libata: initialize port_task when !CONFIG_ATA_SFF
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blob8228ae3f8a16b6b7ee01d543bbf19a640e51708c
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_host.h>
62 #include <linux/libata.h>
63 #include <asm/byteorder.h>
64 #include <linux/cdrom.h>
66 #include "libata.h"
69 /* debounce timing parameters in msecs { interval, duration, timeout } */
70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
74 const struct ata_port_operations ata_base_port_ops = {
75 .prereset = ata_std_prereset,
76 .postreset = ata_std_postreset,
77 .error_handler = ata_std_error_handler,
80 const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
83 .qc_defer = ata_std_qc_defer,
84 .hardreset = sata_std_hardreset,
87 static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
90 static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
92 static void ata_dev_xfermask(struct ata_device *dev);
93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
95 unsigned int ata_print_id = 1;
96 static struct workqueue_struct *ata_wq;
98 struct workqueue_struct *ata_aux_wq;
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160 MODULE_AUTHOR("Jeff Garzik");
161 MODULE_DESCRIPTION("Library module for ATA devices");
162 MODULE_LICENSE("GPL");
163 MODULE_VERSION(DRV_VERSION);
167 * ata_force_cbl - force cable type according to libata.force
168 * @ap: ATA port of interest
170 * Force cable type according to libata.force and whine about it.
171 * The last entry which has matching port number is used, so it
172 * can be specified as part of device force parameters. For
173 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
174 * same effect.
176 * LOCKING:
177 * EH context.
179 void ata_force_cbl(struct ata_port *ap)
181 int i;
183 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
184 const struct ata_force_ent *fe = &ata_force_tbl[i];
186 if (fe->port != -1 && fe->port != ap->print_id)
187 continue;
189 if (fe->param.cbl == ATA_CBL_NONE)
190 continue;
192 ap->cbl = fe->param.cbl;
193 ata_port_printk(ap, KERN_NOTICE,
194 "FORCE: cable set to %s\n", fe->param.name);
195 return;
200 * ata_force_link_limits - force link limits according to libata.force
201 * @link: ATA link of interest
203 * Force link flags and SATA spd limit according to libata.force
204 * and whine about it. When only the port part is specified
205 * (e.g. 1:), the limit applies to all links connected to both
206 * the host link and all fan-out ports connected via PMP. If the
207 * device part is specified as 0 (e.g. 1.00:), it specifies the
208 * first fan-out link not the host link. Device number 15 always
209 * points to the host link whether PMP is attached or not.
211 * LOCKING:
212 * EH context.
214 static void ata_force_link_limits(struct ata_link *link)
216 bool did_spd = false;
217 int linkno, i;
219 if (ata_is_host_link(link))
220 linkno = 15;
221 else
222 linkno = link->pmp;
224 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
225 const struct ata_force_ent *fe = &ata_force_tbl[i];
227 if (fe->port != -1 && fe->port != link->ap->print_id)
228 continue;
230 if (fe->device != -1 && fe->device != linkno)
231 continue;
233 /* only honor the first spd limit */
234 if (!did_spd && fe->param.spd_limit) {
235 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
236 ata_link_printk(link, KERN_NOTICE,
237 "FORCE: PHY spd limit set to %s\n",
238 fe->param.name);
239 did_spd = true;
242 /* let lflags stack */
243 if (fe->param.lflags) {
244 link->flags |= fe->param.lflags;
245 ata_link_printk(link, KERN_NOTICE,
246 "FORCE: link flag 0x%x forced -> 0x%x\n",
247 fe->param.lflags, link->flags);
253 * ata_force_xfermask - force xfermask according to libata.force
254 * @dev: ATA device of interest
256 * Force xfer_mask according to libata.force and whine about it.
257 * For consistency with link selection, device number 15 selects
258 * the first device connected to the host link.
260 * LOCKING:
261 * EH context.
263 static void ata_force_xfermask(struct ata_device *dev)
265 int devno = dev->link->pmp + dev->devno;
266 int alt_devno = devno;
267 int i;
269 /* allow n.15 for the first device attached to host port */
270 if (ata_is_host_link(dev->link) && devno == 0)
271 alt_devno = 15;
273 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
274 const struct ata_force_ent *fe = &ata_force_tbl[i];
275 unsigned long pio_mask, mwdma_mask, udma_mask;
277 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
278 continue;
280 if (fe->device != -1 && fe->device != devno &&
281 fe->device != alt_devno)
282 continue;
284 if (!fe->param.xfer_mask)
285 continue;
287 ata_unpack_xfermask(fe->param.xfer_mask,
288 &pio_mask, &mwdma_mask, &udma_mask);
289 if (udma_mask)
290 dev->udma_mask = udma_mask;
291 else if (mwdma_mask) {
292 dev->udma_mask = 0;
293 dev->mwdma_mask = mwdma_mask;
294 } else {
295 dev->udma_mask = 0;
296 dev->mwdma_mask = 0;
297 dev->pio_mask = pio_mask;
300 ata_dev_printk(dev, KERN_NOTICE,
301 "FORCE: xfer_mask set to %s\n", fe->param.name);
302 return;
307 * ata_force_horkage - force horkage according to libata.force
308 * @dev: ATA device of interest
310 * Force horkage according to libata.force and whine about it.
311 * For consistency with link selection, device number 15 selects
312 * the first device connected to the host link.
314 * LOCKING:
315 * EH context.
317 static void ata_force_horkage(struct ata_device *dev)
319 int devno = dev->link->pmp + dev->devno;
320 int alt_devno = devno;
321 int i;
323 /* allow n.15 for the first device attached to host port */
324 if (ata_is_host_link(dev->link) && devno == 0)
325 alt_devno = 15;
327 for (i = 0; i < ata_force_tbl_size; i++) {
328 const struct ata_force_ent *fe = &ata_force_tbl[i];
330 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
331 continue;
333 if (fe->device != -1 && fe->device != devno &&
334 fe->device != alt_devno)
335 continue;
337 if (!(~dev->horkage & fe->param.horkage_on) &&
338 !(dev->horkage & fe->param.horkage_off))
339 continue;
341 dev->horkage |= fe->param.horkage_on;
342 dev->horkage &= ~fe->param.horkage_off;
344 ata_dev_printk(dev, KERN_NOTICE,
345 "FORCE: horkage modified (%s)\n", fe->param.name);
350 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
351 * @opcode: SCSI opcode
353 * Determine ATAPI command type from @opcode.
355 * LOCKING:
356 * None.
358 * RETURNS:
359 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
361 int atapi_cmd_type(u8 opcode)
363 switch (opcode) {
364 case GPCMD_READ_10:
365 case GPCMD_READ_12:
366 return ATAPI_READ;
368 case GPCMD_WRITE_10:
369 case GPCMD_WRITE_12:
370 case GPCMD_WRITE_AND_VERIFY_10:
371 return ATAPI_WRITE;
373 case GPCMD_READ_CD:
374 case GPCMD_READ_CD_MSF:
375 return ATAPI_READ_CD;
377 case ATA_16:
378 case ATA_12:
379 if (atapi_passthru16)
380 return ATAPI_PASS_THRU;
381 /* fall thru */
382 default:
383 return ATAPI_MISC;
388 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
389 * @tf: Taskfile to convert
390 * @pmp: Port multiplier port
391 * @is_cmd: This FIS is for command
392 * @fis: Buffer into which data will output
394 * Converts a standard ATA taskfile to a Serial ATA
395 * FIS structure (Register - Host to Device).
397 * LOCKING:
398 * Inherited from caller.
400 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
402 fis[0] = 0x27; /* Register - Host to Device FIS */
403 fis[1] = pmp & 0xf; /* Port multiplier number*/
404 if (is_cmd)
405 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
407 fis[2] = tf->command;
408 fis[3] = tf->feature;
410 fis[4] = tf->lbal;
411 fis[5] = tf->lbam;
412 fis[6] = tf->lbah;
413 fis[7] = tf->device;
415 fis[8] = tf->hob_lbal;
416 fis[9] = tf->hob_lbam;
417 fis[10] = tf->hob_lbah;
418 fis[11] = tf->hob_feature;
420 fis[12] = tf->nsect;
421 fis[13] = tf->hob_nsect;
422 fis[14] = 0;
423 fis[15] = tf->ctl;
425 fis[16] = 0;
426 fis[17] = 0;
427 fis[18] = 0;
428 fis[19] = 0;
432 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
433 * @fis: Buffer from which data will be input
434 * @tf: Taskfile to output
436 * Converts a serial ATA FIS structure to a standard ATA taskfile.
438 * LOCKING:
439 * Inherited from caller.
442 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
444 tf->command = fis[2]; /* status */
445 tf->feature = fis[3]; /* error */
447 tf->lbal = fis[4];
448 tf->lbam = fis[5];
449 tf->lbah = fis[6];
450 tf->device = fis[7];
452 tf->hob_lbal = fis[8];
453 tf->hob_lbam = fis[9];
454 tf->hob_lbah = fis[10];
456 tf->nsect = fis[12];
457 tf->hob_nsect = fis[13];
460 static const u8 ata_rw_cmds[] = {
461 /* pio multi */
462 ATA_CMD_READ_MULTI,
463 ATA_CMD_WRITE_MULTI,
464 ATA_CMD_READ_MULTI_EXT,
465 ATA_CMD_WRITE_MULTI_EXT,
469 ATA_CMD_WRITE_MULTI_FUA_EXT,
470 /* pio */
471 ATA_CMD_PIO_READ,
472 ATA_CMD_PIO_WRITE,
473 ATA_CMD_PIO_READ_EXT,
474 ATA_CMD_PIO_WRITE_EXT,
479 /* dma */
480 ATA_CMD_READ,
481 ATA_CMD_WRITE,
482 ATA_CMD_READ_EXT,
483 ATA_CMD_WRITE_EXT,
487 ATA_CMD_WRITE_FUA_EXT
491 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
492 * @tf: command to examine and configure
493 * @dev: device tf belongs to
495 * Examine the device configuration and tf->flags to calculate
496 * the proper read/write commands and protocol to use.
498 * LOCKING:
499 * caller.
501 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
503 u8 cmd;
505 int index, fua, lba48, write;
507 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
508 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
509 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
511 if (dev->flags & ATA_DFLAG_PIO) {
512 tf->protocol = ATA_PROT_PIO;
513 index = dev->multi_count ? 0 : 8;
514 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
515 /* Unable to use DMA due to host limitation */
516 tf->protocol = ATA_PROT_PIO;
517 index = dev->multi_count ? 0 : 8;
518 } else {
519 tf->protocol = ATA_PROT_DMA;
520 index = 16;
523 cmd = ata_rw_cmds[index + fua + lba48 + write];
524 if (cmd) {
525 tf->command = cmd;
526 return 0;
528 return -1;
532 * ata_tf_read_block - Read block address from ATA taskfile
533 * @tf: ATA taskfile of interest
534 * @dev: ATA device @tf belongs to
536 * LOCKING:
537 * None.
539 * Read block address from @tf. This function can handle all
540 * three address formats - LBA, LBA48 and CHS. tf->protocol and
541 * flags select the address format to use.
543 * RETURNS:
544 * Block address read from @tf.
546 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
548 u64 block = 0;
550 if (tf->flags & ATA_TFLAG_LBA) {
551 if (tf->flags & ATA_TFLAG_LBA48) {
552 block |= (u64)tf->hob_lbah << 40;
553 block |= (u64)tf->hob_lbam << 32;
554 block |= tf->hob_lbal << 24;
555 } else
556 block |= (tf->device & 0xf) << 24;
558 block |= tf->lbah << 16;
559 block |= tf->lbam << 8;
560 block |= tf->lbal;
561 } else {
562 u32 cyl, head, sect;
564 cyl = tf->lbam | (tf->lbah << 8);
565 head = tf->device & 0xf;
566 sect = tf->lbal;
568 block = (cyl * dev->heads + head) * dev->sectors + sect;
571 return block;
575 * ata_build_rw_tf - Build ATA taskfile for given read/write request
576 * @tf: Target ATA taskfile
577 * @dev: ATA device @tf belongs to
578 * @block: Block address
579 * @n_block: Number of blocks
580 * @tf_flags: RW/FUA etc...
581 * @tag: tag
583 * LOCKING:
584 * None.
586 * Build ATA taskfile @tf for read/write request described by
587 * @block, @n_block, @tf_flags and @tag on @dev.
589 * RETURNS:
591 * 0 on success, -ERANGE if the request is too large for @dev,
592 * -EINVAL if the request is invalid.
594 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
595 u64 block, u32 n_block, unsigned int tf_flags,
596 unsigned int tag)
598 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
599 tf->flags |= tf_flags;
601 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
602 /* yay, NCQ */
603 if (!lba_48_ok(block, n_block))
604 return -ERANGE;
606 tf->protocol = ATA_PROT_NCQ;
607 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
609 if (tf->flags & ATA_TFLAG_WRITE)
610 tf->command = ATA_CMD_FPDMA_WRITE;
611 else
612 tf->command = ATA_CMD_FPDMA_READ;
614 tf->nsect = tag << 3;
615 tf->hob_feature = (n_block >> 8) & 0xff;
616 tf->feature = n_block & 0xff;
618 tf->hob_lbah = (block >> 40) & 0xff;
619 tf->hob_lbam = (block >> 32) & 0xff;
620 tf->hob_lbal = (block >> 24) & 0xff;
621 tf->lbah = (block >> 16) & 0xff;
622 tf->lbam = (block >> 8) & 0xff;
623 tf->lbal = block & 0xff;
625 tf->device = 1 << 6;
626 if (tf->flags & ATA_TFLAG_FUA)
627 tf->device |= 1 << 7;
628 } else if (dev->flags & ATA_DFLAG_LBA) {
629 tf->flags |= ATA_TFLAG_LBA;
631 if (lba_28_ok(block, n_block)) {
632 /* use LBA28 */
633 tf->device |= (block >> 24) & 0xf;
634 } else if (lba_48_ok(block, n_block)) {
635 if (!(dev->flags & ATA_DFLAG_LBA48))
636 return -ERANGE;
638 /* use LBA48 */
639 tf->flags |= ATA_TFLAG_LBA48;
641 tf->hob_nsect = (n_block >> 8) & 0xff;
643 tf->hob_lbah = (block >> 40) & 0xff;
644 tf->hob_lbam = (block >> 32) & 0xff;
645 tf->hob_lbal = (block >> 24) & 0xff;
646 } else
647 /* request too large even for LBA48 */
648 return -ERANGE;
650 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
651 return -EINVAL;
653 tf->nsect = n_block & 0xff;
655 tf->lbah = (block >> 16) & 0xff;
656 tf->lbam = (block >> 8) & 0xff;
657 tf->lbal = block & 0xff;
659 tf->device |= ATA_LBA;
660 } else {
661 /* CHS */
662 u32 sect, head, cyl, track;
664 /* The request -may- be too large for CHS addressing. */
665 if (!lba_28_ok(block, n_block))
666 return -ERANGE;
668 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
669 return -EINVAL;
671 /* Convert LBA to CHS */
672 track = (u32)block / dev->sectors;
673 cyl = track / dev->heads;
674 head = track % dev->heads;
675 sect = (u32)block % dev->sectors + 1;
677 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
678 (u32)block, track, cyl, head, sect);
680 /* Check whether the converted CHS can fit.
681 Cylinder: 0-65535
682 Head: 0-15
683 Sector: 1-255*/
684 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
685 return -ERANGE;
687 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
688 tf->lbal = sect;
689 tf->lbam = cyl;
690 tf->lbah = cyl >> 8;
691 tf->device |= head;
694 return 0;
698 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
699 * @pio_mask: pio_mask
700 * @mwdma_mask: mwdma_mask
701 * @udma_mask: udma_mask
703 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
704 * unsigned int xfer_mask.
706 * LOCKING:
707 * None.
709 * RETURNS:
710 * Packed xfer_mask.
712 unsigned long ata_pack_xfermask(unsigned long pio_mask,
713 unsigned long mwdma_mask,
714 unsigned long udma_mask)
716 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
717 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
718 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
722 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
723 * @xfer_mask: xfer_mask to unpack
724 * @pio_mask: resulting pio_mask
725 * @mwdma_mask: resulting mwdma_mask
726 * @udma_mask: resulting udma_mask
728 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
729 * Any NULL distination masks will be ignored.
731 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
732 unsigned long *mwdma_mask, unsigned long *udma_mask)
734 if (pio_mask)
735 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
736 if (mwdma_mask)
737 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
738 if (udma_mask)
739 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
742 static const struct ata_xfer_ent {
743 int shift, bits;
744 u8 base;
745 } ata_xfer_tbl[] = {
746 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
747 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
748 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
749 { -1, },
753 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
754 * @xfer_mask: xfer_mask of interest
756 * Return matching XFER_* value for @xfer_mask. Only the highest
757 * bit of @xfer_mask is considered.
759 * LOCKING:
760 * None.
762 * RETURNS:
763 * Matching XFER_* value, 0xff if no match found.
765 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
767 int highbit = fls(xfer_mask) - 1;
768 const struct ata_xfer_ent *ent;
770 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
771 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
772 return ent->base + highbit - ent->shift;
773 return 0xff;
777 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
778 * @xfer_mode: XFER_* of interest
780 * Return matching xfer_mask for @xfer_mode.
782 * LOCKING:
783 * None.
785 * RETURNS:
786 * Matching xfer_mask, 0 if no match found.
788 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
790 const struct ata_xfer_ent *ent;
792 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
793 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
794 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
795 & ~((1 << ent->shift) - 1);
796 return 0;
800 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
801 * @xfer_mode: XFER_* of interest
803 * Return matching xfer_shift for @xfer_mode.
805 * LOCKING:
806 * None.
808 * RETURNS:
809 * Matching xfer_shift, -1 if no match found.
811 int ata_xfer_mode2shift(unsigned long xfer_mode)
813 const struct ata_xfer_ent *ent;
815 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
816 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
817 return ent->shift;
818 return -1;
822 * ata_mode_string - convert xfer_mask to string
823 * @xfer_mask: mask of bits supported; only highest bit counts.
825 * Determine string which represents the highest speed
826 * (highest bit in @modemask).
828 * LOCKING:
829 * None.
831 * RETURNS:
832 * Constant C string representing highest speed listed in
833 * @mode_mask, or the constant C string "<n/a>".
835 const char *ata_mode_string(unsigned long xfer_mask)
837 static const char * const xfer_mode_str[] = {
838 "PIO0",
839 "PIO1",
840 "PIO2",
841 "PIO3",
842 "PIO4",
843 "PIO5",
844 "PIO6",
845 "MWDMA0",
846 "MWDMA1",
847 "MWDMA2",
848 "MWDMA3",
849 "MWDMA4",
850 "UDMA/16",
851 "UDMA/25",
852 "UDMA/33",
853 "UDMA/44",
854 "UDMA/66",
855 "UDMA/100",
856 "UDMA/133",
857 "UDMA7",
859 int highbit;
861 highbit = fls(xfer_mask) - 1;
862 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
863 return xfer_mode_str[highbit];
864 return "<n/a>";
867 static const char *sata_spd_string(unsigned int spd)
869 static const char * const spd_str[] = {
870 "1.5 Gbps",
871 "3.0 Gbps",
874 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
875 return "<unknown>";
876 return spd_str[spd - 1];
879 void ata_dev_disable(struct ata_device *dev)
881 if (ata_dev_enabled(dev)) {
882 if (ata_msg_drv(dev->link->ap))
883 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
884 ata_acpi_on_disable(dev);
885 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
886 ATA_DNXFER_QUIET);
887 dev->class++;
891 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
893 struct ata_link *link = dev->link;
894 struct ata_port *ap = link->ap;
895 u32 scontrol;
896 unsigned int err_mask;
897 int rc;
900 * disallow DIPM for drivers which haven't set
901 * ATA_FLAG_IPM. This is because when DIPM is enabled,
902 * phy ready will be set in the interrupt status on
903 * state changes, which will cause some drivers to
904 * think there are errors - additionally drivers will
905 * need to disable hot plug.
907 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
908 ap->pm_policy = NOT_AVAILABLE;
909 return -EINVAL;
913 * For DIPM, we will only enable it for the
914 * min_power setting.
916 * Why? Because Disks are too stupid to know that
917 * If the host rejects a request to go to SLUMBER
918 * they should retry at PARTIAL, and instead it
919 * just would give up. So, for medium_power to
920 * work at all, we need to only allow HIPM.
