2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache
*cfq_pool
;
49 static struct kmem_cache
*cfq_ioc_pool
;
51 static DEFINE_PER_CPU(unsigned long, ioc_count
);
52 static struct completion
*ioc_gone
;
53 static DEFINE_SPINLOCK(ioc_gone_lock
);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per block device queue structure
77 struct request_queue
*queue
;
80 * rr list of queues with requests and the count of them
82 struct cfq_rb_root service_tree
;
85 * Each priority tree is sorted by next_request position. These
86 * trees are used when determining if two or more queues are
87 * interleaving requests (see cfq_close_cooperator).
89 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
91 unsigned int busy_queues
;
93 * Used to track any pending rt requests so we can pre-empt current
94 * non-RT cfqq in service when this value is non-zero.
96 unsigned int busy_rt_queues
;
102 * queue-depth detection
107 int rq_in_driver_peak
;
110 * idle window management
112 struct timer_list idle_slice_timer
;
113 struct work_struct unplug_work
;
115 struct cfq_queue
*active_queue
;
116 struct cfq_io_context
*active_cic
;
119 * async queue for each priority case
121 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
122 struct cfq_queue
*async_idle_cfqq
;
124 sector_t last_position
;
125 unsigned long last_end_request
;
128 * tunables, see top of file
130 unsigned int cfq_quantum
;
131 unsigned int cfq_fifo_expire
[2];
132 unsigned int cfq_back_penalty
;
133 unsigned int cfq_back_max
;
134 unsigned int cfq_slice
[2];
135 unsigned int cfq_slice_async_rq
;
136 unsigned int cfq_slice_idle
;
138 struct list_head cic_list
;
142 * Per process-grouping structure
145 /* reference count */
147 /* various state flags, see below */
149 /* parent cfq_data */
150 struct cfq_data
*cfqd
;
151 /* service_tree member */
152 struct rb_node rb_node
;
153 /* service_tree key */
154 unsigned long rb_key
;
155 /* prio tree member */
156 struct rb_node p_node
;
157 /* sorted list of pending requests */
158 struct rb_root sort_list
;
159 /* if fifo isn't expired, next request to serve */
160 struct request
*next_rq
;
161 /* requests queued in sort_list */
163 /* currently allocated requests */
165 /* fifo list of requests in sort_list */
166 struct list_head fifo
;
168 unsigned long slice_end
;
170 unsigned int slice_dispatch
;
172 /* pending metadata requests */
174 /* number of requests that are on the dispatch list or inside driver */
177 /* io prio of this group */
178 unsigned short ioprio
, org_ioprio
;
179 unsigned short ioprio_class
, org_ioprio_class
;
184 enum cfqq_state_flags
{
185 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
186 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
187 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
188 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
189 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
190 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
191 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
192 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
193 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
194 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
195 CFQ_CFQQ_FLAG_coop
, /* has done a coop jump of the queue */
198 #define CFQ_CFQQ_FNS(name) \
199 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
201 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
203 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
205 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
207 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
209 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
213 CFQ_CFQQ_FNS(wait_request
);
214 CFQ_CFQQ_FNS(must_dispatch
);
215 CFQ_CFQQ_FNS(must_alloc
);
216 CFQ_CFQQ_FNS(must_alloc_slice
);
217 CFQ_CFQQ_FNS(fifo_expire
);
218 CFQ_CFQQ_FNS(idle_window
);
219 CFQ_CFQQ_FNS(prio_changed
);
220 CFQ_CFQQ_FNS(slice_new
);
225 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
226 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
227 #define cfq_log(cfqd, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
230 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
231 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
232 struct io_context
*, gfp_t
);
233 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
234 struct io_context
*);
236 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
239 return cic
->cfqq
[!!is_sync
];
242 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
243 struct cfq_queue
*cfqq
, int is_sync
)
245 cic
->cfqq
[!!is_sync
] = cfqq
;
249 * We regard a request as SYNC, if it's either a read or has the SYNC bit
250 * set (in which case it could also be direct WRITE).
252 static inline int cfq_bio_sync(struct bio
*bio
)
254 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
261 * scheduler run of queue, if there are requests pending and no one in the
262 * driver that will restart queueing
264 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
266 if (cfqd
->busy_queues
) {
267 cfq_log(cfqd
, "schedule dispatch");
268 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
272 static int cfq_queue_empty(struct request_queue
*q
)
274 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
276 return !cfqd
->busy_queues
;
280 * Scale schedule slice based on io priority. Use the sync time slice only
281 * if a queue is marked sync and has sync io queued. A sync queue with async
282 * io only, should not get full sync slice length.
284 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
287 const int base_slice
= cfqd
->cfq_slice
[sync
];
289 WARN_ON(prio
>= IOPRIO_BE_NR
);
291 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
295 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
297 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
301 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
303 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
304 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
308 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
309 * isn't valid until the first request from the dispatch is activated
310 * and the slice time set.
312 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
314 if (cfq_cfqq_slice_new(cfqq
))
316 if (time_before(jiffies
, cfqq
->slice_end
))
323 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
324 * We choose the request that is closest to the head right now. Distance
325 * behind the head is penalized and only allowed to a certain extent.
327 static struct request
*
328 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
330 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
331 unsigned long back_max
;
332 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
333 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
334 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
336 if (rq1
== NULL
|| rq1
== rq2
)
341 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
343 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
345 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
347 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
353 last
= cfqd
->last_position
;
356 * by definition, 1KiB is 2 sectors
358 back_max
= cfqd
->cfq_back_max
* 2;
361 * Strict one way elevator _except_ in the case where we allow
362 * short backward seeks which are biased as twice the cost of a
363 * similar forward seek.
367 else if (s1
+ back_max
>= last
)
368 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
370 wrap
|= CFQ_RQ1_WRAP
;
374 else if (s2
+ back_max
>= last
)
375 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
377 wrap
|= CFQ_RQ2_WRAP
;
379 /* Found required data */
382 * By doing switch() on the bit mask "wrap" we avoid having to
383 * check two variables for all permutations: --> faster!
386 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
402 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
405 * Since both rqs are wrapped,
406 * start with the one that's further behind head
407 * (--> only *one* back seek required),
408 * since back seek takes more time than forward.
