int i, off;
574 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
575 if (off == freeme)
576 break;
577 BUG_ON(off != freeme);
578 BUG_ON(chunk->map[i] > 0);
580 chunk->map[i] = -chunk->map[i];
581 chunk->free_size += chunk->map[i];
583 /* merge with previous? */
584 if (i > 0 && chunk->map[i - 1] >= 0) {
585 chunk->map[i - 1] += chunk->map[i];
586 chunk->map_used--;
587 memmove(&chunk->map[i], &chunk->map[i + 1],
588 (chunk->map_used - i) * sizeof(chunk->map[0]));
589 i--;
591 /* merge with next? */
592 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
593 chunk->map[i] += chunk->map[i + 1];
594 chunk->map_used--;
595 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
596 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
599 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
600 pcpu_chunk_relocate(chunk, oslot);
603 static struct pcpu_chunk *pcpu_alloc_chunk(void)
605 struct pcpu_chunk *chunk;
607 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
608 if (!chunk)
609 return NULL;
611 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
612 if (!chunk->map) {
613 kfree(chunk);
614 return NULL;
617 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
618 chunk->map[chunk->map_used++] = pcpu_unit_size;
620 INIT_LIST_HEAD(&chunk->list);
621 chunk->free_size = pcpu_unit_size;
622 chunk->contig_hint = pcpu_unit_size;
624 return chunk;
627 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
629 if (!chunk)
630 return;
631 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
632 kfree(chunk);
636 * Chunk management implementation.
638 * To allow different implementations, chunk alloc/free and
639 * [de]population are implemented in a separate file which is pulled
640 * into this file and compiled together. The following functions
641 * should be implemented.
643 * pcpu_populate_chunk - populate the specified range of a chunk
644 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
645 * pcpu_create_chunk - create a new chunk
646 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
647 * pcpu_addr_to_page - translate address to physical address
648 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
650 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
651 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
652 static struct pcpu_chunk *pcpu_create_chunk(void);
653 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
654 static struct page *pcpu_addr_to_page(void *addr);
655 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
657 #ifdef CONFIG_NEED_PER_CPU_KM
658 #include "percpu-km.c"
659 #else
660 #include "percpu-vm.c"
661 #endif
664 * pcpu_chunk_addr_search - determine chunk containing specified address
665 * @addr: address for which the chunk needs to be determined.
667 * RETURNS:
668 * The address of the found chunk.
670 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
672 /* is it in the first chunk? */
673 if (pcpu_addr_in_first_chunk(addr)) {
674 /* is it in the reserved area? */
675 if (pcpu_addr_in_reserved_chunk(addr))
676 return pcpu_reserved_chunk;
677 return pcpu_first_chunk;
681 * The address is relative to unit0 which might be unused and
682 * thus unmapped. Offset the address to the unit space of the
683 * current processor before looking it up in the vmalloc
684 * space. Note that any possible cpu id can be used here, so
685 * there's no need to worry about preemption or cpu hotplug.
687 addr += pcpu_unit_offsets[raw_smp_processor_id()];
688 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
692 * pcpu_alloc - the percpu allocator
693 * @size: size of area to allocate in bytes
694 * @align: alignment of area (max PAGE_SIZE)
695 * @reserved: allocate from the reserved chunk if available
697 * Allocate percpu area of @size bytes aligned at @align.
699 * CONTEXT:
700 * Does GFP_KERNEL allocation.
702 * RETURNS:
703 * Percpu pointer to the allocated area on success, NULL on failure.
705 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
707 static int warn_limit = 10;
708 struct pcpu_chunk *chunk;
709 const char *err;
710 int slot, off, new_alloc;
711 unsigned long flags;
713 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
714 WARN(true, "illegal size (%zu) or align (%zu) for "
715 "percpu allocation\n", size, align);
716 return NULL;
719 mutex_lock(&pcpu_alloc_mutex);
720 spin_lock_irqsave(&pcpu_lock, flags);
722 /* serve reserved allocations from the reserved chunk if available */
723 if (reserved && pcpu_reserved_chunk) {
724 chunk = pcpu_reserved_chunk;
726 if (size > chunk->contig_hint) {
727 err = "alloc from reserved chunk failed";
728 goto fail_unlock;
731 while ((new_alloc = pcpu_need_to_extend(chunk))) {
732 spin_unlock_irqrestore(&pcpu_lock, flags);
733 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
734 err = "failed to extend area map of reserved chunk";
735 goto fail_unlock_mutex;
737 spin_lock_irqsave(&pcpu_lock, flags);
740 off = pcpu_alloc_area(chunk, size, align);
741 if (off >= 0)
742 goto area_found;
744 err = "alloc from reserved chunk failed";
745 goto fail_unlock;
748 restart:
749 /* search through normal chunks */
750 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
751 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
752 if (size > chunk->contig_hint)
753 continue;
755 new_alloc = pcpu_need_to_extend(chunk);
756 if (new_alloc) {
757 spin_unlock_irqrestore(&pcpu_lock, flags);
758 if (pcpu_extend_area_map(chunk,
759 new_alloc) < 0) {
760 err = "failed to extend area map";
761 goto fail_unlock_mutex;
763 spin_lock_irqsave(&pcpu_lock, flags);
765 * pcpu_lock has been dropped, need to
766 * restart cpu_slot list walking.