922 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
923 if (rc)
924 return rc;
926 switch (policy) {
927 case MIN_POWER:
928 /* no restrictions on IPM transitions */
929 scontrol &= ~(0x3 << 8);
930 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
931 if (rc)
932 return rc;
934 /* enable DIPM */
935 if (dev->flags & ATA_DFLAG_DIPM)
936 err_mask = ata_dev_set_feature(dev,
937 SETFEATURES_SATA_ENABLE, SATA_DIPM);
938 break;
939 case MEDIUM_POWER:
940 /* allow IPM to PARTIAL */
941 scontrol &= ~(0x1 << 8);
942 scontrol |= (0x2 << 8);
943 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
944 if (rc)
945 return rc;
948 * we don't have to disable DIPM since IPM flags
949 * disallow transitions to SLUMBER, which effectively
950 * disable DIPM if it does not support PARTIAL
952 break;
953 case NOT_AVAILABLE:
954 case MAX_PERFORMANCE:
955 /* disable all IPM transitions */
956 scontrol |= (0x3 << 8);
957 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
958 if (rc)
959 return rc;
962 * we don't have to disable DIPM since IPM flags
963 * disallow all transitions which effectively
964 * disable DIPM anyway.
966 break;
969 /* FIXME: handle SET FEATURES failure */
970 (void) err_mask;
972 return 0;
976 * ata_dev_enable_pm - enable SATA interface power management
977 * @dev: device to enable power management
978 * @policy: the link power management policy
980 * Enable SATA Interface power management. This will enable
981 * Device Interface Power Management (DIPM) for min_power
982 * policy, and then call driver specific callbacks for
983 * enabling Host Initiated Power management.
985 * Locking: Caller.
986 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
988 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
990 int rc = 0;
991 struct ata_port *ap = dev->link->ap;
993 /* set HIPM first, then DIPM */
994 if (ap->ops->enable_pm)
995 rc = ap->ops->enable_pm(ap, policy);
996 if (rc)
997 goto enable_pm_out;
998 rc = ata_dev_set_dipm(dev, policy);
1000 enable_pm_out:
1001 if (rc)
1002 ap->pm_policy = MAX_PERFORMANCE;
1003 else
1004 ap->pm_policy = policy;
1005 return /* rc */; /* hopefully we can use 'rc' eventually */
1008 #ifdef CONFIG_PM
1010 * ata_dev_disable_pm - disable SATA interface power management
1011 * @dev: device to disable power management
1013 * Disable SATA Interface power management. This will disable
1014 * Device Interface Power Management (DIPM) without changing
1015 * policy, call driver specific callbacks for disabling Host
1016 * Initiated Power management.
1018 * Locking: Caller.
1019 * Returns: void
1021 static void ata_dev_disable_pm(struct ata_device *dev)
1023 struct ata_port *ap = dev->link->ap;
1025 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1026 if (ap->ops->disable_pm)
1027 ap->ops->disable_pm(ap);
1029 #endif /* CONFIG_PM */
1031 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1033 ap->pm_policy = policy;
1034 ap->link.eh_info.action |= ATA_EH_LPM;
1035 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1036 ata_port_schedule_eh(ap);
1039 #ifdef CONFIG_PM
1040 static void ata_lpm_enable(struct ata_host *host)
1042 struct ata_link *link;
1043 struct ata_port *ap;
1044 struct ata_device *dev;
1045 int i;
1047 for (i = 0; i < host->n_ports; i++) {
1048 ap = host->ports[i];
1049 ata_port_for_each_link(link, ap) {
1050 ata_link_for_each_dev(dev, link)
1051 ata_dev_disable_pm(dev);
1056 static void ata_lpm_disable(struct ata_host *host)
1058 int i;
1060 for (i = 0; i < host->n_ports; i++) {
1061 struct ata_port *ap = host->ports[i];
1062 ata_lpm_schedule(ap, ap->pm_policy);
1065 #endif /* CONFIG_PM */
1068 * ata_dev_classify - determine device type based on ATA-spec signature
1069 * @tf: ATA taskfile register set for device to be identified
1071 * Determine from taskfile register contents whether a device is
1072 * ATA or ATAPI, as per "Signature and persistence" section
1073 * of ATA/PI spec (volume 1, sect 5.14).
1075 * LOCKING:
1076 * None.
1078 * RETURNS:
1079 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1080 * %ATA_DEV_UNKNOWN the event of failure.
1082 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1084 /* Apple's open source Darwin code hints that some devices only
1085 * put a proper signature into the LBA mid/high registers,
1086 * So, we only check those. It's sufficient for uniqueness.
1088 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1089 * signatures for ATA and ATAPI devices attached on SerialATA,
1090 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1091 * spec has never mentioned about using different signatures
1092 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1093 * Multiplier specification began to use 0x69/0x96 to identify
1094 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1095 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1096 * 0x69/0x96 shortly and described them as reserved for
1097 * SerialATA.
1099 * We follow the current spec and consider that 0x69/0x96
1100 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1102 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1103 DPRINTK("found ATA device by sig\n");
1104 return ATA_DEV_ATA;
1107 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1108 DPRINTK("found ATAPI device by sig\n");
1109 return ATA_DEV_ATAPI;
1112 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1113 DPRINTK("found PMP device by sig\n");
1114 return ATA_DEV_PMP;
1117 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1118 printk(KERN_INFO "ata: SEMB device ignored\n");
1119 return ATA_DEV_SEMB_UNSUP; /* not yet */
1122 DPRINTK("unknown device\n");
1123 return ATA_DEV_UNKNOWN;
1127 * ata_id_string - Convert IDENTIFY DEVICE page into string
1128 * @id: IDENTIFY DEVICE results we will examine
1129 * @s: string into which data is output
1130 * @ofs: offset into identify device page
1131 * @len: length of string to return. must be an even number.
1133 * The strings in the IDENTIFY DEVICE page are broken up into
1134 * 16-bit chunks. Run through the string, and output each
1135 * 8-bit chunk linearly, regardless of platform.
1137 * LOCKING:
1138 * caller.
1141 void ata_id_string(const u16 *id, unsigned char *s,
1142 unsigned int ofs, unsigned int len)
1144 unsigned int c;
1146 BUG_ON(len & 1);
1148 while (len > 0) {
1149 c = id[ofs] >> 8;
1150 *s = c;
1151 s++;
1153 c = id[ofs] & 0xff;
1154 *s = c;
1155 s++;
1157 ofs++;
1158 len -= 2;
1163 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1164 * @id: IDENTIFY DEVICE results we will examine
1165 * @s: string into which data is output
1166 * @ofs: offset into identify device page
1167 * @len: length of string to return. must be an odd number.
1169 * This function is identical to ata_id_string except that it
1170 * trims trailing spaces and terminates the resulting string with
1171 * null. @len must be actual maximum length (even number) + 1.
1173 * LOCKING:
1174 * caller.
1176 void ata_id_c_string(const u16 *id, unsigned char *s,
1177 unsigned int ofs, unsigned int len)
1179 unsigned char *p;
1181 ata_id_string(id, s, ofs, len - 1);
1183 p = s + strnlen(s, len - 1);
1184 while (p > s && p[-1] == ' ')
1185 p--;
1186 *p = '\0';
1189 static u64 ata_id_n_sectors(const u16 *id)
1191 if (ata_id_has_lba(id)) {
1192 if (ata_id_has_lba48(id))
1193 return ata_id_u64(id, 100);
1194 else
1195 return ata_id_u32(id, 60);
1196 } else {
1197 if (ata_id_current_chs_valid(id))
1198 return ata_id_u32(id, 57);
1199 else
1200 return id[1] * id[3] * id[6];
1204 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1206 u64 sectors = 0;
1208 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1209 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1210 sectors |= (tf->hob_lbal & 0xff) << 24;
1211 sectors |= (tf->lbah & 0xff) << 16;
1212 sectors |= (tf->lbam & 0xff) << 8;
1213 sectors |= (tf->lbal & 0xff);
1215 return sectors;
1218 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1220 u64 sectors = 0;
1222 sectors |= (tf->device & 0x0f) << 24;
1223 sectors |= (tf->lbah & 0xff) << 16;
1224 sectors |= (tf->lbam & 0xff) << 8;
1225 sectors |= (tf->lbal & 0xff);
1227 return sectors;
1231 * ata_read_native_max_address - Read native max address
1232 * @dev: target device
1233 * @max_sectors: out parameter for the result native max address
1235 * Perform an LBA48 or LBA28 native size query upon the device in
1236 * question.
1238 * RETURNS:
1239 * 0 on success, -EACCES if command is aborted by the drive.
1240 * -EIO on other errors.
1242 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1244 unsigned int err_mask;
1245 struct ata_taskfile tf;
1246 int lba48 = ata_id_has_lba48(dev->id);
1248 ata_tf_init(dev, &tf);
1250 /* always clear all address registers */
1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1253 if (lba48) {
1254 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1255 tf.flags |= ATA_TFLAG_LBA48;
1256 } else
1257 tf.command = ATA_CMD_READ_NATIVE_MAX;
1259 tf.protocol |= ATA_PROT_NODATA;
1260 tf.device |= ATA_LBA;
1262 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1263 if (err_mask) {
1264 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1265 "max address (err_mask=0x%x)\n", err_mask);
1266 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1267 return -EACCES;
1268 return -EIO;
1271 if (lba48)
1272 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1273 else
1274 *max_sectors = ata_tf_to_lba(&tf) + 1;
1275 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1276 (*max_sectors)--;
1277 return 0;
1281 * ata_set_max_sectors - Set max sectors
1282 * @dev: target device
1283 * @new_sectors: new max sectors value to set for the device
1285 * Set max sectors of @dev to @new_sectors.
1287 * RETURNS:
1288 * 0 on success, -EACCES if command is aborted or denied (due to
1289 * previous non-volatile SET_MAX) by the drive. -EIO on other
1290 * errors.
1292 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1294 unsigned int err_mask;
1295 struct ata_taskfile tf;
1296 int lba48 = ata_id_has_lba48(dev->id);
1298 new_sectors--;
1300 ata_tf_init(dev, &tf);
1302 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1304 if (lba48) {
1305 tf.command = ATA_CMD_SET_MAX_EXT;
1306 tf.flags |= ATA_TFLAG_LBA48;
1308 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1309 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1310 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1311 } else {
1312 tf.command = ATA_CMD_SET_MAX;
1314 tf.device |= (new_sectors >> 24) & 0xf;
1317 tf.protocol |= ATA_PROT_NODATA;
1318 tf.device |= ATA_LBA;
1320 tf.lbal = (new_sectors >> 0) & 0xff;
1321 tf.lbam = (new_sectors >> 8) & 0xff;
1322 tf.lbah = (new_sectors >> 16) & 0xff;
1324 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1325 if (err_mask) {
1326 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1327 "max address (err_mask=0x%x)\n", err_mask);
1328 if (err_mask == AC_ERR_DEV &&
1329 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1330 return -EACCES;
1331 return -EIO;
1334 return 0;
1338 * ata_hpa_resize - Resize a device with an HPA set
1339 * @dev: Device to resize
1341 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1342 * it if required to the full size of the media. The caller must check
1343 * the drive has the HPA feature set enabled.
1345 * RETURNS:
1346 * 0 on success, -errno on failure.
1348 static int ata_hpa_resize(struct ata_device *dev)
1350 struct ata_eh_context *ehc = &dev->link->eh_context;
1351 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1352 u64 sectors = ata_id_n_sectors(dev->id);
1353 u64 native_sectors;
1354 int rc;
1356 /* do we need to do it? */
1357 if (dev->class != ATA_DEV_ATA ||
1358 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1359 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1360 return 0;
1362 /* read native max address */
1363 rc = ata_read_native_max_address(dev, &native_sectors);
1364 if (rc) {
1365 /* If device aborted the command or HPA isn't going to
1366 * be unlocked, skip HPA resizing.
1368 if (rc == -EACCES || !ata_ignore_hpa) {
1369 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1370 "broken, skipping HPA handling\n");
1371 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1373 /* we can continue if device aborted the command */
1374 if (rc == -EACCES)
1375 rc = 0;
1378 return rc;
1381 /* nothing to do? */
1382 if (native_sectors <= sectors || !ata_ignore_hpa) {
1383 if (!print_info || native_sectors == sectors)
1384 return 0;
1386 if (native_sectors > sectors)
1387 ata_dev_printk(dev, KERN_INFO,
1388 "HPA detected: current %llu, native %llu\n",
1389 (unsigned long long)sectors,
1390 (unsigned long long)native_sectors);
1391 else if (native_sectors < sectors)
1392 ata_dev_printk(dev, KERN_WARNING,
1393 "native sectors (%llu) is smaller than "
1394 "sectors (%llu)\n",
1395 (unsigned long long)native_sectors,
1396 (unsigned long long)sectors);
1397 return 0;
1400 /* let's unlock HPA */
1401 rc = ata_set_max_sectors(dev, native_sectors);
1402 if (rc == -EACCES) {
1403 /* if device aborted the command, skip HPA resizing */
1404 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1405 "(%llu -> %llu), skipping HPA handling\n",
1406 (unsigned long long)sectors,
1407 (unsigned long long)native_sectors);
1408 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1409 return 0;
1410 } else if (rc)
1411 return rc;
1413 /* re-read IDENTIFY data */
1414 rc = ata_dev_reread_id(dev, 0);
1415 if (rc) {
1416 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1417 "data after HPA resizing\n");
1418 return rc;
1421 if (print_info) {
1422 u64 new_sectors = ata_id_n_sectors(dev->id);
1423 ata_dev_printk(dev, KERN_INFO,
1424 "HPA unlocked: %llu -> %llu, native %llu\n",
1425 (unsigned long long)sectors,
1426 (unsigned long long)new_sectors,
1427 (unsigned long long)native_sectors);
1430 return 0;
1434 * ata_dump_id - IDENTIFY DEVICE info debugging output
1435 * @id: IDENTIFY DEVICE page to dump
1437 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1438 * page.
1440 * LOCKING:
1441 * caller.
1444 static inline void ata_dump_id(const u16 *id)
1446 DPRINTK("49==0x%04x "
1447 "53==0x%04x "
1448 "63==0x%04x "
1449 "64==0x%04x "
1450 "75==0x%04x \n",
1451 id[49],
1452 id[53],
1453 id[63],
1454 id[64],
1455 id[75]);
1456 DPRINTK("80==0x%04x "
1457 "81==0x%04x "
1458 "82==0x%04x "
1459 "83==0x%04x "
1460 "84==0x%04x \n",
1461 id[80],
1462 id[81],
1463 id[82],
1464 id[83],
1465 id[84]);
1466 DPRINTK("88==0x%04x "
1467 "93==0x%04x\n",
1468 id[88],
1469 id[93]);
1473 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1474 * @id: IDENTIFY data to compute xfer mask from
1476 * Compute the xfermask for this device. This is not as trivial
1477 * as it seems if we must consider early devices correctly.
1479 * FIXME: pre IDE drive timing (do we care ?).
1481 * LOCKING:
1482 * None.
1484 * RETURNS:
1485 * Computed xfermask
1487 unsigned long ata_id_xfermask(const u16 *id)
1489 unsigned long pio_mask, mwdma_mask, udma_mask;
1491 /* Usual case. Word 53 indicates word 64 is valid */
1492 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1493 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1494 pio_mask <<= 3;
1495 pio_mask |= 0x7;
1496 } else {
1497 /* If word 64 isn't valid then Word 51 high byte holds
1498 * the PIO timing number for the maximum. Turn it into
1499 * a mask.
1501 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1502 if (mode < 5) /* Valid PIO range */
1503 pio_mask = (2 << mode) - 1;
1504 else
1505 pio_mask = 1;
1507 /* But wait.. there's more. Design your standards by
1508 * committee and you too can get a free iordy field to
1509 * process. However its the speeds not the modes that
1510 * are supported... Note drivers using the timing API
1511 * will get this right anyway
1515 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1517 if (ata_id_is_cfa(id)) {
1519 * Process compact flash extended modes
1521 int pio = id[163] & 0x7;
1522 int dma = (id[163] >> 3) & 7;
1524 if (pio)
1525 pio_mask |= (1 << 5);
1526 if (pio > 1)
1527 pio_mask |= (1 << 6);
1528 if (dma)
1529 mwdma_mask |= (1 << 3);
1530 if (dma > 1)
1531 mwdma_mask |= (1 << 4);
1534 udma_mask = 0;
1535 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1536 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1538 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1542 * ata_pio_queue_task - Queue port_task
1543 * @ap: The ata_port to queue port_task for
1544 * @fn: workqueue function to be scheduled
1545 * @data: data for @fn to use
1546 * @delay: delay time in msecs for workqueue function
1548 * Schedule @fn(@data) for execution after @delay jiffies using
1549 * port_task. There is one port_task per port and it's the
1550 * user(low level driver)'s responsibility to make sure that only
1551 * one task is active at any given time.
1553 * libata core layer takes care of synchronization between
1554 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1555 * synchronization.
1557 * LOCKING:
1558 * Inherited from caller.
1560 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1562 ap->port_task_data = data;
1564 /* may fail if ata_port_flush_task() in progress */
1565 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1569 * ata_port_flush_task - Flush port_task
1570 * @ap: The ata_port to flush port_task for
1572 * After this function completes, port_task is guranteed not to
1573 * be running or scheduled.
1575 * LOCKING:
1576 * Kernel thread context (may sleep)
1578 void ata_port_flush_task(struct ata_port *ap)
1580 DPRINTK("ENTER\n");
1582 cancel_rearming_delayed_work(&ap->port_task);
1584 if (ata_msg_ctl(ap))
1585 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1588 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1590 struct completion *waiting = qc->private_data;
1592 complete(waiting);
1596 * ata_exec_internal_sg - execute libata internal command
1597 * @dev: Device to which the command is sent
1598 * @tf: Taskfile registers for the command and the result
1599 * @cdb: CDB for packet command
1600 * @dma_dir: Data tranfer direction of the command
1601 * @sgl: sg list for the data buffer of the command
1602 * @n_elem: Number of sg entries
1603 * @timeout: Timeout in msecs (0 for default)
1605 * Executes libata internal command with timeout. @tf contains
1606 * command on entry and result on return. Timeout and error
1607 * conditions are reported via return value. No recovery action
1608 * is taken after a command times out. It's caller's duty to
1609 * clean up after timeout.
1611 * LOCKING:
1612 * None. Should be called with kernel context, might sleep.
1614 * RETURNS:
1615 * Zero on success, AC_ERR_* mask on failure
1617 unsigned ata_exec_internal_sg(struct ata_device *dev,
1618 struct ata_taskfile *tf, const u8 *cdb,
1619 int dma_dir, struct scatterlist *sgl,
1620 unsigned int n_elem, unsigned long timeout)
1622 struct ata_link *link = dev->link;
1623 struct ata_port *ap = link->ap;
1624 u8 command = tf->command;
1625 int auto_timeout = 0;
1626 struct ata_queued_cmd *qc;
1627 unsigned int tag, preempted_tag;
1628 u32 preempted_sactive, preempted_qc_active;
1629 int preempted_nr_active_links;
1630 DECLARE_COMPLETION_ONSTACK(wait);
1631 unsigned long flags;
1632 unsigned int err_mask;
1633 int rc;
1635 spin_lock_irqsave(ap->lock, flags);
1637 /* no internal command while frozen */
1638 if (ap->pflags & ATA_PFLAG_FROZEN) {
1639 spin_unlock_irqrestore(ap->lock, flags);
1640 return AC_ERR_SYSTEM;
1643 /* initialize internal qc */
1645 /* XXX: Tag 0 is used for drivers with legacy EH as some
1646 * drivers choke if any other tag is given. This breaks
1647 * ata_tag_internal() test for those drivers. Don't use new
1648 * EH stuff without converting to it.