418 * The below is leftmost cache rbtree addon
420 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
423 root
->left
= rb_first(&root
->rb
);
426 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
431 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
437 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
441 rb_erase_init(n
, &root
->rb
);
445 * would be nice to take fifo expire time into account as well
447 static struct request
*
448 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
449 struct request
*last
)
451 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
452 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
453 struct request
*next
= NULL
, *prev
= NULL
;
455 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
458 prev
= rb_entry_rq(rbprev
);
461 next
= rb_entry_rq(rbnext
);
463 rbnext
= rb_first(&cfqq
->sort_list
);
464 if (rbnext
&& rbnext
!= &last
->rb_node
)
465 next
= rb_entry_rq(rbnext
);
468 return cfq_choose_req(cfqd
, next
, prev
);
471 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
472 struct cfq_queue
*cfqq
)
475 * just an approximation, should be ok.
477 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
478 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
482 * The cfqd->service_tree holds all pending cfq_queue's that have
483 * requests waiting to be processed. It is sorted in the order that
484 * we will service the queues.
486 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
489 struct rb_node
**p
, *parent
;
490 struct cfq_queue
*__cfqq
;
491 unsigned long rb_key
;
494 if (cfq_class_idle(cfqq
)) {
495 rb_key
= CFQ_IDLE_DELAY
;
496 parent
= rb_last(&cfqd
->service_tree
.rb
);
497 if (parent
&& parent
!= &cfqq
->rb_node
) {
498 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
499 rb_key
+= __cfqq
->rb_key
;
502 } else if (!add_front
) {
503 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
504 rb_key
+= cfqq
->slice_resid
;
505 cfqq
->slice_resid
= 0;
509 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
511 * same position, nothing more to do
513 if (rb_key
== cfqq
->rb_key
)
516 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
521 p
= &cfqd
->service_tree
.rb
.rb_node
;
526 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
529 * sort RT queues first, we always want to give
530 * preference to them. IDLE queues goes to the back.
531 * after that, sort on the next service time.
533 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
535 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
537 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
539 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
541 else if (rb_key
< __cfqq
->rb_key
)
546 if (n
== &(*p
)->rb_right
)
553 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
555 cfqq
->rb_key
= rb_key
;
556 rb_link_node(&cfqq
->rb_node
, parent
, p
);
557 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
560 static struct cfq_queue
*
561 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, int ioprio
, sector_t sector
,
562 struct rb_node
**ret_parent
, struct rb_node
***rb_link
)
564 struct rb_root
*root
= &cfqd
->prio_trees
[ioprio
];
565 struct rb_node
**p
, *parent
;
566 struct cfq_queue
*cfqq
= NULL
;
574 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
577 * Sort strictly based on sector. Smallest to the left,
578 * largest to the right.
580 if (sector
> cfqq
->next_rq
->sector
)
582 else if (sector
< cfqq
->next_rq
->sector
)
589 *ret_parent
= parent
;
595 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
597 struct rb_root
*root
= &cfqd
->prio_trees
[cfqq
->ioprio
];
598 struct rb_node
**p
, *parent
;
599 struct cfq_queue
*__cfqq
;
601 if (!RB_EMPTY_NODE(&cfqq
->p_node
))
602 rb_erase_init(&cfqq
->p_node
, root
);
604 if (cfq_class_idle(cfqq
))
609 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->ioprio
, cfqq
->next_rq
->sector
,
613 rb_link_node(&cfqq
->p_node
, parent
, p
);
614 rb_insert_color(&cfqq
->p_node
, root
);
618 * Update cfqq's position in the service tree.
620 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
623 * Resorting requires the cfqq to be on the RR list already.
625 if (cfq_cfqq_on_rr(cfqq
)) {
626 cfq_service_tree_add(cfqd
, cfqq
, 0);
627 cfq_prio_tree_add(cfqd
, cfqq
);
632 * add to busy list of queues for service, trying to be fair in ordering
633 * the pending list according to last request service
635 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
637 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
638 BUG_ON(cfq_cfqq_on_rr(cfqq
));
639 cfq_mark_cfqq_on_rr(cfqq
);
641 if (cfq_class_rt(cfqq
))
642 cfqd
->busy_rt_queues
++;
644 cfq_resort_rr_list(cfqd
, cfqq
);
648 * Called when the cfqq no longer has requests pending, remove it from
651 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
653 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
654 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
655 cfq_clear_cfqq_on_rr(cfqq
);
657 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
658 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
659 if (!RB_EMPTY_NODE(&cfqq
->p_node
))
660 rb_erase_init(&cfqq
->p_node
, &cfqd
->prio_trees
[cfqq
->ioprio
]);
662 BUG_ON(!cfqd
->busy_queues
);
664 if (cfq_class_rt(cfqq
))
665 cfqd
->busy_rt_queues
--;
669 * rb tree support functions
671 static void cfq_del_rq_rb(struct request
*rq
)
673 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
674 struct cfq_data
*cfqd
= cfqq
->cfqd
;
675 const int sync
= rq_is_sync(rq
);
677 BUG_ON(!cfqq
->queued
[sync
]);
678 cfqq
->queued
[sync
]--;
680 elv_rb_del(&cfqq
->sort_list
, rq
);
682 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
683 cfq_del_cfqq_rr(cfqd
, cfqq
);
686 static void cfq_add_rq_rb(struct request
*rq
)
688 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
689 struct cfq_data
*cfqd
= cfqq
->cfqd
;
690 struct request
*__alias
, *prev
;
692 cfqq
->queued
[rq_is_sync(rq
)]++;
695 * looks a little odd, but the first insert might return an alias.