768 goto restart;
771 off = pcpu_alloc_area(chunk, size, align);
772 if (off >= 0)
773 goto area_found;
777 /* hmmm... no space left, create a new chunk */
778 spin_unlock_irqrestore(&pcpu_lock, flags);
780 chunk = pcpu_create_chunk();
781 if (!chunk) {
782 err = "failed to allocate new chunk";
783 goto fail_unlock_mutex;
786 spin_lock_irqsave(&pcpu_lock, flags);
787 pcpu_chunk_relocate(chunk, -1);
788 goto restart;
790 area_found:
791 spin_unlock_irqrestore(&pcpu_lock, flags);
793 /* populate, map and clear the area */
794 if (pcpu_populate_chunk(chunk, off, size)) {
795 spin_lock_irqsave(&pcpu_lock, flags);
796 pcpu_free_area(chunk, off);
797 err = "failed to populate";
798 goto fail_unlock;
801 mutex_unlock(&pcpu_alloc_mutex);
803 /* return address relative to base address */
804 return __addr_to_pcpu_ptr(chunk->base_addr + off);
806 fail_unlock:
807 spin_unlock_irqrestore(&pcpu_lock, flags);
808 fail_unlock_mutex:
809 mutex_unlock(&pcpu_alloc_mutex);
810 if (warn_limit) {
811 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
812 "%s\n", size, align, err);
813 dump_stack();
814 if (!--warn_limit)
815 pr_info("PERCPU: limit reached, disable warning\n");
817 return NULL;
821 * __alloc_percpu - allocate dynamic percpu area
822 * @size: size of area to allocate in bytes
823 * @align: alignment of area (max PAGE_SIZE)
825 * Allocate percpu area of @size bytes aligned at @align. Might
826 * sleep. Might trigger writeouts.
828 * CONTEXT:
829 * Does GFP_KERNEL allocation.
831 * RETURNS:
832 * Percpu pointer to the allocated area on success, NULL on failure.
834 void __percpu *__alloc_percpu(size_t size, size_t align)
836 return pcpu_alloc(size, align, false);
838 EXPORT_SYMBOL_GPL(__alloc_percpu);
841 * __alloc_reserved_percpu - allocate reserved percpu area
842 * @size: size of area to allocate in bytes
843 * @align: alignment of area (max PAGE_SIZE)
845 * Allocate percpu area of @size bytes aligned at @align from reserved
846 * percpu area if arch has set it up; otherwise, allocation is served
847 * from the same dynamic area. Might sleep. Might trigger writeouts.
849 * CONTEXT:
850 * Does GFP_KERNEL allocation.
852 * RETURNS:
853 * Percpu pointer to the allocated area on success, NULL on failure.
855 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
857 return pcpu_alloc(size, align, true);
861 * pcpu_reclaim - reclaim fully free chunks, workqueue function
862 * @work: unused
864 * Reclaim all fully free chunks except for the first one.
866 * CONTEXT:
867 * workqueue context.
869 static void pcpu_reclaim(struct work_struct *work)
871 LIST_HEAD(todo);
872 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
873 struct pcpu_chunk *chunk, *next;
875 mutex_lock(&pcpu_alloc_mutex);
876 spin_lock_irq(&pcpu_lock);
878 list_for_each_entry_safe(chunk, next, head, list) {
879 WARN_ON(chunk->immutable);
881 /* spare the first one */
882 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
883 continue;
885 list_move(&chunk->list, &todo);
888 spin_unlock_irq(&pcpu_lock);
890 list_for_each_entry_safe(chunk, next, &todo, list) {
891 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
892 pcpu_destroy_chunk(chunk);
895 mutex_unlock(&pcpu_alloc_mutex);
899 * free_percpu - free percpu area
900 * @ptr: pointer to area to free
902 * Free percpu area @ptr.
