cfq-iosched: use the default seek distance when there aren't enough seek samples
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blob7e13f04b5ed485514bd3d82b3858cfeb35e13be6
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
17 * tunables
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
67 struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per block device queue structure
76 struct cfq_data {
77 struct request_queue *queue;
80 * rr list of queues with requests and the count of them
82 struct cfq_rb_root service_tree;
85 * Each priority tree is sorted by next_request position. These
86 * trees are used when determining if two or more queues are
87 * interleaving requests (see cfq_close_cooperator).
89 struct rb_root prio_trees[CFQ_PRIO_LISTS];
91 unsigned int busy_queues;
93 * Used to track any pending rt requests so we can pre-empt current
94 * non-RT cfqq in service when this value is non-zero.
96 unsigned int busy_rt_queues;
98 int rq_in_driver;
99 int sync_flight;
102 * queue-depth detection
104 int rq_queued;
105 int hw_tag;
106 int hw_tag_samples;
107 int rq_in_driver_peak;
110 * idle window management
112 struct timer_list idle_slice_timer;
113 struct work_struct unplug_work;
115 struct cfq_queue *active_queue;
116 struct cfq_io_context *active_cic;
119 * async queue for each priority case
121 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
122 struct cfq_queue *async_idle_cfqq;
124 sector_t last_position;
125 unsigned long last_end_request;
128 * tunables, see top of file
130 unsigned int cfq_quantum;
131 unsigned int cfq_fifo_expire[2];
132 unsigned int cfq_back_penalty;
133 unsigned int cfq_back_max;
134 unsigned int cfq_slice[2];
135 unsigned int cfq_slice_async_rq;
136 unsigned int cfq_slice_idle;
138 struct list_head cic_list;
142 * Per process-grouping structure
144 struct cfq_queue {
145 /* reference count */
146 atomic_t ref;
147 /* various state flags, see below */
148 unsigned int flags;
149 /* parent cfq_data */
150 struct cfq_data *cfqd;
151 /* service_tree member */
152 struct rb_node rb_node;
153 /* service_tree key */
154 unsigned long rb_key;
155 /* prio tree member */
156 struct rb_node p_node;
157 /* sorted list of pending requests */
158 struct rb_root sort_list;
159 /* if fifo isn't expired, next request to serve */
160 struct request *next_rq;
161 /* requests queued in sort_list */
162 int queued[2];
163 /* currently allocated requests */
164 int allocated[2];
165 /* fifo list of requests in sort_list */
166 struct list_head fifo;
168 unsigned long slice_end;
169 long slice_resid;
170 unsigned int slice_dispatch;
172 /* pending metadata requests */
173 int meta_pending;
174 /* number of requests that are on the dispatch list or inside driver */
175 int dispatched;
177 /* io prio of this group */
178 unsigned short ioprio, org_ioprio;
179 unsigned short ioprio_class, org_ioprio_class;
181 pid_t pid;
184 enum cfqq_state_flags {
185 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
186 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
187 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
188 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
189 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
190 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
191 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
192 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
193 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
194 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
195 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
198 #define CFQ_CFQQ_FNS(name) \
199 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
201 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
203 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
205 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
207 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
209 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
212 CFQ_CFQQ_FNS(on_rr);
213 CFQ_CFQQ_FNS(wait_request);
214 CFQ_CFQQ_FNS(must_dispatch);
215 CFQ_CFQQ_FNS(must_alloc);
216 CFQ_CFQQ_FNS(must_alloc_slice);
217 CFQ_CFQQ_FNS(fifo_expire);
218 CFQ_CFQQ_FNS(idle_window);
219 CFQ_CFQQ_FNS(prio_changed);
220 CFQ_CFQQ_FNS(slice_new);
221 CFQ_CFQQ_FNS(sync);
222 CFQ_CFQQ_FNS(coop);
223 #undef CFQ_CFQQ_FNS
225 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
226 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
227 #define cfq_log(cfqd, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
230 static void cfq_dispatch_insert(struct request_queue *, struct request *);
231 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
232 struct io_context *, gfp_t);
233 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
234 struct io_context *);
236 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
237 int is_sync)
239 return cic->cfqq[!!is_sync];
242 static inline void cic_set_cfqq(struct cfq_io_context *cic,
243 struct cfq_queue *cfqq, int is_sync)
245 cic->cfqq[!!is_sync] = cfqq;
249 * We regard a request as SYNC, if it's either a read or has the SYNC bit
250 * set (in which case it could also be direct WRITE).
252 static inline int cfq_bio_sync(struct bio *bio)
254 if (bio_data_dir(bio) == READ || bio_sync(bio))
255 return 1;
257 return 0;
261 * scheduler run of queue, if there are requests pending and no one in the
262 * driver that will restart queueing
264 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
266 if (cfqd->busy_queues) {
267 cfq_log(cfqd, "schedule dispatch");
268 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
272 static int cfq_queue_empty(struct request_queue *q)
274 struct cfq_data *cfqd = q->elevator->elevator_data;
276 return !cfqd->busy_queues;
280 * Scale schedule slice based on io priority. Use the sync time slice only
281 * if a queue is marked sync and has sync io queued. A sync queue with async
282 * io only, should not get full sync slice length.
284 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
285 unsigned short prio)
287 const int base_slice = cfqd->cfq_slice[sync];
289 WARN_ON(prio >= IOPRIO_BE_NR);
291 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
294 static inline int
295 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
297 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
300 static inline void
301 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
303 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
304 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
308 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
309 * isn't valid until the first request from the dispatch is activated
310 * and the slice time set.
312 static inline int cfq_slice_used(struct cfq_queue *cfqq)
314 if (cfq_cfqq_slice_new(cfqq))
315 return 0;
316 if (time_before(jiffies, cfqq->slice_end))
317 return 0;
319 return 1;
323 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
324 * We choose the request that is closest to the head right now. Distance
325 * behind the head is penalized and only allowed to a certain extent.
327 static struct request *
328 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
330 sector_t last, s1, s2, d1 = 0, d2 = 0;
331 unsigned long back_max;
332 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
333 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
334 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
336 if (rq1 == NULL || rq1 == rq2)
337 return rq2;
338 if (rq2 == NULL)
339 return rq1;
341 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
342 return rq1;
343 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
344 return rq2;
345 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
346 return rq1;
347 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
348 return rq2;
350 s1 = rq1->sector;
351 s2 = rq2->sector;
353 last = cfqd->last_position;
356 * by definition, 1KiB is 2 sectors
358 back_max = cfqd->cfq_back_max * 2;
361 * Strict one way elevator _except_ in the case where we allow
362 * short backward seeks which are biased as twice the cost of a
363 * similar forward seek.
365 if (s1 >= last)
366 d1 = s1 - last;
367 else if (s1 + back_max >= last)
368 d1 = (last - s1) * cfqd->cfq_back_penalty;
369 else
370 wrap |= CFQ_RQ1_WRAP;
372 if (s2 >= last)
373 d2 = s2 - last;
374 else if (s2 + back_max >= last)
375 d2 = (last - s2) * cfqd->cfq_back_penalty;
376 else
377 wrap |= CFQ_RQ2_WRAP;
379 /* Found required data */
382 * By doing switch() on the bit mask "wrap" we avoid having to
383 * check two variables for all permutations: --> faster!
385 switch (wrap) {
386 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
387 if (d1 < d2)
388 return rq1;
389 else if (d2 < d1)
390 return rq2;
391 else {
392 if (s1 >= s2)
393 return rq1;
394 else
395 return rq2;
398 case CFQ_RQ2_WRAP:
399 return rq1;
400 case CFQ_RQ1_WRAP:
401 return rq2;
402 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
403 default:
405 * Since both rqs are wrapped,
406 * start with the one that's further behind head
407 * (--> only *one* back seek required),
408 * since back seek takes more time than forward.