696 * if that happens, put the alias on the dispatch list
698 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
699 cfq_dispatch_insert(cfqd
->queue
, __alias
);
701 if (!cfq_cfqq_on_rr(cfqq
))
702 cfq_add_cfqq_rr(cfqd
, cfqq
);
705 * check if this request is a better next-serve candidate
707 prev
= cfqq
->next_rq
;
708 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
711 * adjust priority tree position, if ->next_rq changes
713 if (prev
!= cfqq
->next_rq
)
714 cfq_prio_tree_add(cfqd
, cfqq
);
716 BUG_ON(!cfqq
->next_rq
);
719 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
721 elv_rb_del(&cfqq
->sort_list
, rq
);
722 cfqq
->queued
[rq_is_sync(rq
)]--;
726 static struct request
*
727 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
729 struct task_struct
*tsk
= current
;
730 struct cfq_io_context
*cic
;
731 struct cfq_queue
*cfqq
;
733 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
737 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
739 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
741 return elv_rb_find(&cfqq
->sort_list
, sector
);
747 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
749 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
751 cfqd
->rq_in_driver
++;
752 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
755 cfqd
->last_position
= rq
->hard_sector
+ rq
->hard_nr_sectors
;
758 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
760 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
762 WARN_ON(!cfqd
->rq_in_driver
);
763 cfqd
->rq_in_driver
--;
764 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
768 static void cfq_remove_request(struct request
*rq
)
770 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
772 if (cfqq
->next_rq
== rq
)
773 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
775 list_del_init(&rq
->queuelist
);
778 cfqq
->cfqd
->rq_queued
--;
779 if (rq_is_meta(rq
)) {
780 WARN_ON(!cfqq
->meta_pending
);
781 cfqq
->meta_pending
--;
785 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
788 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
789 struct request
*__rq
;
791 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
792 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
794 return ELEVATOR_FRONT_MERGE
;
797 return ELEVATOR_NO_MERGE
;
800 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
803 if (type
== ELEVATOR_FRONT_MERGE
) {
804 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
806 cfq_reposition_rq_rb(cfqq
, req
);
811 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
812 struct request
*next
)
815 * reposition in fifo if next is older than rq
817 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
818 time_before(next
->start_time
, rq
->start_time
))
819 list_move(&rq
->queuelist
, &next
->queuelist
);
821 cfq_remove_request(next
);
824 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
827 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
828 struct cfq_io_context
*cic
;
829 struct cfq_queue
*cfqq
;
832 * Disallow merge of a sync bio into an async request.
834 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
838 * Lookup the cfqq that this bio will be queued with. Allow
839 * merge only if rq is queued there.
841 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
845 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
846 if (cfqq
== RQ_CFQQ(rq
))
852 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
853 struct cfq_queue
*cfqq
)
856 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
858 cfqq
->slice_dispatch
= 0;
860 cfq_clear_cfqq_wait_request(cfqq
);
861 cfq_clear_cfqq_must_dispatch(cfqq
);
862 cfq_clear_cfqq_must_alloc_slice(cfqq
);
863 cfq_clear_cfqq_fifo_expire(cfqq
);
864 cfq_mark_cfqq_slice_new(cfqq
);
866 del_timer(&cfqd
->idle_slice_timer
);
869 cfqd
->active_queue
= cfqq
;
873 * current cfqq expired its slice (or was too idle), select new one
876 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
879 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
881 if (cfq_cfqq_wait_request(cfqq
))
882 del_timer(&cfqd
->idle_slice_timer
);
884 cfq_clear_cfqq_wait_request(cfqq
);
887 * store what was left of this slice, if the queue idled/timed out
889 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
890 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
891 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
894 cfq_resort_rr_list(cfqd
, cfqq
);
896 if (cfqq
== cfqd
->active_queue
)
897 cfqd
->active_queue
= NULL
;
899 if (cfqd
->active_cic
) {
900 put_io_context(cfqd
->active_cic
->ioc
);
901 cfqd
->active_cic
= NULL
;
905 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
907 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
910 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
914 * Get next queue for service. Unless we have a queue preemption,
915 * we'll simply select the first cfqq in the service tree.
917 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
919 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
922 return cfq_rb_first(&cfqd
->service_tree
);
926 * Get and set a new active queue for service.
928 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
929 struct cfq_queue
*cfqq
)
932 cfqq
= cfq_get_next_queue(cfqd
);
934 cfq_clear_cfqq_coop(cfqq
);
937 __cfq_set_active_queue(cfqd
, cfqq
);
941 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
944 if (rq
->sector
>= cfqd
->last_position
)
945 return rq
->sector
- cfqd
->last_position
;
947 return cfqd
->last_position
- rq
->sector
;
950 #define CIC_SEEK_THR 8 * 1024
951 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
953 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
955 struct cfq_io_context
*cic
= cfqd
->active_cic
;
956 sector_t sdist
= cic
->seek_mean
;
958 if (!sample_valid(cic
->seek_samples
))
959 sdist
= CIC_SEEK_THR
;
961 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
964 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
965 struct cfq_queue
*cur_cfqq
)
967 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->ioprio
];
968 struct rb_node
*parent
, *node
;
969 struct cfq_queue
*__cfqq
;
970 sector_t sector
= cfqd
->last_position
;
972 if (RB_EMPTY_ROOT(root
))
976 * First, if we find a request starting at the end of the last
977 * request, choose it.
979 __cfqq
= cfq_prio_tree_lookup(cfqd
, cur_cfqq
->ioprio
,
980 sector
, &parent
, NULL
);
985 * If the exact sector wasn't found, the parent of the NULL leaf
986 * will contain the closest sector.
988 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
989 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
992 if (__cfqq
->next_rq
->sector
< sector
)
993 node
= rb_next(&__cfqq
->p_node
);
995 node
= rb_prev(&__cfqq
->p_node
);
999 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1000 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
1008 * cur_cfqq - passed in so that we don't decide that the current queue is
1009 * closely cooperating with itself.
1011 * So, basically we're assuming that that cur_cfqq has dispatched at least
1012 * one request, and that cfqd->last_position reflects a position on the disk
1013 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1016 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1017 struct cfq_queue
*cur_cfqq
,
1020 struct cfq_queue
*cfqq
;
1023 * A valid cfq_io_context is necessary to compare requests against
1024 * the seek_mean of the current cfqq.
1026 if (!cfqd
->active_cic
)
1030 * We should notice if some of the queues are cooperating, eg
1031 * working closely on the same area of the disk. In that case,
1032 * we can group them together and don't waste time idling.
1034 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1038 if (cfq_cfqq_coop(cfqq
))
1042 cfq_mark_cfqq_coop(cfqq
);
1046 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1048 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1049 struct cfq_io_context
*cic
;
1053 * SSD device without seek penalty, disable idling. But only do so
1054 * for devices that support queuing, otherwise we still have a problem
1055 * with sync vs async workloads.
1057 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1060 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1061 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1064 * idle is disabled, either manually or by past process history
1066 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
1070 * still requests with the driver, don't idle
1072 if (cfqd
->rq_in_driver
)
1076 * task has exited, don't wait
1078 cic
= cfqd
->active_cic
;
1079 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1082 cfq_mark_cfqq_wait_request(cfqq
);
1085 * we don't want to idle for seeks, but we do want to allow
1086 * fair distribution of slice time for a process doing back-to-back
1087 * seeks. so allow a little bit of time for him to submit a new rq
1089 sl
= cfqd
->cfq_slice_idle
;
1090 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
1091 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
1093 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1094 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1098 * Move request from internal lists to the request queue dispatch list.