904 * CONTEXT:
905 * Can be called from atomic context.
907 void free_percpu(void __percpu *ptr)
909 void *addr;
910 struct pcpu_chunk *chunk;
911 unsigned long flags;
912 int off;
914 if (!ptr)
915 return;
917 addr = __pcpu_ptr_to_addr(ptr);
919 spin_lock_irqsave(&pcpu_lock, flags);
921 chunk = pcpu_chunk_addr_search(addr);
922 off = addr - chunk->base_addr;
924 pcpu_free_area(chunk, off);
926 /* if there are more than one fully free chunks, wake up grim reaper */
927 if (chunk->free_size == pcpu_unit_size) {
928 struct pcpu_chunk *pos;
930 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
931 if (pos != chunk) {
932 schedule_work(&pcpu_reclaim_work);
933 break;
937 spin_unlock_irqrestore(&pcpu_lock, flags);
939 EXPORT_SYMBOL_GPL(free_percpu);
942 * is_kernel_percpu_address - test whether address is from static percpu area
943 * @addr: address to test
945 * Test whether @addr belongs to in-kernel static percpu area. Module
946 * static percpu areas are not considered. For those, use
947 * is_module_percpu_address().
949 * RETURNS:
950 * %true if @addr is from in-kernel static percpu area, %false otherwise.
952 bool is_kernel_percpu_address(unsigned long addr)
954 const size_t static_size = __per_cpu_end - __per_cpu_start;
955 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
956 unsigned int cpu;
958 for_each_possible_cpu(cpu) {
959 void *start = per_cpu_ptr(base, cpu);
961 if ((void *)addr >= start && (void *)addr < start + static_size)
962 return true;
964 return false;
968 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
969 * @addr: the address to be converted to physical address
971 * Given @addr which is dereferenceable address obtained via one of
972 * percpu access macros, this function translates it into its physical
973 * address. The caller is responsible for ensuring @addr stays valid
974 * until this function finishes.
976 * RETURNS:
977 * The physical address for @addr.
979 phys_addr_t per_cpu_ptr_to_phys(void *addr)
981 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
982 bool in_first_chunk = false;
983 unsigned long first_start, first_end;
984 unsigned int cpu;
987 * The following test on first_start/end isn't strictly
988 * necessary but will speed up lookups of addresses which
989 * aren't in the first chunk.
991 first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
992 first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
993 pcpu_unit_pages);
994 if ((unsigned long)addr >= first_start &&
995 (unsigned long)addr < first_end) {
996 for_each_possible_cpu(cpu) {
997 void *start = per_cpu_ptr(base, cpu);
999 if (addr >= start && addr < start + pcpu_unit_size) {
1000 in_first_chunk = true;
1001 break;
1006 if (in_first_chunk) {
1007 if ((unsigned long)addr < VMALLOC_START ||
1008 (unsigned long)addr >= VMALLOC_END)
1009 return __pa(addr);
1010 else
1011 return page_to_phys(vmalloc_to_page(addr));
1012 } else
1013 return page_to_phys(pcpu_addr_to_page(addr));
1016 static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1017 size_t reserved_size,
1018 ssize_t *dyn_sizep)
1020 size_t size_sum;
1022 size_sum = PFN_ALIGN(static_size + reserved_size +
1023 (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1024 if (*dyn_sizep != 0)
1025 *dyn_sizep = size_sum - static_size - reserved_size;
1027 return size_sum;
1031 * pcpu_alloc_alloc_info - allocate percpu allocation info
1032 * @nr_groups: the number of groups
1033 * @nr_units: the number of units
1035 * Allocate ai which is large enough for @nr_groups groups containing
1036 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1037 * cpu_map array which is long enough for @nr_units and filled with
1038 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1039 * pointer of other groups.
1041 * RETURNS:
1042 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1043 * failure.
1045 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1046 int nr_units)
1048 struct pcpu_alloc_info *ai;
1049 size_t base_size, ai_size;
1050 void *ptr;
1051 int unit;
1053 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1054 __alignof__(ai->groups[0].cpu_map[0]));
1055 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1057 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1058 if (!ptr)
1059 return NULL;
1060 ai = ptr;
1061 ptr += base_size;
1063 ai->groups[0].cpu_map = ptr;
1065 for (unit = 0; unit < nr_units; unit++)
1066 ai->groups[0].cpu_map[unit] = NR_CPUS;
1068 ai->nr_groups = nr_groups;
1069 ai->__ai_size = PFN_ALIGN(ai_size);
1071 return ai;
1075 * pcpu_free_alloc_info - free percpu allocation info
1076 * @ai: pcpu_alloc_info to free
1078 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1080 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1082 free_bootmem(__pa(ai), ai->__ai_size);
1086 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1087 * @reserved_size: the size of reserved percpu area in bytes
1088 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1089 * @atom_size: allocation atom size
1090 * @cpu_distance_fn: callback to determine distance between cpus, optional
1092 * This function determines grouping of units, their mappings to cpus
1093 * and other parameters considering needed percpu size, allocation
1094 * atom size and distances between CPUs.