410 if (s1 <= s2)
411 return rq1;
412 else
413 return rq2;
418 * The below is leftmost cache rbtree addon
420 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
422 if (!root->left)
423 root->left = rb_first(&root->rb);
425 if (root->left)
426 return rb_entry(root->left, struct cfq_queue, rb_node);
428 return NULL;
431 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
433 rb_erase(n, root);
434 RB_CLEAR_NODE(n);
437 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
439 if (root->left == n)
440 root->left = NULL;
441 rb_erase_init(n, &root->rb);
445 * would be nice to take fifo expire time into account as well
447 static struct request *
448 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
449 struct request *last)
451 struct rb_node *rbnext = rb_next(&last->rb_node);
452 struct rb_node *rbprev = rb_prev(&last->rb_node);
453 struct request *next = NULL, *prev = NULL;
455 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
457 if (rbprev)
458 prev = rb_entry_rq(rbprev);
460 if (rbnext)
461 next = rb_entry_rq(rbnext);
462 else {
463 rbnext = rb_first(&cfqq->sort_list);
464 if (rbnext && rbnext != &last->rb_node)
465 next = rb_entry_rq(rbnext);
468 return cfq_choose_req(cfqd, next, prev);
471 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
472 struct cfq_queue *cfqq)
475 * just an approximation, should be ok.
477 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
478 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
482 * The cfqd->service_tree holds all pending cfq_queue's that have
483 * requests waiting to be processed. It is sorted in the order that
484 * we will service the queues.
486 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
487 int add_front)
489 struct rb_node **p, *parent;
490 struct cfq_queue *__cfqq;
491 unsigned long rb_key;
492 int left;
494 if (cfq_class_idle(cfqq)) {
495 rb_key = CFQ_IDLE_DELAY;
496 parent = rb_last(&cfqd->service_tree.rb);
497 if (parent && parent != &cfqq->rb_node) {
498 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
499 rb_key += __cfqq->rb_key;
500 } else
501 rb_key += jiffies;
502 } else if (!add_front) {
503 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
504 rb_key += cfqq->slice_resid;
505 cfqq->slice_resid = 0;
506 } else
507 rb_key = 0;
509 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
511 * same position, nothing more to do
513 if (rb_key == cfqq->rb_key)
514 return;
516 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
519 left = 1;
520 parent = NULL;
521 p = &cfqd->service_tree.rb.rb_node;
522 while (*p) {
523 struct rb_node **n;
525 parent = *p;
526 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
529 * sort RT queues first, we always want to give
530 * preference to them. IDLE queues goes to the back.
531 * after that, sort on the next service time.
533 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
534 n = &(*p)->rb_left;
535 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
536 n = &(*p)->rb_right;
537 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
538 n = &(*p)->rb_left;
539 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
540 n = &(*p)->rb_right;
541 else if (rb_key < __cfqq->rb_key)
542 n = &(*p)->rb_left;
543 else
544 n = &(*p)->rb_right;
546 if (n == &(*p)->rb_right)
547 left = 0;
549 p = n;
552 if (left)
553 cfqd->service_tree.left = &cfqq->rb_node;
555 cfqq->rb_key = rb_key;
556 rb_link_node(&cfqq->rb_node, parent, p);
557 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
560 static struct cfq_queue *
561 cfq_prio_tree_lookup(struct cfq_data *cfqd, int ioprio, sector_t sector,
562 struct rb_node **ret_parent, struct rb_node ***rb_link)
564 struct rb_root *root = &cfqd->prio_trees[ioprio];
565 struct rb_node **p, *parent;
566 struct cfq_queue *cfqq = NULL;
568 parent = NULL;
569 p = &root->rb_node;
570 while (*p) {
571 struct rb_node **n;
573 parent = *p;
574 cfqq = rb_entry(parent, struct cfq_queue, p_node);
577 * Sort strictly based on sector. Smallest to the left,
578 * largest to the right.
580 if (sector > cfqq->next_rq->sector)
581 n = &(*p)->rb_right;
582 else if (sector < cfqq->next_rq->sector)
583 n = &(*p)->rb_left;
584 else
585 break;
586 p = n;
589 *ret_parent = parent;
590 if (rb_link)
591 *rb_link = p;
592 return NULL;
595 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
597 struct rb_root *root = &cfqd->prio_trees[cfqq->ioprio];
598 struct rb_node **p, *parent;
599 struct cfq_queue *__cfqq;
601 if (!RB_EMPTY_NODE(&cfqq->p_node))
602 rb_erase_init(&cfqq->p_node, root);
604 if (cfq_class_idle(cfqq))
605 return;
606 if (!cfqq->next_rq)
607 return;
609 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->ioprio, cfqq->next_rq->sector,
610 &parent, &p);
611 BUG_ON(__cfqq);
613 rb_link_node(&cfqq->p_node, parent, p);
614 rb_insert_color(&cfqq->p_node, root);
618 * Update cfqq's position in the service tree.
620 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
623 * Resorting requires the cfqq to be on the RR list already.
625 if (cfq_cfqq_on_rr(cfqq)) {
626 cfq_service_tree_add(cfqd, cfqq, 0);
627 cfq_prio_tree_add(cfqd, cfqq);
632 * add to busy list of queues for service, trying to be fair in ordering
633 * the pending list according to last request service
635 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
637 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
638 BUG_ON(cfq_cfqq_on_rr(cfqq));
639 cfq_mark_cfqq_on_rr(cfqq);
640 cfqd->busy_queues++;
641 if (cfq_class_rt(cfqq))
642 cfqd->busy_rt_queues++;
644 cfq_resort_rr_list(cfqd, cfqq);
648 * Called when the cfqq no longer has requests pending, remove it from
649 * the service tree.
651 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
653 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
654 BUG_ON(!cfq_cfqq_on_rr(cfqq));
655 cfq_clear_cfqq_on_rr(cfqq);
657 if (!RB_EMPTY_NODE(&cfqq->rb_node))
658 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
659 if (!RB_EMPTY_NODE(&cfqq->p_node))
660 rb_erase_init(&cfqq->p_node, &cfqd->prio_trees[cfqq->ioprio]);
662 BUG_ON(!cfqd->busy_queues);
663 cfqd->busy_queues--;
664 if (cfq_class_rt(cfqq))
665 cfqd->busy_rt_queues--;
669 * rb tree support functions
671 static void cfq_del_rq_rb(struct request *rq)
673 struct cfq_queue *cfqq = RQ_CFQQ(rq);
674 struct cfq_data *cfqd = cfqq->cfqd;
675 const int sync = rq_is_sync(rq);
677 BUG_ON(!cfqq->queued[sync]);
678 cfqq->queued[sync]--;
680 elv_rb_del(&cfqq->sort_list, rq);
682 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
683 cfq_del_cfqq_rr(cfqd, cfqq);
686 static void cfq_add_rq_rb(struct request *rq)
688 struct cfq_queue *cfqq = RQ_CFQQ(rq);
689 struct cfq_data *cfqd = cfqq->cfqd;
690 struct request *__alias, *prev;
692 cfqq->queued[rq_is_sync(rq)]++;
695 * looks a little odd, but the first insert might return an alias.
