arch/tile: bug fix: exec'ed task thought it was still single-stepping
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / tile / kernel / single_step.c
blob84a729e06ec44b448110ddf78cef5852ef87fa23
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * A code-rewriter that enables instruction single-stepping.
15 * Derived from iLib's single-stepping code.
18 #ifndef __tilegx__ /* Hardware support for single step unavailable. */
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/opcode-tile.h>
29 #include <asm/opcode_constants.h>
30 #include <arch/abi.h>
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
35 int unaligned_printk;
37 static int __init setup_unaligned_printk(char *str)
39 long val;
40 if (strict_strtol(str, 0, &val) != 0)
41 return 0;
42 unaligned_printk = val;
43 pr_info("Printk for each unaligned data accesses is %s\n",
44 unaligned_printk ? "enabled" : "disabled");
45 return 1;
47 __setup("unaligned_printk=", setup_unaligned_printk);
49 unsigned int unaligned_fixup_count;
51 enum mem_op {
52 MEMOP_NONE,
53 MEMOP_LOAD,
54 MEMOP_STORE,
55 MEMOP_LOAD_POSTINCR,
56 MEMOP_STORE_POSTINCR
59 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
61 tile_bundle_bits result;
63 /* mask out the old offset */
64 tile_bundle_bits mask = create_BrOff_X1(-1);
65 result = n & (~mask);
67 /* or in the new offset */
68 result |= create_BrOff_X1(offset);
70 return result;
73 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
75 tile_bundle_bits result;
76 tile_bundle_bits op;
78 result = n & (~TILE_X1_MASK);
80 op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82 create_Dest_X1(dest) |
83 create_SrcB_X1(TREG_ZERO) |
84 create_SrcA_X1(src) ;
86 result |= op;
87 return result;
90 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
92 return move_X1(n, TREG_ZERO, TREG_ZERO);
95 static inline tile_bundle_bits addi_X1(
96 tile_bundle_bits n, int dest, int src, int imm)
98 n &= ~TILE_X1_MASK;
100 n |= (create_SrcA_X1(src) |
101 create_Dest_X1(dest) |
102 create_Imm8_X1(imm) |
103 create_S_X1(0) |
104 create_Opcode_X1(IMM_0_OPCODE_X1) |
105 create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
107 return n;
110 static tile_bundle_bits rewrite_load_store_unaligned(
111 struct single_step_state *state,
112 tile_bundle_bits bundle,
113 struct pt_regs *regs,
114 enum mem_op mem_op,
115 int size, int sign_ext)
117 unsigned char __user *addr;
118 int val_reg, addr_reg, err, val;
120 /* Get address and value registers */
121 if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
122 addr_reg = get_SrcA_Y2(bundle);
123 val_reg = get_SrcBDest_Y2(bundle);
124 } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125 addr_reg = get_SrcA_X1(bundle);
126 val_reg = get_Dest_X1(bundle);
127 } else {
128 addr_reg = get_SrcA_X1(bundle);
129 val_reg = get_SrcB_X1(bundle);
133 * If registers are not GPRs, don't try to handle it.
135 * FIXME: we could handle non-GPR loads by getting the real value
136 * from memory, writing it to the single step buffer, using a
137 * temp_reg to hold a pointer to that memory, then executing that
138 * instruction and resetting temp_reg. For non-GPR stores, it's a
139 * little trickier; we could use the single step buffer for that
140 * too, but we'd have to add some more state bits so that we could
141 * call back in here to copy that value to the real target. For
142 * now, we just handle the simple case.