1096 * Groups are always mutliples of atom size and CPUs which are of
1097 * LOCAL_DISTANCE both ways are grouped together and share space for
1098 * units in the same group. The returned configuration is guaranteed
1099 * to have CPUs on different nodes on different groups and >=75% usage
1100 * of allocated virtual address space.
1102 * RETURNS:
1103 * On success, pointer to the new allocation_info is returned. On
1104 * failure, ERR_PTR value is returned.
1106 struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1107 size_t reserved_size, ssize_t dyn_size,
1108 size_t atom_size,
1109 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1111 static int group_map[NR_CPUS] __initdata;
1112 static int group_cnt[NR_CPUS] __initdata;
1113 const size_t static_size = __per_cpu_end - __per_cpu_start;
1114 int nr_groups = 1, nr_units = 0;
1115 size_t size_sum, min_unit_size, alloc_size;
1116 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1117 int last_allocs, group, unit;
1118 unsigned int cpu, tcpu;
1119 struct pcpu_alloc_info *ai;
1120 unsigned int *cpu_map;
1122 /* this function may be called multiple times */
1123 memset(group_map, 0, sizeof(group_map));
1124 memset(group_cnt, 0, sizeof(group_cnt));
1127 * Determine min_unit_size, alloc_size and max_upa such that
1128 * alloc_size is multiple of atom_size and is the smallest
1129 * which can accomodate 4k aligned segments which are equal to
1130 * or larger than min_unit_size.
1132 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1133 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1135 alloc_size = roundup(min_unit_size, atom_size);
1136 upa = alloc_size / min_unit_size;
1137 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1138 upa--;
1139 max_upa = upa;
1141 /* group cpus according to their proximity */
1142 for_each_possible_cpu(cpu) {
1143 group = 0;
1144 next_group:
1145 for_each_possible_cpu(tcpu) {
1146 if (cpu == tcpu)
1147 break;
1148 if (group_map[tcpu] == group && cpu_distance_fn &&
1149 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1150 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1151 group++;
1152 nr_groups = max(nr_groups, group + 1);
1153 goto next_group;
1156 group_map[cpu] = group;
1157 group_cnt[group]++;
1161 * Expand unit size until address space usage goes over 75%
1162 * and then as much as possible without using more address
1163 * space.
1165 last_allocs = INT_MAX;
1166 for (upa = max_upa; upa; upa--) {
1167 int allocs = 0, wasted = 0;
1169 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1170 continue;
1172 for (group = 0; group < nr_groups; group++) {
1173 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1174 allocs += this_allocs;
1175 wasted += this_allocs * upa - group_cnt[group];
1179 * Don't accept if wastage is over 25%. The
1180 * greater-than comparison ensures upa==1 always
1181 * passes the following check.
1183 if (wasted > num_possible_cpus() / 3)
1184 continue;
1186 /* and then don't consume more memory */
1187 if (allocs > last_allocs)
1188 break;
1189 last_allocs = allocs;
1190 best_upa = upa;
1192 upa = best_upa;
1194 /* allocate and fill alloc_info */
1195 for (group = 0; group < nr_groups; group++)
1196 nr_units += roundup(group_cnt[group], upa);
1198 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1199 if (!ai)
1200 return ERR_PTR(-ENOMEM);
1201 cpu_map = ai->groups[0].cpu_map;
1203 for (group = 0; group < nr_groups; group++) {
1204 ai->groups[group].cpu_map = cpu_map;
1205 cpu_map += roundup(group_cnt[group], upa);
1208 ai->static_size = static_size;
1209 ai->reserved_size = reserved_size;
1210 ai->dyn_size = dyn_size;
1211 ai->unit_size = alloc_size / upa;
1212 ai->atom_size = atom_size;
1213 ai->alloc_size = alloc_size;
1215 for (group = 0, unit = 0; group_cnt[group]; group++) {
1216 struct pcpu_group_info *gi = &ai->groups[group];
1219 * Initialize base_offset as if all groups are located
1220 * back-to-back. The caller should update this to
1221 * reflect actual allocation.