1100 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1102 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1103 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1105 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1107 cfq_remove_request(rq
);
1109 elv_dispatch_sort(q
, rq
);
1111 if (cfq_cfqq_sync(cfqq
))
1112 cfqd
->sync_flight
++;
1116 * return expired entry, or NULL to just start from scratch in rbtree
1118 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1120 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1124 if (cfq_cfqq_fifo_expire(cfqq
))
1127 cfq_mark_cfqq_fifo_expire(cfqq
);
1129 if (list_empty(&cfqq
->fifo
))
1132 fifo
= cfq_cfqq_sync(cfqq
);
1133 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1135 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
1138 cfq_log_cfqq(cfqd
, cfqq
, "fifo=%p", rq
);
1143 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1145 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1147 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1149 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1153 * Select a queue for service. If we have a current active queue,
1154 * check whether to continue servicing it, or retrieve and set a new one.
1156 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1158 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1160 cfqq
= cfqd
->active_queue
;
1165 * The active queue has run out of time, expire it and select new.
1167 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
1171 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1174 if (!cfq_class_rt(cfqq
) && cfqd
->busy_rt_queues
) {
1176 * We simulate this as cfqq timed out so that it gets to bank
1177 * the remaining of its time slice.
1179 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1180 cfq_slice_expired(cfqd
, 1);
1185 * The active queue has requests and isn't expired, allow it to
1188 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1192 * If another queue has a request waiting within our mean seek
1193 * distance, let it run. The expire code will check for close
1194 * cooperators and put the close queue at the front of the service
1197 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
, 0);
1202 * No requests pending. If the active queue still has requests in
1203 * flight or is idling for a new request, allow either of these
1204 * conditions to happen (or time out) before selecting a new queue.
1206 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1207 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1213 cfq_slice_expired(cfqd
, 0);
1215 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
1220 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1224 while (cfqq
->next_rq
) {
1225 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1229 BUG_ON(!list_empty(&cfqq
->fifo
));
1234 * Drain our current requests. Used for barriers and when switching
1235 * io schedulers on-the-fly.
1237 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1239 struct cfq_queue
*cfqq
;
1242 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1243 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1245 cfq_slice_expired(cfqd
, 0);
1247 BUG_ON(cfqd
->busy_queues
);
1249 cfq_log(cfqd
, "forced_dispatch=%d\n", dispatched
);
1254 * Dispatch a request from cfqq, moving them to the request queue
1257 static void cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1261 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1264 * follow expired path, else get first next available
1266 rq
= cfq_check_fifo(cfqq
);
1271 * insert request into driver dispatch list
1273 cfq_dispatch_insert(cfqd
->queue
, rq
);
1275 if (!cfqd
->active_cic
) {
1276 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1278 atomic_inc(&cic
->ioc
->refcount
);
1279 cfqd
->active_cic
= cic
;
1284 * Find the cfqq that we need to service and move a request from that to the
1287 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1289 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1290 struct cfq_queue
*cfqq
;
1291 unsigned int max_dispatch
;
1293 if (!cfqd
->busy_queues
)
1296 if (unlikely(force
))
1297 return cfq_forced_dispatch(cfqd
);
1299 cfqq
= cfq_select_queue(cfqd
);
1304 * If this is an async queue and we have sync IO in flight, let it wait
1306 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1309 max_dispatch
= cfqd
->cfq_quantum
;
1310 if (cfq_class_idle(cfqq
))
1314 * Does this cfqq already have too much IO in flight?
1316 if (cfqq
->dispatched
>= max_dispatch
) {
1318 * idle queue must always only have a single IO in flight
1320 if (cfq_class_idle(cfqq
))
1324 * We have other queues, don't allow more IO from this one
1326 if (cfqd
->busy_queues
> 1)
1330 * we are the only queue, allow up to 4 times of 'quantum'
1332 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1337 * Dispatch a request from this cfqq
1339 cfq_dispatch_request(cfqd
, cfqq
);
1340 cfqq
->slice_dispatch
++;
1341 cfq_clear_cfqq_must_dispatch(cfqq
);
1344 * expire an async queue immediately if it has used up its slice. idle
1345 * queue always expire after 1 dispatch round.
1347 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1348 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1349 cfq_class_idle(cfqq
))) {
1350 cfqq
->slice_end
= jiffies
+ 1;
1351 cfq_slice_expired(cfqd
, 0);
1354 cfq_log(cfqd
, "dispatched a request");
1359 * task holds one reference to the queue, dropped when task exits. each rq
1360 * in-flight on this queue also holds a reference, dropped when rq is freed.
1362 * queue lock must be held here.
1364 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1366 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1368 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1370 if (!atomic_dec_and_test(&cfqq
->ref
))
1373 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1374 BUG_ON(rb_first(&cfqq
->sort_list
));
1375 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1376 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1378 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1379 __cfq_slice_expired(cfqd
, cfqq
, 0);
1380 cfq_schedule_dispatch(cfqd
);
1383 kmem_cache_free(cfq_pool
, cfqq
);
1387 * Must always be called with the rcu_read_lock() held
1390 __call_for_each_cic(struct io_context
*ioc
,
1391 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1393 struct cfq_io_context
*cic
;
1394 struct hlist_node
*n
;
1396 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1401 * Call func for each cic attached to this ioc.
1404 call_for_each_cic(struct io_context
*ioc
,
1405 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1408 __call_for_each_cic(ioc
, func
);
1412 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1414 struct cfq_io_context
*cic
;
1416 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1418 kmem_cache_free(cfq_ioc_pool
, cic
);
1419 elv_ioc_count_dec(ioc_count
);
1423 * CFQ scheduler is exiting, grab exit lock and check
1424 * the pending io context count. If it hits zero,
1425 * complete ioc_gone and set it back to NULL
1427 spin_lock(&ioc_gone_lock
);
1428 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
)) {
1432 spin_unlock(&ioc_gone_lock
);
1436 static void cfq_cic_free(struct cfq_io_context
*cic
)
1438 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1441 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1443 unsigned long flags
;
1445 BUG_ON(!cic
->dead_key
);
1447 spin_lock_irqsave(&ioc
->lock
, flags
);
1448 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1449 hlist_del_rcu(&cic
->cic_list
);
1450 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1456 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1457 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1458 * and ->trim() which is called with the task lock held
1460 static void cfq_free_io_context(struct io_context
*ioc
)
1463 * ioc->refcount is zero here, or we are called from elv_unregister(),
1464 * so no more cic's are allowed to be linked into this ioc. So it
1465 * should be ok to iterate over the known list, we will see all cic's
1466 * since no new ones are added.
1468 __call_for_each_cic(ioc
, cic_free_func
);
1471 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1473 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1474 __cfq_slice_expired(cfqd
, cfqq
, 0);
1475 cfq_schedule_dispatch(cfqd
);
1478 cfq_put_queue(cfqq
);
1481 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1482 struct cfq_io_context
*cic
)
1484 struct io_context
*ioc
= cic
->ioc
;
1486 list_del_init(&cic
->queue_list
);
1489 * Make sure key == NULL is seen for dead queues
1492 cic
->dead_key
= (unsigned long) cic
->key
;
1495 if (ioc
->ioc_data
== cic
)
1496 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1498 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
1499 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
1500 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
1503 if (cic
->cfqq
[BLK_RW_SYNC
]) {
1504 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
1505 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
1509 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1510 struct cfq_io_context
*cic
)
1512 struct cfq_data
*cfqd
= cic
->key
;
1515 struct request_queue
*q
= cfqd
->queue
;
1516 unsigned long flags
;
1518 spin_lock_irqsave(q
->queue_lock
, flags
);
1521 * Ensure we get a fresh copy of the ->key to prevent
1522 * race between exiting task and queue
1524 smp_read_barrier_depends();
1526 __cfq_exit_single_io_context(cfqd
, cic
);
1528 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1533 * The process that ioc belongs to has exited, we need to clean up
1534 * and put the internal structures we have that belongs to that process.
1536 static void cfq_exit_io_context(struct io_context
*ioc
)
1538 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1541 static struct cfq_io_context
*
1542 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1544 struct cfq_io_context
*cic
;
1546 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1549 cic
->last_end_request
= jiffies
;
1550 INIT_LIST_HEAD(&cic
->queue_list
);
1551 INIT_HLIST_NODE(&cic
->cic_list
);
1552 cic
->dtor
= cfq_free_io_context
;
1553 cic
->exit
= cfq_exit_io_context
;
1554 elv_ioc_count_inc(ioc_count
);
1560 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1562 struct task_struct
*tsk
= current
;
1565 if (!cfq_cfqq_prio_changed(cfqq
))
1568 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1569 switch (ioprio_class
) {
1571 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1572 case IOPRIO_CLASS_NONE
:
1574 * no prio set, inherit CPU scheduling settings
1576 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1577 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1579 case IOPRIO_CLASS_RT
:
1580 cfqq
->ioprio
= task_ioprio(ioc
);
1581 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1583 case IOPRIO_CLASS_BE
:
1584 cfqq
->ioprio
= task_ioprio(ioc
);
1585 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1587 case IOPRIO_CLASS_IDLE
:
1588 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1590 cfq_clear_cfqq_idle_window(cfqq
);
1595 * keep track of original prio settings in case we have to temporarily
1596 * elevate the priority of this queue
1598 cfqq
->org_ioprio
= cfqq
->ioprio
;
1599 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1600 cfq_clear_cfqq_prio_changed(cfqq
);
1603 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1605 struct cfq_data
*cfqd
= cic
->key
;
1606 struct cfq_queue
*cfqq
;
1607 unsigned long flags
;
1609 if (unlikely(!cfqd
))
1612 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1614 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
1616 struct cfq_queue
*new_cfqq
;
1617 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
1620 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
1621 cfq_put_queue(cfqq
);
1625 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
1627 cfq_mark_cfqq_prio_changed(cfqq
);
1629 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1632 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1634 call_for_each_cic(ioc
, changed_ioprio
);
1635 ioc
->ioprio_changed
= 0;
1638 static struct cfq_queue
*
1639 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1640 struct io_context
*ioc
, gfp_t gfp_mask
)
1642 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1643 struct cfq_io_context
*cic
;
1646 cic
= cfq_cic_lookup(cfqd
, ioc
);
1647 /* cic always exists here */
1648 cfqq
= cic_to_cfqq(cic
, is_sync
);
1654 } else if (gfp_mask
& __GFP_WAIT
) {
1656 * Inform the allocator of the fact that we will
1657 * just repeat this allocation if it fails, to allow
1658 * the allocator to do whatever it needs to attempt to
1661 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1662 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1663 gfp_mask
| __GFP_NOFAIL
| __GFP_ZERO
,
1665 spin_lock_irq(cfqd
->queue
->queue_lock
);
1668 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1669 gfp_mask
| __GFP_ZERO
,
1675 RB_CLEAR_NODE(&cfqq
->rb_node
);
1676 RB_CLEAR_NODE(&cfqq
->p_node
);
1677 INIT_LIST_HEAD(&cfqq
->fifo
);
1679 atomic_set(&cfqq
->ref
, 0);
1682 cfq_mark_cfqq_prio_changed(cfqq
);
1684 cfq_init_prio_data(cfqq
, ioc
);
1687 if (!cfq_class_idle(cfqq
))
1688 cfq_mark_cfqq_idle_window(cfqq
);
1689 cfq_mark_cfqq_sync(cfqq
);
1691 cfqq
->pid
= current
->pid
;
1692 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1696 kmem_cache_free(cfq_pool
, new_cfqq
);
1699 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1703 static struct cfq_queue
**
1704 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1706 switch (ioprio_class
) {
1707 case IOPRIO_CLASS_RT
:
1708 return &cfqd
->async_cfqq
[0][ioprio
];
1709 case IOPRIO_CLASS_BE
:
1710 return &cfqd
->async_cfqq
[1][ioprio
];
1711 case IOPRIO_CLASS_IDLE
:
1712 return &cfqd
->async_idle_cfqq
;
1718 static struct cfq_queue
*
1719 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1722 const int ioprio
= task_ioprio(ioc
);
1723 const int ioprio_class
= task_ioprio_class(ioc
);
1724 struct cfq_queue
**async_cfqq
= NULL
;
1725 struct cfq_queue
*cfqq
= NULL
;
1728 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1733 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1739 * pin the queue now that it's allocated, scheduler exit will prune it
1741 if (!is_sync
&& !(*async_cfqq
)) {
1742 atomic_inc(&cfqq
->ref
);
1746 atomic_inc(&cfqq
->ref
);
1751 * We drop cfq io contexts lazily, so we may find a dead one.