144 if ((val_reg >= PTREGS_NR_GPRS &&
145 (val_reg != TREG_ZERO ||
146 mem_op == MEMOP_LOAD ||
147 mem_op == MEMOP_LOAD_POSTINCR)) ||
148 addr_reg >= PTREGS_NR_GPRS)
149 return bundle;
151 /* If it's aligned, don't handle it specially */
152 addr = (void __user *)regs->regs[addr_reg];
153 if (((unsigned long)addr % size) == 0)
154 return bundle;
156 #ifndef __LITTLE_ENDIAN
157 # error We assume little-endian representation with copy_xx_user size 2 here
158 #endif
159 /* Handle unaligned load/store */
160 if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
161 unsigned short val_16;
162 switch (size) {
163 case 2:
164 err = copy_from_user(&val_16, addr, sizeof(val_16));
165 val = sign_ext ? ((short)val_16) : val_16;
166 break;
167 case 4:
168 err = copy_from_user(&val, addr, sizeof(val));
169 break;
170 default:
171 BUG();
173 if (err == 0) {
174 state->update_reg = val_reg;
175 state->update_value = val;
176 state->update = 1;
178 } else {
179 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
180 err = copy_to_user(addr, &val, size);
183 if (err) {
184 siginfo_t info = {
185 .si_signo = SIGSEGV,
186 .si_code = SEGV_MAPERR,
187 .si_addr = addr
189 force_sig_info(info.si_signo, &info, current);
190 return (tile_bundle_bits) 0;
193 if (unaligned_fixup == 0) {
194 siginfo_t info = {
195 .si_signo = SIGBUS,
196 .si_code = BUS_ADRALN,
197 .si_addr = addr
199 force_sig_info(info.si_signo, &info, current);
200 return (tile_bundle_bits) 0;
203 if (unaligned_printk || unaligned_fixup_count == 0) {
204 pr_info("Process %d/%s: PC %#lx: Fixup of"
205 " unaligned %s at %#lx.\n",
206 current->pid, current->comm, regs->pc,
207 (mem_op == MEMOP_LOAD ||
208 mem_op == MEMOP_LOAD_POSTINCR) ?
209 "load" : "store",
210 (unsigned long)addr);
211 if (!unaligned_printk) {
212 #define P pr_info
213 P("\n");
214 P("Unaligned fixups in the kernel will slow your application considerably.\n");
215 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
216 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
217 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
218 P("access will become a SIGBUS you can debug. No further warnings will be\n");
219 P("shown so as to avoid additional slowdown, but you can track the number\n");
220 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
221 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
222 P("\n");
223 #undef P
226 ++unaligned_fixup_count;
228 if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
229 /* Convert the Y2 instruction to a prefetch. */
230 bundle &= ~(create_SrcBDest_Y2(-1) |
231 create_Opcode_Y2(-1));
232 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
233 create_Opcode_Y2(LW_OPCODE_Y2));
234 /* Replace the load postincr with an addi */
235 } else if (mem_op == MEMOP_LOAD_POSTINCR) {
236 bundle = addi_X1(bundle, addr_reg, addr_reg,
237 get_Imm8_X1(bundle));
238 /* Replace the store postincr with an addi */
239 } else if (mem_op == MEMOP_STORE_POSTINCR) {
240 bundle = addi_X1(bundle, addr_reg, addr_reg,
241 get_Dest_Imm8_X1(bundle));
242 } else {
243 /* Convert the X1 instruction to a nop. */
244 bundle &= ~(create_Opcode_X1(-1) |
245 create_UnShOpcodeExtension_X1(-1) |
246 create_UnOpcodeExtension_X1(-1));
247 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
248 create_UnShOpcodeExtension_X1(
249 UN_0_SHUN_0_OPCODE_X1) |
250 create_UnOpcodeExtension_X1(
251 NOP_UN_0_SHUN_0_OPCODE_X1));
254 return bundle;
258 * Called after execve() has started the new image. This allows us
259 * to reset the info state. Note that the the mmap'ed memory, if there
260 * was any, has already been unmapped by the exec.
262 void single_step_execve(void)
264 struct thread_info *ti = current_thread_info();
265 kfree(ti->step_state);
266 ti->step_state = NULL;
270 * single_step_once() - entry point when single stepping has been triggered.
271 * @regs: The machine register state
273 * When we arrive at this routine via a trampoline, the single step
274 * engine copies the executing bundle to the single step buffer.
275 * If the instruction is a condition branch, then the target is
276 * reset to one past the next instruction. If the instruction
277 * sets the lr, then that is noted. If the instruction is a jump
278 * or call, then the new target pc is preserved and the current
279 * bundle instruction set to null.
281 * The necessary post-single-step rewriting information is stored in
282 * single_step_state-> We use data segment values because the
283 * stack will be rewound when we run the rewritten single-stepped
284 * instruction.