1223 gi->base_offset = unit * ai->unit_size;
1225 for_each_possible_cpu(cpu)
1226 if (group_map[cpu] == group)
1227 gi->cpu_map[gi->nr_units++] = cpu;
1228 gi->nr_units = roundup(gi->nr_units, upa);
1229 unit += gi->nr_units;
1231 BUG_ON(unit != nr_units);
1233 return ai;
1237 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1238 * @lvl: loglevel
1239 * @ai: allocation info to dump
1241 * Print out information about @ai using loglevel @lvl.
1243 static void pcpu_dump_alloc_info(const char *lvl,
1244 const struct pcpu_alloc_info *ai)
1246 int group_width = 1, cpu_width = 1, width;
1247 char empty_str[] = "--------";
1248 int alloc = 0, alloc_end = 0;
1249 int group, v;
1250 int upa, apl; /* units per alloc, allocs per line */
1252 v = ai->nr_groups;
1253 while (v /= 10)
1254 group_width++;
1256 v = num_possible_cpus();
1257 while (v /= 10)
1258 cpu_width++;
1259 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1261 upa = ai->alloc_size / ai->unit_size;
1262 width = upa * (cpu_width + 1) + group_width + 3;
1263 apl = rounddown_pow_of_two(max(60 / width, 1));
1265 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1266 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1267 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1269 for (group = 0; group < ai->nr_groups; group++) {
1270 const struct pcpu_group_info *gi = &ai->groups[group];
1271 int unit = 0, unit_end = 0;
1273 BUG_ON(gi->nr_units % upa);
1274 for (alloc_end += gi->nr_units / upa;
1275 alloc < alloc_end; alloc++) {
1276 if (!(alloc % apl)) {
1277 printk("\n");
1278 printk("%spcpu-alloc: ", lvl);
1280 printk("[%0*d] ", group_width, group);
1282 for (unit_end += upa; unit < unit_end; unit++)
1283 if (gi->cpu_map[unit] != NR_CPUS)
1284 printk("%0*d ", cpu_width,
1285 gi->cpu_map[unit]);
1286 else
1287 printk("%s ", empty_str);
1290 printk("\n");
1294 * pcpu_setup_first_chunk - initialize the first percpu chunk
1295 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1296 * @base_addr: mapped address
1298 * Initialize the first percpu chunk which contains the kernel static
1299 * perpcu area. This function is to be called from arch percpu area
1300 * setup path.
1302 * @ai contains all information necessary to initialize the first
1303 * chunk and prime the dynamic percpu allocator.
1305 * @ai->static_size is the size of static percpu area.
1307 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1308 * reserve after the static area in the first chunk. This reserves
1309 * the first chunk such that it's available only through reserved
1310 * percpu allocation. This is primarily used to serve module percpu
1311 * static areas on architectures where the addressing model has
1312 * limited offset range for symbol relocations to guarantee module
1313 * percpu symbols fall inside the relocatable range.
1315 * @ai->dyn_size determines the number of bytes available for dynamic
1316 * allocation in the first chunk. The area between @ai->static_size +
1317 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1319 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1320 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1321 * @ai->dyn_size.
1323 * @ai->atom_size is the allocation atom size and used as alignment
1324 * for vm areas.
1326 * @ai->alloc_size is the allocation size and always multiple of
1327 * @ai->atom_size. This is larger than @ai->atom_size if
1328 * @ai->unit_size is larger than @ai->atom_size.
1330 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1331 * percpu areas. Units which should be colocated are put into the
1332 * same group. Dynamic VM areas will be allocated according to these
1333 * groupings. If @ai->nr_groups is zero, a single group containing
1334 * all units is assumed.
1336 * The caller should have mapped the first chunk at @base_addr and
1337 * copied static data to each unit.
1339 * If the first chunk ends up with both reserved and dynamic areas, it
1340 * is served by two chunks - one to serve the core static and reserved
1341 * areas and the other for the dynamic area. They share the same vm
1342 * and page map but uses different area allocation map to stay away
1343 * from each other. The latter chunk is circulated in the chunk slots
1344 * and available for dynamic allocation like any other chunks.
1346 * RETURNS:
1347 * 0 on success, -errno on failure.