696 * if that happens, put the alias on the dispatch list
698 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
699 cfq_dispatch_insert(cfqd->queue, __alias);
701 if (!cfq_cfqq_on_rr(cfqq))
702 cfq_add_cfqq_rr(cfqd, cfqq);
705 * check if this request is a better next-serve candidate
707 prev = cfqq->next_rq;
708 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
711 * adjust priority tree position, if ->next_rq changes
713 if (prev != cfqq->next_rq)
714 cfq_prio_tree_add(cfqd, cfqq);
716 BUG_ON(!cfqq->next_rq);
719 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
721 elv_rb_del(&cfqq->sort_list, rq);
722 cfqq->queued[rq_is_sync(rq)]--;
723 cfq_add_rq_rb(rq);
726 static struct request *
727 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
729 struct task_struct *tsk = current;
730 struct cfq_io_context *cic;
731 struct cfq_queue *cfqq;
733 cic = cfq_cic_lookup(cfqd, tsk->io_context);
734 if (!cic)
735 return NULL;
737 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
738 if (cfqq) {
739 sector_t sector = bio->bi_sector + bio_sectors(bio);
741 return elv_rb_find(&cfqq->sort_list, sector);
744 return NULL;
747 static void cfq_activate_request(struct request_queue *q, struct request *rq)
749 struct cfq_data *cfqd = q->elevator->elevator_data;
751 cfqd->rq_in_driver++;
752 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
753 cfqd->rq_in_driver);
755 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
758 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
760 struct cfq_data *cfqd = q->elevator->elevator_data;
762 WARN_ON(!cfqd->rq_in_driver);
763 cfqd->rq_in_driver--;
764 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
765 cfqd->rq_in_driver);
768 static void cfq_remove_request(struct request *rq)
770 struct cfq_queue *cfqq = RQ_CFQQ(rq);
772 if (cfqq->next_rq == rq)
773 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
775 list_del_init(&rq->queuelist);
776 cfq_del_rq_rb(rq);
778 cfqq->cfqd->rq_queued--;
779 if (rq_is_meta(rq)) {
780 WARN_ON(!cfqq->meta_pending);
781 cfqq->meta_pending--;
785 static int cfq_merge(struct request_queue *q, struct request **req,
786 struct bio *bio)
788 struct cfq_data *cfqd = q->elevator->elevator_data;
789 struct request *__rq;
791 __rq = cfq_find_rq_fmerge(cfqd, bio);
792 if (__rq && elv_rq_merge_ok(__rq, bio)) {
793 *req = __rq;
794 return ELEVATOR_FRONT_MERGE;
797 return ELEVATOR_NO_MERGE;
800 static void cfq_merged_request(struct request_queue *q, struct request *req,
801 int type)
803 if (type == ELEVATOR_FRONT_MERGE) {
804 struct cfq_queue *cfqq = RQ_CFQQ(req);
806 cfq_reposition_rq_rb(cfqq, req);
810 static void
811 cfq_merged_requests(struct request_queue *q, struct request *rq,
812 struct request *next)
815 * reposition in fifo if next is older than rq
817 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
818 time_before(next->start_time, rq->start_time))
819 list_move(&rq->queuelist, &next->queuelist);
821 cfq_remove_request(next);
824 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
825 struct bio *bio)
827 struct cfq_data *cfqd = q->elevator->elevator_data;
828 struct cfq_io_context *cic;
829 struct cfq_queue *cfqq;
832 * Disallow merge of a sync bio into an async request.
834 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
835 return 0;
838 * Lookup the cfqq that this bio will be queued with. Allow
839 * merge only if rq is queued there.
841 cic = cfq_cic_lookup(cfqd, current->io_context);
842 if (!cic)
843 return 0;
845 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
846 if (cfqq == RQ_CFQQ(rq))
847 return 1;
849 return 0;
852 static void __cfq_set_active_queue(struct cfq_data *cfqd,
853 struct cfq_queue *cfqq)
855 if (cfqq) {
856 cfq_log_cfqq(cfqd, cfqq, "set_active");
857 cfqq->slice_end = 0;
858 cfqq->slice_dispatch = 0;
860 cfq_clear_cfqq_wait_request(cfqq);
861 cfq_clear_cfqq_must_dispatch(cfqq);
862 cfq_clear_cfqq_must_alloc_slice(cfqq);
863 cfq_clear_cfqq_fifo_expire(cfqq);
864 cfq_mark_cfqq_slice_new(cfqq);
866 del_timer(&cfqd->idle_slice_timer);
869 cfqd->active_queue = cfqq;
873 * current cfqq expired its slice (or was too idle), select new one
875 static void
876 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
877 int timed_out)
879 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
881 if (cfq_cfqq_wait_request(cfqq))
882 del_timer(&cfqd->idle_slice_timer);
884 cfq_clear_cfqq_wait_request(cfqq);
887 * store what was left of this slice, if the queue idled/timed out
889 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
890 cfqq->slice_resid = cfqq->slice_end - jiffies;
891 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
894 cfq_resort_rr_list(cfqd, cfqq);
896 if (cfqq == cfqd->active_queue)
897 cfqd->active_queue = NULL;
899 if (cfqd->active_cic) {
900 put_io_context(cfqd->active_cic->ioc);
901 cfqd->active_cic = NULL;
905 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
907 struct cfq_queue *cfqq = cfqd->active_queue;
909 if (cfqq)
910 __cfq_slice_expired(cfqd, cfqq, timed_out);
914 * Get next queue for service. Unless we have a queue preemption,
915 * we'll simply select the first cfqq in the service tree.
917 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
919 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
920 return NULL;
922 return cfq_rb_first(&cfqd->service_tree);
926 * Get and set a new active queue for service.
928 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
929 struct cfq_queue *cfqq)
931 if (!cfqq) {
932 cfqq = cfq_get_next_queue(cfqd);
933 if (cfqq)
934 cfq_clear_cfqq_coop(cfqq);
937 __cfq_set_active_queue(cfqd, cfqq);
938 return cfqq;
941 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
942 struct request *rq)
944 if (rq->sector >= cfqd->last_position)
945 return rq->sector - cfqd->last_position;
946 else
947 return cfqd->last_position - rq->sector;
950 #define CIC_SEEK_THR 8 * 1024
951 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
953 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
955 struct cfq_io_context *cic = cfqd->active_cic;
956 sector_t sdist = cic->seek_mean;
958 if (!sample_valid(cic->seek_samples))
959 sdist = CIC_SEEK_THR;
961 return cfq_dist_from_last(cfqd, rq) <= sdist;
964 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
965 struct cfq_queue *cur_cfqq)
967 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->ioprio];
968 struct rb_node *parent, *node;
969 struct cfq_queue *__cfqq;
970 sector_t sector = cfqd->last_position;
972 if (RB_EMPTY_ROOT(root))
973 return NULL;
976 * First, if we find a request starting at the end of the last
977 * request, choose it.
979 __cfqq = cfq_prio_tree_lookup(cfqd, cur_cfqq->ioprio,
980 sector, &parent, NULL);
981 if (__cfqq)
982 return __cfqq;
985 * If the exact sector wasn't found, the parent of the NULL leaf
986 * will contain the closest sector.
988 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
989 if (cfq_rq_close(cfqd, __cfqq->next_rq))
990 return __cfqq;
992 if (__cfqq->next_rq->sector < sector)
993 node = rb_next(&__cfqq->p_node);
994 else
995 node = rb_prev(&__cfqq->p_node);
996 if (!node)
997 return NULL;
999 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1000 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1001 return __cfqq;
1003 return NULL;
1007 * cfqd - obvious
1008 * cur_cfqq - passed in so that we don't decide that the current queue is
1009 * closely cooperating with itself.
1011 * So, basically we're assuming that that cur_cfqq has dispatched at least
1012 * one request, and that cfqd->last_position reflects a position on the disk
1013 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1014 * assumption.
1016 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1017 struct cfq_queue *cur_cfqq,
1018 int probe)
1020 struct cfq_queue *cfqq;
1023 * A valid cfq_io_context is necessary to compare requests against
1024 * the seek_mean of the current cfqq.
1026 if (!cfqd->active_cic)
1027 return NULL;
1030 * We should notice if some of the queues are cooperating, eg
1031 * working closely on the same area of the disk. In that case,
1032 * we can group them together and don't waste time idling.
1034 cfqq = cfqq_close(cfqd, cur_cfqq);
1035 if (!cfqq)
1036 return NULL;
1038 if (cfq_cfqq_coop(cfqq))
1039 return NULL;
1041 if (!probe)
1042 cfq_mark_cfqq_coop(cfqq);
1043 return cfqq;
1046 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1048 struct cfq_queue *cfqq = cfqd->active_queue;
1049 struct cfq_io_context *cic;
1050 unsigned long sl;
1053 * SSD device without seek penalty, disable idling. But only do so
1054 * for devices that support queuing, otherwise we still have a problem
1055 * with sync vs async workloads.
1057 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1058 return;
1060 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1061 WARN_ON(cfq_cfqq_slice_new(cfqq));
1064 * idle is disabled, either manually or by past process history
1066 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1067 return;
1070 * still requests with the driver, don't idle
1072 if (cfqd->rq_in_driver)
1073 return;
1076 * task has exited, don't wait
1078 cic = cfqd->active_cic;
1079 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1080 return;
1082 cfq_mark_cfqq_wait_request(cfqq);
1085 * we don't want to idle for seeks, but we do want to allow
1086 * fair distribution of slice time for a process doing back-to-back
1087 * seeks. so allow a little bit of time for him to submit a new rq
1089 sl = cfqd->cfq_slice_idle;
1090 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1091 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1093 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1094 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1098 * Move request from internal lists to the request queue dispatch list.