286 void single_step_once(struct pt_regs *regs)
288 extern tile_bundle_bits __single_step_ill_insn;
289 extern tile_bundle_bits __single_step_j_insn;
290 extern tile_bundle_bits __single_step_addli_insn;
291 extern tile_bundle_bits __single_step_auli_insn;
292 struct thread_info *info = (void *)current_thread_info();
293 struct single_step_state *state = info->step_state;
294 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
295 tile_bundle_bits __user *buffer, *pc;
296 tile_bundle_bits bundle;
297 int temp_reg;
298 int target_reg = TREG_LR;
299 int err;
300 enum mem_op mem_op = MEMOP_NONE;
301 int size = 0, sign_ext = 0; /* happy compiler */
303 asm(
304 " .pushsection .rodata.single_step\n"
305 " .align 8\n"
306 " .globl __single_step_ill_insn\n"
307 "__single_step_ill_insn:\n"
308 " ill\n"
309 " .globl __single_step_addli_insn\n"
310 "__single_step_addli_insn:\n"
311 " { nop; addli r0, zero, 0 }\n"
312 " .globl __single_step_auli_insn\n"
313 "__single_step_auli_insn:\n"
314 " { nop; auli r0, r0, 0 }\n"
315 " .globl __single_step_j_insn\n"
316 "__single_step_j_insn:\n"
317 " j .\n"
318 " .popsection\n"
321 if (state == NULL) {
322 /* allocate a page of writable, executable memory */
323 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
324 if (state == NULL) {
325 pr_err("Out of kernel memory trying to single-step\n");
326 return;
329 /* allocate a cache line of writable, executable memory */
330 down_write(&current->mm->mmap_sem);
331 buffer = (void __user *) do_mmap(NULL, 0, 64,
332 PROT_EXEC | PROT_READ | PROT_WRITE,
333 MAP_PRIVATE | MAP_ANONYMOUS,
335 up_write(&current->mm->mmap_sem);
337 if (IS_ERR((void __force *)buffer)) {
338 kfree(state);
339 pr_err("Out of kernel pages trying to single-step\n");
340 return;
343 state->buffer = buffer;
344 state->is_enabled = 0;
346 info->step_state = state;
348 /* Validate our stored instruction patterns */
349 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
350 ADDLI_OPCODE_X1);
351 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
352 AULI_OPCODE_X1);
353 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
354 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
355 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
359 * If we are returning from a syscall, we still haven't hit the
360 * "ill" for the swint1 instruction. So back the PC up to be
361 * pointing at the swint1, but we'll actually return directly
362 * back to the "ill" so we come back in via SIGILL as if we
363 * had "executed" the swint1 without ever being in kernel space.
365 if (regs->faultnum == INT_SWINT_1)
366 regs->pc -= 8;
368 pc = (tile_bundle_bits __user *)(regs->pc);
369 if (get_user(bundle, pc) != 0) {
370 pr_err("Couldn't read instruction at %p trying to step\n", pc);
371 return;
374 /* We'll follow the instruction with 2 ill op bundles */
375 state->orig_pc = (unsigned long)pc;
376 state->next_pc = (unsigned long)(pc + 1);
377 state->branch_next_pc = 0;
378 state->update = 0;
380 if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) {
381 /* two wide, check for control flow */
382 int opcode = get_Opcode_X1(bundle);
384 switch (opcode) {
385 /* branches */
386 case BRANCH_OPCODE_X1:
388 s32 offset = signExtend17(get_BrOff_X1(bundle));
391 * For branches, we use a rewriting trick to let the
392 * hardware evaluate whether the branch is taken or
393 * untaken. We record the target offset and then
394 * rewrite the branch instruction to target 1 insn
395 * ahead if the branch is taken. We then follow the
396 * rewritten branch with two bundles, each containing
397 * an "ill" instruction. The supervisor examines the
398 * pc after the single step code is executed, and if
399 * the pc is the first ill instruction, then the
400 * branch (if any) was not taken. If the pc is the
401 * second ill instruction, then the branch was
402 * taken. The new pc is computed for these cases, and
403 * inserted into the registers for the thread. If
404 * the pc is the start of the single step code, then
405 * an exception or interrupt was taken before the
406 * code started processing, and the same "original"
407 * pc is restored. This change, different from the
408 * original implementation, has the advantage of
409 * executing a single user instruction.
411 state->branch_next_pc = (unsigned long)(pc + offset);
413 /* rewrite branch offset to go forward one bundle */
414 bundle = set_BrOff_X1(bundle, 2);
416 break;
418 /* jumps */
419 case JALB_OPCODE_X1:
420 case JALF_OPCODE_X1:
421 state->update = 1;
422 state->next_pc =
423 (unsigned long) (pc + get_JOffLong_X1(bundle));
424 break;
426 case JB_OPCODE_X1:
427 case JF_OPCODE_X1:
428 state->next_pc =
429 (unsigned long) (pc + get_JOffLong_X1(bundle));
430 bundle = nop_X1(bundle);
431 break;
433 case SPECIAL_0_OPCODE_X1:
434 switch (get_RRROpcodeExtension_X1(bundle)) {
435 /* jump-register */
436 case JALRP_SPECIAL_0_OPCODE_X1:
437 case JALR_SPECIAL_0_OPCODE_X1:
438 state->update = 1;
439 state->next_pc =
440 regs->regs[get_SrcA_X1(bundle)];
441 break;
443 case JRP_SPECIAL_0_OPCODE_X1:
444 case JR_SPECIAL_0_OPCODE_X1:
445 state->next_pc =
446 regs->regs[get_SrcA_X1(bundle)];
447 bundle = nop_X1(bundle);
448 break;
450 case LNK_SPECIAL_0_OPCODE_X1:
451 state->update = 1;
452 target_reg = get_Dest_X1(bundle);
453 break;
455 /* stores */
456 case SH_SPECIAL_0_OPCODE_X1:
457 mem_op = MEMOP_STORE;
458 size = 2;
459 break;
461 case SW_SPECIAL_0_OPCODE_X1:
462 mem_op = MEMOP_STORE;
463 size = 4;
464 break;
466 break;
468 /* loads and iret */
469 case SHUN_0_OPCODE_X1:
470 if (get_UnShOpcodeExtension_X1(bundle) ==
471 UN_0_SHUN_0_OPCODE_X1) {
472 switch (get_UnOpcodeExtension_X1(bundle)) {
473 case LH_UN_0_SHUN_0_OPCODE_X1:
474 mem_op = MEMOP_LOAD;
475 size = 2;
476 sign_ext = 1;
477 break;
479 case LH_U_UN_0_SHUN_0_OPCODE_X1:
480 mem_op = MEMOP_LOAD;
481 size = 2;
482 sign_ext = 0;
483 break;
485 case LW_UN_0_SHUN_0_OPCODE_X1:
486 mem_op = MEMOP_LOAD;
487 size = 4;
488 break;
490 case IRET_UN_0_SHUN_0_OPCODE_X1:
492 unsigned long ex0_0 = __insn_mfspr(
493 SPR_EX_CONTEXT_0_0);
494 unsigned long ex0_1 = __insn_mfspr(
495 SPR_EX_CONTEXT_0_1);
497 * Special-case it if we're iret'ing
498 * to PL0 again. Otherwise just let
499 * it run and it will generate SIGILL.
501 if (EX1_PL(ex0_1) == USER_PL) {
502 state->next_pc = ex0_0;
503 regs->ex1 = ex0_1;
504 bundle = nop_X1(bundle);
509 break;
511 #if CHIP_HAS_WH64()
512 /* postincrement operations */
513 case IMM_0_OPCODE_X1:
514 switch (get_ImmOpcodeExtension_X1(bundle)) {
515 case LWADD_IMM_0_OPCODE_X1:
516 mem_op = MEMOP_LOAD_POSTINCR;
517 size = 4;
518 break;
520 case LHADD_IMM_0_OPCODE_X1:
521 mem_op = MEMOP_LOAD_POSTINCR;
522 size = 2;
523 sign_ext = 1;
524 break;
526 case LHADD_U_IMM_0_OPCODE_X1:
527 mem_op = MEMOP_LOAD_POSTINCR;
528 size = 2;
529 sign_ext = 0;
530 break;
532 case SWADD_IMM_0_OPCODE_X1:
533 mem_op = MEMOP_STORE_POSTINCR;
534 size = 4;
535 break;
537 case SHADD_IMM_0_OPCODE_X1:
538 mem_op = MEMOP_STORE_POSTINCR;
539 size = 2;
540 break;
542 default:
543 break;
545 break;
546 #endif /* CHIP_HAS_WH64() */
549 if (state->update) {
551 * Get an available register. We start with a
552 * bitmask with 1's for available registers.
553 * We truncate to the low 32 registers since
554 * we are guaranteed to have set bits in the
555 * low 32 bits, then use ctz to pick the first.
557 u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
558 (1ULL << get_SrcA_X0(bundle)) |
559 (1ULL << get_SrcB_X0(bundle)) |
560 (1ULL << target_reg));
561 temp_reg = __builtin_ctz(mask);
562 state->update_reg = temp_reg;
563 state->update_value = regs->regs[temp_reg];
564 regs->regs[temp_reg] = (unsigned long) (pc+1);
565 regs->flags |= PT_FLAGS_RESTORE_REGS;
566 bundle = move_X1(bundle, target_reg, temp_reg);
568 } else {
569 int opcode = get_Opcode_Y2(bundle);
571 switch (opcode) {
572 /* loads */
573 case LH_OPCODE_Y2:
574 mem_op = MEMOP_LOAD;
575 size = 2;
576 sign_ext = 1;
577 break;
579 case LH_U_OPCODE_Y2:
580 mem_op = MEMOP_LOAD;
581 size = 2;
582 sign_ext = 0;
583 break;
585 case LW_OPCODE_Y2:
586 mem_op = MEMOP_LOAD;
587 size = 4;
588 break;
590 /* stores */
591 case SH_OPCODE_Y2:
592 mem_op = MEMOP_STORE;
593 size = 2;
594 break;
596 case SW_OPCODE_Y2:
597 mem_op = MEMOP_STORE;
598 size = 4;
599 break;
604 * Check if we need to rewrite an unaligned load/store.
605 * Returning zero is a special value meaning we need to SIGSEGV.
607 if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
608 bundle = rewrite_load_store_unaligned(state, bundle, regs,
609 mem_op, size, sign_ext);
610 if (bundle == 0)
611 return;
614 /* write the bundle to our execution area */
615 buffer = state->buffer;
616 err = __put_user(bundle, buffer++);
619 * If we're really single-stepping, we take an INT_ILL after.
620 * If we're just handling an unaligned access, we can just
621 * jump directly back to where we were in user code.
623 if (is_single_step) {
624 err |= __put_user(__single_step_ill_insn, buffer++);
625 err |= __put_user(__single_step_ill_insn, buffer++);
626 } else {
627 long delta;
629 if (state->update) {
630 /* We have some state to update; do it inline */
631 int ha16;
632 bundle = __single_step_addli_insn;
633 bundle |= create_Dest_X1(state->update_reg);
634 bundle |= create_Imm16_X1(state->update_value);
635 err |= __put_user(bundle, buffer++);
636 bundle = __single_step_auli_insn;
637 bundle |= create_Dest_X1(state->update_reg);
638 bundle |= create_SrcA_X1(state->update_reg);
639 ha16 = (state->update_value + 0x8000) >> 16;
640 bundle |= create_Imm16_X1(ha16);
641 err |= __put_user(bundle, buffer++);
642 state->update = 0;
645 /* End with a jump back to the next instruction */
646 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
647 (unsigned long)buffer) >>
648 TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
649 bundle = __single_step_j_insn;
650 bundle |= create_JOffLong_X1(delta);
651 err |= __put_user(bundle, buffer++);
654 if (err) {
655 pr_err("Fault when writing to single-step buffer\n");
656 return;
660 * Flush the buffer.
661 * We do a local flush only, since this is a thread-specific buffer.
663 __flush_icache_range((unsigned long)state->buffer,
664 (unsigned long)buffer);
666 /* Indicate enabled */
667 state->is_enabled = is_single_step;
668 regs->pc = (unsigned long)state->buffer;
670 /* Fault immediately if we are coming back from a syscall. */
671 if (regs->faultnum == INT_SWINT_1)
672 regs->pc += 8;
675 #else
676 #include <linux/smp.h>
677 #include <linux/ptrace.h>
678 #include <arch/spr_def.h>
680 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
684 * Called directly on the occasion of an interrupt.
686 * If the process doesn't have single step set, then we use this as an
687 * opportunity to turn single step off.
689 * It has been mentioned that we could conditionally turn off single stepping
690 * on each entry into the kernel and rely on single_step_once to turn it
691 * on for the processes that matter (as we already do), but this
692 * implementation is somewhat more efficient in that we muck with registers
693 * once on a bum interrupt rather than on every entry into the kernel.
695 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
696 * so we have to run through this process again before we can say that an
697 * instruction has executed.
699 * swint will set CANCELED, but it's a legitimate instruction. Fortunately
700 * it changes the PC. If it hasn't changed, then we know that the interrupt
701 * wasn't generated by swint and we'll need to run this process again before
702 * we can say an instruction has executed.
704 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
705 * on with our lives.
708 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
710 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
711 struct thread_info *info = (void *)current_thread_info();
712 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
713 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
715 if (is_single_step == 0) {
716 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
718 } else if ((*ss_pc != regs->pc) ||
719 (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
721 ptrace_notify(SIGTRAP);
722 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
723 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
724 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
730 * Called from need_singlestep. Set up the control registers and the enable
731 * register, then return back.
734 void single_step_once(struct pt_regs *regs)
736 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
737 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
739 *ss_pc = regs->pc;
740 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
741 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
742 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
743 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
746 void single_step_execve(void)
748 /* Nothing */
751 #endif /* !__tilegx__ */