1349 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1350 void *base_addr)
1352 static char cpus_buf[4096] __initdata;
1353 static int smap[2], dmap[2];
1354 size_t dyn_size = ai->dyn_size;
1355 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1356 struct pcpu_chunk *schunk, *dchunk = NULL;
1357 unsigned long *group_offsets;
1358 size_t *group_sizes;
1359 unsigned long *unit_off;
1360 unsigned int cpu;
1361 int *unit_map;
1362 int group, unit, i;
1364 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1366 #define PCPU_SETUP_BUG_ON(cond) do { \
1367 if (unlikely(cond)) { \
1368 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1369 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1370 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1371 BUG(); \
1373 } while (0)
1375 /* sanity checks */
1376 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1377 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1378 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1379 PCPU_SETUP_BUG_ON(!ai->static_size);
1380 PCPU_SETUP_BUG_ON(!base_addr);
1381 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1382 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1383 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1384 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1386 /* process group information and build config tables accordingly */
1387 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1388 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1389 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1390 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1392 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1393 unit_map[cpu] = UINT_MAX;
1394 pcpu_first_unit_cpu = NR_CPUS;
1396 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1397 const struct pcpu_group_info *gi = &ai->groups[group];
1399 group_offsets[group] = gi->base_offset;
1400 group_sizes[group] = gi->nr_units * ai->unit_size;
1402 for (i = 0; i < gi->nr_units; i++) {
1403 cpu = gi->cpu_map[i];
1404 if (cpu == NR_CPUS)
1405 continue;
1407 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1408 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1409 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1411 unit_map[cpu] = unit + i;
1412 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1414 if (pcpu_first_unit_cpu == NR_CPUS)
1415 pcpu_first_unit_cpu = cpu;
1418 pcpu_last_unit_cpu = cpu;
1419 pcpu_nr_units = unit;
1421 for_each_possible_cpu(cpu)
1422 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1424 /* we're done parsing the input, undefine BUG macro and dump config */
1425 #undef PCPU_SETUP_BUG_ON
1426 pcpu_dump_alloc_info(KERN_INFO, ai);
1428 pcpu_nr_groups = ai->nr_groups;
1429 pcpu_group_offsets = group_offsets;
1430 pcpu_group_sizes = group_sizes;
1431 pcpu_unit_map = unit_map;
1432 pcpu_unit_offsets = unit_off;
1434 /* determine basic parameters */
1435 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1436 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1437 pcpu_atom_size = ai->atom_size;
1438 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1439 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1442 * Allocate chunk slots. The additional last slot is for
1443 * empty chunks.
1445 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1446 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1447 for (i = 0; i < pcpu_nr_slots; i++)
1448 INIT_LIST_HEAD(&pcpu_slot[i]);
1451 * Initialize static chunk. If reserved_size is zero, the
1452 * static chunk covers static area + dynamic allocation area
1453 * in the first chunk. If reserved_size is not zero, it
1454 * covers static area + reserved area (mostly used for module
1455 * static percpu allocation).
1457 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1458 INIT_LIST_HEAD(&schunk->list);
1459 schunk->base_addr = base_addr;
1460 schunk->map = smap;
1461 schunk->map_alloc = ARRAY_SIZE(smap);
1462 schunk->immutable = true;
1463 bitmap_fill(schunk->populated, pcpu_unit_pages);
1465 if (ai->reserved_size) {
1466 schunk->free_size = ai->reserved_size;
1467 pcpu_reserved_chunk = schunk;
1468 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1469 } else {
1470 schunk->free_size = dyn_size;
1471 dyn_size = 0; /* dynamic area covered */
1473 schunk->contig_hint = schunk->free_size;
1475 schunk->map[schunk->map_used++] = -ai->static_size;
1476 if (schunk->free_size)
1477 schunk->map[schunk->map_used++] = schunk->free_size;
1479 /* init dynamic chunk if necessary */
1480 if (dyn_size) {
1481 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1482 INIT_LIST_HEAD(&dchunk->list);
1483 dchunk->base_addr = base_addr;
1484 dchunk->map = dmap;
1485 dchunk->map_alloc = ARRAY_SIZE(dmap);
1486 dchunk->immutable = true;
1487 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1489 dchunk->contig_hint = dchunk->free_size = dyn_size;
1490 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1491 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1494 /* link the first chunk in */
1495 pcpu_first_chunk = dchunk ?: schunk;
1496 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1498 /* we're done */
1499 pcpu_base_addr = base_addr;
1500 return 0;
1503 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1504 [PCPU_FC_AUTO] = "auto",
1505 [PCPU_FC_EMBED] = "embed",
1506 [PCPU_FC_PAGE] = "page",
1509 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1511 static int __init percpu_alloc_setup(char *str)
1513 if (0)
1514 /* nada */;
1515 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1516 else if (!strcmp(str, "embed"))
1517 pcpu_chosen_fc = PCPU_FC_EMBED;
1518 #endif
1519 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1520 else if (!strcmp(str, "page"))
1521 pcpu_chosen_fc = PCPU_FC_PAGE;
1522 #endif
1523 else
1524 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1526 return 0;
1528 early_param("percpu_alloc", percpu_alloc_setup);
1530 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1531 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1533 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1534 * @reserved_size: the size of reserved percpu area in bytes
1535 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1536 * @atom_size: allocation atom size
1537 * @cpu_distance_fn: callback to determine distance between cpus, optional
1538 * @alloc_fn: function to allocate percpu page
1539 * @free_fn: funtion to free percpu page
1541 * This is a helper to ease setting up embedded first percpu chunk and
1542 * can be called where pcpu_setup_first_chunk() is expected.