1650 if (ap->ops->error_handler)
1651 tag = ATA_TAG_INTERNAL;
1652 else
1653 tag = 0;
1655 if (test_and_set_bit(tag, &ap->qc_allocated))
1656 BUG();
1657 qc = __ata_qc_from_tag(ap, tag);
1659 qc->tag = tag;
1660 qc->scsicmd = NULL;
1661 qc->ap = ap;
1662 qc->dev = dev;
1663 ata_qc_reinit(qc);
1665 preempted_tag = link->active_tag;
1666 preempted_sactive = link->sactive;
1667 preempted_qc_active = ap->qc_active;
1668 preempted_nr_active_links = ap->nr_active_links;
1669 link->active_tag = ATA_TAG_POISON;
1670 link->sactive = 0;
1671 ap->qc_active = 0;
1672 ap->nr_active_links = 0;
1674 /* prepare & issue qc */
1675 qc->tf = *tf;
1676 if (cdb)
1677 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1678 qc->flags |= ATA_QCFLAG_RESULT_TF;
1679 qc->dma_dir = dma_dir;
1680 if (dma_dir != DMA_NONE) {
1681 unsigned int i, buflen = 0;
1682 struct scatterlist *sg;
1684 for_each_sg(sgl, sg, n_elem, i)
1685 buflen += sg->length;
1687 ata_sg_init(qc, sgl, n_elem);
1688 qc->nbytes = buflen;
1691 qc->private_data = &wait;
1692 qc->complete_fn = ata_qc_complete_internal;
1694 ata_qc_issue(qc);
1696 spin_unlock_irqrestore(ap->lock, flags);
1698 if (!timeout) {
1699 if (ata_probe_timeout)
1700 timeout = ata_probe_timeout * 1000;
1701 else {
1702 timeout = ata_internal_cmd_timeout(dev, command);
1703 auto_timeout = 1;
1707 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1709 ata_port_flush_task(ap);
1711 if (!rc) {
1712 spin_lock_irqsave(ap->lock, flags);
1714 /* We're racing with irq here. If we lose, the
1715 * following test prevents us from completing the qc
1716 * twice. If we win, the port is frozen and will be
1717 * cleaned up by ->post_internal_cmd().
1719 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1720 qc->err_mask |= AC_ERR_TIMEOUT;
1722 if (ap->ops->error_handler)
1723 ata_port_freeze(ap);
1724 else
1725 ata_qc_complete(qc);
1727 if (ata_msg_warn(ap))
1728 ata_dev_printk(dev, KERN_WARNING,
1729 "qc timeout (cmd 0x%x)\n", command);
1732 spin_unlock_irqrestore(ap->lock, flags);
1735 /* do post_internal_cmd */
1736 if (ap->ops->post_internal_cmd)
1737 ap->ops->post_internal_cmd(qc);
1739 /* perform minimal error analysis */
1740 if (qc->flags & ATA_QCFLAG_FAILED) {
1741 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1742 qc->err_mask |= AC_ERR_DEV;
1744 if (!qc->err_mask)
1745 qc->err_mask |= AC_ERR_OTHER;
1747 if (qc->err_mask & ~AC_ERR_OTHER)
1748 qc->err_mask &= ~AC_ERR_OTHER;
1751 /* finish up */
1752 spin_lock_irqsave(ap->lock, flags);
1754 *tf = qc->result_tf;
1755 err_mask = qc->err_mask;
1757 ata_qc_free(qc);
1758 link->active_tag = preempted_tag;
1759 link->sactive = preempted_sactive;
1760 ap->qc_active = preempted_qc_active;
1761 ap->nr_active_links = preempted_nr_active_links;
1763 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1764 * Until those drivers are fixed, we detect the condition
1765 * here, fail the command with AC_ERR_SYSTEM and reenable the
1766 * port.
1768 * Note that this doesn't change any behavior as internal
1769 * command failure results in disabling the device in the
1770 * higher layer for LLDDs without new reset/EH callbacks.
1772 * Kill the following code as soon as those drivers are fixed.
1774 if (ap->flags & ATA_FLAG_DISABLED) {
1775 err_mask |= AC_ERR_SYSTEM;
1776 ata_port_probe(ap);
1779 spin_unlock_irqrestore(ap->lock, flags);
1781 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1782 ata_internal_cmd_timed_out(dev, command);
1784 return err_mask;
1788 * ata_exec_internal - execute libata internal command
1789 * @dev: Device to which the command is sent
1790 * @tf: Taskfile registers for the command and the result
1791 * @cdb: CDB for packet command
1792 * @dma_dir: Data tranfer direction of the command
1793 * @buf: Data buffer of the command
1794 * @buflen: Length of data buffer
1795 * @timeout: Timeout in msecs (0 for default)
1797 * Wrapper around ata_exec_internal_sg() which takes simple
1798 * buffer instead of sg list.
1800 * LOCKING:
1801 * None. Should be called with kernel context, might sleep.
1803 * RETURNS:
1804 * Zero on success, AC_ERR_* mask on failure
1806 unsigned ata_exec_internal(struct ata_device *dev,
1807 struct ata_taskfile *tf, const u8 *cdb,
1808 int dma_dir, void *buf, unsigned int buflen,
1809 unsigned long timeout)
1811 struct scatterlist *psg = NULL, sg;
1812 unsigned int n_elem = 0;
1814 if (dma_dir != DMA_NONE) {
1815 WARN_ON(!buf);
1816 sg_init_one(&sg, buf, buflen);
1817 psg = &sg;
1818 n_elem++;
1821 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1822 timeout);
1826 * ata_do_simple_cmd - execute simple internal command
1827 * @dev: Device to which the command is sent
1828 * @cmd: Opcode to execute
1830 * Execute a 'simple' command, that only consists of the opcode
1831 * 'cmd' itself, without filling any other registers
1833 * LOCKING:
1834 * Kernel thread context (may sleep).
1836 * RETURNS:
1837 * Zero on success, AC_ERR_* mask on failure
1839 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1841 struct ata_taskfile tf;
1843 ata_tf_init(dev, &tf);
1845 tf.command = cmd;
1846 tf.flags |= ATA_TFLAG_DEVICE;
1847 tf.protocol = ATA_PROT_NODATA;
1849 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1853 * ata_pio_need_iordy - check if iordy needed
1854 * @adev: ATA device
1856 * Check if the current speed of the device requires IORDY. Used
1857 * by various controllers for chip configuration.
1860 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1862 /* Controller doesn't support IORDY. Probably a pointless check
1863 as the caller should know this */
1864 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1865 return 0;
1866 /* PIO3 and higher it is mandatory */
1867 if (adev->pio_mode > XFER_PIO_2)
1868 return 1;
1869 /* We turn it on when possible */
1870 if (ata_id_has_iordy(adev->id))
1871 return 1;
1872 return 0;
1876 * ata_pio_mask_no_iordy - Return the non IORDY mask
1877 * @adev: ATA device
1879 * Compute the highest mode possible if we are not using iordy. Return
1880 * -1 if no iordy mode is available.
1883 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1885 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1886 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1887 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1888 /* Is the speed faster than the drive allows non IORDY ? */
1889 if (pio) {
1890 /* This is cycle times not frequency - watch the logic! */
1891 if (pio > 240) /* PIO2 is 240nS per cycle */
1892 return 3 << ATA_SHIFT_PIO;
1893 return 7 << ATA_SHIFT_PIO;
1896 return 3 << ATA_SHIFT_PIO;
1900 * ata_do_dev_read_id - default ID read method
1901 * @dev: device
1902 * @tf: proposed taskfile
1903 * @id: data buffer
1905 * Issue the identify taskfile and hand back the buffer containing
1906 * identify data. For some RAID controllers and for pre ATA devices
1907 * this function is wrapped or replaced by the driver
1909 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1910 struct ata_taskfile *tf, u16 *id)
1912 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1913 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1917 * ata_dev_read_id - Read ID data from the specified device
1918 * @dev: target device
1919 * @p_class: pointer to class of the target device (may be changed)
1920 * @flags: ATA_READID_* flags
1921 * @id: buffer to read IDENTIFY data into
1923 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1924 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1925 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1926 * for pre-ATA4 drives.
1928 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1929 * now we abort if we hit that case.
1931 * LOCKING:
1932 * Kernel thread context (may sleep)
1934 * RETURNS:
1935 * 0 on success, -errno otherwise.
1937 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1938 unsigned int flags, u16 *id)
1940 struct ata_port *ap = dev->link->ap;
1941 unsigned int class = *p_class;
1942 struct ata_taskfile tf;
1943 unsigned int err_mask = 0;
1944 const char *reason;
1945 int may_fallback = 1, tried_spinup = 0;
1946 int rc;
1948 if (ata_msg_ctl(ap))
1949 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1951 retry:
1952 ata_tf_init(dev, &tf);
1954 switch (class) {
1955 case ATA_DEV_ATA:
1956 tf.command = ATA_CMD_ID_ATA;
1957 break;
1958 case ATA_DEV_ATAPI:
1959 tf.command = ATA_CMD_ID_ATAPI;
1960 break;
1961 default:
1962 rc = -ENODEV;
1963 reason = "unsupported class";
1964 goto err_out;
1967 tf.protocol = ATA_PROT_PIO;
1969 /* Some devices choke if TF registers contain garbage. Make
1970 * sure those are properly initialized.
1972 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1974 /* Device presence detection is unreliable on some
1975 * controllers. Always poll IDENTIFY if available.
1977 tf.flags |= ATA_TFLAG_POLLING;
1979 if (ap->ops->read_id)
1980 err_mask = ap->ops->read_id(dev, &tf, id);
1981 else
1982 err_mask = ata_do_dev_read_id(dev, &tf, id);
1984 if (err_mask) {
1985 if (err_mask & AC_ERR_NODEV_HINT) {
1986 ata_dev_printk(dev, KERN_DEBUG,
1987 "NODEV after polling detection\n");
1988 return -ENOENT;
1991 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1992 /* Device or controller might have reported
1993 * the wrong device class. Give a shot at the
1994 * other IDENTIFY if the current one is
1995 * aborted by the device.
1997 if (may_fallback) {
1998 may_fallback = 0;
2000 if (class == ATA_DEV_ATA)
2001 class = ATA_DEV_ATAPI;
2002 else
2003 class = ATA_DEV_ATA;
2004 goto retry;
2007 /* Control reaches here iff the device aborted
2008 * both flavors of IDENTIFYs which happens
2009 * sometimes with phantom devices.
2011 ata_dev_printk(dev, KERN_DEBUG,
2012 "both IDENTIFYs aborted, assuming NODEV\n");
2013 return -ENOENT;
2016 rc = -EIO;
2017 reason = "I/O error";
2018 goto err_out;
2021 /* Falling back doesn't make sense if ID data was read
2022 * successfully at least once.
2024 may_fallback = 0;
2026 swap_buf_le16(id, ATA_ID_WORDS);
2028 /* sanity check */
2029 rc = -EINVAL;
2030 reason = "device reports invalid type";
2032 if (class == ATA_DEV_ATA) {
2033 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2034 goto err_out;
2035 } else {
2036 if (ata_id_is_ata(id))
2037 goto err_out;
2040 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2041 tried_spinup = 1;
2043 * Drive powered-up in standby mode, and requires a specific
2044 * SET_FEATURES spin-up subcommand before it will accept
2045 * anything other than the original IDENTIFY command.
2047 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2048 if (err_mask && id[2] != 0x738c) {
2049 rc = -EIO;
2050 reason = "SPINUP failed";
2051 goto err_out;
2054 * If the drive initially returned incomplete IDENTIFY info,
2055 * we now must reissue the IDENTIFY command.
2057 if (id[2] == 0x37c8)
2058 goto retry;
2061 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2063 * The exact sequence expected by certain pre-ATA4 drives is:
2064 * SRST RESET
2065 * IDENTIFY (optional in early ATA)
2066 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2067 * anything else..
2068 * Some drives were very specific about that exact sequence.
2070 * Note that ATA4 says lba is mandatory so the second check
2071 * shoud never trigger.
2073 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2074 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2075 if (err_mask) {
2076 rc = -EIO;
2077 reason = "INIT_DEV_PARAMS failed";
2078 goto err_out;
2081 /* current CHS translation info (id[53-58]) might be
2082 * changed. reread the identify device info.
2084 flags &= ~ATA_READID_POSTRESET;
2085 goto retry;
2089 *p_class = class;
2091 return 0;
2093 err_out:
2094 if (ata_msg_warn(ap))
2095 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2096 "(%s, err_mask=0x%x)\n", reason, err_mask);
2097 return rc;
2100 static inline u8 ata_dev_knobble(struct ata_device *dev)
2102 struct ata_port *ap = dev->link->ap;
2103 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2106 static void ata_dev_config_ncq(struct ata_device *dev,
2107 char *desc, size_t desc_sz)
2109 struct ata_port *ap = dev->link->ap;
2110 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2112 if (!ata_id_has_ncq(dev->id)) {
2113 desc[0] = '\0';
2114 return;
2116 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2117 snprintf(desc, desc_sz, "NCQ (not used)");
2118 return;
2120 if (ap->flags & ATA_FLAG_NCQ) {
2121 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2122 dev->flags |= ATA_DFLAG_NCQ;
2125 if (hdepth >= ddepth)
2126 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2127 else
2128 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2132 * ata_dev_configure - Configure the specified ATA/ATAPI device
2133 * @dev: Target device to configure
2135 * Configure @dev according to @dev->id. Generic and low-level
2136 * driver specific fixups are also applied.
2138 * LOCKING:
2139 * Kernel thread context (may sleep)
2141 * RETURNS:
2142 * 0 on success, -errno otherwise
2144 int ata_dev_configure(struct ata_device *dev)
2146 struct ata_port *ap = dev->link->ap;
2147 struct ata_eh_context *ehc = &dev->link->eh_context;
2148 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2149 const u16 *id = dev->id;
2150 unsigned long xfer_mask;
2151 char revbuf[7]; /* XYZ-99\0 */
2152 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2153 char modelbuf[ATA_ID_PROD_LEN+1];
2154 int rc;
2156 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2157 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2158 __func__);
2159 return 0;
2162 if (ata_msg_probe(ap))
2163 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2165 /* set horkage */
2166 dev->horkage |= ata_dev_blacklisted(dev);
2167 ata_force_horkage(dev);
2169 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2170 ata_dev_printk(dev, KERN_INFO,
2171 "unsupported device, disabling\n");
2172 ata_dev_disable(dev);
2173 return 0;
2176 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2177 dev->class == ATA_DEV_ATAPI) {
2178 ata_dev_printk(dev, KERN_WARNING,
2179 "WARNING: ATAPI is %s, device ignored.\n",
2180 atapi_enabled ? "not supported with this driver"
2181 : "disabled");
2182 ata_dev_disable(dev);
2183 return 0;
2186 /* let ACPI work its magic */
2187 rc = ata_acpi_on_devcfg(dev);
2188 if (rc)
2189 return rc;
2191 /* massage HPA, do it early as it might change IDENTIFY data */
2192 rc = ata_hpa_resize(dev);
2193 if (rc)
2194 return rc;
2196 /* print device capabilities */
2197 if (ata_msg_probe(ap))
2198 ata_dev_printk(dev, KERN_DEBUG,
2199 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2200 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2201 __func__,
2202 id[49], id[82], id[83], id[84],
2203 id[85], id[86], id[87], id[88]);
2205 /* initialize to-be-configured parameters */
2206 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2207 dev->max_sectors = 0;
2208 dev->cdb_len = 0;
2209 dev->n_sectors = 0;
2210 dev->cylinders = 0;
2211 dev->heads = 0;
2212 dev->sectors = 0;
2215 * common ATA, ATAPI feature tests
2218 /* find max transfer mode; for printk only */
2219 xfer_mask = ata_id_xfermask(id);
2221 if (ata_msg_probe(ap))
2222 ata_dump_id(id);
2224 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2225 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2226 sizeof(fwrevbuf));
2228 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2229 sizeof(modelbuf));
2231 /* ATA-specific feature tests */
2232 if (dev->class == ATA_DEV_ATA) {
2233 if (ata_id_is_cfa(id)) {
2234 if (id[162] & 1) /* CPRM may make this media unusable */
2235 ata_dev_printk(dev, KERN_WARNING,
2236 "supports DRM functions and may "
2237 "not be fully accessable.\n");
2238 snprintf(revbuf, 7, "CFA");
2239 } else {
2240 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2241 /* Warn the user if the device has TPM extensions */
2242 if (ata_id_has_tpm(id))
2243 ata_dev_printk(dev, KERN_WARNING,
2244 "supports DRM functions and may "
2245 "not be fully accessable.\n");
2248 dev->n_sectors = ata_id_n_sectors(id);
2250 if (dev->id[59] & 0x100)
2251 dev->multi_count = dev->id[59] & 0xff;
2253 if (ata_id_has_lba(id)) {
2254 const char *lba_desc;
2255 char ncq_desc[20];
2257 lba_desc = "LBA";
2258 dev->flags |= ATA_DFLAG_LBA;
2259 if (ata_id_has_lba48(id)) {
2260 dev->flags |= ATA_DFLAG_LBA48;
2261 lba_desc = "LBA48";
2263 if (dev->n_sectors >= (1UL << 28) &&
2264 ata_id_has_flush_ext(id))
2265 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2268 /* config NCQ */
2269 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2271 /* print device info to dmesg */
2272 if (ata_msg_drv(ap) && print_info) {
2273 ata_dev_printk(dev, KERN_INFO,
2274 "%s: %s, %s, max %s\n",
2275 revbuf, modelbuf, fwrevbuf,
2276 ata_mode_string(xfer_mask));
2277 ata_dev_printk(dev, KERN_INFO,
2278 "%Lu sectors, multi %u: %s %s\n",
2279 (unsigned long long)dev->n_sectors,
2280 dev->multi_count, lba_desc, ncq_desc);
2282 } else {
2283 /* CHS */
2285 /* Default translation */
2286 dev->cylinders = id[1];
2287 dev->heads = id[3];
2288 dev->sectors = id[6];
2290 if (ata_id_current_chs_valid(id)) {
2291 /* Current CHS translation is valid. */
2292 dev->cylinders = id[54];
2293 dev->heads = id[55];
2294 dev->sectors = id[56];
2297 /* print device info to dmesg */
2298 if (ata_msg_drv(ap) && print_info) {
2299 ata_dev_printk(dev, KERN_INFO,
2300 "%s: %s, %s, max %s\n",
2301 revbuf, modelbuf, fwrevbuf,
2302 ata_mode_string(xfer_mask));
2303 ata_dev_printk(dev, KERN_INFO,
2304 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2305 (unsigned long long)dev->n_sectors,
2306 dev->multi_count, dev->cylinders,
2307 dev->heads, dev->sectors);
2311 dev->cdb_len = 16;
2314 /* ATAPI-specific feature tests */
2315 else if (dev->class == ATA_DEV_ATAPI) {
2316 const char *cdb_intr_string = "";
2317 const char *atapi_an_string = "";
2318 const char *dma_dir_string = "";
2319 u32 sntf;
2321 rc = atapi_cdb_len(id);
2322 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2323 if (ata_msg_warn(ap))
2324 ata_dev_printk(dev, KERN_WARNING,
2325 "unsupported CDB len\n");
2326 rc = -EINVAL;
2327 goto err_out_nosup;
2329 dev->cdb_len = (unsigned int) rc;
2331 /* Enable ATAPI AN if both the host and device have
2332 * the support. If PMP is attached, SNTF is required
2333 * to enable ATAPI AN to discern between PHY status
2334 * changed notifications and ATAPI ANs.
2336 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2337 (!sata_pmp_attached(ap) ||
2338 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2339 unsigned int err_mask;
2341 /* issue SET feature command to turn this on */
2342 err_mask = ata_dev_set_feature(dev,
2343 SETFEATURES_SATA_ENABLE, SATA_AN);
2344 if (err_mask)
2345 ata_dev_printk(dev, KERN_ERR,
2346 "failed to enable ATAPI AN "
2347 "(err_mask=0x%x)\n", err_mask);
2348 else {
2349 dev->flags |= ATA_DFLAG_AN;
2350 atapi_an_string = ", ATAPI AN";
2354 if (ata_id_cdb_intr(dev->id)) {
2355 dev->flags |= ATA_DFLAG_CDB_INTR;
2356 cdb_intr_string = ", CDB intr";
2359 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2360 dev->flags |= ATA_DFLAG_DMADIR;
2361 dma_dir_string = ", DMADIR";
2364 /* print device info to dmesg */
2365 if (ata_msg_drv(ap) && print_info)
2366 ata_dev_printk(dev, KERN_INFO,
2367 "ATAPI: %s, %s, max %s%s%s%s\n",
2368 modelbuf, fwrevbuf,
2369 ata_mode_string(xfer_mask),
2370 cdb_intr_string, atapi_an_string,
2371 dma_dir_string);
2374 /* determine max_sectors */
2375 dev->max_sectors = ATA_MAX_SECTORS;
2376 if (dev->flags & ATA_DFLAG_LBA48)
2377 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2379 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2380 if (ata_id_has_hipm(dev->id))
2381 dev->flags |= ATA_DFLAG_HIPM;
2382 if (ata_id_has_dipm(dev->id))
2383 dev->flags |= ATA_DFLAG_DIPM;
2386 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2387 200 sectors */
2388 if (ata_dev_knobble(dev)) {
2389 if (ata_msg_drv(ap) && print_info)
2390 ata_dev_printk(dev, KERN_INFO,
2391 "applying bridge limits\n");
2392 dev->udma_mask &= ATA_UDMA5;
2393 dev->max_sectors = ATA_MAX_SECTORS;
2396 if ((dev->class == ATA_DEV_ATAPI) &&
2397 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2398 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2399 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2402 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2403 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2404 dev->max_sectors);
2406 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2407 dev->horkage |= ATA_HORKAGE_IPM;
2409 /* reset link pm_policy for this port to no pm */
2410 ap->pm_policy = MAX_PERFORMANCE;
2413 if (ap->ops->dev_config)
2414 ap->ops->dev_config(dev);
2416 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2417 /* Let the user know. We don't want to disallow opens for
2418 rescue purposes, or in case the vendor is just a blithering
2419 idiot. Do this after the dev_config call as some controllers
2420 with buggy firmware may want to avoid reporting false device
2421 bugs */
2423 if (print_info) {
2424 ata_dev_printk(dev, KERN_WARNING,
2425 "Drive reports diagnostics failure. This may indicate a drive\n");
2426 ata_dev_printk(dev, KERN_WARNING,
2427 "fault or invalid emulation. Contact drive vendor for information.\n");
2431 return 0;
2433 err_out_nosup:
2434 if (ata_msg_probe(ap))
2435 ata_dev_printk(dev, KERN_DEBUG,
2436 "%s: EXIT, err\n", __func__);
2437 return rc;
2441 * ata_cable_40wire - return 40 wire cable type
2442 * @ap: port
2444 * Helper method for drivers which want to hardwire 40 wire cable
2445 * detection.
2448 int ata_cable_40wire(struct ata_port *ap)
2450 return ATA_CBL_PATA40;
2454 * ata_cable_80wire - return 80 wire cable type
2455 * @ap: port
2457 * Helper method for drivers which want to hardwire 80 wire cable
2458 * detection.
2461 int ata_cable_80wire(struct ata_port *ap)
2463 return ATA_CBL_PATA80;
2467 * ata_cable_unknown - return unknown PATA cable.
2468 * @ap: port
2470 * Helper method for drivers which have no PATA cable detection.
2473 int ata_cable_unknown(struct ata_port *ap)
2475 return ATA_CBL_PATA_UNK;
2479 * ata_cable_ignore - return ignored PATA cable.
2480 * @ap: port
2482 * Helper method for drivers which don't use cable type to limit
2483 * transfer mode.
2485 int ata_cable_ignore(struct ata_port *ap)
2487 return ATA_CBL_PATA_IGN;
2491 * ata_cable_sata - return SATA cable type
2492 * @ap: port
2494 * Helper method for drivers which have SATA cables
2497 int ata_cable_sata(struct ata_port *ap)
2499 return ATA_CBL_SATA;
2503 * ata_bus_probe - Reset and probe ATA bus
2504 * @ap: Bus to probe
2506 * Master ATA bus probing function. Initiates a hardware-dependent
2507 * bus reset, then attempts to identify any devices found on
2508 * the bus.
2510 * LOCKING:
2511 * PCI/etc. bus probe sem.
2513 * RETURNS:
2514 * Zero on success, negative errno otherwise.
2517 int ata_bus_probe(struct ata_port *ap)
2519 unsigned int classes[ATA_MAX_DEVICES];
2520 int tries[ATA_MAX_DEVICES];
2521 int rc;
2522 struct ata_device *dev;
2524 ata_port_probe(ap);
2526 ata_link_for_each_dev(dev, &ap->link)
2527 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2529 retry:
2530 ata_link_for_each_dev(dev, &ap->link) {
2531 /* If we issue an SRST then an ATA drive (not ATAPI)
2532 * may change configuration and be in PIO0 timing. If
2533 * we do a hard reset (or are coming from power on)
2534 * this is true for ATA or ATAPI. Until we've set a
2535 * suitable controller mode we should not touch the
2536 * bus as we may be talking too fast.
2538 dev->pio_mode = XFER_PIO_0;
2540 /* If the controller has a pio mode setup function
2541 * then use it to set the chipset to rights. Don't
2542 * touch the DMA setup as that will be dealt with when
2543 * configuring devices.
2545 if (ap->ops->set_piomode)
2546 ap->ops->set_piomode(ap, dev);
2549 /* reset and determine device classes */
2550 ap->ops->phy_reset(ap);
2552 ata_link_for_each_dev(dev, &ap->link) {
2553 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2554 dev->class != ATA_DEV_UNKNOWN)
2555 classes[dev->devno] = dev->class;
2556 else
2557 classes[dev->devno] = ATA_DEV_NONE;
2559 dev->class = ATA_DEV_UNKNOWN;
2562 ata_port_probe(ap);
2564 /* read IDENTIFY page and configure devices. We have to do the identify
2565 specific sequence bass-ackwards so that PDIAG- is released by
2566 the slave device */
2568 ata_link_for_each_dev_reverse(dev, &ap->link) {
2569 if (tries[dev->devno])
2570 dev->class = classes[dev->devno];
2572 if (!ata_dev_enabled(dev))
2573 continue;
2575 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2576 dev->id);
2577 if (rc)
2578 goto fail;
2581 /* Now ask for the cable type as PDIAG- should have been released */
2582 if (ap->ops->cable_detect)
2583 ap->cbl = ap->ops->cable_detect(ap);
2585 /* We may have SATA bridge glue hiding here irrespective of the
2586 reported cable types and sensed types */
2587 ata_link_for_each_dev(dev, &ap->link) {
2588 if (!ata_dev_enabled(dev))
2589 continue;
2590 /* SATA drives indicate we have a bridge. We don't know which
2591 end of the link the bridge is which is a problem */
2592 if (ata_id_is_sata(dev->id))
2593 ap->cbl = ATA_CBL_SATA;
2596 /* After the identify sequence we can now set up the devices. We do
2597 this in the normal order so that the user doesn't get confused */
2599 ata_link_for_each_dev(dev, &ap->link) {
2600 if (!ata_dev_enabled(dev))
2601 continue;
2603 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2604 rc = ata_dev_configure(dev);
2605 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2606 if (rc)
2607 goto fail;
2610 /* configure transfer mode */
2611 rc = ata_set_mode(&ap->link, &dev);
2612 if (rc)
2613 goto fail;
2615 ata_link_for_each_dev(dev, &ap->link)
2616 if (ata_dev_enabled(dev))
2617 return 0;
2619 /* no device present, disable port */
2620 ata_port_disable(ap);
2621 return -ENODEV;
2623 fail:
2624 tries[dev->devno]--;
2626 switch (rc) {
2627 case -EINVAL:
2628 /* eeek, something went very wrong, give up */
2629 tries[dev->devno] = 0;
2630 break;
2632 case -ENODEV:
2633 /* give it just one more chance */
2634 tries[dev->devno] = min(tries[dev->devno], 1);
2635 case -EIO:
2636 if (tries[dev->devno] == 1) {
2637 /* This is the last chance, better to slow
2638 * down than lose it.
2640 sata_down_spd_limit(&ap->link);
2641 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2645 if (!tries[dev->devno])
2646 ata_dev_disable(dev);
2648 goto retry;
2652 * ata_port_probe - Mark port as enabled
2653 * @ap: Port for which we indicate enablement
2655 * Modify @ap data structure such that the system
2656 * thinks that the entire port is enabled.
2658 * LOCKING: host lock, or some other form of
2659 * serialization.
2662 void ata_port_probe(struct ata_port *ap)
2664 ap->flags &= ~ATA_FLAG_DISABLED;
2668 * sata_print_link_status - Print SATA link status
2669 * @link: SATA link to printk link status about
2671 * This function prints link speed and status of a SATA link.
2673 * LOCKING:
2674 * None.
2676 static void sata_print_link_status(struct ata_link *link)
2678 u32 sstatus, scontrol, tmp;
2680 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2681 return;
2682 sata_scr_read(link, SCR_CONTROL, &scontrol);
2684 if (ata_link_online(link)) {
2685 tmp = (sstatus >> 4) & 0xf;
2686 ata_link_printk(link, KERN_INFO,
2687 "SATA link up %s (SStatus %X SControl %X)\n",
2688 sata_spd_string(tmp), sstatus, scontrol);
2689 } else {
2690 ata_link_printk(link, KERN_INFO,
2691 "SATA link down (SStatus %X SControl %X)\n",
2692 sstatus, scontrol);
2697 * ata_dev_pair - return other device on cable
2698 * @adev: device
2700 * Obtain the other device on the same cable, or if none is
2701 * present NULL is returned
2704 struct ata_device *ata_dev_pair(struct ata_device *adev)
2706 struct ata_link *link = adev->link;
2707 struct ata_device *pair = &link->device[1 - adev->devno];
2708 if (!ata_dev_enabled(pair))
2709 return NULL;
2710 return pair;
2714 * ata_port_disable - Disable port.
2715 * @ap: Port to be disabled.
2717 * Modify @ap data structure such that the system
2718 * thinks that the entire port is disabled, and should
2719 * never attempt to probe or communicate with devices
2720 * on this port.
2722 * LOCKING: host lock, or some other form of
2723 * serialization.
2726 void ata_port_disable(struct ata_port *ap)
2728 ap->link.device[0].class = ATA_DEV_NONE;
2729 ap->link.device[1].class = ATA_DEV_NONE;
2730 ap->flags |= ATA_FLAG_DISABLED;
2734 * sata_down_spd_limit - adjust SATA spd limit downward
2735 * @link: Link to adjust SATA spd limit for
2737 * Adjust SATA spd limit of @link downward. Note that this
2738 * function only adjusts the limit. The change must be applied
2739 * using sata_set_spd().
2741 * LOCKING:
2742 * Inherited from caller.
2744 * RETURNS:
2745 * 0 on success, negative errno on failure
2747 int sata_down_spd_limit(struct ata_link *link)
2749 u32 sstatus, spd, mask;
2750 int rc, highbit;
2752 if (!sata_scr_valid(link))
2753 return -EOPNOTSUPP;
2755 /* If SCR can be read, use it to determine the current SPD.
2756 * If not, use cached value in link->sata_spd.
2758 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2759 if (rc == 0)
2760 spd = (sstatus >> 4) & 0xf;
2761 else
2762 spd = link->sata_spd;
2764 mask = link->sata_spd_limit;
2765 if (mask <= 1)
2766 return -EINVAL;
2768 /* unconditionally mask off the highest bit */
2769 highbit = fls(mask) - 1;
2770 mask &= ~(1 << highbit);
2772 /* Mask off all speeds higher than or equal to the current
2773 * one. Force 1.5Gbps if current SPD is not available.
2775 if (spd > 1)
2776 mask &= (1 << (spd - 1)) - 1;
2777 else
2778 mask &= 1;
2780 /* were we already at the bottom? */
2781 if (!mask)
2782 return -EINVAL;
2784 link->sata_spd_limit = mask;
2786 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2787 sata_spd_string(fls(mask)));
2789 return 0;
2792 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2794 struct ata_link *host_link = &link->ap->link;
2795 u32 limit, target, spd;
2797 limit = link->sata_spd_limit;
2799 /* Don't configure downstream link faster than upstream link.
2800 * It doesn't speed up anything and some PMPs choke on such
2801 * configuration.
2803 if (!ata_is_host_link(link) && host_link->sata_spd)
2804 limit &= (1 << host_link->sata_spd) - 1;
2806 if (limit == UINT_MAX)
2807 target = 0;
2808 else
2809 target = fls(limit);
2811 spd = (*scontrol >> 4) & 0xf;
2812 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2814 return spd != target;
2818 * sata_set_spd_needed - is SATA spd configuration needed
2819 * @link: Link in question
2821 * Test whether the spd limit in SControl matches
2822 * @link->sata_spd_limit. This function is used to determine
2823 * whether hardreset is necessary to apply SATA spd
2824 * configuration.
2826 * LOCKING:
2827 * Inherited from caller.
2829 * RETURNS:
2830 * 1 if SATA spd configuration is needed, 0 otherwise.
2832 static int sata_set_spd_needed(struct ata_link *link)
2834 u32 scontrol;
2836 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2837 return 1;
2839 return __sata_set_spd_needed(link, &scontrol);
2843 * sata_set_spd - set SATA spd according to spd limit
2844 * @link: Link to set SATA spd for
2846 * Set SATA spd of @link according to sata_spd_limit.
2848 * LOCKING:
2849 * Inherited from caller.
2851 * RETURNS:
2852 * 0 if spd doesn't need to be changed, 1 if spd has been
2853 * changed. Negative errno if SCR registers are inaccessible.
2855 int sata_set_spd(struct ata_link *link)
2857 u32 scontrol;
2858 int rc;
2860 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2861 return rc;
2863 if (!__sata_set_spd_needed(link, &scontrol))
2864 return 0;
2866 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2867 return rc;
2869 return 1;
2873 * This mode timing computation functionality is ported over from
2874 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2877 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2878 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2879 * for UDMA6, which is currently supported only by Maxtor drives.
2881 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2884 static const struct ata_timing ata_timing[] = {
2885 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2886 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2887 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2888 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2889 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2890 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2891 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2892 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2894 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2895 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2896 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2898 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2899 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2900 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2901 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2902 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2904 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2905 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2906 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2907 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2908 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2909 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2910 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2911 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2913 { 0xFF }
2916 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2917 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2919 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2921 q->setup = EZ(t->setup * 1000, T);
2922 q->act8b = EZ(t->act8b * 1000, T);
2923 q->rec8b = EZ(t->rec8b * 1000, T);
2924 q->cyc8b = EZ(t->cyc8b * 1000, T);
2925 q->active = EZ(t->active * 1000, T);
2926 q->recover = EZ(t->recover * 1000, T);
2927 q->cycle = EZ(t->cycle * 1000, T);
2928 q->udma = EZ(t->udma * 1000, UT);
2931 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2932 struct ata_timing *m, unsigned int what)
2934 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2935 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2936 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2937 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2938 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2939 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2940 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2941 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2944 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2946 const struct ata_timing *t = ata_timing;
2948 while (xfer_mode > t->mode)
2949 t++;
2951 if (xfer_mode == t->mode)
2952 return t;
2953 return NULL;
2956 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2957 struct ata_timing *t, int T, int UT)
2959 const struct ata_timing *s;
2960 struct ata_timing p;
2963 * Find the mode.
2966 if (!(s = ata_timing_find_mode(speed)))
2967 return -EINVAL;
2969 memcpy(t, s, sizeof(*s));
2972 * If the drive is an EIDE drive, it can tell us it needs extended
2973 * PIO/MW_DMA cycle timing.
2976 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2977 memset(&p, 0, sizeof(p));
2978 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2979 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2980 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2981 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2982 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2984 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2988 * Convert the timing to bus clock counts.
2991 ata_timing_quantize(t, t, T, UT);
2994 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2995 * S.M.A.R.T * and some other commands. We have to ensure that the
2996 * DMA cycle timing is slower/equal than the fastest PIO timing.
2999 if (speed > XFER_PIO_6) {
3000 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3001 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3005 * Lengthen active & recovery time so that cycle time is correct.
3008 if (t->act8b + t->rec8b < t->cyc8b) {
3009 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3010 t->rec8b = t->cyc8b - t->act8b;
3013 if (t->active + t->recover < t->cycle) {
3014 t->active += (t->cycle - (t->active + t->recover)) / 2;
3015 t->recover = t->cycle - t->active;
3018 /* In a few cases quantisation may produce enough errors to
3019 leave t->cycle too low for the sum of active and recovery
3020 if so we must correct this */
3021 if (t->active + t->recover > t->cycle)
3022 t->cycle = t->active + t->recover;
3024 return 0;
3028 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3029 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3030 * @cycle: cycle duration in ns
3032 * Return matching xfer mode for @cycle. The returned mode is of
3033 * the transfer type specified by @xfer_shift. If @cycle is too
3034 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3035 * than the fastest known mode, the fasted mode is returned.
3037 * LOCKING:
3038 * None.
3040 * RETURNS:
3041 * Matching xfer_mode, 0xff if no match found.
3043 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3045 u8 base_mode = 0xff, last_mode = 0xff;
3046 const struct ata_xfer_ent *ent;
3047 const struct ata_timing *t;
3049 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3050 if (ent->shift == xfer_shift)
3051 base_mode = ent->base;
3053 for (t = ata_timing_find_mode(base_mode);
3054 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3055 unsigned short this_cycle;
3057 switch (xfer_shift) {
3058 case ATA_SHIFT_PIO:
3059 case ATA_SHIFT_MWDMA:
3060 this_cycle = t->cycle;
3061 break;
3062 case ATA_SHIFT_UDMA:
3063 this_cycle = t->udma;
3064 break;
3065 default:
3066 return 0xff;
3069 if (cycle > this_cycle)
3070 break;
3072 last_mode = t->mode;
3075 return last_mode;
3079 * ata_down_xfermask_limit - adjust dev xfer masks downward
3080 * @dev: Device to adjust xfer masks
3081 * @sel: ATA_DNXFER_* selector
3083 * Adjust xfer masks of @dev downward. Note that this function
3084 * does not apply the change. Invoking ata_set_mode() afterwards
3085 * will apply the limit.
3087 * LOCKING:
3088 * Inherited from caller.
3090 * RETURNS:
3091 * 0 on success, negative errno on failure
3093 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3095 char buf[32];
3096 unsigned long orig_mask, xfer_mask;
3097 unsigned long pio_mask, mwdma_mask, udma_mask;
3098 int quiet, highbit;
3100 quiet = !!(sel & ATA_DNXFER_QUIET);
3101 sel &= ~ATA_DNXFER_QUIET;
3103 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3104 dev->mwdma_mask,
3105 dev->udma_mask);
3106 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3108 switch (sel) {
3109 case ATA_DNXFER_PIO:
3110 highbit = fls(pio_mask) - 1;
3111 pio_mask &= ~(1 << highbit);
3112 break;
3114 case ATA_DNXFER_DMA:
3115 if (udma_mask) {
3116 highbit = fls(udma_mask) - 1;
3117 udma_mask &= ~(1 << highbit);
3118 if (!udma_mask)
3119 return -ENOENT;
3120 } else if (mwdma_mask) {
3121 highbit = fls(mwdma_mask) - 1;
3122 mwdma_mask &= ~(1 << highbit);
3123 if (!mwdma_mask)
3124 return -ENOENT;
3126 break;
3128 case ATA_DNXFER_40C:
3129 udma_mask &= ATA_UDMA_MASK_40C;
3130 break;
3132 case ATA_DNXFER_FORCE_PIO0:
3133 pio_mask &= 1;
3134 case ATA_DNXFER_FORCE_PIO:
3135 mwdma_mask = 0;
3136 udma_mask = 0;
3137 break;
3139 default:
3140 BUG();
3143 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3145 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3146 return -ENOENT;
3148 if (!quiet) {
3149 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3150 snprintf(buf, sizeof(buf), "%s:%s",
3151 ata_mode_string(xfer_mask),
3152 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3153 else
3154 snprintf(buf, sizeof(buf), "%s",
3155 ata_mode_string(xfer_mask));
3157 ata_dev_printk(dev, KERN_WARNING,
3158 "limiting speed to %s\n", buf);
3161 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3162 &dev->udma_mask);
3164 return 0;
3167 static int ata_dev_set_mode(struct ata_device *dev)
3169 struct ata_eh_context *ehc = &dev->link->eh_context;
3170 const char *dev_err_whine = "";
3171 int ign_dev_err = 0;
3172 unsigned int err_mask;
3173 int rc;
3175 dev->flags &= ~ATA_DFLAG_PIO;
3176 if (dev->xfer_shift == ATA_SHIFT_PIO)
3177 dev->flags |= ATA_DFLAG_PIO;
3179 err_mask = ata_dev_set_xfermode(dev);
3181 if (err_mask & ~AC_ERR_DEV)
3182 goto fail;
3184 /* revalidate */
3185 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3186 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3187 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3188 if (rc)
3189 return rc;
3191 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3192 /* Old CFA may refuse this command, which is just fine */
3193 if (ata_id_is_cfa(dev->id))
3194 ign_dev_err = 1;
3195 /* Catch several broken garbage emulations plus some pre
3196 ATA devices */
3197 if (ata_id_major_version(dev->id) == 0 &&
3198 dev->pio_mode <= XFER_PIO_2)
3199 ign_dev_err = 1;
3200 /* Some very old devices and some bad newer ones fail
3201 any kind of SET_XFERMODE request but support PIO0-2
3202 timings and no IORDY */
3203 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3204 ign_dev_err = 1;
3206 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3207 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3208 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3209 dev->dma_mode == XFER_MW_DMA_0 &&
3210 (dev->id[63] >> 8) & 1)
3211 ign_dev_err = 1;
3213 /* if the device is actually configured correctly, ignore dev err */
3214 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3215 ign_dev_err = 1;
3217 if (err_mask & AC_ERR_DEV) {
3218 if (!ign_dev_err)
3219 goto fail;
3220 else
3221 dev_err_whine = " (device error ignored)";
3224 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3225 dev->xfer_shift, (int)dev->xfer_mode);
3227 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3228 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3229 dev_err_whine);
3231 return 0;
3233 fail:
3234 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3235 "(err_mask=0x%x)\n", err_mask);
3236 return -EIO;
3240 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3241 * @link: link on which timings will be programmed
3242 * @r_failed_dev: out parameter for failed device
3244 * Standard implementation of the function used to tune and set
3245 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3246 * ata_dev_set_mode() fails, pointer to the failing device is
3247 * returned in @r_failed_dev.
3249 * LOCKING:
3250 * PCI/etc. bus probe sem.
3252 * RETURNS:
3253 * 0 on success, negative errno otherwise
3256 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3258 struct ata_port *ap = link->ap;
3259 struct ata_device *dev;
3260 int rc = 0, used_dma = 0, found = 0;
3262 /* step 1: calculate xfer_mask */
3263 ata_link_for_each_dev(dev, link) {
3264 unsigned long pio_mask, dma_mask;
3265 unsigned int mode_mask;
3267 if (!ata_dev_enabled(dev))
3268 continue;
3270 mode_mask = ATA_DMA_MASK_ATA;
3271 if (dev->class == ATA_DEV_ATAPI)
3272 mode_mask = ATA_DMA_MASK_ATAPI;
3273 else if (ata_id_is_cfa(dev->id))
3274 mode_mask = ATA_DMA_MASK_CFA;
3276 ata_dev_xfermask(dev);
3277 ata_force_xfermask(dev);
3279 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3280 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3282 if (libata_dma_mask & mode_mask)
3283 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3284 else
3285 dma_mask = 0;
3287 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3288 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3290 found = 1;
3291 if (ata_dma_enabled(dev))
3292 used_dma = 1;
3294 if (!found)
3295 goto out;
3297 /* step 2: always set host PIO timings */
3298 ata_link_for_each_dev(dev, link) {
3299 if (!ata_dev_enabled(dev))
3300 continue;
3302 if (dev->pio_mode == 0xff) {
3303 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3304 rc = -EINVAL;
3305 goto out;
3308 dev->xfer_mode = dev->pio_mode;
3309 dev->xfer_shift = ATA_SHIFT_PIO;
3310 if (ap->ops->set_piomode)
3311 ap->ops->set_piomode(ap, dev);
3314 /* step 3: set host DMA timings */
3315 ata_link_for_each_dev(dev, link) {
3316 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev))
3317 continue;
3319 dev->xfer_mode = dev->dma_mode;
3320 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3321 if (ap->ops->set_dmamode)
3322 ap->ops->set_dmamode(ap, dev);
3325 /* step 4: update devices' xfer mode */
3326 ata_link_for_each_dev(dev, link) {
3327 /* don't update suspended devices' xfer mode */
3328 if (!ata_dev_enabled(dev))
3329 continue;
3331 rc = ata_dev_set_mode(dev);
3332 if (rc)
3333 goto out;
3336 /* Record simplex status. If we selected DMA then the other
3337 * host channels are not permitted to do so.
3339 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3340 ap->host->simplex_claimed = ap;
3342 out:
3343 if (rc)
3344 *r_failed_dev = dev;
3345 return rc;
3349 * ata_wait_ready - wait for link to become ready
3350 * @link: link to be waited on
3351 * @deadline: deadline jiffies for the operation
3352 * @check_ready: callback to check link readiness
3354 * Wait for @link to become ready. @check_ready should return
3355 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3356 * link doesn't seem to be occupied, other errno for other error
3357 * conditions.
3359 * Transient -ENODEV conditions are allowed for
3360 * ATA_TMOUT_FF_WAIT.
3362 * LOCKING:
3363 * EH context.
3365 * RETURNS:
3366 * 0 if @linke is ready before @deadline; otherwise, -errno.
3368 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3369 int (*check_ready)(struct ata_link *link))
3371 unsigned long start = jiffies;
3372 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3373 int warned = 0;
3375 if (time_after(nodev_deadline, deadline))
3376 nodev_deadline = deadline;
3378 while (1) {
3379 unsigned long now = jiffies;
3380 int ready, tmp;
3382 ready = tmp = check_ready(link);
3383 if (ready > 0)
3384 return 0;
3386 /* -ENODEV could be transient. Ignore -ENODEV if link
3387 * is online. Also, some SATA devices take a long
3388 * time to clear 0xff after reset. For example,
3389 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3390 * GoVault needs even more than that. Wait for
3391 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3393 * Note that some PATA controllers (pata_ali) explode
3394 * if status register is read more than once when
3395 * there's no device attached.
3397 if (ready == -ENODEV) {
3398 if (ata_link_online(link))
3399 ready = 0;
3400 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3401 !ata_link_offline(link) &&
3402 time_before(now, nodev_deadline))
3403 ready = 0;
3406 if (ready)
3407 return ready;
3408 if (time_after(now, deadline))
3409 return -EBUSY;
3411 if (!warned && time_after(now, start + 5 * HZ) &&
3412 (deadline - now > 3 * HZ)) {
3413 ata_link_printk(link, KERN_WARNING,
3414 "link is slow to respond, please be patient "
3415 "(ready=%d)\n", tmp);
3416 warned = 1;
3419 msleep(50);
3424 * ata_wait_after_reset - wait for link to become ready after reset
3425 * @link: link to be waited on
3426 * @deadline: deadline jiffies for the operation
3427 * @check_ready: callback to check link readiness
3429 * Wait for @link to become ready after reset.
3431 * LOCKING:
3432 * EH context.
3434 * RETURNS:
3435 * 0 if @linke is ready before @deadline; otherwise, -errno.
3437 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3438 int (*check_ready)(struct ata_link *link))
3440 msleep(ATA_WAIT_AFTER_RESET);
3442 return ata_wait_ready(link, deadline, check_ready);
3446 * sata_link_debounce - debounce SATA phy status
3447 * @link: ATA link to debounce SATA phy status for
3448 * @params: timing parameters { interval, duratinon, timeout } in msec
3449 * @deadline: deadline jiffies for the operation
3451 * Make sure SStatus of @link reaches stable state, determined by
3452 * holding the same value where DET is not 1 for @duration polled
3453 * every @interval, before @timeout. Timeout constraints the
3454 * beginning of the stable state. Because DET gets stuck at 1 on
3455 * some controllers after hot unplugging, this functions waits
3456 * until timeout then returns 0 if DET is stable at 1.
3458 * @timeout is further limited by @deadline. The sooner of the
3459 * two is used.
3461 * LOCKING:
3462 * Kernel thread context (may sleep)
3464 * RETURNS:
3465 * 0 on success, -errno on failure.
3467 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3468 unsigned long deadline)
3470 unsigned long interval = params[0];
3471 unsigned long duration = params[1];
3472 unsigned long last_jiffies, t;
3473 u32 last, cur;
3474 int rc;
3476 t = ata_deadline(jiffies, params[2]);
3477 if (time_before(t, deadline))
3478 deadline = t;
3480 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3481 return rc;
3482 cur &= 0xf;
3484 last = cur;
3485 last_jiffies = jiffies;
3487 while (1) {
3488 msleep(interval);
3489 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3490 return rc;
3491 cur &= 0xf;
3493 /* DET stable? */
3494 if (cur == last) {
3495 if (cur == 1 && time_before(jiffies, deadline))
3496 continue;
3497 if (time_after(jiffies,
3498 ata_deadline(last_jiffies, duration)))
3499 return 0;
3500 continue;
3503 /* unstable, start over */
3504 last = cur;
3505 last_jiffies = jiffies;
3507 /* Check deadline. If debouncing failed, return
3508 * -EPIPE to tell upper layer to lower link speed.
3510 if (time_after(jiffies, deadline))
3511 return -EPIPE;
3516 * sata_link_resume - resume SATA link
3517 * @link: ATA link to resume SATA
3518 * @params: timing parameters { interval, duratinon, timeout } in msec
3519 * @deadline: deadline jiffies for the operation
3521 * Resume SATA phy @link and debounce it.
3523 * LOCKING:
3524 * Kernel thread context (may sleep)
3526 * RETURNS:
3527 * 0 on success, -errno on failure.
3529 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3530 unsigned long deadline)
3532 u32 scontrol, serror;
3533 int rc;
3535 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3536 return rc;
3538 scontrol = (scontrol & 0x0f0) | 0x300;
3540 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3541 return rc;
3543 /* Some PHYs react badly if SStatus is pounded immediately
3544 * after resuming. Delay 200ms before debouncing.
3546 msleep(200);
3548 if ((rc = sata_link_debounce(link, params, deadline)))
3549 return rc;
3551 /* clear SError, some PHYs require this even for SRST to work */
3552 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3553 rc = sata_scr_write(link, SCR_ERROR, serror);
3555 return rc != -EINVAL ? rc : 0;
3559 * ata_std_prereset - prepare for reset
3560 * @link: ATA link to be reset
3561 * @deadline: deadline jiffies for the operation
3563 * @link is about to be reset. Initialize it. Failure from
3564 * prereset makes libata abort whole reset sequence and give up
3565 * that port, so prereset should be best-effort. It does its
3566 * best to prepare for reset sequence but if things go wrong, it
3567 * should just whine, not fail.
3569 * LOCKING:
3570 * Kernel thread context (may sleep)
3572 * RETURNS:
3573 * 0 on success, -errno otherwise.
3575 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3577 struct ata_port *ap = link->ap;
3578 struct ata_eh_context *ehc = &link->eh_context;
3579 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3580 int rc;
3582 /* if we're about to do hardreset, nothing more to do */
3583 if (ehc->i.action & ATA_EH_HARDRESET)
3584 return 0;
3586 /* if SATA, resume link */
3587 if (ap->flags & ATA_FLAG_SATA) {
3588 rc = sata_link_resume(link, timing, deadline);
3589 /* whine about phy resume failure but proceed */
3590 if (rc && rc != -EOPNOTSUPP)
3591 ata_link_printk(link, KERN_WARNING, "failed to resume "
3592 "link for reset (errno=%d)\n", rc);
3595 /* no point in trying softreset on offline link */
3596 if (ata_link_offline(link))
3597 ehc->i.action &= ~ATA_EH_SOFTRESET;
3599 return 0;
3603 * sata_link_hardreset - reset link via SATA phy reset
3604 * @link: link to reset
3605 * @timing: timing parameters { interval, duratinon, timeout } in msec
3606 * @deadline: deadline jiffies for the operation
3607 * @online: optional out parameter indicating link onlineness
3608 * @check_ready: optional callback to check link readiness
3610 * SATA phy-reset @link using DET bits of SControl register.
3611 * After hardreset, link readiness is waited upon using
3612 * ata_wait_ready() if @check_ready is specified. LLDs are
3613 * allowed to not specify @check_ready and wait itself after this
3614 * function returns. Device classification is LLD's
3615 * responsibility.
3617 * *@online is set to one iff reset succeeded and @link is online
3618 * after reset.
3620 * LOCKING:
3621 * Kernel thread context (may sleep)
3623 * RETURNS:
3624 * 0 on success, -errno otherwise.
3626 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3627 unsigned long deadline,
3628 bool *online, int (*check_ready)(struct ata_link *))
3630 u32 scontrol;
3631 int rc;
3633 DPRINTK("ENTER\n");
3635 if (online)
3636 *online = false;
3638 if (sata_set_spd_needed(link)) {
3639 /* SATA spec says nothing about how to reconfigure
3640 * spd. To be on the safe side, turn off phy during
3641 * reconfiguration. This works for at least ICH7 AHCI
3642 * and Sil3124.
3644 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3645 goto out;
3647 scontrol = (scontrol & 0x0f0) | 0x304;
3649 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3650 goto out;
3652 sata_set_spd(link);
3655 /* issue phy wake/reset */
3656 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3657 goto out;
3659 scontrol = (scontrol & 0x0f0) | 0x301;
3661 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3662 goto out;
3664 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3665 * 10.4.2 says at least 1 ms.
3667 msleep(1);
3669 /* bring link back */
3670 rc = sata_link_resume(link, timing, deadline);
3671 if (rc)
3672 goto out;
3673 /* if link is offline nothing more to do */
3674 if (ata_link_offline(link))
3675 goto out;
3677 /* Link is online. From this point, -ENODEV too is an error. */
3678 if (online)
3679 *online = true;
3681 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3682 /* If PMP is supported, we have to do follow-up SRST.
3683 * Some PMPs don't send D2H Reg FIS after hardreset if
3684 * the first port is empty. Wait only for
3685 * ATA_TMOUT_PMP_SRST_WAIT.
3687 if (check_ready) {
3688 unsigned long pmp_deadline;
3690 pmp_deadline = ata_deadline(jiffies,
3691 ATA_TMOUT_PMP_SRST_WAIT);
3692 if (time_after(pmp_deadline, deadline))
3693 pmp_deadline = deadline;
3694 ata_wait_ready(link, pmp_deadline, check_ready);
3696 rc = -EAGAIN;
3697 goto out;
3700 rc = 0;
3701 if (check_ready)
3702 rc = ata_wait_ready(link, deadline, check_ready);
3703 out:
3704 if (rc && rc != -EAGAIN) {
3705 /* online is set iff link is online && reset succeeded */
3706 if (online)
3707 *online = false;
3708 ata_link_printk(link, KERN_ERR,
3709 "COMRESET failed (errno=%d)\n", rc);
3711 DPRINTK("EXIT, rc=%d\n", rc);
3712 return rc;
3716 * sata_std_hardreset - COMRESET w/o waiting or classification
3717 * @link: link to reset
3718 * @class: resulting class of attached device
3719 * @deadline: deadline jiffies for the operation
3721 * Standard SATA COMRESET w/o waiting or classification.
3723 * LOCKING:
3724 * Kernel thread context (may sleep)
3726 * RETURNS:
3727 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3729 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3730 unsigned long deadline)
3732 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3733 bool online;
3734 int rc;
3736 /* do hardreset */
3737 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3738 return online ? -EAGAIN : rc;
3742 * ata_std_postreset - standard postreset callback
3743 * @link: the target ata_link
3744 * @classes: classes of attached devices
3746 * This function is invoked after a successful reset. Note that
3747 * the device might have been reset more than once using
3748 * different reset methods before postreset is invoked.
3750 * LOCKING:
3751 * Kernel thread context (may sleep)
3753 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3755 u32 serror;
3757 DPRINTK("ENTER\n");
3759 /* reset complete, clear SError */
3760 if (!sata_scr_read(link, SCR_ERROR, &serror))
3761 sata_scr_write(link, SCR_ERROR, serror);
3763 /* print link status */
3764 sata_print_link_status(link);
3766 DPRINTK("EXIT\n");
3770 * ata_dev_same_device - Determine whether new ID matches configured device
3771 * @dev: device to compare against
3772 * @new_class: class of the new device
3773 * @new_id: IDENTIFY page of the new device
3775 * Compare @new_class and @new_id against @dev and determine
3776 * whether @dev is the device indicated by @new_class and
3777 * @new_id.
3779 * LOCKING:
3780 * None.
3782 * RETURNS:
3783 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3785 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3786 const u16 *new_id)
3788 const u16 *old_id = dev->id;
3789 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3790 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3792 if (dev->class != new_class) {
3793 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3794 dev->class, new_class);
3795 return 0;
3798 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3799 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3800 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3801 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3803 if (strcmp(model[0], model[1])) {
3804 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3805 "'%s' != '%s'\n", model[0], model[1]);
3806 return 0;
3809 if (strcmp(serial[0], serial[1])) {
3810 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3811 "'%s' != '%s'\n", serial[0], serial[1]);
3812 return 0;
3815 return 1;
3819 * ata_dev_reread_id - Re-read IDENTIFY data
3820 * @dev: target ATA device
3821 * @readid_flags: read ID flags
3823 * Re-read IDENTIFY page and make sure @dev is still attached to
3824 * the port.
3826 * LOCKING:
3827 * Kernel thread context (may sleep)
3829 * RETURNS:
3830 * 0 on success, negative errno otherwise
3832 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3834 unsigned int class = dev->class;
3835 u16 *id = (void *)dev->link->ap->sector_buf;
3836 int rc;
3838 /* read ID data */
3839 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3840 if (rc)
3841 return rc;
3843 /* is the device still there? */
3844 if (!ata_dev_same_device(dev, class, id))
3845 return -ENODEV;
3847 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3848 return 0;
3852 * ata_dev_revalidate - Revalidate ATA device
3853 * @dev: device to revalidate
3854 * @new_class: new class code
3855 * @readid_flags: read ID flags
3857 * Re-read IDENTIFY page, make sure @dev is still attached to the
3858 * port and reconfigure it according to the new IDENTIFY page.
3860 * LOCKING:
3861 * Kernel thread context (may sleep)
3863 * RETURNS:
3864 * 0 on success, negative errno otherwise
3866 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3867 unsigned int readid_flags)
3869 u64 n_sectors = dev->n_sectors;
3870 int rc;
3872 if (!ata_dev_enabled(dev))
3873 return -ENODEV;
3875 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3876 if (ata_class_enabled(new_class) &&
3877 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3878 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3879 dev->class, new_class);
3880 rc = -ENODEV;
3881 goto fail;
3884 /* re-read ID */
3885 rc = ata_dev_reread_id(dev, readid_flags);
3886 if (rc)
3887 goto fail;
3889 /* configure device according to the new ID */
3890 rc = ata_dev_configure(dev);
3891 if (rc)
3892 goto fail;
3894 /* verify n_sectors hasn't changed */
3895 if (dev->class == ATA_DEV_ATA && n_sectors &&
3896 dev->n_sectors != n_sectors) {
3897 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3898 "%llu != %llu\n",
3899 (unsigned long long)n_sectors,
3900 (unsigned long long)dev->n_sectors);
3902 /* restore original n_sectors */
3903 dev->n_sectors = n_sectors;
3905 rc = -ENODEV;
3906 goto fail;
3909 return 0;
3911 fail:
3912 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3913 return rc;
3916 struct ata_blacklist_entry {
3917 const char *model_num;
3918 const char *model_rev;
3919 unsigned long horkage;
3922 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3923 /* Devices with DMA related problems under Linux */
3924 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3925 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3926 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3927 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3928 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3929 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3930 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3931 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3932 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3933 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3934 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3935 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3936 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3937 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3938 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3939 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3940 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3941 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3942 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3943 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3944 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3945 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3946 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3947 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3948 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3949 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3950 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3951 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3952 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3953 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3954 /* Odd clown on sil3726/4726 PMPs */
3955 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3957 /* Weird ATAPI devices */
3958 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3960 /* Devices we expect to fail diagnostics */
3962 /* Devices where NCQ should be avoided */
3963 /* NCQ is slow */
3964 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3965 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3966 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3967 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3968 /* NCQ is broken */
3969 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3970 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3971 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3972 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3974 /* Blacklist entries taken from Silicon Image 3124/3132
3975 Windows driver .inf file - also several Linux problem reports */
3976 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3977 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3978 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3980 /* devices which puke on READ_NATIVE_MAX */
3981 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3982 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3983 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3984 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3986 /* Devices which report 1 sector over size HPA */
3987 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3988 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3989 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
3991 /* Devices which get the IVB wrong */
3992 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3993 /* Maybe we should just blacklist TSSTcorp... */
3994 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
3995 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
3996 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
3997 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
3998 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
3999 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4001 /* End Marker */
4005 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4007 const char *p;
4008 int len;
4011 * check for trailing wildcard: *\0
4013 p = strchr(patt, wildchar);
4014 if (p && ((*(p + 1)) == 0))
4015 len = p - patt;
4016 else {
4017 len = strlen(name);
4018 if (!len) {
4019 if (!*patt)
4020 return 0;
4021 return -1;
4025 return strncmp(patt, name, len);
4028 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4030 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4031 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4032 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4034 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4035 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4037 while (ad->model_num) {
4038 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4039 if (ad->model_rev == NULL)
4040 return ad->horkage;
4041 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4042 return ad->horkage;
4044 ad++;
4046 return 0;
4049 static int ata_dma_blacklisted(const struct ata_device *dev)
4051 /* We don't support polling DMA.
4052 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4053 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4055 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4056 (dev->flags & ATA_DFLAG_CDB_INTR))
4057 return 1;
4058 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4062 * ata_is_40wire - check drive side detection
4063 * @dev: device
4065 * Perform drive side detection decoding, allowing for device vendors
4066 * who can't follow the documentation.
4069 static int ata_is_40wire(struct ata_device *dev)
4071 if (dev->horkage & ATA_HORKAGE_IVB)
4072 return ata_drive_40wire_relaxed(dev->id);
4073 return ata_drive_40wire(dev->id);
4077 * cable_is_40wire - 40/80/SATA decider
4078 * @ap: port to consider
4080 * This function encapsulates the policy for speed management
4081 * in one place. At the moment we don't cache the result but
4082 * there is a good case for setting ap->cbl to the result when
4083 * we are called with unknown cables (and figuring out if it
4084 * impacts hotplug at all).
4086 * Return 1 if the cable appears to be 40 wire.
4089 static int cable_is_40wire(struct ata_port *ap)
4091 struct ata_link *link;
4092 struct ata_device *dev;
4094 /* If the controller thinks we are 40 wire, we are */
4095 if (ap->cbl == ATA_CBL_PATA40)
4096 return 1;
4097 /* If the controller thinks we are 80 wire, we are */
4098 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4099 return 0;
4100 /* If the system is known to be 40 wire short cable (eg laptop),
4101 then we allow 80 wire modes even if the drive isn't sure */
4102 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4103 return 0;
4104 /* If the controller doesn't know we scan
4106 - Note: We look for all 40 wire detects at this point.
4107 Any 80 wire detect is taken to be 80 wire cable
4108 because
4109 - In many setups only the one drive (slave if present)
4110 will give a valid detect
4111 - If you have a non detect capable drive you don't
4112 want it to colour the choice
4114 ata_port_for_each_link(link, ap) {
4115 ata_link_for_each_dev(dev, link) {
4116 if (!ata_is_40wire(dev))
4117 return 0;
4120 return 1;
4124 * ata_dev_xfermask - Compute supported xfermask of the given device
4125 * @dev: Device to compute xfermask for
4127 * Compute supported xfermask of @dev and store it in
4128 * dev->*_mask. This function is responsible for applying all
4129 * known limits including host controller limits, device
4130 * blacklist, etc...
4132 * LOCKING:
4133 * None.
4135 static void ata_dev_xfermask(struct ata_device *dev)
4137 struct ata_link *link = dev->link;
4138 struct ata_port *ap = link->ap;
4139 struct ata_host *host = ap->host;
4140 unsigned long xfer_mask;
4142 /* controller modes available */
4143 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4144 ap->mwdma_mask, ap->udma_mask);
4146 /* drive modes available */
4147 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4148 dev->mwdma_mask, dev->udma_mask);
4149 xfer_mask &= ata_id_xfermask(dev->id);
4152 * CFA Advanced TrueIDE timings are not allowed on a shared
4153 * cable
4155 if (ata_dev_pair(dev)) {
4156 /* No PIO5 or PIO6 */
4157 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4158 /* No MWDMA3 or MWDMA 4 */
4159 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4162 if (ata_dma_blacklisted(dev)) {
4163 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4164 ata_dev_printk(dev, KERN_WARNING,
4165 "device is on DMA blacklist, disabling DMA\n");
4168 if ((host->flags & ATA_HOST_SIMPLEX) &&
4169 host->simplex_claimed && host->simplex_claimed != ap) {
4170 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4171 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4172 "other device, disabling DMA\n");
4175 if (ap->flags & ATA_FLAG_NO_IORDY)
4176 xfer_mask &= ata_pio_mask_no_iordy(dev);
4178 if (ap->ops->mode_filter)
4179 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4181 /* Apply cable rule here. Don't apply it early because when
4182 * we handle hot plug the cable type can itself change.
4183 * Check this last so that we know if the transfer rate was
4184 * solely limited by the cable.
4185 * Unknown or 80 wire cables reported host side are checked
4186 * drive side as well. Cases where we know a 40wire cable
4187 * is used safely for 80 are not checked here.
4189 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4190 /* UDMA/44 or higher would be available */
4191 if (cable_is_40wire(ap)) {
4192 ata_dev_printk(dev, KERN_WARNING,
4193 "limited to UDMA/33 due to 40-wire cable\n");
4194 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4197 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4198 &dev->mwdma_mask, &dev->udma_mask);
4202 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4203 * @dev: Device to which command will be sent
4205 * Issue SET FEATURES - XFER MODE command to device @dev
4206 * on port @ap.
4208 * LOCKING:
4209 * PCI/etc. bus probe sem.
4211 * RETURNS:
4212 * 0 on success, AC_ERR_* mask otherwise.
4215 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4217 struct ata_taskfile tf;
4218 unsigned int err_mask;
4220 /* set up set-features taskfile */
4221 DPRINTK("set features - xfer mode\n");
4223 /* Some controllers and ATAPI devices show flaky interrupt
4224 * behavior after setting xfer mode. Use polling instead.
4226 ata_tf_init(dev, &tf);
4227 tf.command = ATA_CMD_SET_FEATURES;
4228 tf.feature = SETFEATURES_XFER;
4229 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4230 tf.protocol = ATA_PROT_NODATA;
4231 /* If we are using IORDY we must send the mode setting command */
4232 if (ata_pio_need_iordy(dev))
4233 tf.nsect = dev->xfer_mode;
4234 /* If the device has IORDY and the controller does not - turn it off */
4235 else if (ata_id_has_iordy(dev->id))
4236 tf.nsect = 0x01;
4237 else /* In the ancient relic department - skip all of this */
4238 return 0;
4240 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4242 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4243 return err_mask;
4246 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4247 * @dev: Device to which command will be sent
4248 * @enable: Whether to enable or disable the feature
4249 * @feature: The sector count represents the feature to set
4251 * Issue SET FEATURES - SATA FEATURES command to device @dev
4252 * on port @ap with sector count
4254 * LOCKING:
4255 * PCI/etc. bus probe sem.
4257 * RETURNS:
4258 * 0 on success, AC_ERR_* mask otherwise.
4260 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4261 u8 feature)
4263 struct ata_taskfile tf;
4264 unsigned int err_mask;
4266 /* set up set-features taskfile */
4267 DPRINTK("set features - SATA features\n");
4269 ata_tf_init(dev, &tf);
4270 tf.command = ATA_CMD_SET_FEATURES;
4271 tf.feature = enable;
4272 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4273 tf.protocol = ATA_PROT_NODATA;
4274 tf.nsect = feature;
4276 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4278 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4279 return err_mask;
4283 * ata_dev_init_params - Issue INIT DEV PARAMS command
4284 * @dev: Device to which command will be sent
4285 * @heads: Number of heads (taskfile parameter)
4286 * @sectors: Number of sectors (taskfile parameter)
4288 * LOCKING:
4289 * Kernel thread context (may sleep)
4291 * RETURNS:
4292 * 0 on success, AC_ERR_* mask otherwise.
4294 static unsigned int ata_dev_init_params(struct ata_device *dev,
4295 u16 heads, u16 sectors)
4297 struct ata_taskfile tf;
4298 unsigned int err_mask;
4300 /* Number of sectors per track 1-255. Number of heads 1-16 */
4301 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4302 return AC_ERR_INVALID;
4304 /* set up init dev params taskfile */
4305 DPRINTK("init dev params \n");
4307 ata_tf_init(dev, &tf);
4308 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4309 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4310 tf.protocol = ATA_PROT_NODATA;
4311 tf.nsect = sectors;
4312 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4314 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4315 /* A clean abort indicates an original or just out of spec drive
4316 and we should continue as we issue the setup based on the
4317 drive reported working geometry */
4318 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4319 err_mask = 0;
4321 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4322 return err_mask;
4326 * ata_sg_clean - Unmap DMA memory associated with command
4327 * @qc: Command containing DMA memory to be released
4329 * Unmap all mapped DMA memory associated with this command.
4331 * LOCKING:
4332 * spin_lock_irqsave(host lock)
4334 void ata_sg_clean(struct ata_queued_cmd *qc)
4336 struct ata_port *ap = qc->ap;
4337 struct scatterlist *sg = qc->sg;
4338 int dir = qc->dma_dir;
4340 WARN_ON(sg == NULL);
4342 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4344 if (qc->n_elem)
4345 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4347 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4348 qc->sg = NULL;
4352 * atapi_check_dma - Check whether ATAPI DMA can be supported
4353 * @qc: Metadata associated with taskfile to check
4355 * Allow low-level driver to filter ATA PACKET commands, returning
4356 * a status indicating whether or not it is OK to use DMA for the
4357 * supplied PACKET command.
4359 * LOCKING:
4360 * spin_lock_irqsave(host lock)
4362 * RETURNS: 0 when ATAPI DMA can be used
4363 * nonzero otherwise
4365 int atapi_check_dma(struct ata_queued_cmd *qc)
4367 struct ata_port *ap = qc->ap;
4369 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4370 * few ATAPI devices choke on such DMA requests.
4372 if (unlikely(qc->nbytes & 15))
4373 return 1;
4375 if (ap->ops->check_atapi_dma)
4376 return ap->ops->check_atapi_dma(qc);
4378 return 0;
4382 * ata_std_qc_defer - Check whether a qc needs to be deferred
4383 * @qc: ATA command in question
4385 * Non-NCQ commands cannot run with any other command, NCQ or
4386 * not. As upper layer only knows the queue depth, we are
4387 * responsible for maintaining exclusion. This function checks
4388 * whether a new command @qc can be issued.
4390 * LOCKING:
4391 * spin_lock_irqsave(host lock)
4393 * RETURNS:
4394 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4396 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4398 struct ata_link *link = qc->dev->link;
4400 if (qc->tf.protocol == ATA_PROT_NCQ) {
4401 if (!ata_tag_valid(link->active_tag))
4402 return 0;
4403 } else {
4404 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4405 return 0;
4408 return ATA_DEFER_LINK;
4411 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4414 * ata_sg_init - Associate command with scatter-gather table.
4415 * @qc: Command to be associated
4416 * @sg: Scatter-gather table.
4417 * @n_elem: Number of elements in s/g table.
4419 * Initialize the data-related elements of queued_cmd @qc
4420 * to point to a scatter-gather table @sg, containing @n_elem
4421 * elements.
4423 * LOCKING:
4424 * spin_lock_irqsave(host lock)
4426 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4427 unsigned int n_elem)
4429 qc->sg = sg;
4430 qc->n_elem = n_elem;
4431 qc->cursg = qc->sg;
4435 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4436 * @qc: Command with scatter-gather table to be mapped.
4438 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4440 * LOCKING:
4441 * spin_lock_irqsave(host lock)
4443 * RETURNS:
4444 * Zero on success, negative on error.
4447 static int ata_sg_setup(struct ata_queued_cmd *qc)
4449 struct ata_port *ap = qc->ap;
4450 unsigned int n_elem;
4452 VPRINTK("ENTER, ata%u\n", ap->print_id);
4454 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4455 if (n_elem < 1)
4456 return -1;
4458 DPRINTK("%d sg elements mapped\n", n_elem);
4460 qc->n_elem = n_elem;
4461 qc->flags |= ATA_QCFLAG_DMAMAP;
4463 return 0;
4467 * swap_buf_le16 - swap halves of 16-bit words in place
4468 * @buf: Buffer to swap
4469 * @buf_words: Number of 16-bit words in buffer.
4471 * Swap halves of 16-bit words if needed to convert from
4472 * little-endian byte order to native cpu byte order, or
4473 * vice-versa.
4475 * LOCKING:
4476 * Inherited from caller.
4478 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4480 #ifdef __BIG_ENDIAN
4481 unsigned int i;
4483 for (i = 0; i < buf_words; i++)
4484 buf[i] = le16_to_cpu(buf[i]);
4485 #endif /* __BIG_ENDIAN */
4489 * ata_qc_new - Request an available ATA command, for queueing
4490 * @ap: Port associated with device @dev
4491 * @dev: Device from whom we request an available command structure
4493 * LOCKING:
4494 * None.
4497 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4499 struct ata_queued_cmd *qc = NULL;
4500 unsigned int i;
4502 /* no command while frozen */
4503 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4504 return NULL;
4506 /* the last tag is reserved for internal command. */
4507 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4508 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4509 qc = __ata_qc_from_tag(ap, i);
4510 break;
4513 if (qc)
4514 qc->tag = i;
4516 return qc;
4520 * ata_qc_new_init - Request an available ATA command, and initialize it
4521 * @dev: Device from whom we request an available command structure
4523 * LOCKING:
4524 * None.
4527 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4529 struct ata_port *ap = dev->link->ap;
4530 struct ata_queued_cmd *qc;
4532 qc = ata_qc_new(ap);
4533 if (qc) {
4534 qc->scsicmd = NULL;
4535 qc->ap = ap;
4536 qc->dev = dev;
4538 ata_qc_reinit(qc);
4541 return qc;
4545 * ata_qc_free - free unused ata_queued_cmd
4546 * @qc: Command to complete
4548 * Designed to free unused ata_queued_cmd object
4549 * in case something prevents using it.
4551 * LOCKING:
4552 * spin_lock_irqsave(host lock)
4554 void ata_qc_free(struct ata_queued_cmd *qc)
4556 struct ata_port *ap = qc->ap;
4557 unsigned int tag;
4559 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4561 qc->flags = 0;
4562 tag = qc->tag;
4563 if (likely(ata_tag_valid(tag))) {
4564 qc->tag = ATA_TAG_POISON;
4565 clear_bit(tag, &ap->qc_allocated);
4569 void __ata_qc_complete(struct ata_queued_cmd *qc)
4571 struct ata_port *ap = qc->ap;
4572 struct ata_link *link = qc->dev->link;
4574 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4575 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4577 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4578 ata_sg_clean(qc);
4580 /* command should be marked inactive atomically with qc completion */
4581 if (qc->tf.protocol == ATA_PROT_NCQ) {
4582 link->sactive &= ~(1 << qc->tag);
4583 if (!link->sactive)
4584 ap->nr_active_links--;
4585 } else {
4586 link->active_tag = ATA_TAG_POISON;
4587 ap->nr_active_links--;
4590 /* clear exclusive status */
4591 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4592 ap->excl_link == link))
4593 ap->excl_link = NULL;
4595 /* atapi: mark qc as inactive to prevent the interrupt handler
4596 * from completing the command twice later, before the error handler
4597 * is called. (when rc != 0 and atapi request sense is needed)
4599 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4600 ap->qc_active &= ~(1 << qc->tag);
4602 /* call completion callback */
4603 qc->complete_fn(qc);
4606 static void fill_result_tf(struct ata_queued_cmd *qc)
4608 struct ata_port *ap = qc->ap;
4610 qc->result_tf.flags = qc->tf.flags;
4611 ap->ops->qc_fill_rtf(qc);
4614 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4616 struct ata_device *dev = qc->dev;
4618 if (ata_tag_internal(qc->tag))
4619 return;
4621 if (ata_is_nodata(qc->tf.protocol))
4622 return;
4624 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4625 return;
4627 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4631 * ata_qc_complete - Complete an active ATA command
4632 * @qc: Command to complete
4633 * @err_mask: ATA Status register contents
4635 * Indicate to the mid and upper layers that an ATA
4636 * command has completed, with either an ok or not-ok status.
4638 * LOCKING:
4639 * spin_lock_irqsave(host lock)
4641 void ata_qc_complete(struct ata_queued_cmd *qc)
4643 struct ata_port *ap = qc->ap;
4645 /* XXX: New EH and old EH use different mechanisms to
4646 * synchronize EH with regular execution path.
4648 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4649 * Normal execution path is responsible for not accessing a
4650 * failed qc. libata core enforces the rule by returning NULL
4651 * from ata_qc_from_tag() for failed qcs.
4653 * Old EH depends on ata_qc_complete() nullifying completion
4654 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4655 * not synchronize with interrupt handler. Only PIO task is
4656 * taken care of.
4658 if (ap->ops->error_handler) {
4659 struct ata_device *dev = qc->dev;
4660 struct ata_eh_info *ehi = &dev->link->eh_info;
4662 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4664 if (unlikely(qc->err_mask))
4665 qc->flags |= ATA_QCFLAG_FAILED;
4667 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4668 if (!ata_tag_internal(qc->tag)) {
4669 /* always fill result TF for failed qc */
4670 fill_result_tf(qc);
4671 ata_qc_schedule_eh(qc);
4672 return;
4676 /* read result TF if requested */
4677 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4678 fill_result_tf(qc);
4680 /* Some commands need post-processing after successful
4681 * completion.
4683 switch (qc->tf.command) {
4684 case ATA_CMD_SET_FEATURES:
4685 if (qc->tf.feature != SETFEATURES_WC_ON &&
4686 qc->tf.feature != SETFEATURES_WC_OFF)
4687 break;
4688 /* fall through */
4689 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4690 case ATA_CMD_SET_MULTI: /* multi_count changed */
4691 /* revalidate device */
4692 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4693 ata_port_schedule_eh(ap);
4694 break;
4696 case ATA_CMD_SLEEP:
4697 dev->flags |= ATA_DFLAG_SLEEPING;
4698 break;
4701 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4702 ata_verify_xfer(qc);
4704 __ata_qc_complete(qc);
4705 } else {
4706 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4707 return;
4709 /* read result TF if failed or requested */
4710 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4711 fill_result_tf(qc);
4713 __ata_qc_complete(qc);
4718 * ata_qc_complete_multiple - Complete multiple qcs successfully
4719 * @ap: port in question
4720 * @qc_active: new qc_active mask
4722 * Complete in-flight commands. This functions is meant to be
4723 * called from low-level driver's interrupt routine to complete
4724 * requests normally. ap->qc_active and @qc_active is compared
4725 * and commands are completed accordingly.
4727 * LOCKING:
4728 * spin_lock_irqsave(host lock)
4730 * RETURNS:
4731 * Number of completed commands on success, -errno otherwise.
4733 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4735 int nr_done = 0;
4736 u32 done_mask;
4737 int i;
4739 done_mask = ap->qc_active ^ qc_active;
4741 if (unlikely(done_mask & qc_active)) {
4742 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4743 "(%08x->%08x)\n", ap->qc_active, qc_active);
4744 return -EINVAL;
4747 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4748 struct ata_queued_cmd *qc;
4750 if (!(done_mask & (1 << i)))
4751 continue;
4753 if ((qc = ata_qc_from_tag(ap, i))) {
4754 ata_qc_complete(qc);
4755 nr_done++;
4759 return nr_done;
4763 * ata_qc_issue - issue taskfile to device
4764 * @qc: command to issue to device
4766 * Prepare an ATA command to submission to device.
4767 * This includes mapping the data into a DMA-able
4768 * area, filling in the S/G table, and finally
4769 * writing the taskfile to hardware, starting the command.
4771 * LOCKING:
4772 * spin_lock_irqsave(host lock)
4774 void ata_qc_issue(struct ata_queued_cmd *qc)
4776 struct ata_port *ap = qc->ap;
4777 struct ata_link *link = qc->dev->link;
4778 u8 prot = qc->tf.protocol;
4780 /* Make sure only one non-NCQ command is outstanding. The
4781 * check is skipped for old EH because it reuses active qc to
4782 * request ATAPI sense.
4784 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4786 if (ata_is_ncq(prot)) {
4787 WARN_ON(link->sactive & (1 << qc->tag));
4789 if (!link->sactive)
4790 ap->nr_active_links++;
4791 link->sactive |= 1 << qc->tag;
4792 } else {
4793 WARN_ON(link->sactive);
4795 ap->nr_active_links++;
4796 link->active_tag = qc->tag;
4799 qc->flags |= ATA_QCFLAG_ACTIVE;
4800 ap->qc_active |= 1 << qc->tag;
4802 /* We guarantee to LLDs that they will have at least one
4803 * non-zero sg if the command is a data command.
4805 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4807 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4808 (ap->flags & ATA_FLAG_PIO_DMA)))
4809 if (ata_sg_setup(qc))
4810 goto sg_err;
4812 /* if device is sleeping, schedule reset and abort the link */
4813 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4814 link->eh_info.action |= ATA_EH_RESET;
4815 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4816 ata_link_abort(link);
4817 return;
4820 ap->ops->qc_prep(qc);
4822 qc->err_mask |= ap->ops->qc_issue(qc);
4823 if (unlikely(qc->err_mask))
4824 goto err;
4825 return;
4827 sg_err:
4828 qc->err_mask |= AC_ERR_SYSTEM;
4829 err:
4830 ata_qc_complete(qc);
4834 * sata_scr_valid - test whether SCRs are accessible
4835 * @link: ATA link to test SCR accessibility for
4837 * Test whether SCRs are accessible for @link.
4839 * LOCKING:
4840 * None.
4842 * RETURNS:
4843 * 1 if SCRs are accessible, 0 otherwise.
4845 int sata_scr_valid(struct ata_link *link)
4847 struct ata_port *ap = link->ap;
4849 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4853 * sata_scr_read - read SCR register of the specified port
4854 * @link: ATA link to read SCR for
4855 * @reg: SCR to read
4856 * @val: Place to store read value
4858 * Read SCR register @reg of @link into *@val. This function is
4859 * guaranteed to succeed if @link is ap->link, the cable type of
4860 * the port is SATA and the port implements ->scr_read.
4862 * LOCKING:
4863 * None if @link is ap->link. Kernel thread context otherwise.
4865 * RETURNS:
4866 * 0 on success, negative errno on failure.
4868 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4870 if (ata_is_host_link(link)) {
4871 struct ata_port *ap = link->ap;
4873 if (sata_scr_valid(link))
4874 return ap->ops->scr_read(ap, reg, val);
4875 return -EOPNOTSUPP;
4878 return sata_pmp_scr_read(link, reg, val);
4882 * sata_scr_write - write SCR register of the specified port
4883 * @link: ATA link to write SCR for
4884 * @reg: SCR to write
4885 * @val: value to write
4887 * Write @val to SCR register @reg of @link. This function is
4888 * guaranteed to succeed if @link is ap->link, the cable type of
4889 * the port is SATA and the port implements ->scr_read.
4891 * LOCKING:
4892 * None if @link is ap->link. Kernel thread context otherwise.
4894 * RETURNS:
4895 * 0 on success, negative errno on failure.
4897 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4899 if (ata_is_host_link(link)) {
4900 struct ata_port *ap = link->ap;
4902 if (sata_scr_valid(link))
4903 return ap->ops->scr_write(ap, reg, val);
4904 return -EOPNOTSUPP;
4907 return sata_pmp_scr_write(link, reg, val);
4911 * sata_scr_write_flush - write SCR register of the specified port and flush
4912 * @link: ATA link to write SCR for
4913 * @reg: SCR to write
4914 * @val: value to write
4916 * This function is identical to sata_scr_write() except that this
4917 * function performs flush after writing to the register.
4919 * LOCKING:
4920 * None if @link is ap->link. Kernel thread context otherwise.
4922 * RETURNS:
4923 * 0 on success, negative errno on failure.
4925 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
4927 if (ata_is_host_link(link)) {
4928 struct ata_port *ap = link->ap;
4929 int rc;
4931 if (sata_scr_valid(link)) {
4932 rc = ap->ops->scr_write(ap, reg, val);
4933 if (rc == 0)
4934 rc = ap->ops->scr_read(ap, reg, &val);
4935 return rc;
4937 return -EOPNOTSUPP;
4940 return sata_pmp_scr_write(link, reg, val);
4944 * ata_link_online - test whether the given link is online
4945 * @link: ATA link to test
4947 * Test whether @link is online. Note that this function returns
4948 * 0 if online status of @link cannot be obtained, so
4949 * ata_link_online(link) != !ata_link_offline(link).
4951 * LOCKING:
4952 * None.
4954 * RETURNS:
4955 * 1 if the port online status is available and online.
4957 int ata_link_online(struct ata_link *link)
4959 u32 sstatus;
4961 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4962 (sstatus & 0xf) == 0x3)
4963 return 1;
4964 return 0;
4968 * ata_link_offline - test whether the given link is offline
4969 * @link: ATA link to test
4971 * Test whether @link is offline. Note that this function
4972 * returns 0 if offline status of @link cannot be obtained, so
4973 * ata_link_online(link) != !ata_link_offline(link).
4975 * LOCKING:
4976 * None.
4978 * RETURNS:
4979 * 1 if the port offline status is available and offline.
4981 int ata_link_offline(struct ata_link *link)
4983 u32 sstatus;
4985 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4986 (sstatus & 0xf) != 0x3)
4987 return 1;
4988 return 0;
4991 #ifdef CONFIG_PM
4992 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
4993 unsigned int action, unsigned int ehi_flags,
4994 int wait)
4996 unsigned long flags;
4997 int i, rc;
4999 for (i = 0; i < host->n_ports; i++) {
5000 struct ata_port *ap = host->ports[i];
5001 struct ata_link *link;
5003 /* Previous resume operation might still be in
5004 * progress. Wait for PM_PENDING to clear.
5006 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5007 ata_port_wait_eh(ap);
5008 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5011 /* request PM ops to EH */
5012 spin_lock_irqsave(ap->lock, flags);
5014 ap->pm_mesg = mesg;
5015 if (wait) {
5016 rc = 0;
5017 ap->pm_result = &rc;
5020 ap->pflags |= ATA_PFLAG_PM_PENDING;
5021 __ata_port_for_each_link(link, ap) {
5022 link->eh_info.action |= action;
5023 link->eh_info.flags |= ehi_flags;
5026 ata_port_schedule_eh(ap);
5028 spin_unlock_irqrestore(ap->lock, flags);
5030 /* wait and check result */
5031 if (wait) {
5032 ata_port_wait_eh(ap);
5033 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5034 if (rc)
5035 return rc;
5039 return 0;
5043 * ata_host_suspend - suspend host
5044 * @host: host to suspend
5045 * @mesg: PM message
5047 * Suspend @host. Actual operation is performed by EH. This
5048 * function requests EH to perform PM operations and waits for EH
5049 * to finish.
5051 * LOCKING:
5052 * Kernel thread context (may sleep).
5054 * RETURNS:
5055 * 0 on success, -errno on failure.
5057 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5059 int rc;
5062 * disable link pm on all ports before requesting
5063 * any pm activity
5065 ata_lpm_enable(host);
5067 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5068 if (rc == 0)
5069 host->dev->power.power_state = mesg;
5070 return rc;
5074 * ata_host_resume - resume host
5075 * @host: host to resume
5077 * Resume @host. Actual operation is performed by EH. This
5078 * function requests EH to perform PM operations and returns.
5079 * Note that all resume operations are performed parallely.
5081 * LOCKING:
5082 * Kernel thread context (may sleep).
5084 void ata_host_resume(struct ata_host *host)
5086 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5087 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5088 host->dev->power.power_state = PMSG_ON;
5090 /* reenable link pm */
5091 ata_lpm_disable(host);
5093 #endif
5096 * ata_port_start - Set port up for dma.
5097 * @ap: Port to initialize
5099 * Called just after data structures for each port are
5100 * initialized. Allocates space for PRD table.
5102 * May be used as the port_start() entry in ata_port_operations.
5104 * LOCKING:
5105 * Inherited from caller.
5107 int ata_port_start(struct ata_port *ap)
5109 struct device *dev = ap->dev;
5111 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5112 GFP_KERNEL);
5113 if (!ap->prd)
5114 return -ENOMEM;
5116 return 0;
5120 * ata_dev_init - Initialize an ata_device structure
5121 * @dev: Device structure to initialize
5123 * Initialize @dev in preparation for probing.
5125 * LOCKING:
5126 * Inherited from caller.
5128 void ata_dev_init(struct ata_device *dev)
5130 struct ata_link *link = dev->link;
5131 struct ata_port *ap = link->ap;
5132 unsigned long flags;
5134 /* SATA spd limit is bound to the first device */
5135 link->sata_spd_limit = link->hw_sata_spd_limit;
5136 link->sata_spd = 0;
5138 /* High bits of dev->flags are used to record warm plug
5139 * requests which occur asynchronously. Synchronize using
5140 * host lock.
5142 spin_lock_irqsave(ap->lock, flags);
5143 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5144 dev->horkage = 0;
5145 spin_unlock_irqrestore(ap->lock, flags);
5147 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5148 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5149 dev->pio_mask = UINT_MAX;
5150 dev->mwdma_mask = UINT_MAX;
5151 dev->udma_mask = UINT_MAX;
5155 * ata_link_init - Initialize an ata_link structure
5156 * @ap: ATA port link is attached to
5157 * @link: Link structure to initialize
5158 * @pmp: Port multiplier port number
5160 * Initialize @link.
5162 * LOCKING:
5163 * Kernel thread context (may sleep)
5165 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5167 int i;
5169 /* clear everything except for devices */
5170 memset(link, 0, offsetof(struct ata_link, device[0]));
5172 link->ap = ap;
5173 link->pmp = pmp;
5174 link->active_tag = ATA_TAG_POISON;
5175 link->hw_sata_spd_limit = UINT_MAX;
5177 /* can't use iterator, ap isn't initialized yet */
5178 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5179 struct ata_device *dev = &link->device[i];
5181 dev->link = link;
5182 dev->devno = dev - link->device;
5183 ata_dev_init(dev);
5188 * sata_link_init_spd - Initialize link->sata_spd_limit
5189 * @link: Link to configure sata_spd_limit for
5191 * Initialize @link->[hw_]sata_spd_limit to the currently
5192 * configured value.
5194 * LOCKING:
5195 * Kernel thread context (may sleep).
5197 * RETURNS:
5198 * 0 on success, -errno on failure.
5200 int sata_link_init_spd(struct ata_link *link)
5202 u8 spd;
5203 int rc;
5205 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5206 if (rc)
5207 return rc;
5209 spd = (link->saved_scontrol >> 4) & 0xf;
5210 if (spd)
5211 link->hw_sata_spd_limit &= (1 << spd) - 1;
5213 ata_force_link_limits(link);
5215 link->sata_spd_limit = link->hw_sata_spd_limit;
5217 return 0;
5221 * ata_port_alloc - allocate and initialize basic ATA port resources
5222 * @host: ATA host this allocated port belongs to
5224 * Allocate and initialize basic ATA port resources.
5226 * RETURNS:
5227 * Allocate ATA port on success, NULL on failure.
5229 * LOCKING:
5230 * Inherited from calling layer (may sleep).
5232 struct ata_port *ata_port_alloc(struct ata_host *host)
5234 struct ata_port *ap;
5236 DPRINTK("ENTER\n");
5238 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5239 if (!ap)
5240 return NULL;
5242 ap->pflags |= ATA_PFLAG_INITIALIZING;
5243 ap->lock = &host->lock;
5244 ap->flags = ATA_FLAG_DISABLED;
5245 ap->print_id = -1;
5246 ap->ctl = ATA_DEVCTL_OBS;
5247 ap->host = host;
5248 ap->dev = host->dev;
5249 ap->last_ctl = 0xFF;
5251 #if defined(ATA_VERBOSE_DEBUG)
5252 /* turn on all debugging levels */
5253 ap->msg_enable = 0x00FF;
5254 #elif defined(ATA_DEBUG)
5255 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5256 #else
5257 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5258 #endif
5260 #ifdef CONFIG_ATA_SFF
5261 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5262 #else
5263 INIT_DELAYED_WORK(&ap->port_task, NULL);
5264 #endif
5265 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5266 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5267 INIT_LIST_HEAD(&ap->eh_done_q);
5268 init_waitqueue_head(&ap->eh_wait_q);
5269 init_timer_deferrable(&ap->fastdrain_timer);
5270 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5271 ap->fastdrain_timer.data = (unsigned long)ap;
5273 ap->cbl = ATA_CBL_NONE;
5275 ata_link_init(ap, &ap->link, 0);
5277 #ifdef ATA_IRQ_TRAP
5278 ap->stats.unhandled_irq = 1;
5279 ap->stats.idle_irq = 1;
5280 #endif
5281 return ap;
5284 static void ata_host_release(struct device *gendev, void *res)
5286 struct ata_host *host = dev_get_drvdata(gendev);
5287 int i;
5289 for (i = 0; i < host->n_ports; i++) {
5290 struct ata_port *ap = host->ports[i];
5292 if (!ap)
5293 continue;
5295 if (ap->scsi_host)
5296 scsi_host_put(ap->scsi_host);
5298 kfree(ap->pmp_link);
5299 kfree(ap);
5300 host->ports[i] = NULL;
5303 dev_set_drvdata(gendev, NULL);
5307 * ata_host_alloc - allocate and init basic ATA host resources
5308 * @dev: generic device this host is associated with
5309 * @max_ports: maximum number of ATA ports associated with this host
5311 * Allocate and initialize basic ATA host resources. LLD calls
5312 * this function to allocate a host, initializes it fully and
5313 * attaches it using ata_host_register().
5315 * @max_ports ports are allocated and host->n_ports is
5316 * initialized to @max_ports. The caller is allowed to decrease
5317 * host->n_ports before calling ata_host_register(). The unused
5318 * ports will be automatically freed on registration.
5320 * RETURNS:
5321 * Allocate ATA host on success, NULL on failure.
5323 * LOCKING:
5324 * Inherited from calling layer (may sleep).
5326 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5328 struct ata_host *host;
5329 size_t sz;
5330 int i;
5332 DPRINTK("ENTER\n");
5334 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5335 return NULL;
5337 /* alloc a container for our list of ATA ports (buses) */
5338 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5339 /* alloc a container for our list of ATA ports (buses) */
5340 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5341 if (!host)
5342 goto err_out;
5344 devres_add(dev, host);
5345 dev_set_drvdata(dev, host);
5347 spin_lock_init(&host->lock);
5348 host->dev = dev;
5349 host->n_ports = max_ports;
5351 /* allocate ports bound to this host */
5352 for (i = 0; i < max_ports; i++) {
5353 struct ata_port *ap;
5355 ap = ata_port_alloc(host);
5356 if (!ap)
5357 goto err_out;
5359 ap->port_no = i;
5360 host->ports[i] = ap;
5363 devres_remove_group(dev, NULL);
5364 return host;
5366 err_out:
5367 devres_release_group(dev, NULL);
5368 return NULL;
5372 * ata_host_alloc_pinfo - alloc host and init with port_info array
5373 * @dev: generic device this host is associated with
5374 * @ppi: array of ATA port_info to initialize host with
5375 * @n_ports: number of ATA ports attached to this host
5377 * Allocate ATA host and initialize with info from @ppi. If NULL
5378 * terminated, @ppi may contain fewer entries than @n_ports. The
5379 * last entry will be used for the remaining ports.
5381 * RETURNS:
5382 * Allocate ATA host on success, NULL on failure.
5384 * LOCKING:
5385 * Inherited from calling layer (may sleep).
5387 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5388 const struct ata_port_info * const * ppi,
5389 int n_ports)
5391 const struct ata_port_info *pi;
5392 struct ata_host *host;
5393 int i, j;
5395 host = ata_host_alloc(dev, n_ports);
5396 if (!host)
5397 return NULL;
5399 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5400 struct ata_port *ap = host->ports[i];
5402 if (ppi[j])
5403 pi = ppi[j++];
5405 ap->pio_mask = pi->pio_mask;
5406 ap->mwdma_mask = pi->mwdma_mask;
5407 ap->udma_mask = pi->udma_mask;
5408 ap->flags |= pi->flags;
5409 ap->link.flags |= pi->link_flags;
5410 ap->ops = pi->port_ops;
5412 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5413 host->ops = pi->port_ops;
5416 return host;
5419 static void ata_host_stop(struct device *gendev, void *res)
5421 struct ata_host *host = dev_get_drvdata(gendev);
5422 int i;
5424 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5426 for (i = 0; i < host->n_ports; i++) {
5427 struct ata_port *ap = host->ports[i];
5429 if (ap->ops->port_stop)
5430 ap->ops->port_stop(ap);
5433 if (host->ops->host_stop)
5434 host->ops->host_stop(host);
5438 * ata_finalize_port_ops - finalize ata_port_operations
5439 * @ops: ata_port_operations to finalize
5441 * An ata_port_operations can inherit from another ops and that
5442 * ops can again inherit from another. This can go on as many
5443 * times as necessary as long as there is no loop in the
5444 * inheritance chain.
5446 * Ops tables are finalized when the host is started. NULL or
5447 * unspecified entries are inherited from the closet ancestor
5448 * which has the method and the entry is populated with it.
5449 * After finalization, the ops table directly points to all the
5450 * methods and ->inherits is no longer necessary and cleared.
5452 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5454 * LOCKING:
5455 * None.
5457 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5459 static DEFINE_SPINLOCK(lock);
5460 const struct ata_port_operations *cur;
5461 void **begin = (void **)ops;
5462 void **end = (void **)&ops->inherits;
5463 void **pp;
5465 if (!ops || !ops->inherits)
5466 return;
5468 spin_lock(&lock);
5470 for (cur = ops->inherits; cur; cur = cur->inherits) {
5471 void **inherit = (void **)cur;
5473 for (pp = begin; pp < end; pp++, inherit++)
5474 if (!*pp)
5475 *pp = *inherit;
5478 for (pp = begin; pp < end; pp++)
5479 if (IS_ERR(*pp))
5480 *pp = NULL;
5482 ops->inherits = NULL;
5484 spin_unlock(&lock);
5488 * ata_host_start - start and freeze ports of an ATA host
5489 * @host: ATA host to start ports for
5491 * Start and then freeze ports of @host. Started status is
5492 * recorded in host->flags, so this function can be called
5493 * multiple times. Ports are guaranteed to get started only
5494 * once. If host->ops isn't initialized yet, its set to the
5495 * first non-dummy port ops.
5497 * LOCKING:
5498 * Inherited from calling layer (may sleep).
5500 * RETURNS:
5501 * 0 if all ports are started successfully, -errno otherwise.
5503 int ata_host_start(struct ata_host *host)
5505 int have_stop = 0;
5506 void *start_dr = NULL;
5507 int i, rc;
5509 if (host->flags & ATA_HOST_STARTED)
5510 return 0;
5512 ata_finalize_port_ops(host->ops);
5514 for (i = 0; i < host->n_ports; i++) {
5515 struct ata_port *ap = host->ports[i];
5517 ata_finalize_port_ops(ap->ops);
5519 if (!host->ops && !ata_port_is_dummy(ap))
5520 host->ops = ap->ops;
5522 if (ap->ops->port_stop)
5523 have_stop = 1;
5526 if (host->ops->host_stop)
5527 have_stop = 1;
5529 if (have_stop) {
5530 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5531 if (!start_dr)
5532 return -ENOMEM;
5535 for (i = 0; i < host->n_ports; i++) {
5536 struct ata_port *ap = host->ports[i];
5538 if (ap->ops->port_start) {
5539 rc = ap->ops->port_start(ap);
5540 if (rc) {
5541 if (rc != -ENODEV)
5542 dev_printk(KERN_ERR, host->dev,
5543 "failed to start port %d "
5544 "(errno=%d)\n", i, rc);
5545 goto err_out;
5548 ata_eh_freeze_port(ap);
5551 if (start_dr)
5552 devres_add(host->dev, start_dr);
5553 host->flags |= ATA_HOST_STARTED;
5554 return 0;
5556 err_out:
5557 while (--i >= 0) {
5558 struct ata_port *ap = host->ports[i];
5560 if (ap->ops->port_stop)
5561 ap->ops->port_stop(ap);
5563 devres_free(start_dr);
5564 return rc;
5568 * ata_sas_host_init - Initialize a host struct
5569 * @host: host to initialize
5570 * @dev: device host is attached to
5571 * @flags: host flags
5572 * @ops: port_ops
5574 * LOCKING:
5575 * PCI/etc. bus probe sem.
5578 /* KILLME - the only user left is ipr */
5579 void ata_host_init(struct ata_host *host, struct device *dev,
5580 unsigned long flags, struct ata_port_operations *ops)
5582 spin_lock_init(&host->lock);
5583 host->dev = dev;
5584 host->flags = flags;
5585 host->ops = ops;
5589 * ata_host_register - register initialized ATA host
5590 * @host: ATA host to register
5591 * @sht: template for SCSI host
5593 * Register initialized ATA host. @host is allocated using
5594 * ata_host_alloc() and fully initialized by LLD. This function
5595 * starts ports, registers @host with ATA and SCSI layers and
5596 * probe registered devices.
5598 * LOCKING:
5599 * Inherited from calling layer (may sleep).
5601 * RETURNS:
5602 * 0 on success, -errno otherwise.
5604 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5606 int i, rc;
5608 /* host must have been started */
5609 if (!(host->flags & ATA_HOST_STARTED)) {
5610 dev_printk(KERN_ERR, host->dev,
5611 "BUG: trying to register unstarted host\n");
5612 WARN_ON(1);
5613 return -EINVAL;
5616 /* Blow away unused ports. This happens when LLD can't
5617 * determine the exact number of ports to allocate at
5618 * allocation time.
5620 for (i = host->n_ports; host->ports[i]; i++)
5621 kfree(host->ports[i]);
5623 /* give ports names and add SCSI hosts */
5624 for (i = 0; i < host->n_ports; i++)
5625 host->ports[i]->print_id = ata_print_id++;
5627 rc = ata_scsi_add_hosts(host, sht);
5628 if (rc)
5629 return rc;
5631 /* associate with ACPI nodes */
5632 ata_acpi_associate(host);
5634 /* set cable, sata_spd_limit and report */
5635 for (i = 0; i < host->n_ports; i++) {
5636 struct ata_port *ap = host->ports[i];
5637 unsigned long xfer_mask;
5639 /* set SATA cable type if still unset */
5640 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5641 ap->cbl = ATA_CBL_SATA;
5643 /* init sata_spd_limit to the current value */
5644 sata_link_init_spd(&ap->link);
5646 /* print per-port info to dmesg */
5647 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5648 ap->udma_mask);
5650 if (!ata_port_is_dummy(ap)) {
5651 ata_port_printk(ap, KERN_INFO,
5652 "%cATA max %s %s\n",
5653 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5654 ata_mode_string(xfer_mask),
5655 ap->link.eh_info.desc);
5656 ata_ehi_clear_desc(&ap->link.eh_info);
5657 } else
5658 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5661 /* perform each probe synchronously */
5662 DPRINTK("probe begin\n");
5663 for (i = 0; i < host->n_ports; i++) {
5664 struct ata_port *ap = host->ports[i];
5666 /* probe */
5667 if (ap->ops->error_handler) {
5668 struct ata_eh_info *ehi = &ap->link.eh_info;
5669 unsigned long flags;
5671 ata_port_probe(ap);
5673 /* kick EH for boot probing */
5674 spin_lock_irqsave(ap->lock, flags);
5676 ehi->probe_mask |= ATA_ALL_DEVICES;
5677 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5678 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5680 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5681 ap->pflags |= ATA_PFLAG_LOADING;
5682 ata_port_schedule_eh(ap);
5684 spin_unlock_irqrestore(ap->lock, flags);
5686 /* wait for EH to finish */
5687 ata_port_wait_eh(ap);
5688 } else {
5689 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5690 rc = ata_bus_probe(ap);
5691 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5693 if (rc) {
5694 /* FIXME: do something useful here?
5695 * Current libata behavior will
5696 * tear down everything when
5697 * the module is removed
5698 * or the h/w is unplugged.
5704 /* probes are done, now scan each port's disk(s) */
5705 DPRINTK("host probe begin\n");
5706 for (i = 0; i < host->n_ports; i++) {
5707 struct ata_port *ap = host->ports[i];
5709 ata_scsi_scan_host(ap, 1);
5712 return 0;
5716 * ata_host_activate - start host, request IRQ and register it
5717 * @host: target ATA host
5718 * @irq: IRQ to request
5719 * @irq_handler: irq_handler used when requesting IRQ
5720 * @irq_flags: irq_flags used when requesting IRQ
5721 * @sht: scsi_host_template to use when registering the host
5723 * After allocating an ATA host and initializing it, most libata
5724 * LLDs perform three steps to activate the host - start host,
5725 * request IRQ and register it. This helper takes necessasry
5726 * arguments and performs the three steps in one go.
5728 * An invalid IRQ skips the IRQ registration and expects the host to
5729 * have set polling mode on the port. In this case, @irq_handler
5730 * should be NULL.
5732 * LOCKING:
5733 * Inherited from calling layer (may sleep).
5735 * RETURNS:
5736 * 0 on success, -errno otherwise.
5738 int ata_host_activate(struct ata_host *host, int irq,
5739 irq_handler_t irq_handler, unsigned long irq_flags,
5740 struct scsi_host_template *sht)
5742 int i, rc;
5744 rc = ata_host_start(host);
5745 if (rc)
5746 return rc;
5748 /* Special case for polling mode */
5749 if (!irq) {
5750 WARN_ON(irq_handler);
5751 return ata_host_register(host, sht);
5754 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5755 dev_driver_string(host->dev), host);
5756 if (rc)
5757 return rc;
5759 for (i = 0; i < host->n_ports; i++)
5760 ata_port_desc(host->ports[i], "irq %d", irq);
5762 rc = ata_host_register(host, sht);
5763 /* if failed, just free the IRQ and leave ports alone */
5764 if (rc)
5765 devm_free_irq(host->dev, irq, host);
5767 return rc;
5771 * ata_port_detach - Detach ATA port in prepration of device removal
5772 * @ap: ATA port to be detached
5774 * Detach all ATA devices and the associated SCSI devices of @ap;
5775 * then, remove the associated SCSI host. @ap is guaranteed to
5776 * be quiescent on return from this function.
5778 * LOCKING:
5779 * Kernel thread context (may sleep).
5781 static void ata_port_detach(struct ata_port *ap)
5783 unsigned long flags;
5784 struct ata_link *link;
5785 struct ata_device *dev;
5787 if (!ap->ops->error_handler)
5788 goto skip_eh;
5790 /* tell EH we're leaving & flush EH */
5791 spin_lock_irqsave(ap->lock, flags);
5792 ap->pflags |= ATA_PFLAG_UNLOADING;
5793 spin_unlock_irqrestore(ap->lock, flags);
5795 ata_port_wait_eh(ap);
5797 /* EH is now guaranteed to see UNLOADING - EH context belongs
5798 * to us. Restore SControl and disable all existing devices.
5800 __ata_port_for_each_link(link, ap) {
5801 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol);
5802 ata_link_for_each_dev(dev, link)
5803 ata_dev_disable(dev);
5806 /* Final freeze & EH. All in-flight commands are aborted. EH
5807 * will be skipped and retrials will be terminated with bad
5808 * target.
5810 spin_lock_irqsave(ap->lock, flags);
5811 ata_port_freeze(ap); /* won't be thawed */
5812 spin_unlock_irqrestore(ap->lock, flags);
5814 ata_port_wait_eh(ap);
5815 cancel_rearming_delayed_work(&ap->hotplug_task);
5817 skip_eh:
5818 /* remove the associated SCSI host */
5819 scsi_remove_host(ap->scsi_host);
5823 * ata_host_detach - Detach all ports of an ATA host
5824 * @host: Host to detach
5826 * Detach all ports of @host.
5828 * LOCKING:
5829 * Kernel thread context (may sleep).
5831 void ata_host_detach(struct ata_host *host)
5833 int i;
5835 for (i = 0; i < host->n_ports; i++)
5836 ata_port_detach(host->ports[i]);
5838 /* the host is dead now, dissociate ACPI */
5839 ata_acpi_dissociate(host);
5842 #ifdef CONFIG_PCI
5845 * ata_pci_remove_one - PCI layer callback for device removal
5846 * @pdev: PCI device that was removed
5848 * PCI layer indicates to libata via this hook that hot-unplug or
5849 * module unload event has occurred. Detach all ports. Resource
5850 * release is handled via devres.
5852 * LOCKING:
5853 * Inherited from PCI layer (may sleep).
5855 void ata_pci_remove_one(struct pci_dev *pdev)
5857 struct device *dev = &pdev->dev;
5858 struct ata_host *host = dev_get_drvdata(dev);
5860 ata_host_detach(host);
5863 /* move to PCI subsystem */
5864 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5866 unsigned long tmp = 0;
5868 switch (bits->width) {
5869 case 1: {
5870 u8 tmp8 = 0;
5871 pci_read_config_byte(pdev, bits->reg, &tmp8);
5872 tmp = tmp8;
5873 break;
5875 case 2: {
5876 u16 tmp16 = 0;
5877 pci_read_config_word(pdev, bits->reg, &tmp16);
5878 tmp = tmp16;
5879 break;
5881 case 4: {
5882 u32 tmp32 = 0;
5883 pci_read_config_dword(pdev, bits->reg, &tmp32);
5884 tmp = tmp32;
5885 break;
5888 default:
5889 return -EINVAL;
5892 tmp &= bits->mask;
5894 return (tmp == bits->val) ? 1 : 0;
5897 #ifdef CONFIG_PM
5898 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5900 pci_save_state(pdev);
5901 pci_disable_device(pdev);
5903 if (mesg.event & PM_EVENT_SLEEP)
5904 pci_set_power_state(pdev, PCI_D3hot);
5907 int ata_pci_device_do_resume(struct pci_dev *pdev)
5909 int rc;
5911 pci_set_power_state(pdev, PCI_D0);
5912 pci_restore_state(pdev);
5914 rc = pcim_enable_device(pdev);
5915 if (rc) {
5916 dev_printk(KERN_ERR, &pdev->dev,
5917 "failed to enable device after resume (%d)\n", rc);
5918 return rc;
5921 pci_set_master(pdev);
5922 return 0;
5925 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5927 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5928 int rc = 0;
5930 rc = ata_host_suspend(host, mesg);
5931 if (rc)
5932 return rc;
5934 ata_pci_device_do_suspend(pdev, mesg);
5936 return 0;
5939 int ata_pci_device_resume(struct pci_dev *pdev)
5941 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5942 int rc;
5944 rc = ata_pci_device_do_resume(pdev);
5945 if (rc == 0)
5946 ata_host_resume(host);
5947 return rc;
5949 #endif /* CONFIG_PM */
5951 #endif /* CONFIG_PCI */
5953 static int __init ata_parse_force_one(char **cur,
5954 struct ata_force_ent *force_ent,
5955 const char **reason)
5957 /* FIXME: Currently, there's no way to tag init const data and
5958 * using __initdata causes build failure on some versions of
5959 * gcc. Once __initdataconst is implemented, add const to the
5960 * following structure.
5962 static struct ata_force_param force_tbl[] __initdata = {
5963 { "40c", .cbl = ATA_CBL_PATA40 },
5964 { "80c", .cbl = ATA_CBL_PATA80 },
5965 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
5966 { "unk", .cbl = ATA_CBL_PATA_UNK },
5967 { "ign", .cbl = ATA_CBL_PATA_IGN },
5968 { "sata", .cbl = ATA_CBL_SATA },
5969 { "1.5Gbps", .spd_limit = 1 },
5970 { "3.0Gbps", .spd_limit = 2 },
5971 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
5972 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
5973 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
5974 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
5975 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
5976 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
5977 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
5978 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
5979 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
5980 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
5981 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
5982 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
5983 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
5984 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
5985 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5986 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5987 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5988 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5989 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5990 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5991 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5992 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5993 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5994 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5995 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5996 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5997 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5998 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5999 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6000 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6001 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6002 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6003 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6004 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6005 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6006 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6007 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6008 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6009 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6011 char *start = *cur, *p = *cur;
6012 char *id, *val, *endp;
6013 const struct ata_force_param *match_fp = NULL;
6014 int nr_matches = 0, i;
6016 /* find where this param ends and update *cur */
6017 while (*p != '\0' && *p != ',')
6018 p++;
6020 if (*p == '\0')
6021 *cur = p;
6022 else
6023 *cur = p + 1;
6025 *p = '\0';
6027 /* parse */
6028 p = strchr(start, ':');
6029 if (!p) {
6030 val = strstrip(start);
6031 goto parse_val;
6033 *p = '\0';
6035 id = strstrip(start);
6036 val = strstrip(p + 1);
6038 /* parse id */
6039 p = strchr(id, '.');
6040 if (p) {
6041 *p++ = '\0';
6042 force_ent->device = simple_strtoul(p, &endp, 10);
6043 if (p == endp || *endp != '\0') {
6044 *reason = "invalid device";
6045 return -EINVAL;
6049 force_ent->port = simple_strtoul(id, &endp, 10);
6050 if (p == endp || *endp != '\0') {
6051 *reason = "invalid port/link";
6052 return -EINVAL;
6055 parse_val:
6056 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6057 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6058 const struct ata_force_param *fp = &force_tbl[i];
6060 if (strncasecmp(val, fp->name, strlen(val)))
6061 continue;
6063 nr_matches++;
6064 match_fp = fp;
6066 if (strcasecmp(val, fp->name) == 0) {
6067 nr_matches = 1;
6068 break;
6072 if (!nr_matches) {
6073 *reason = "unknown value";
6074 return -EINVAL;
6076 if (nr_matches > 1) {
6077 *reason = "ambigious value";
6078 return -EINVAL;
6081 force_ent->param = *match_fp;
6083 return 0;
6086 static void __init ata_parse_force_param(void)
6088 int idx = 0, size = 1;
6089 int last_port = -1, last_device = -1;
6090 char *p, *cur, *next;
6092 /* calculate maximum number of params and allocate force_tbl */
6093 for (p = ata_force_param_buf; *p; p++)
6094 if (*p == ',')
6095 size++;
6097 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6098 if (!ata_force_tbl) {
6099 printk(KERN_WARNING "ata: failed to extend force table, "
6100 "libata.force ignored\n");
6101 return;
6104 /* parse and populate the table */
6105 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6106 const char *reason = "";
6107 struct ata_force_ent te = { .port = -1, .device = -1 };
6109 next = cur;
6110 if (ata_parse_force_one(&next, &te, &reason)) {
6111 printk(KERN_WARNING "ata: failed to parse force "
6112 "parameter \"%s\" (%s)\n",
6113 cur, reason);
6114 continue;
6117 if (te.port == -1) {
6118 te.port = last_port;
6119 te.device = last_device;
6122 ata_force_tbl[idx++] = te;
6124 last_port = te.port;
6125 last_device = te.device;
6128 ata_force_tbl_size = idx;
6131 static int __init ata_init(void)
6133 ata_parse_force_param();
6135 ata_wq = create_workqueue("ata");
6136 if (!ata_wq)
6137 goto free_force_tbl;
6139 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6140 if (!ata_aux_wq)
6141 goto free_wq;
6143 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6144 return 0;
6146 free_wq:
6147 destroy_workqueue(ata_wq);
6148 free_force_tbl:
6149 kfree(ata_force_tbl);
6150 return -ENOMEM;
6153 static void __exit ata_exit(void)
6155 kfree(ata_force_tbl);
6156 destroy_workqueue(ata_wq);
6157 destroy_workqueue(ata_aux_wq);
6160 subsys_initcall(ata_init);
6161 module_exit(ata_exit);
6163 static unsigned long ratelimit_time;
6164 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6166 int ata_ratelimit(void)
6168 int rc;
6169 unsigned long flags;
6171 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6173 if (time_after(jiffies, ratelimit_time)) {
6174 rc = 1;
6175 ratelimit_time = jiffies + (HZ/5);
6176 } else
6177 rc = 0;
6179 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6181 return rc;
6185 * ata_wait_register - wait until register value changes
6186 * @reg: IO-mapped register
6187 * @mask: Mask to apply to read register value
6188 * @val: Wait condition
6189 * @interval: polling interval in milliseconds
6190 * @timeout: timeout in milliseconds
6192 * Waiting for some bits of register to change is a common
6193 * operation for ATA controllers. This function reads 32bit LE
6194 * IO-mapped register @reg and tests for the following condition.
6196 * (*@reg & mask) != val
6198 * If the condition is met, it returns; otherwise, the process is
6199 * repeated after @interval_msec until timeout.
6201 * LOCKING:
6202 * Kernel thread context (may sleep)
6204 * RETURNS:
6205 * The final register value.
6207 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6208 unsigned long interval, unsigned long timeout)
6210 unsigned long deadline;
6211 u32 tmp;
6213 tmp = ioread32(reg);
6215 /* Calculate timeout _after_ the first read to make sure
6216 * preceding writes reach the controller before starting to
6217 * eat away the timeout.
6219 deadline = ata_deadline(jiffies, timeout);
6221 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6222 msleep(interval);
6223 tmp = ioread32(reg);
6226 return tmp;
6230 * Dummy port_ops
6232 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6234 return AC_ERR_SYSTEM;
6237 static void ata_dummy_error_handler(struct ata_port *ap)
6239 /* truly dummy */
6242 struct ata_port_operations ata_dummy_port_ops = {
6243 .qc_prep = ata_noop_qc_prep,
6244 .qc_issue = ata_dummy_qc_issue,
6245 .error_handler = ata_dummy_error_handler,
6248 const struct ata_port_info ata_dummy_port_info = {
6249 .port_ops = &ata_dummy_port_ops,
6253 * libata is essentially a library of internal helper functions for
6254 * low-level ATA host controller drivers. As such, the API/ABI is
6255 * likely to change as new drivers are added and updated.
6256 * Do not depend on ABI/API stability.
6258 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6259 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6260 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6261 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6262 EXPORT_SYMBOL_GPL(sata_port_ops);
6263 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6264 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6265 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6266 EXPORT_SYMBOL_GPL(ata_host_init);
6267 EXPORT_SYMBOL_GPL(ata_host_alloc);
6268 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6269 EXPORT_SYMBOL_GPL(ata_host_start);
6270 EXPORT_SYMBOL_GPL(ata_host_register);
6271 EXPORT_SYMBOL_GPL(ata_host_activate);
6272 EXPORT_SYMBOL_GPL(ata_host_detach);
6273 EXPORT_SYMBOL_GPL(ata_sg_init);
6274 EXPORT_SYMBOL_GPL(ata_qc_complete);
6275 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6276 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6277 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6278 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6279 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6280 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6281 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6282 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6283 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6284 EXPORT_SYMBOL_GPL(ata_mode_string);
6285 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6286 EXPORT_SYMBOL_GPL(ata_port_start);
6287 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6288 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6289 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6290 EXPORT_SYMBOL_GPL(ata_port_probe);
6291 EXPORT_SYMBOL_GPL(ata_dev_disable);
6292 EXPORT_SYMBOL_GPL(sata_set_spd);
6293 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6294 EXPORT_SYMBOL_GPL(sata_link_debounce);
6295 EXPORT_SYMBOL_GPL(sata_link_resume);
6296 EXPORT_SYMBOL_GPL(ata_std_prereset);
6297 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6298 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6299 EXPORT_SYMBOL_GPL(ata_std_postreset);
6300 EXPORT_SYMBOL_GPL(ata_dev_classify);
6301 EXPORT_SYMBOL_GPL(ata_dev_pair);
6302 EXPORT_SYMBOL_GPL(ata_port_disable);
6303 EXPORT_SYMBOL_GPL(ata_ratelimit);
6304 EXPORT_SYMBOL_GPL(ata_wait_register);
6305 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6306 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6307 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6308 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6309 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6310 EXPORT_SYMBOL_GPL(sata_scr_valid);
6311 EXPORT_SYMBOL_GPL(sata_scr_read);
6312 EXPORT_SYMBOL_GPL(sata_scr_write);
6313 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6314 EXPORT_SYMBOL_GPL(ata_link_online);
6315 EXPORT_SYMBOL_GPL(ata_link_offline);
6316 #ifdef CONFIG_PM
6317 EXPORT_SYMBOL_GPL(ata_host_suspend);
6318 EXPORT_SYMBOL_GPL(ata_host_resume);
6319 #endif /* CONFIG_PM */
6320 EXPORT_SYMBOL_GPL(ata_id_string);
6321 EXPORT_SYMBOL_GPL(ata_id_c_string);
6322 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6323 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6325 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6326 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6327 EXPORT_SYMBOL_GPL(ata_timing_compute);
6328 EXPORT_SYMBOL_GPL(ata_timing_merge);
6329 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6331 #ifdef CONFIG_PCI
6332 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6333 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6334 #ifdef CONFIG_PM
6335 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6336 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6337 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6338 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6339 #endif /* CONFIG_PM */
6340 #endif /* CONFIG_PCI */
6342 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6343 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6344 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6345 EXPORT_SYMBOL_GPL(ata_port_desc);
6346 #ifdef CONFIG_PCI
6347 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6348 #endif /* CONFIG_PCI */
6349 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6350 EXPORT_SYMBOL_GPL(ata_link_abort);
6351 EXPORT_SYMBOL_GPL(ata_port_abort);
6352 EXPORT_SYMBOL_GPL(ata_port_freeze);
6353 EXPORT_SYMBOL_GPL(sata_async_notification);
6354 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6355 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6356 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6357 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6358 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6359 EXPORT_SYMBOL_GPL(ata_do_eh);
6360 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6362 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6363 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6364 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6365 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6366 EXPORT_SYMBOL_GPL(ata_cable_sata);