1754 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1755 struct cfq_io_context
*cic
)
1757 unsigned long flags
;
1759 WARN_ON(!list_empty(&cic
->queue_list
));
1761 spin_lock_irqsave(&ioc
->lock
, flags
);
1763 BUG_ON(ioc
->ioc_data
== cic
);
1765 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1766 hlist_del_rcu(&cic
->cic_list
);
1767 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1772 static struct cfq_io_context
*
1773 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1775 struct cfq_io_context
*cic
;
1776 unsigned long flags
;
1785 * we maintain a last-hit cache, to avoid browsing over the tree
1787 cic
= rcu_dereference(ioc
->ioc_data
);
1788 if (cic
&& cic
->key
== cfqd
) {
1794 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1798 /* ->key must be copied to avoid race with cfq_exit_queue() */
1801 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1806 spin_lock_irqsave(&ioc
->lock
, flags
);
1807 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1808 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1816 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1817 * the process specific cfq io context when entered from the block layer.
1818 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1820 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1821 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1823 unsigned long flags
;
1826 ret
= radix_tree_preload(gfp_mask
);
1831 spin_lock_irqsave(&ioc
->lock
, flags
);
1832 ret
= radix_tree_insert(&ioc
->radix_root
,
1833 (unsigned long) cfqd
, cic
);
1835 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1836 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1838 radix_tree_preload_end();
1841 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1842 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1843 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1848 printk(KERN_ERR
"cfq: cic link failed!\n");
1854 * Setup general io context and cfq io context. There can be several cfq
1855 * io contexts per general io context, if this process is doing io to more
1856 * than one device managed by cfq.
1858 static struct cfq_io_context
*
1859 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1861 struct io_context
*ioc
= NULL
;
1862 struct cfq_io_context
*cic
;
1864 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1866 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1870 cic
= cfq_cic_lookup(cfqd
, ioc
);
1874 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1878 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1882 smp_read_barrier_depends();
1883 if (unlikely(ioc
->ioprio_changed
))
1884 cfq_ioc_set_ioprio(ioc
);
1890 put_io_context(ioc
);
1895 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1897 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1898 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1900 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1901 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1902 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1906 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1912 if (!cic
->last_request_pos
)
1914 else if (cic
->last_request_pos
< rq
->sector
)
1915 sdist
= rq
->sector
- cic
->last_request_pos
;
1917 sdist
= cic
->last_request_pos
- rq
->sector
;
1920 * Don't allow the seek distance to get too large from the
1921 * odd fragment, pagein, etc
1923 if (cic
->seek_samples
<= 60) /* second&third seek */
1924 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1926 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1928 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1929 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1930 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1931 do_div(total
, cic
->seek_samples
);
1932 cic
->seek_mean
= (sector_t
)total
;
1936 * Disable idle window if the process thinks too long or seeks so much that
1940 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1941 struct cfq_io_context
*cic
)
1943 int old_idle
, enable_idle
;
1946 * Don't idle for async or idle io prio class
1948 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1951 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1953 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1954 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1956 else if (sample_valid(cic
->ttime_samples
)) {
1957 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1963 if (old_idle
!= enable_idle
) {
1964 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
1966 cfq_mark_cfqq_idle_window(cfqq
);
1968 cfq_clear_cfqq_idle_window(cfqq
);
1973 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1974 * no or if we aren't sure, a 1 will cause a preempt.
1977 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1980 struct cfq_queue
*cfqq
;
1982 cfqq
= cfqd
->active_queue
;
1986 if (cfq_slice_used(cfqq
))
1989 if (cfq_class_idle(new_cfqq
))
1992 if (cfq_class_idle(cfqq
))
1996 * if the new request is sync, but the currently running queue is
1997 * not, let the sync request have priority.
1999 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
2003 * So both queues are sync. Let the new request get disk time if
2004 * it's a metadata request and the current queue is doing regular IO.
2006 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
2010 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2012 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
2015 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
2019 * if this request is as-good as one we would expect from the
2020 * current cfqq, let it preempt
2022 if (cfq_rq_close(cfqd
, rq
))
2029 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2030 * let it have half of its nominal slice.
2032 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2034 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
2035 cfq_slice_expired(cfqd
, 1);
2038 * Put the new queue at the front of the of the current list,
2039 * so we know that it will be selected next.
2041 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2043 cfq_service_tree_add(cfqd
, cfqq
, 1);
2045 cfqq
->slice_end
= 0;
2046 cfq_mark_cfqq_slice_new(cfqq
);
2050 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2051 * something we should do about it
2054 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2057 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2061 cfqq
->meta_pending
++;
2063 cfq_update_io_thinktime(cfqd
, cic
);
2064 cfq_update_io_seektime(cfqd
, cic
, rq
);
2065 cfq_update_idle_window(cfqd
, cfqq
, cic
);
2067 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
2069 if (cfqq
== cfqd
->active_queue
) {
2071 * Remember that we saw a request from this process, but
2072 * don't start queuing just yet. Otherwise we risk seeing lots
2073 * of tiny requests, because we disrupt the normal plugging
2074 * and merging. If the request is already larger than a single
2075 * page, let it rip immediately. For that case we assume that
2076 * merging is already done. Ditto for a busy system that
2077 * has other work pending, don't risk delaying until the
2078 * idle timer unplug to continue working.
2080 if (cfq_cfqq_wait_request(cfqq
)) {
2081 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
2082 cfqd
->busy_queues
> 1) {
2083 del_timer(&cfqd
->idle_slice_timer
);
2084 blk_start_queueing(cfqd
->queue
);
2086 cfq_mark_cfqq_must_dispatch(cfqq
);
2088 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
2090 * not the active queue - expire current slice if it is
2091 * idle and has expired it's mean thinktime or this new queue
2092 * has some old slice time left and is of higher priority or
2093 * this new queue is RT and the current one is BE
2095 cfq_preempt_queue(cfqd
, cfqq
);
2096 blk_start_queueing(cfqd
->queue
);
2100 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
2102 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2103 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2105 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
2106 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
2110 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
2112 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
2116 * Update hw_tag based on peak queue depth over 50 samples under
2119 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
2121 if (cfqd
->rq_in_driver
> cfqd
->rq_in_driver_peak
)
2122 cfqd
->rq_in_driver_peak
= cfqd
->rq_in_driver
;
2124 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
2125 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
2128 if (cfqd
->hw_tag_samples
++ < 50)
2131 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
2136 cfqd
->hw_tag_samples
= 0;
2137 cfqd
->rq_in_driver_peak
= 0;
2140 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
2142 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2143 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2144 const int sync
= rq_is_sync(rq
);
2148 cfq_log_cfqq(cfqd
, cfqq
, "complete");
2150 cfq_update_hw_tag(cfqd
);
2152 WARN_ON(!cfqd
->rq_in_driver
);
2153 WARN_ON(!cfqq
->dispatched
);
2154 cfqd
->rq_in_driver
--;
2157 if (cfq_cfqq_sync(cfqq
))
2158 cfqd
->sync_flight
--;
2160 if (!cfq_class_idle(cfqq
))
2161 cfqd
->last_end_request
= now
;
2164 RQ_CIC(rq
)->last_end_request
= now
;
2167 * If this is the active queue, check if it needs to be expired,
2168 * or if we want to idle in case it has no pending requests.
2170 if (cfqd
->active_queue
== cfqq
) {
2171 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
2173 if (cfq_cfqq_slice_new(cfqq
)) {
2174 cfq_set_prio_slice(cfqd
, cfqq
);
2175 cfq_clear_cfqq_slice_new(cfqq
);
2178 * If there are no requests waiting in this queue, and
2179 * there are other queues ready to issue requests, AND
2180 * those other queues are issuing requests within our
2181 * mean seek distance, give them a chance to run instead
2184 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
2185 cfq_slice_expired(cfqd
, 1);
2186 else if (cfqq_empty
&& !cfq_close_cooperator(cfqd
, cfqq
, 1) &&
2187 sync
&& !rq_noidle(rq
))
2188 cfq_arm_slice_timer(cfqd
);
2191 if (!cfqd
->rq_in_driver
)
2192 cfq_schedule_dispatch(cfqd
);
2196 * we temporarily boost lower priority queues if they are holding fs exclusive
2197 * resources. they are boosted to normal prio (CLASS_BE/4)
2199 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2201 if (has_fs_excl()) {
2203 * boost idle prio on transactions that would lock out other
2204 * users of the filesystem
2206 if (cfq_class_idle(cfqq
))
2207 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2208 if (cfqq
->ioprio
> IOPRIO_NORM
)
2209 cfqq
->ioprio
= IOPRIO_NORM
;
2212 * check if we need to unboost the queue
2214 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
2215 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2216 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
2217 cfqq
->ioprio
= cfqq
->org_ioprio
;
2221 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2223 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
2224 !cfq_cfqq_must_alloc_slice(cfqq
)) {
2225 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2226 return ELV_MQUEUE_MUST
;
2229 return ELV_MQUEUE_MAY
;
2232 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2234 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2235 struct task_struct
*tsk
= current
;
2236 struct cfq_io_context
*cic
;
2237 struct cfq_queue
*cfqq
;
2240 * don't force setup of a queue from here, as a call to may_queue
2241 * does not necessarily imply that a request actually will be queued.
2242 * so just lookup a possibly existing queue, or return 'may queue'
2245 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2247 return ELV_MQUEUE_MAY
;
2249 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
2251 cfq_init_prio_data(cfqq
, cic
->ioc
);
2252 cfq_prio_boost(cfqq
);
2254 return __cfq_may_queue(cfqq
);
2257 return ELV_MQUEUE_MAY
;
2261 * queue lock held here
2263 static void cfq_put_request(struct request
*rq
)
2265 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2268 const int rw
= rq_data_dir(rq
);
2270 BUG_ON(!cfqq
->allocated
[rw
]);
2271 cfqq
->allocated
[rw
]--;
2273 put_io_context(RQ_CIC(rq
)->ioc
);
2275 rq
->elevator_private
= NULL
;
2276 rq
->elevator_private2
= NULL
;
2278 cfq_put_queue(cfqq
);
2283 * Allocate cfq data structures associated with this request.
2286 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2288 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2289 struct cfq_io_context
*cic
;
2290 const int rw
= rq_data_dir(rq
);
2291 const int is_sync
= rq_is_sync(rq
);
2292 struct cfq_queue
*cfqq
;
2293 unsigned long flags
;
2295 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2297 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2299 spin_lock_irqsave(q
->queue_lock
, flags
);
2304 cfqq
= cic_to_cfqq(cic
, is_sync
);
2306 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2311 cic_set_cfqq(cic
, cfqq
, is_sync
);
2314 cfqq
->allocated
[rw
]++;
2315 cfq_clear_cfqq_must_alloc(cfqq
);
2316 atomic_inc(&cfqq
->ref
);
2318 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2320 rq
->elevator_private
= cic
;
2321 rq
->elevator_private2
= cfqq
;
2326 put_io_context(cic
->ioc
);
2328 cfq_schedule_dispatch(cfqd
);
2329 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2330 cfq_log(cfqd
, "set_request fail");
2334 static void cfq_kick_queue(struct work_struct
*work
)
2336 struct cfq_data
*cfqd
=
2337 container_of(work
, struct cfq_data
, unplug_work
);
2338 struct request_queue
*q
= cfqd
->queue
;
2340 spin_lock_irq(q
->queue_lock
);
2341 blk_start_queueing(q
);
2342 spin_unlock_irq(q
->queue_lock
);
2346 * Timer running if the active_queue is currently idling inside its time slice
2348 static void cfq_idle_slice_timer(unsigned long data
)
2350 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2351 struct cfq_queue
*cfqq
;
2352 unsigned long flags
;
2355 cfq_log(cfqd
, "idle timer fired");
2357 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2359 cfqq
= cfqd
->active_queue
;
2364 * We saw a request before the queue expired, let it through
2366 if (cfq_cfqq_must_dispatch(cfqq
))
2372 if (cfq_slice_used(cfqq
))
2376 * only expire and reinvoke request handler, if there are
2377 * other queues with pending requests
2379 if (!cfqd
->busy_queues
)
2383 * not expired and it has a request pending, let it dispatch
2385 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2389 cfq_slice_expired(cfqd
, timed_out
);
2391 cfq_schedule_dispatch(cfqd
);
2393 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2396 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2398 del_timer_sync(&cfqd
->idle_slice_timer
);
2399 cancel_work_sync(&cfqd
->unplug_work
);
2402 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2406 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2407 if (cfqd
->async_cfqq
[0][i
])
2408 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2409 if (cfqd
->async_cfqq
[1][i
])
2410 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2413 if (cfqd
->async_idle_cfqq
)
2414 cfq_put_queue(cfqd
->async_idle_cfqq
);
2417 static void cfq_exit_queue(struct elevator_queue
*e
)
2419 struct cfq_data
*cfqd
= e
->elevator_data
;
2420 struct request_queue
*q
= cfqd
->queue
;
2422 cfq_shutdown_timer_wq(cfqd
);
2424 spin_lock_irq(q
->queue_lock
);
2426 if (cfqd
->active_queue
)
2427 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2429 while (!list_empty(&cfqd
->cic_list
)) {
2430 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2431 struct cfq_io_context
,
2434 __cfq_exit_single_io_context(cfqd
, cic
);
2437 cfq_put_async_queues(cfqd
);
2439 spin_unlock_irq(q
->queue_lock
);
2441 cfq_shutdown_timer_wq(cfqd
);
2446 static void *cfq_init_queue(struct request_queue
*q
)
2448 struct cfq_data
*cfqd
;
2450 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2454 cfqd
->service_tree
= CFQ_RB_ROOT
;
2455 INIT_LIST_HEAD(&cfqd
->cic_list
);
2459 init_timer(&cfqd
->idle_slice_timer
);
2460 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2461 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2463 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2465 cfqd
->last_end_request
= jiffies
;
2466 cfqd
->cfq_quantum
= cfq_quantum
;
2467 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2468 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2469 cfqd
->cfq_back_max
= cfq_back_max
;
2470 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2471 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2472 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2473 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2474 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2480 static void cfq_slab_kill(void)
2483 * Caller already ensured that pending RCU callbacks are completed,
2484 * so we should have no busy allocations at this point.
2487 kmem_cache_destroy(cfq_pool
);
2489 kmem_cache_destroy(cfq_ioc_pool
);
2492 static int __init
cfq_slab_setup(void)
2494 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2498 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2509 * sysfs parts below -->
2512 cfq_var_show(unsigned int var
, char *page
)
2514 return sprintf(page
, "%d\n", var
);
2518 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2520 char *p
= (char *) page
;
2522 *var
= simple_strtoul(p
, &p
, 10);
2526 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2527 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2529 struct cfq_data *cfqd = e->elevator_data; \
2530 unsigned int __data = __VAR; \
2532 __data = jiffies_to_msecs(__data); \
2533 return cfq_var_show(__data, (page)); \
2535 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2536 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2537 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2538 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2539 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2540 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2541 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2542 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2543 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2544 #undef SHOW_FUNCTION
2546 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2547 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2549 struct cfq_data *cfqd = e->elevator_data; \
2550 unsigned int __data; \
2551 int ret = cfq_var_store(&__data, (page), count); \
2552 if (__data < (MIN)) \
2554 else if (__data > (MAX)) \
2557 *(__PTR) = msecs_to_jiffies(__data); \
2559 *(__PTR) = __data; \
2562 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2563 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2565 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2567 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2568 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2570 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2571 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2572 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2573 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2575 #undef STORE_FUNCTION
2577 #define CFQ_ATTR(name) \
2578 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2580 static struct elv_fs_entry cfq_attrs
[] = {
2582 CFQ_ATTR(fifo_expire_sync
),
2583 CFQ_ATTR(fifo_expire_async
),
2584 CFQ_ATTR(back_seek_max
),
2585 CFQ_ATTR(back_seek_penalty
),
2586 CFQ_ATTR(slice_sync
),
2587 CFQ_ATTR(slice_async
),
2588 CFQ_ATTR(slice_async_rq
),
2589 CFQ_ATTR(slice_idle
),
2593 static struct elevator_type iosched_cfq
= {
2595 .elevator_merge_fn
= cfq_merge
,
2596 .elevator_merged_fn
= cfq_merged_request
,
2597 .elevator_merge_req_fn
= cfq_merged_requests
,
2598 .elevator_allow_merge_fn
= cfq_allow_merge
,
2599 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2600 .elevator_add_req_fn
= cfq_insert_request
,
2601 .elevator_activate_req_fn
= cfq_activate_request
,
2602 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2603 .elevator_queue_empty_fn
= cfq_queue_empty
,
2604 .elevator_completed_req_fn
= cfq_completed_request
,
2605 .elevator_former_req_fn
= elv_rb_former_request
,
2606 .elevator_latter_req_fn
= elv_rb_latter_request
,
2607 .elevator_set_req_fn
= cfq_set_request
,
2608 .elevator_put_req_fn
= cfq_put_request
,
2609 .elevator_may_queue_fn
= cfq_may_queue
,
2610 .elevator_init_fn
= cfq_init_queue
,
2611 .elevator_exit_fn
= cfq_exit_queue
,
2612 .trim
= cfq_free_io_context
,
2614 .elevator_attrs
= cfq_attrs
,
2615 .elevator_name
= "cfq",
2616 .elevator_owner
= THIS_MODULE
,
2619 static int __init
cfq_init(void)
2622 * could be 0 on HZ < 1000 setups
2624 if (!cfq_slice_async
)
2625 cfq_slice_async
= 1;
2626 if (!cfq_slice_idle
)
2629 if (cfq_slab_setup())
2632 elv_register(&iosched_cfq
);
2637 static void __exit
cfq_exit(void)
2639 DECLARE_COMPLETION_ONSTACK(all_gone
);
2640 elv_unregister(&iosched_cfq
);
2641 ioc_gone
= &all_gone
;
2642 /* ioc_gone's update must be visible before reading ioc_count */
2646 * this also protects us from entering cfq_slab_kill() with
2647 * pending RCU callbacks
2649 if (elv_ioc_count_read(ioc_count
))
2650 wait_for_completion(&all_gone
);
2654 module_init(cfq_init
);
2655 module_exit(cfq_exit
);
2657 MODULE_AUTHOR("Jens Axboe");
2658 MODULE_LICENSE("GPL");
2659 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");