1544 * If this function is used to setup the first chunk, it is allocated
1545 * by calling @alloc_fn and used as-is without being mapped into
1546 * vmalloc area. Allocations are always whole multiples of @atom_size
1547 * aligned to @atom_size.
1549 * This enables the first chunk to piggy back on the linear physical
1550 * mapping which often uses larger page size. Please note that this
1551 * can result in very sparse cpu->unit mapping on NUMA machines thus
1552 * requiring large vmalloc address space. Don't use this allocator if
1553 * vmalloc space is not orders of magnitude larger than distances
1554 * between node memory addresses (ie. 32bit NUMA machines).
1556 * When @dyn_size is positive, dynamic area might be larger than
1557 * specified to fill page alignment. When @dyn_size is auto,
1558 * @dyn_size is just big enough to fill page alignment after static
1559 * and reserved areas.
1561 * If the needed size is smaller than the minimum or specified unit
1562 * size, the leftover is returned using @free_fn.
1564 * RETURNS:
1565 * 0 on success, -errno on failure.
1567 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1568 size_t atom_size,
1569 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1570 pcpu_fc_alloc_fn_t alloc_fn,
1571 pcpu_fc_free_fn_t free_fn)
1573 void *base = (void *)ULONG_MAX;
1574 void **areas = NULL;
1575 struct pcpu_alloc_info *ai;
1576 size_t size_sum, areas_size, max_distance;
1577 int group, i, rc;
1579 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1580 cpu_distance_fn);
1581 if (IS_ERR(ai))
1582 return PTR_ERR(ai);
1584 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1585 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1587 areas = alloc_bootmem_nopanic(areas_size);
1588 if (!areas) {
1589 rc = -ENOMEM;
1590 goto out_free;
1593 /* allocate, copy and determine base address */
1594 for (group = 0; group < ai->nr_groups; group++) {
1595 struct pcpu_group_info *gi = &ai->groups[group];
1596 unsigned int cpu = NR_CPUS;
1597 void *ptr;
1599 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1600 cpu = gi->cpu_map[i];
1601 BUG_ON(cpu == NR_CPUS);
1603 /* allocate space for the whole group */
1604 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1605 if (!ptr) {
1606 rc = -ENOMEM;
1607 goto out_free_areas;
1609 areas[group] = ptr;
1611 base = min(ptr, base);
1613 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1614 if (gi->cpu_map[i] == NR_CPUS) {
1615 /* unused unit, free whole */
1616 free_fn(ptr, ai->unit_size);
1617 continue;
1619 /* copy and return the unused part */
1620 memcpy(ptr, __per_cpu_load, ai->static_size);
1621 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1625 /* base address is now known, determine group base offsets */
1626 max_distance = 0;
1627 for (group = 0; group < ai->nr_groups; group++) {
1628 ai->groups[group].base_offset = areas[group] - base;
1629 max_distance = max_t(size_t, max_distance,
1630 ai->groups[group].base_offset);
1632 max_distance += ai->unit_size;
1634 /* warn if maximum distance is further than 75% of vmalloc space */
1635 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1636 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1637 "space 0x%lx\n",
1638 max_distance, VMALLOC_END - VMALLOC_START);
1639 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1640 /* and fail if we have fallback */
1641 rc = -EINVAL;
1642 goto out_free;
1643 #endif
1646 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1647 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1648 ai->dyn_size, ai->unit_size);
1650 rc = pcpu_setup_first_chunk(ai, base);
1651 goto out_free;
1653 out_free_areas:
1654 for (group = 0; group < ai->nr_groups; group++)
1655 free_fn(areas[group],
1656 ai->groups[group].nr_units * ai->unit_size);
1657 out_free:
1658 pcpu_free_alloc_info(ai);
1659 if (areas)
1660 free_bootmem(__pa(areas), areas_size);
1661 return rc;
1663 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1664 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1666 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1668 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1669 * @reserved_size: the size of reserved percpu area in bytes
1670 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1671 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1672 * @populate_pte_fn: function to populate pte
1674 * This is a helper to ease setting up page-remapped first percpu
1675 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1677 * This is the basic allocator. Static percpu area is allocated
1678 * page-by-page into vmalloc area.