1100 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1102 struct cfq_data *cfqd = q->elevator->elevator_data;
1103 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1105 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1107 cfq_remove_request(rq);
1108 cfqq->dispatched++;
1109 elv_dispatch_sort(q, rq);
1111 if (cfq_cfqq_sync(cfqq))
1112 cfqd->sync_flight++;
1116 * return expired entry, or NULL to just start from scratch in rbtree
1118 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1120 struct cfq_data *cfqd = cfqq->cfqd;
1121 struct request *rq;
1122 int fifo;
1124 if (cfq_cfqq_fifo_expire(cfqq))
1125 return NULL;
1127 cfq_mark_cfqq_fifo_expire(cfqq);
1129 if (list_empty(&cfqq->fifo))
1130 return NULL;
1132 fifo = cfq_cfqq_sync(cfqq);
1133 rq = rq_entry_fifo(cfqq->fifo.next);
1135 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1136 rq = NULL;
1138 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1139 return rq;
1142 static inline int
1143 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1145 const int base_rq = cfqd->cfq_slice_async_rq;
1147 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1149 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1153 * Select a queue for service. If we have a current active queue,
1154 * check whether to continue servicing it, or retrieve and set a new one.
1156 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1158 struct cfq_queue *cfqq, *new_cfqq = NULL;
1160 cfqq = cfqd->active_queue;
1161 if (!cfqq)
1162 goto new_queue;
1165 * The active queue has run out of time, expire it and select new.
1167 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1168 goto expire;
1171 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1172 * cfqq.
1174 if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1176 * We simulate this as cfqq timed out so that it gets to bank
1177 * the remaining of its time slice.
1179 cfq_log_cfqq(cfqd, cfqq, "preempt");
1180 cfq_slice_expired(cfqd, 1);
1181 goto new_queue;
1185 * The active queue has requests and isn't expired, allow it to
1186 * dispatch.
1188 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1189 goto keep_queue;
1192 * If another queue has a request waiting within our mean seek
1193 * distance, let it run. The expire code will check for close
1194 * cooperators and put the close queue at the front of the service
1195 * tree.
1197 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1198 if (new_cfqq)
1199 goto expire;
1202 * No requests pending. If the active queue still has requests in
1203 * flight or is idling for a new request, allow either of these
1204 * conditions to happen (or time out) before selecting a new queue.
1206 if (timer_pending(&cfqd->idle_slice_timer) ||
1207 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1208 cfqq = NULL;
1209 goto keep_queue;
1212 expire:
1213 cfq_slice_expired(cfqd, 0);
1214 new_queue:
1215 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1216 keep_queue:
1217 return cfqq;
1220 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1222 int dispatched = 0;
1224 while (cfqq->next_rq) {
1225 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1226 dispatched++;
1229 BUG_ON(!list_empty(&cfqq->fifo));
1230 return dispatched;
1234 * Drain our current requests. Used for barriers and when switching
1235 * io schedulers on-the-fly.
1237 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1239 struct cfq_queue *cfqq;
1240 int dispatched = 0;
1242 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1243 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1245 cfq_slice_expired(cfqd, 0);
1247 BUG_ON(cfqd->busy_queues);
1249 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1250 return dispatched;
1254 * Dispatch a request from cfqq, moving them to the request queue
1255 * dispatch list.
1257 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1259 struct request *rq;
1261 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1264 * follow expired path, else get first next available
1266 rq = cfq_check_fifo(cfqq);
1267 if (!rq)
1268 rq = cfqq->next_rq;
1271 * insert request into driver dispatch list
1273 cfq_dispatch_insert(cfqd->queue, rq);
1275 if (!cfqd->active_cic) {
1276 struct cfq_io_context *cic = RQ_CIC(rq);
1278 atomic_inc(&cic->ioc->refcount);
1279 cfqd->active_cic = cic;
1284 * Find the cfqq that we need to service and move a request from that to the
1285 * dispatch list
1287 static int cfq_dispatch_requests(struct request_queue *q, int force)
1289 struct cfq_data *cfqd = q->elevator->elevator_data;
1290 struct cfq_queue *cfqq;
1291 unsigned int max_dispatch;
1293 if (!cfqd->busy_queues)
1294 return 0;
1296 if (unlikely(force))
1297 return cfq_forced_dispatch(cfqd);
1299 cfqq = cfq_select_queue(cfqd);
1300 if (!cfqq)
1301 return 0;
1304 * If this is an async queue and we have sync IO in flight, let it wait
1306 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1307 return 0;
1309 max_dispatch = cfqd->cfq_quantum;
1310 if (cfq_class_idle(cfqq))
1311 max_dispatch = 1;
1314 * Does this cfqq already have too much IO in flight?
1316 if (cfqq->dispatched >= max_dispatch) {
1318 * idle queue must always only have a single IO in flight
1320 if (cfq_class_idle(cfqq))
1321 return 0;
1324 * We have other queues, don't allow more IO from this one
1326 if (cfqd->busy_queues > 1)
1327 return 0;
1330 * we are the only queue, allow up to 4 times of 'quantum'
1332 if (cfqq->dispatched >= 4 * max_dispatch)
1333 return 0;
1337 * Dispatch a request from this cfqq
1339 cfq_dispatch_request(cfqd, cfqq);
1340 cfqq->slice_dispatch++;
1341 cfq_clear_cfqq_must_dispatch(cfqq);
1344 * expire an async queue immediately if it has used up its slice. idle
1345 * queue always expire after 1 dispatch round.
1347 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1348 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1349 cfq_class_idle(cfqq))) {
1350 cfqq->slice_end = jiffies + 1;
1351 cfq_slice_expired(cfqd, 0);
1354 cfq_log(cfqd, "dispatched a request");
1355 return 1;
1359 * task holds one reference to the queue, dropped when task exits. each rq
1360 * in-flight on this queue also holds a reference, dropped when rq is freed.
1362 * queue lock must be held here.
1364 static void cfq_put_queue(struct cfq_queue *cfqq)
1366 struct cfq_data *cfqd = cfqq->cfqd;
1368 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1370 if (!atomic_dec_and_test(&cfqq->ref))
1371 return;
1373 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1374 BUG_ON(rb_first(&cfqq->sort_list));
1375 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1376 BUG_ON(cfq_cfqq_on_rr(cfqq));
1378 if (unlikely(cfqd->active_queue == cfqq)) {
1379 __cfq_slice_expired(cfqd, cfqq, 0);
1380 cfq_schedule_dispatch(cfqd);
1383 kmem_cache_free(cfq_pool, cfqq);
1387 * Must always be called with the rcu_read_lock() held
1389 static void
1390 __call_for_each_cic(struct io_context *ioc,
1391 void (*func)(struct io_context *, struct cfq_io_context *))
1393 struct cfq_io_context *cic;
1394 struct hlist_node *n;
1396 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1397 func(ioc, cic);
1401 * Call func for each cic attached to this ioc.
1403 static void
1404 call_for_each_cic(struct io_context *ioc,
1405 void (*func)(struct io_context *, struct cfq_io_context *))
1407 rcu_read_lock();
1408 __call_for_each_cic(ioc, func);
1409 rcu_read_unlock();
1412 static void cfq_cic_free_rcu(struct rcu_head *head)
1414 struct cfq_io_context *cic;
1416 cic = container_of(head, struct cfq_io_context, rcu_head);
1418 kmem_cache_free(cfq_ioc_pool, cic);
1419 elv_ioc_count_dec(ioc_count);
1421 if (ioc_gone) {
1423 * CFQ scheduler is exiting, grab exit lock and check
1424 * the pending io context count. If it hits zero,
1425 * complete ioc_gone and set it back to NULL
1427 spin_lock(&ioc_gone_lock);
1428 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1429 complete(ioc_gone);
1430 ioc_gone = NULL;
1432 spin_unlock(&ioc_gone_lock);
1436 static void cfq_cic_free(struct cfq_io_context *cic)
1438 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1441 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1443 unsigned long flags;
1445 BUG_ON(!cic->dead_key);
1447 spin_lock_irqsave(&ioc->lock, flags);
1448 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1449 hlist_del_rcu(&cic->cic_list);
1450 spin_unlock_irqrestore(&ioc->lock, flags);
1452 cfq_cic_free(cic);
1456 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1457 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1458 * and ->trim() which is called with the task lock held
1460 static void cfq_free_io_context(struct io_context *ioc)
1463 * ioc->refcount is zero here, or we are called from elv_unregister(),
1464 * so no more cic's are allowed to be linked into this ioc. So it
1465 * should be ok to iterate over the known list, we will see all cic's
1466 * since no new ones are added.
1468 __call_for_each_cic(ioc, cic_free_func);
1471 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1473 if (unlikely(cfqq == cfqd->active_queue)) {
1474 __cfq_slice_expired(cfqd, cfqq, 0);
1475 cfq_schedule_dispatch(cfqd);
1478 cfq_put_queue(cfqq);
1481 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1482 struct cfq_io_context *cic)
1484 struct io_context *ioc = cic->ioc;
1486 list_del_init(&cic->queue_list);
1489 * Make sure key == NULL is seen for dead queues
1491 smp_wmb();
1492 cic->dead_key = (unsigned long) cic->key;
1493 cic->key = NULL;
1495 if (ioc->ioc_data == cic)
1496 rcu_assign_pointer(ioc->ioc_data, NULL);
1498 if (cic->cfqq[BLK_RW_ASYNC]) {
1499 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1500 cic->cfqq[BLK_RW_ASYNC] = NULL;
1503 if (cic->cfqq[BLK_RW_SYNC]) {
1504 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1505 cic->cfqq[BLK_RW_SYNC] = NULL;
1509 static void cfq_exit_single_io_context(struct io_context *ioc,
1510 struct cfq_io_context *cic)
1512 struct cfq_data *cfqd = cic->key;
1514 if (cfqd) {
1515 struct request_queue *q = cfqd->queue;
1516 unsigned long flags;
1518 spin_lock_irqsave(q->queue_lock, flags);
1521 * Ensure we get a fresh copy of the ->key to prevent
1522 * race between exiting task and queue
1524 smp_read_barrier_depends();
1525 if (cic->key)
1526 __cfq_exit_single_io_context(cfqd, cic);
1528 spin_unlock_irqrestore(q->queue_lock, flags);
1533 * The process that ioc belongs to has exited, we need to clean up
1534 * and put the internal structures we have that belongs to that process.
1536 static void cfq_exit_io_context(struct io_context *ioc)
1538 call_for_each_cic(ioc, cfq_exit_single_io_context);
1541 static struct cfq_io_context *
1542 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1544 struct cfq_io_context *cic;
1546 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1547 cfqd->queue->node);
1548 if (cic) {
1549 cic->last_end_request = jiffies;
1550 INIT_LIST_HEAD(&cic->queue_list);
1551 INIT_HLIST_NODE(&cic->cic_list);
1552 cic->dtor = cfq_free_io_context;
1553 cic->exit = cfq_exit_io_context;
1554 elv_ioc_count_inc(ioc_count);
1557 return cic;
1560 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1562 struct task_struct *tsk = current;
1563 int ioprio_class;
1565 if (!cfq_cfqq_prio_changed(cfqq))
1566 return;
1568 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1569 switch (ioprio_class) {
1570 default:
1571 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1572 case IOPRIO_CLASS_NONE:
1574 * no prio set, inherit CPU scheduling settings
1576 cfqq->ioprio = task_nice_ioprio(tsk);
1577 cfqq->ioprio_class = task_nice_ioclass(tsk);
1578 break;
1579 case IOPRIO_CLASS_RT:
1580 cfqq->ioprio = task_ioprio(ioc);
1581 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1582 break;
1583 case IOPRIO_CLASS_BE:
1584 cfqq->ioprio = task_ioprio(ioc);
1585 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1586 break;
1587 case IOPRIO_CLASS_IDLE:
1588 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1589 cfqq->ioprio = 7;
1590 cfq_clear_cfqq_idle_window(cfqq);
1591 break;
1595 * keep track of original prio settings in case we have to temporarily
1596 * elevate the priority of this queue
1598 cfqq->org_ioprio = cfqq->ioprio;
1599 cfqq->org_ioprio_class = cfqq->ioprio_class;
1600 cfq_clear_cfqq_prio_changed(cfqq);
1603 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1605 struct cfq_data *cfqd = cic->key;
1606 struct cfq_queue *cfqq;
1607 unsigned long flags;
1609 if (unlikely(!cfqd))
1610 return;
1612 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1614 cfqq = cic->cfqq[BLK_RW_ASYNC];
1615 if (cfqq) {
1616 struct cfq_queue *new_cfqq;
1617 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1618 GFP_ATOMIC);
1619 if (new_cfqq) {
1620 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1621 cfq_put_queue(cfqq);
1625 cfqq = cic->cfqq[BLK_RW_SYNC];
1626 if (cfqq)
1627 cfq_mark_cfqq_prio_changed(cfqq);
1629 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1632 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1634 call_for_each_cic(ioc, changed_ioprio);
1635 ioc->ioprio_changed = 0;
1638 static struct cfq_queue *
1639 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1640 struct io_context *ioc, gfp_t gfp_mask)
1642 struct cfq_queue *cfqq, *new_cfqq = NULL;
1643 struct cfq_io_context *cic;
1645 retry:
1646 cic = cfq_cic_lookup(cfqd, ioc);
1647 /* cic always exists here */
1648 cfqq = cic_to_cfqq(cic, is_sync);
1650 if (!cfqq) {
1651 if (new_cfqq) {
1652 cfqq = new_cfqq;
1653 new_cfqq = NULL;
1654 } else if (gfp_mask & __GFP_WAIT) {
1656 * Inform the allocator of the fact that we will
1657 * just repeat this allocation if it fails, to allow
1658 * the allocator to do whatever it needs to attempt to
1659 * free memory.
1661 spin_unlock_irq(cfqd->queue->queue_lock);
1662 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1663 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1664 cfqd->queue->node);
1665 spin_lock_irq(cfqd->queue->queue_lock);
1666 goto retry;
1667 } else {
1668 cfqq = kmem_cache_alloc_node(cfq_pool,
1669 gfp_mask | __GFP_ZERO,
1670 cfqd->queue->node);
1671 if (!cfqq)
1672 goto out;
1675 RB_CLEAR_NODE(&cfqq->rb_node);
1676 RB_CLEAR_NODE(&cfqq->p_node);
1677 INIT_LIST_HEAD(&cfqq->fifo);
1679 atomic_set(&cfqq->ref, 0);
1680 cfqq->cfqd = cfqd;
1682 cfq_mark_cfqq_prio_changed(cfqq);
1684 cfq_init_prio_data(cfqq, ioc);
1686 if (is_sync) {
1687 if (!cfq_class_idle(cfqq))
1688 cfq_mark_cfqq_idle_window(cfqq);
1689 cfq_mark_cfqq_sync(cfqq);
1691 cfqq->pid = current->pid;
1692 cfq_log_cfqq(cfqd, cfqq, "alloced");
1695 if (new_cfqq)
1696 kmem_cache_free(cfq_pool, new_cfqq);
1698 out:
1699 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1700 return cfqq;
1703 static struct cfq_queue **
1704 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1706 switch (ioprio_class) {
1707 case IOPRIO_CLASS_RT:
1708 return &cfqd->async_cfqq[0][ioprio];
1709 case IOPRIO_CLASS_BE:
1710 return &cfqd->async_cfqq[1][ioprio];
1711 case IOPRIO_CLASS_IDLE:
1712 return &cfqd->async_idle_cfqq;
1713 default:
1714 BUG();
1718 static struct cfq_queue *
1719 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1720 gfp_t gfp_mask)
1722 const int ioprio = task_ioprio(ioc);
1723 const int ioprio_class = task_ioprio_class(ioc);
1724 struct cfq_queue **async_cfqq = NULL;
1725 struct cfq_queue *cfqq = NULL;
1727 if (!is_sync) {
1728 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1729 cfqq = *async_cfqq;
1732 if (!cfqq) {
1733 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1734 if (!cfqq)
1735 return NULL;
1739 * pin the queue now that it's allocated, scheduler exit will prune it
1741 if (!is_sync && !(*async_cfqq)) {
1742 atomic_inc(&cfqq->ref);
1743 *async_cfqq = cfqq;
1746 atomic_inc(&cfqq->ref);
1747 return cfqq;
1751 * We drop cfq io contexts lazily, so we may find a dead one.
1753 static void
1754 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1755 struct cfq_io_context *cic)
1757 unsigned long flags;
1759 WARN_ON(!list_empty(&cic->queue_list));
1761 spin_lock_irqsave(&ioc->lock, flags);
1763 BUG_ON(ioc->ioc_data == cic);
1765 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1766 hlist_del_rcu(&cic->cic_list);
1767 spin_unlock_irqrestore(&ioc->lock, flags);
1769 cfq_cic_free(cic);
1772 static struct cfq_io_context *
1773 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1775 struct cfq_io_context *cic;
1776 unsigned long flags;
1777 void *k;
1779 if (unlikely(!ioc))
1780 return NULL;
1782 rcu_read_lock();
1785 * we maintain a last-hit cache, to avoid browsing over the tree
1787 cic = rcu_dereference(ioc->ioc_data);
1788 if (cic && cic->key == cfqd) {
1789 rcu_read_unlock();
1790 return cic;
1793 do {
1794 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1795 rcu_read_unlock();
1796 if (!cic)
1797 break;
1798 /* ->key must be copied to avoid race with cfq_exit_queue() */
1799 k = cic->key;
1800 if (unlikely(!k)) {
1801 cfq_drop_dead_cic(cfqd, ioc, cic);
1802 rcu_read_lock();
1803 continue;
1806 spin_lock_irqsave(&ioc->lock, flags);
1807 rcu_assign_pointer(ioc->ioc_data, cic);
1808 spin_unlock_irqrestore(&ioc->lock, flags);
1809 break;
1810 } while (1);
1812 return cic;
1816 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1817 * the process specific cfq io context when entered from the block layer.
1818 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1820 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1821 struct cfq_io_context *cic, gfp_t gfp_mask)
1823 unsigned long flags;
1824 int ret;
1826 ret = radix_tree_preload(gfp_mask);
1827 if (!ret) {
1828 cic->ioc = ioc;
1829 cic->key = cfqd;
1831 spin_lock_irqsave(&ioc->lock, flags);
1832 ret = radix_tree_insert(&ioc->radix_root,
1833 (unsigned long) cfqd, cic);
1834 if (!ret)
1835 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1836 spin_unlock_irqrestore(&ioc->lock, flags);
1838 radix_tree_preload_end();
1840 if (!ret) {
1841 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1842 list_add(&cic->queue_list, &cfqd->cic_list);
1843 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1847 if (ret)
1848 printk(KERN_ERR "cfq: cic link failed!\n");
1850 return ret;
1854 * Setup general io context and cfq io context. There can be several cfq
1855 * io contexts per general io context, if this process is doing io to more
1856 * than one device managed by cfq.
1858 static struct cfq_io_context *
1859 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1861 struct io_context *ioc = NULL;
1862 struct cfq_io_context *cic;
1864 might_sleep_if(gfp_mask & __GFP_WAIT);
1866 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1867 if (!ioc)
1868 return NULL;
1870 cic = cfq_cic_lookup(cfqd, ioc);
1871 if (cic)
1872 goto out;
1874 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1875 if (cic == NULL)
1876 goto err;
1878 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1879 goto err_free;
1881 out:
1882 smp_read_barrier_depends();
1883 if (unlikely(ioc->ioprio_changed))
1884 cfq_ioc_set_ioprio(ioc);
1886 return cic;
1887 err_free:
1888 cfq_cic_free(cic);
1889 err:
1890 put_io_context(ioc);
1891 return NULL;
1894 static void
1895 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1897 unsigned long elapsed = jiffies - cic->last_end_request;
1898 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1900 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1901 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1902 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1905 static void
1906 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1907 struct request *rq)
1909 sector_t sdist;
1910 u64 total;
1912 if (!cic->last_request_pos)
1913 sdist = 0;
1914 else if (cic->last_request_pos < rq->sector)
1915 sdist = rq->sector - cic->last_request_pos;
1916 else
1917 sdist = cic->last_request_pos - rq->sector;
1920 * Don't allow the seek distance to get too large from the
1921 * odd fragment, pagein, etc
1923 if (cic->seek_samples <= 60) /* second&third seek */
1924 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1925 else
1926 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1928 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1929 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1930 total = cic->seek_total + (cic->seek_samples/2);
1931 do_div(total, cic->seek_samples);
1932 cic->seek_mean = (sector_t)total;
1936 * Disable idle window if the process thinks too long or seeks so much that
1937 * it doesn't matter
1939 static void
1940 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1941 struct cfq_io_context *cic)
1943 int old_idle, enable_idle;
1946 * Don't idle for async or idle io prio class
1948 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1949 return;
1951 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1953 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1954 (cfqd->hw_tag && CIC_SEEKY(cic)))
1955 enable_idle = 0;
1956 else if (sample_valid(cic->ttime_samples)) {
1957 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1958 enable_idle = 0;
1959 else
1960 enable_idle = 1;
1963 if (old_idle != enable_idle) {
1964 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1965 if (enable_idle)
1966 cfq_mark_cfqq_idle_window(cfqq);
1967 else
1968 cfq_clear_cfqq_idle_window(cfqq);
1973 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1974 * no or if we aren't sure, a 1 will cause a preempt.
1976 static int
1977 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1978 struct request *rq)
1980 struct cfq_queue *cfqq;
1982 cfqq = cfqd->active_queue;
1983 if (!cfqq)
1984 return 0;
1986 if (cfq_slice_used(cfqq))
1987 return 1;
1989 if (cfq_class_idle(new_cfqq))
1990 return 0;
1992 if (cfq_class_idle(cfqq))
1993 return 1;
1996 * if the new request is sync, but the currently running queue is
1997 * not, let the sync request have priority.
1999 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2000 return 1;
2003 * So both queues are sync. Let the new request get disk time if
2004 * it's a metadata request and the current queue is doing regular IO.
2006 if (rq_is_meta(rq) && !cfqq->meta_pending)
2007 return 1;
2010 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2012 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2013 return 1;
2015 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2016 return 0;
2019 * if this request is as-good as one we would expect from the
2020 * current cfqq, let it preempt
2022 if (cfq_rq_close(cfqd, rq))
2023 return 1;
2025 return 0;
2029 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2030 * let it have half of its nominal slice.
2032 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2034 cfq_log_cfqq(cfqd, cfqq, "preempt");
2035 cfq_slice_expired(cfqd, 1);
2038 * Put the new queue at the front of the of the current list,
2039 * so we know that it will be selected next.
2041 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2043 cfq_service_tree_add(cfqd, cfqq, 1);
2045 cfqq->slice_end = 0;
2046 cfq_mark_cfqq_slice_new(cfqq);
2050 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2051 * something we should do about it
2053 static void
2054 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2055 struct request *rq)
2057 struct cfq_io_context *cic = RQ_CIC(rq);
2059 cfqd->rq_queued++;
2060 if (rq_is_meta(rq))
2061 cfqq->meta_pending++;
2063 cfq_update_io_thinktime(cfqd, cic);
2064 cfq_update_io_seektime(cfqd, cic, rq);
2065 cfq_update_idle_window(cfqd, cfqq, cic);
2067 cic->last_request_pos = rq->sector + rq->nr_sectors;
2069 if (cfqq == cfqd->active_queue) {
2071 * Remember that we saw a request from this process, but
2072 * don't start queuing just yet. Otherwise we risk seeing lots
2073 * of tiny requests, because we disrupt the normal plugging
2074 * and merging. If the request is already larger than a single
2075 * page, let it rip immediately. For that case we assume that
2076 * merging is already done. Ditto for a busy system that
2077 * has other work pending, don't risk delaying until the
2078 * idle timer unplug to continue working.
2080 if (cfq_cfqq_wait_request(cfqq)) {
2081 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2082 cfqd->busy_queues > 1) {
2083 del_timer(&cfqd->idle_slice_timer);
2084 blk_start_queueing(cfqd->queue);
2086 cfq_mark_cfqq_must_dispatch(cfqq);
2088 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2090 * not the active queue - expire current slice if it is
2091 * idle and has expired it's mean thinktime or this new queue
2092 * has some old slice time left and is of higher priority or
2093 * this new queue is RT and the current one is BE
2095 cfq_preempt_queue(cfqd, cfqq);
2096 blk_start_queueing(cfqd->queue);
2100 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2102 struct cfq_data *cfqd = q->elevator->elevator_data;
2103 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2105 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2106 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2108 cfq_add_rq_rb(rq);
2110 list_add_tail(&rq->queuelist, &cfqq->fifo);
2112 cfq_rq_enqueued(cfqd, cfqq, rq);
2116 * Update hw_tag based on peak queue depth over 50 samples under
2117 * sufficient load.
2119 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2121 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2122 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2124 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2125 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2126 return;
2128 if (cfqd->hw_tag_samples++ < 50)
2129 return;
2131 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2132 cfqd->hw_tag = 1;
2133 else
2134 cfqd->hw_tag = 0;
2136 cfqd->hw_tag_samples = 0;
2137 cfqd->rq_in_driver_peak = 0;
2140 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2142 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2143 struct cfq_data *cfqd = cfqq->cfqd;
2144 const int sync = rq_is_sync(rq);
2145 unsigned long now;
2147 now = jiffies;
2148 cfq_log_cfqq(cfqd, cfqq, "complete");
2150 cfq_update_hw_tag(cfqd);
2152 WARN_ON(!cfqd->rq_in_driver);
2153 WARN_ON(!cfqq->dispatched);
2154 cfqd->rq_in_driver--;
2155 cfqq->dispatched--;
2157 if (cfq_cfqq_sync(cfqq))
2158 cfqd->sync_flight--;
2160 if (!cfq_class_idle(cfqq))
2161 cfqd->last_end_request = now;
2163 if (sync)
2164 RQ_CIC(rq)->last_end_request = now;
2167 * If this is the active queue, check if it needs to be expired,
2168 * or if we want to idle in case it has no pending requests.
2170 if (cfqd->active_queue == cfqq) {
2171 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2173 if (cfq_cfqq_slice_new(cfqq)) {
2174 cfq_set_prio_slice(cfqd, cfqq);
2175 cfq_clear_cfqq_slice_new(cfqq);
2178 * If there are no requests waiting in this queue, and
2179 * there are other queues ready to issue requests, AND
2180 * those other queues are issuing requests within our
2181 * mean seek distance, give them a chance to run instead
2182 * of idling.
2184 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2185 cfq_slice_expired(cfqd, 1);
2186 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2187 sync && !rq_noidle(rq))
2188 cfq_arm_slice_timer(cfqd);
2191 if (!cfqd->rq_in_driver)
2192 cfq_schedule_dispatch(cfqd);
2196 * we temporarily boost lower priority queues if they are holding fs exclusive
2197 * resources. they are boosted to normal prio (CLASS_BE/4)
2199 static void cfq_prio_boost(struct cfq_queue *cfqq)
2201 if (has_fs_excl()) {
2203 * boost idle prio on transactions that would lock out other
2204 * users of the filesystem
2206 if (cfq_class_idle(cfqq))
2207 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2208 if (cfqq->ioprio > IOPRIO_NORM)
2209 cfqq->ioprio = IOPRIO_NORM;
2210 } else {
2212 * check if we need to unboost the queue
2214 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2215 cfqq->ioprio_class = cfqq->org_ioprio_class;
2216 if (cfqq->ioprio != cfqq->org_ioprio)
2217 cfqq->ioprio = cfqq->org_ioprio;
2221 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2223 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2224 !cfq_cfqq_must_alloc_slice(cfqq)) {
2225 cfq_mark_cfqq_must_alloc_slice(cfqq);
2226 return ELV_MQUEUE_MUST;
2229 return ELV_MQUEUE_MAY;
2232 static int cfq_may_queue(struct request_queue *q, int rw)
2234 struct cfq_data *cfqd = q->elevator->elevator_data;
2235 struct task_struct *tsk = current;
2236 struct cfq_io_context *cic;
2237 struct cfq_queue *cfqq;
2240 * don't force setup of a queue from here, as a call to may_queue
2241 * does not necessarily imply that a request actually will be queued.
2242 * so just lookup a possibly existing queue, or return 'may queue'
2243 * if that fails
2245 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2246 if (!cic)
2247 return ELV_MQUEUE_MAY;
2249 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2250 if (cfqq) {
2251 cfq_init_prio_data(cfqq, cic->ioc);
2252 cfq_prio_boost(cfqq);
2254 return __cfq_may_queue(cfqq);
2257 return ELV_MQUEUE_MAY;
2261 * queue lock held here
2263 static void cfq_put_request(struct request *rq)
2265 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2267 if (cfqq) {
2268 const int rw = rq_data_dir(rq);
2270 BUG_ON(!cfqq->allocated[rw]);
2271 cfqq->allocated[rw]--;
2273 put_io_context(RQ_CIC(rq)->ioc);
2275 rq->elevator_private = NULL;
2276 rq->elevator_private2 = NULL;
2278 cfq_put_queue(cfqq);
2283 * Allocate cfq data structures associated with this request.
2285 static int
2286 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2288 struct cfq_data *cfqd = q->elevator->elevator_data;
2289 struct cfq_io_context *cic;
2290 const int rw = rq_data_dir(rq);
2291 const int is_sync = rq_is_sync(rq);
2292 struct cfq_queue *cfqq;
2293 unsigned long flags;
2295 might_sleep_if(gfp_mask & __GFP_WAIT);
2297 cic = cfq_get_io_context(cfqd, gfp_mask);
2299 spin_lock_irqsave(q->queue_lock, flags);
2301 if (!cic)
2302 goto queue_fail;
2304 cfqq = cic_to_cfqq(cic, is_sync);
2305 if (!cfqq) {
2306 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2308 if (!cfqq)
2309 goto queue_fail;
2311 cic_set_cfqq(cic, cfqq, is_sync);
2314 cfqq->allocated[rw]++;
2315 cfq_clear_cfqq_must_alloc(cfqq);
2316 atomic_inc(&cfqq->ref);
2318 spin_unlock_irqrestore(q->queue_lock, flags);
2320 rq->elevator_private = cic;
2321 rq->elevator_private2 = cfqq;
2322 return 0;
2324 queue_fail:
2325 if (cic)
2326 put_io_context(cic->ioc);
2328 cfq_schedule_dispatch(cfqd);
2329 spin_unlock_irqrestore(q->queue_lock, flags);
2330 cfq_log(cfqd, "set_request fail");
2331 return 1;
2334 static void cfq_kick_queue(struct work_struct *work)
2336 struct cfq_data *cfqd =
2337 container_of(work, struct cfq_data, unplug_work);
2338 struct request_queue *q = cfqd->queue;
2340 spin_lock_irq(q->queue_lock);
2341 blk_start_queueing(q);
2342 spin_unlock_irq(q->queue_lock);
2346 * Timer running if the active_queue is currently idling inside its time slice
2348 static void cfq_idle_slice_timer(unsigned long data)
2350 struct cfq_data *cfqd = (struct cfq_data *) data;
2351 struct cfq_queue *cfqq;
2352 unsigned long flags;
2353 int timed_out = 1;
2355 cfq_log(cfqd, "idle timer fired");
2357 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2359 cfqq = cfqd->active_queue;
2360 if (cfqq) {
2361 timed_out = 0;
2364 * We saw a request before the queue expired, let it through
2366 if (cfq_cfqq_must_dispatch(cfqq))
2367 goto out_kick;
2370 * expired
2372 if (cfq_slice_used(cfqq))
2373 goto expire;
2376 * only expire and reinvoke request handler, if there are
2377 * other queues with pending requests
2379 if (!cfqd->busy_queues)
2380 goto out_cont;
2383 * not expired and it has a request pending, let it dispatch
2385 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2386 goto out_kick;
2388 expire:
2389 cfq_slice_expired(cfqd, timed_out);
2390 out_kick:
2391 cfq_schedule_dispatch(cfqd);
2392 out_cont:
2393 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2396 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2398 del_timer_sync(&cfqd->idle_slice_timer);
2399 cancel_work_sync(&cfqd->unplug_work);
2402 static void cfq_put_async_queues(struct cfq_data *cfqd)
2404 int i;
2406 for (i = 0; i < IOPRIO_BE_NR; i++) {
2407 if (cfqd->async_cfqq[0][i])
2408 cfq_put_queue(cfqd->async_cfqq[0][i]);
2409 if (cfqd->async_cfqq[1][i])
2410 cfq_put_queue(cfqd->async_cfqq[1][i]);
2413 if (cfqd->async_idle_cfqq)
2414 cfq_put_queue(cfqd->async_idle_cfqq);
2417 static void cfq_exit_queue(struct elevator_queue *e)
2419 struct cfq_data *cfqd = e->elevator_data;
2420 struct request_queue *q = cfqd->queue;
2422 cfq_shutdown_timer_wq(cfqd);
2424 spin_lock_irq(q->queue_lock);
2426 if (cfqd->active_queue)
2427 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2429 while (!list_empty(&cfqd->cic_list)) {
2430 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2431 struct cfq_io_context,
2432 queue_list);
2434 __cfq_exit_single_io_context(cfqd, cic);
2437 cfq_put_async_queues(cfqd);
2439 spin_unlock_irq(q->queue_lock);
2441 cfq_shutdown_timer_wq(cfqd);
2443 kfree(cfqd);
2446 static void *cfq_init_queue(struct request_queue *q)
2448 struct cfq_data *cfqd;
2450 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2451 if (!cfqd)
2452 return NULL;
2454 cfqd->service_tree = CFQ_RB_ROOT;
2455 INIT_LIST_HEAD(&cfqd->cic_list);
2457 cfqd->queue = q;
2459 init_timer(&cfqd->idle_slice_timer);
2460 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2461 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2463 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2465 cfqd->last_end_request = jiffies;
2466 cfqd->cfq_quantum = cfq_quantum;
2467 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2468 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2469 cfqd->cfq_back_max = cfq_back_max;
2470 cfqd->cfq_back_penalty = cfq_back_penalty;
2471 cfqd->cfq_slice[0] = cfq_slice_async;
2472 cfqd->cfq_slice[1] = cfq_slice_sync;
2473 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2474 cfqd->cfq_slice_idle = cfq_slice_idle;
2475 cfqd->hw_tag = 1;
2477 return cfqd;
2480 static void cfq_slab_kill(void)
2483 * Caller already ensured that pending RCU callbacks are completed,
2484 * so we should have no busy allocations at this point.
2486 if (cfq_pool)
2487 kmem_cache_destroy(cfq_pool);
2488 if (cfq_ioc_pool)
2489 kmem_cache_destroy(cfq_ioc_pool);
2492 static int __init cfq_slab_setup(void)
2494 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2495 if (!cfq_pool)
2496 goto fail;
2498 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2499 if (!cfq_ioc_pool)
2500 goto fail;
2502 return 0;
2503 fail:
2504 cfq_slab_kill();
2505 return -ENOMEM;
2509 * sysfs parts below -->
2511 static ssize_t
2512 cfq_var_show(unsigned int var, char *page)
2514 return sprintf(page, "%d\n", var);
2517 static ssize_t
2518 cfq_var_store(unsigned int *var, const char *page, size_t count)
2520 char *p = (char *) page;
2522 *var = simple_strtoul(p, &p, 10);
2523 return count;
2526 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2527 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2529 struct cfq_data *cfqd = e->elevator_data; \
2530 unsigned int __data = __VAR; \
2531 if (__CONV) \
2532 __data = jiffies_to_msecs(__data); \
2533 return cfq_var_show(__data, (page)); \
2535 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2536 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2537 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2538 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2539 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2540 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2541 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2542 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2543 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2544 #undef SHOW_FUNCTION
2546 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2547 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2549 struct cfq_data *cfqd = e->elevator_data; \
2550 unsigned int __data; \
2551 int ret = cfq_var_store(&__data, (page), count); \
2552 if (__data < (MIN)) \
2553 __data = (MIN); \
2554 else if (__data > (MAX)) \
2555 __data = (MAX); \
2556 if (__CONV) \
2557 *(__PTR) = msecs_to_jiffies(__data); \
2558 else \
2559 *(__PTR) = __data; \
2560 return ret; \
2562 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2563 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2564 UINT_MAX, 1);
2565 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2566 UINT_MAX, 1);
2567 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2568 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2569 UINT_MAX, 0);
2570 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2571 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2572 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2573 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2574 UINT_MAX, 0);
2575 #undef STORE_FUNCTION
2577 #define CFQ_ATTR(name) \
2578 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2580 static struct elv_fs_entry cfq_attrs[] = {
2581 CFQ_ATTR(quantum),
2582 CFQ_ATTR(fifo_expire_sync),
2583 CFQ_ATTR(fifo_expire_async),
2584 CFQ_ATTR(back_seek_max),
2585 CFQ_ATTR(back_seek_penalty),
2586 CFQ_ATTR(slice_sync),
2587 CFQ_ATTR(slice_async),
2588 CFQ_ATTR(slice_async_rq),
2589 CFQ_ATTR(slice_idle),
2590 __ATTR_NULL
2593 static struct elevator_type iosched_cfq = {
2594 .ops = {
2595 .elevator_merge_fn = cfq_merge,
2596 .elevator_merged_fn = cfq_merged_request,
2597 .elevator_merge_req_fn = cfq_merged_requests,
2598 .elevator_allow_merge_fn = cfq_allow_merge,
2599 .elevator_dispatch_fn = cfq_dispatch_requests,
2600 .elevator_add_req_fn = cfq_insert_request,
2601 .elevator_activate_req_fn = cfq_activate_request,
2602 .elevator_deactivate_req_fn = cfq_deactivate_request,
2603 .elevator_queue_empty_fn = cfq_queue_empty,
2604 .elevator_completed_req_fn = cfq_completed_request,
2605 .elevator_former_req_fn = elv_rb_former_request,
2606 .elevator_latter_req_fn = elv_rb_latter_request,
2607 .elevator_set_req_fn = cfq_set_request,
2608 .elevator_put_req_fn = cfq_put_request,
2609 .elevator_may_queue_fn = cfq_may_queue,
2610 .elevator_init_fn = cfq_init_queue,
2611 .elevator_exit_fn = cfq_exit_queue,
2612 .trim = cfq_free_io_context,
2614 .elevator_attrs = cfq_attrs,
2615 .elevator_name = "cfq",
2616 .elevator_owner = THIS_MODULE,
2619 static int __init cfq_init(void)
2622 * could be 0 on HZ < 1000 setups
2624 if (!cfq_slice_async)
2625 cfq_slice_async = 1;
2626 if (!cfq_slice_idle)
2627 cfq_slice_idle = 1;
2629 if (cfq_slab_setup())
2630 return -ENOMEM;
2632 elv_register(&iosched_cfq);
2634 return 0;
2637 static void __exit cfq_exit(void)
2639 DECLARE_COMPLETION_ONSTACK(all_gone);
2640 elv_unregister(&iosched_cfq);
2641 ioc_gone = &all_gone;
2642 /* ioc_gone's update must be visible before reading ioc_count */
2643 smp_wmb();
2646 * this also protects us from entering cfq_slab_kill() with
2647 * pending RCU callbacks
2649 if (elv_ioc_count_read(ioc_count))
2650 wait_for_completion(&all_gone);
2651 cfq_slab_kill();
2654 module_init(cfq_init);
2655 module_exit(cfq_exit);
2657 MODULE_AUTHOR("Jens Axboe");
2658 MODULE_LICENSE("GPL");
2659 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");