1680 * RETURNS:
1681 * 0 on success, -errno on failure.
1683 int __init pcpu_page_first_chunk(size_t reserved_size,
1684 pcpu_fc_alloc_fn_t alloc_fn,
1685 pcpu_fc_free_fn_t free_fn,
1686 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1688 static struct vm_struct vm;
1689 struct pcpu_alloc_info *ai;
1690 char psize_str[16];
1691 int unit_pages;
1692 size_t pages_size;
1693 struct page **pages;
1694 int unit, i, j, rc;
1696 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1698 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
1699 if (IS_ERR(ai))
1700 return PTR_ERR(ai);
1701 BUG_ON(ai->nr_groups != 1);
1702 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1704 unit_pages = ai->unit_size >> PAGE_SHIFT;
1706 /* unaligned allocations can't be freed, round up to page size */
1707 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1708 sizeof(pages[0]));
1709 pages = alloc_bootmem(pages_size);
1711 /* allocate pages */
1712 j = 0;
1713 for (unit = 0; unit < num_possible_cpus(); unit++)
1714 for (i = 0; i < unit_pages; i++) {
1715 unsigned int cpu = ai->groups[0].cpu_map[unit];
1716 void *ptr;
1718 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1719 if (!ptr) {
1720 pr_warning("PERCPU: failed to allocate %s page "
1721 "for cpu%u\n", psize_str, cpu);
1722 goto enomem;
1724 pages[j++] = virt_to_page(ptr);
1727 /* allocate vm area, map the pages and copy static data */
1728 vm.flags = VM_ALLOC;
1729 vm.size = num_possible_cpus() * ai->unit_size;
1730 vm_area_register_early(&vm, PAGE_SIZE);
1732 for (unit = 0; unit < num_possible_cpus(); unit++) {
1733 unsigned long unit_addr =
1734 (unsigned long)vm.addr + unit * ai->unit_size;
1736 for (i = 0; i < unit_pages; i++)
1737 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1739 /* pte already populated, the following shouldn't fail */
1740 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1741 unit_pages);
1742 if (rc < 0)
1743 panic("failed to map percpu area, err=%d\n", rc);
1746 * FIXME: Archs with virtual cache should flush local
1747 * cache for the linear mapping here - something
1748 * equivalent to flush_cache_vmap() on the local cpu.
1749 * flush_cache_vmap() can't be used as most supporting
1750 * data structures are not set up yet.
1753 /* copy static data */
1754 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1757 /* we're ready, commit */
1758 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1759 unit_pages, psize_str, vm.addr, ai->static_size,
1760 ai->reserved_size, ai->dyn_size);
1762 rc = pcpu_setup_first_chunk(ai, vm.addr);
1763 goto out_free_ar;
1765 enomem:
1766 while (--j >= 0)
1767 free_fn(page_address(pages[j]), PAGE_SIZE);
1768 rc = -ENOMEM;
1769 out_free_ar:
1770 free_bootmem(__pa(pages), pages_size);
1771 pcpu_free_alloc_info(ai);
1772 return rc;
1774 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1777 * Generic percpu area setup.
1779 * The embedding helper is used because its behavior closely resembles
1780 * the original non-dynamic generic percpu area setup. This is
1781 * important because many archs have addressing restrictions and might
1782 * fail if the percpu area is located far away from the previous
1783 * location. As an added bonus, in non-NUMA cases, embedding is
1784 * generally a good idea TLB-wise because percpu area can piggy back
1785 * on the physical linear memory mapping which uses large page
1786 * mappings on applicable archs.
1788 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1789 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1790 EXPORT_SYMBOL(__per_cpu_offset);
1792 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1793 size_t align)
1795 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1798 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1800 free_bootmem(__pa(ptr), size);
1803 void __init setup_per_cpu_areas(void)
1805 unsigned long delta;
1806 unsigned int cpu;
1807 int rc;
1810 * Always reserve area for module percpu variables. That's
1811 * what the legacy allocator did.
1813 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1814 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1815 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1816 if (rc < 0)
1817 panic("Failed to initialized percpu areas.");
1819 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1820 for_each_possible_cpu(cpu)
1821 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1823 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */