2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <asm/uaccess.h>
8 #include <linux/errno.h>
10 static int check_clock(const clockid_t which_clock
)
13 struct task_struct
*p
;
14 const pid_t pid
= CPUCLOCK_PID(which_clock
);
16 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
22 read_lock(&tasklist_lock
);
23 p
= find_task_by_pid(pid
);
24 if (!p
|| (CPUCLOCK_PERTHREAD(which_clock
) ?
25 p
->tgid
!= current
->tgid
: p
->tgid
!= pid
)) {
28 read_unlock(&tasklist_lock
);
33 static inline union cpu_time_count
34 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
36 union cpu_time_count ret
;
37 ret
.sched
= 0; /* high half always zero when .cpu used */
38 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
39 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
41 ret
.cpu
= timespec_to_cputime(tp
);
46 static void sample_to_timespec(const clockid_t which_clock
,
47 union cpu_time_count cpu
,
50 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
51 tp
->tv_sec
= div_long_long_rem(cpu
.sched
,
52 NSEC_PER_SEC
, &tp
->tv_nsec
);
54 cputime_to_timespec(cpu
.cpu
, tp
);
58 static inline int cpu_time_before(const clockid_t which_clock
,
59 union cpu_time_count now
,
60 union cpu_time_count then
)
62 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
63 return now
.sched
< then
.sched
;
65 return cputime_lt(now
.cpu
, then
.cpu
);
68 static inline void cpu_time_add(const clockid_t which_clock
,
69 union cpu_time_count
*acc
,
70 union cpu_time_count val
)
72 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
73 acc
->sched
+= val
.sched
;
75 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
78 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
79 union cpu_time_count a
,
80 union cpu_time_count b
)
82 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
85 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
91 * Divide and limit the result to res >= 1
93 * This is necessary to prevent signal delivery starvation, when the result of
94 * the division would be rounded down to 0.
96 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
98 cputime_t res
= cputime_div(time
, div
);
100 return max_t(cputime_t
, res
, 1);
104 * Update expiry time from increment, and increase overrun count,
105 * given the current clock sample.
107 static void bump_cpu_timer(struct k_itimer
*timer
,
108 union cpu_time_count now
)
112 if (timer
->it
.cpu
.incr
.sched
== 0)
115 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
116 unsigned long long delta
, incr
;
118 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
120 incr
= timer
->it
.cpu
.incr
.sched
;
121 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
122 /* Don't use (incr*2 < delta), incr*2 might overflow. */
123 for (i
= 0; incr
< delta
- incr
; i
++)
125 for (; i
>= 0; incr
>>= 1, i
--) {
128 timer
->it
.cpu
.expires
.sched
+= incr
;
129 timer
->it_overrun
+= 1 << i
;
133 cputime_t delta
, incr
;
135 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
137 incr
= timer
->it
.cpu
.incr
.cpu
;
138 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
139 timer
->it
.cpu
.expires
.cpu
);
140 /* Don't use (incr*2 < delta), incr*2 might overflow. */
141 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
142 incr
= cputime_add(incr
, incr
);
143 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
144 if (cputime_lt(delta
, incr
))
146 timer
->it
.cpu
.expires
.cpu
=
147 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
148 timer
->it_overrun
+= 1 << i
;
149 delta
= cputime_sub(delta
, incr
);
154 static inline cputime_t
prof_ticks(struct task_struct
*p
)
156 return cputime_add(p
->utime
, p
->stime
);
158 static inline cputime_t
virt_ticks(struct task_struct
*p
)
162 static inline unsigned long long sched_ns(struct task_struct
*p
)
164 return (p
== current
) ? current_sched_time(p
) : p
->sched_time
;
167 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
169 int error
= check_clock(which_clock
);
172 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
173 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
175 * If sched_clock is using a cycle counter, we
176 * don't have any idea of its true resolution
177 * exported, but it is much more than 1s/HZ.
185 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
188 * You can never reset a CPU clock, but we check for other errors
189 * in the call before failing with EPERM.
191 int error
= check_clock(which_clock
);
200 * Sample a per-thread clock for the given task.
202 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
203 union cpu_time_count
*cpu
)
205 switch (CPUCLOCK_WHICH(which_clock
)) {
209 cpu
->cpu
= prof_ticks(p
);
212 cpu
->cpu
= virt_ticks(p
);
215 cpu
->sched
= sched_ns(p
);
222 * Sample a process (thread group) clock for the given group_leader task.
223 * Must be called with tasklist_lock held for reading.
224 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
226 static int cpu_clock_sample_group_locked(unsigned int clock_idx
,
227 struct task_struct
*p
,
228 union cpu_time_count
*cpu
)
230 struct task_struct
*t
= p
;
235 cpu
->cpu
= cputime_add(p
->signal
->utime
, p
->signal
->stime
);
237 cpu
->cpu
= cputime_add(cpu
->cpu
, prof_ticks(t
));
242 cpu
->cpu
= p
->signal
->utime
;
244 cpu
->cpu
= cputime_add(cpu
->cpu
, virt_ticks(t
));
249 cpu
->sched
= p
->signal
->sched_time
;
250 /* Add in each other live thread. */
251 while ((t
= next_thread(t
)) != p
) {
252 cpu
->sched
+= t
->sched_time
;
254 cpu
->sched
+= sched_ns(p
);
261 * Sample a process (thread group) clock for the given group_leader task.
262 * Must be called with tasklist_lock held for reading.
264 static int cpu_clock_sample_group(const clockid_t which_clock
,
265 struct task_struct
*p
,
266 union cpu_time_count
*cpu
)
270 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
271 ret
= cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock
), p
,
273 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
278 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
280 const pid_t pid
= CPUCLOCK_PID(which_clock
);
282 union cpu_time_count rtn
;
286 * Special case constant value for our own clocks.
287 * We don't have to do any lookup to find ourselves.
289 if (CPUCLOCK_PERTHREAD(which_clock
)) {
291 * Sampling just ourselves we can do with no locking.
293 error
= cpu_clock_sample(which_clock
,
296 read_lock(&tasklist_lock
);
297 error
= cpu_clock_sample_group(which_clock
,
299 read_unlock(&tasklist_lock
);
303 * Find the given PID, and validate that the caller
304 * should be able to see it.
306 struct task_struct
*p
;
308 p
= find_task_by_pid(pid
);
310 if (CPUCLOCK_PERTHREAD(which_clock
)) {
311 if (p
->tgid
== current
->tgid
) {
312 error
= cpu_clock_sample(which_clock
,
316 read_lock(&tasklist_lock
);
317 if (p
->tgid
== pid
&& p
->signal
) {
319 cpu_clock_sample_group(which_clock
,
322 read_unlock(&tasklist_lock
);
330 sample_to_timespec(which_clock
, rtn
, tp
);
336 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
337 * This is called from sys_timer_create with the new timer already locked.
339 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
342 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
343 struct task_struct
*p
;
345 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
348 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
349 new_timer
->it
.cpu
.incr
.sched
= 0;
350 new_timer
->it
.cpu
.expires
.sched
= 0;
352 read_lock(&tasklist_lock
);
353 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
357 p
= find_task_by_pid(pid
);
358 if (p
&& p
->tgid
!= current
->tgid
)
363 p
= current
->group_leader
;
365 p
= find_task_by_pid(pid
);
366 if (p
&& p
->tgid
!= pid
)
370 new_timer
->it
.cpu
.task
= p
;
376 read_unlock(&tasklist_lock
);
382 * Clean up a CPU-clock timer that is about to be destroyed.
383 * This is called from timer deletion with the timer already locked.
384 * If we return TIMER_RETRY, it's necessary to release the timer's lock
385 * and try again. (This happens when the timer is in the middle of firing.)
387 int posix_cpu_timer_del(struct k_itimer
*timer
)
389 struct task_struct
*p
= timer
->it
.cpu
.task
;
392 if (likely(p
!= NULL
)) {
393 read_lock(&tasklist_lock
);
394 if (unlikely(p
->signal
== NULL
)) {
396 * We raced with the reaping of the task.
397 * The deletion should have cleared us off the list.
399 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
401 spin_lock(&p
->sighand
->siglock
);
402 if (timer
->it
.cpu
.firing
)
405 list_del(&timer
->it
.cpu
.entry
);
406 spin_unlock(&p
->sighand
->siglock
);
408 read_unlock(&tasklist_lock
);
418 * Clean out CPU timers still ticking when a thread exited. The task
419 * pointer is cleared, and the expiry time is replaced with the residual
420 * time for later timer_gettime calls to return.
421 * This must be called with the siglock held.
423 static void cleanup_timers(struct list_head
*head
,
424 cputime_t utime
, cputime_t stime
,
425 unsigned long long sched_time
)
427 struct cpu_timer_list
*timer
, *next
;
428 cputime_t ptime
= cputime_add(utime
, stime
);
430 list_for_each_entry_safe(timer
, next
, head
, entry
) {
431 list_del_init(&timer
->entry
);
432 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
433 timer
->expires
.cpu
= cputime_zero
;
435 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
441 list_for_each_entry_safe(timer
, next
, head
, entry
) {
442 list_del_init(&timer
->entry
);
443 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
444 timer
->expires
.cpu
= cputime_zero
;
446 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
452 list_for_each_entry_safe(timer
, next
, head
, entry
) {
453 list_del_init(&timer
->entry
);
454 if (timer
->expires
.sched
< sched_time
) {
455 timer
->expires
.sched
= 0;
457 timer
->expires
.sched
-= sched_time
;
463 * These are both called with the siglock held, when the current thread
464 * is being reaped. When the final (leader) thread in the group is reaped,
465 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
467 void posix_cpu_timers_exit(struct task_struct
*tsk
)
469 cleanup_timers(tsk
->cpu_timers
,
470 tsk
->utime
, tsk
->stime
, tsk
->sched_time
);
473 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
475 cleanup_timers(tsk
->signal
->cpu_timers
,
476 cputime_add(tsk
->utime
, tsk
->signal
->utime
),
477 cputime_add(tsk
->stime
, tsk
->signal
->stime
),
478 tsk
->sched_time
+ tsk
->signal
->sched_time
);
483 * Set the expiry times of all the threads in the process so one of them
484 * will go off before the process cumulative expiry total is reached.
486 static void process_timer_rebalance(struct task_struct
*p
,
487 unsigned int clock_idx
,
488 union cpu_time_count expires
,
489 union cpu_time_count val
)
491 cputime_t ticks
, left
;
492 unsigned long long ns
, nsleft
;
493 struct task_struct
*t
= p
;
494 unsigned int nthreads
= atomic_read(&p
->signal
->live
);
504 left
= cputime_div_non_zero(cputime_sub(expires
.cpu
, val
.cpu
),
507 if (likely(!(t
->flags
& PF_EXITING
))) {
508 ticks
= cputime_add(prof_ticks(t
), left
);
509 if (cputime_eq(t
->it_prof_expires
,
511 cputime_gt(t
->it_prof_expires
, ticks
)) {
512 t
->it_prof_expires
= ticks
;
519 left
= cputime_div_non_zero(cputime_sub(expires
.cpu
, val
.cpu
),
522 if (likely(!(t
->flags
& PF_EXITING
))) {
523 ticks
= cputime_add(virt_ticks(t
), left
);
524 if (cputime_eq(t
->it_virt_expires
,
526 cputime_gt(t
->it_virt_expires
, ticks
)) {
527 t
->it_virt_expires
= ticks
;
534 nsleft
= expires
.sched
- val
.sched
;
535 do_div(nsleft
, nthreads
);
536 nsleft
= max_t(unsigned long long, nsleft
, 1);
538 if (likely(!(t
->flags
& PF_EXITING
))) {
539 ns
= t
->sched_time
+ nsleft
;
540 if (t
->it_sched_expires
== 0 ||
541 t
->it_sched_expires
> ns
) {
542 t
->it_sched_expires
= ns
;
551 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
554 * That's all for this thread or process.
555 * We leave our residual in expires to be reported.
557 put_task_struct(timer
->it
.cpu
.task
);
558 timer
->it
.cpu
.task
= NULL
;
559 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
560 timer
->it
.cpu
.expires
,
565 * Insert the timer on the appropriate list before any timers that
566 * expire later. This must be called with the tasklist_lock held
567 * for reading, and interrupts disabled.
569 static void arm_timer(struct k_itimer
*timer
, union cpu_time_count now
)
571 struct task_struct
*p
= timer
->it
.cpu
.task
;
572 struct list_head
*head
, *listpos
;
573 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
574 struct cpu_timer_list
*next
;
577 head
= (CPUCLOCK_PERTHREAD(timer
->it_clock
) ?
578 p
->cpu_timers
: p
->signal
->cpu_timers
);
579 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
581 BUG_ON(!irqs_disabled());
582 spin_lock(&p
->sighand
->siglock
);
585 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
586 list_for_each_entry(next
, head
, entry
) {
587 if (next
->expires
.sched
> nt
->expires
.sched
)
589 listpos
= &next
->entry
;
592 list_for_each_entry(next
, head
, entry
) {
593 if (cputime_gt(next
->expires
.cpu
, nt
->expires
.cpu
))
595 listpos
= &next
->entry
;
598 list_add(&nt
->entry
, listpos
);
600 if (listpos
== head
) {
602 * We are the new earliest-expiring timer.
603 * If we are a thread timer, there can always
604 * be a process timer telling us to stop earlier.
607 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
608 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
612 if (cputime_eq(p
->it_prof_expires
,
614 cputime_gt(p
->it_prof_expires
,
616 p
->it_prof_expires
= nt
->expires
.cpu
;
619 if (cputime_eq(p
->it_virt_expires
,
621 cputime_gt(p
->it_virt_expires
,
623 p
->it_virt_expires
= nt
->expires
.cpu
;
626 if (p
->it_sched_expires
== 0 ||
627 p
->it_sched_expires
> nt
->expires
.sched
)
628 p
->it_sched_expires
= nt
->expires
.sched
;
633 * For a process timer, we must balance
634 * all the live threads' expirations.
636 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
640 if (!cputime_eq(p
->signal
->it_virt_expires
,
642 cputime_lt(p
->signal
->it_virt_expires
,
643 timer
->it
.cpu
.expires
.cpu
))
647 if (!cputime_eq(p
->signal
->it_prof_expires
,
649 cputime_lt(p
->signal
->it_prof_expires
,
650 timer
->it
.cpu
.expires
.cpu
))
652 i
= p
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
;
653 if (i
!= RLIM_INFINITY
&&
654 i
<= cputime_to_secs(timer
->it
.cpu
.expires
.cpu
))
659 process_timer_rebalance(
661 CPUCLOCK_WHICH(timer
->it_clock
),
662 timer
->it
.cpu
.expires
, now
);
668 spin_unlock(&p
->sighand
->siglock
);
672 * The timer is locked, fire it and arrange for its reload.
674 static void cpu_timer_fire(struct k_itimer
*timer
)
676 if (unlikely(timer
->sigq
== NULL
)) {
678 * This a special case for clock_nanosleep,
679 * not a normal timer from sys_timer_create.
681 wake_up_process(timer
->it_process
);
682 timer
->it
.cpu
.expires
.sched
= 0;
683 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
685 * One-shot timer. Clear it as soon as it's fired.
687 posix_timer_event(timer
, 0);
688 timer
->it
.cpu
.expires
.sched
= 0;
689 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
691 * The signal did not get queued because the signal
692 * was ignored, so we won't get any callback to
693 * reload the timer. But we need to keep it
694 * ticking in case the signal is deliverable next time.
696 posix_cpu_timer_schedule(timer
);
701 * Guts of sys_timer_settime for CPU timers.
702 * This is called with the timer locked and interrupts disabled.
703 * If we return TIMER_RETRY, it's necessary to release the timer's lock
704 * and try again. (This happens when the timer is in the middle of firing.)
706 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
707 struct itimerspec
*new, struct itimerspec
*old
)
709 struct task_struct
*p
= timer
->it
.cpu
.task
;
710 union cpu_time_count old_expires
, new_expires
, val
;
713 if (unlikely(p
== NULL
)) {
715 * Timer refers to a dead task's clock.
720 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
722 read_lock(&tasklist_lock
);
724 * We need the tasklist_lock to protect against reaping that
725 * clears p->signal. If p has just been reaped, we can no
726 * longer get any information about it at all.
728 if (unlikely(p
->signal
== NULL
)) {
729 read_unlock(&tasklist_lock
);
731 timer
->it
.cpu
.task
= NULL
;
736 * Disarm any old timer after extracting its expiry time.
738 BUG_ON(!irqs_disabled());
741 spin_lock(&p
->sighand
->siglock
);
742 old_expires
= timer
->it
.cpu
.expires
;
743 if (unlikely(timer
->it
.cpu
.firing
)) {
744 timer
->it
.cpu
.firing
= -1;
747 list_del_init(&timer
->it
.cpu
.entry
);
748 spin_unlock(&p
->sighand
->siglock
);
751 * We need to sample the current value to convert the new
752 * value from to relative and absolute, and to convert the
753 * old value from absolute to relative. To set a process
754 * timer, we need a sample to balance the thread expiry
755 * times (in arm_timer). With an absolute time, we must
756 * check if it's already passed. In short, we need a sample.
758 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
759 cpu_clock_sample(timer
->it_clock
, p
, &val
);
761 cpu_clock_sample_group(timer
->it_clock
, p
, &val
);
765 if (old_expires
.sched
== 0) {
766 old
->it_value
.tv_sec
= 0;
767 old
->it_value
.tv_nsec
= 0;
770 * Update the timer in case it has
771 * overrun already. If it has,
772 * we'll report it as having overrun
773 * and with the next reloaded timer
774 * already ticking, though we are
775 * swallowing that pending
776 * notification here to install the
779 bump_cpu_timer(timer
, val
);
780 if (cpu_time_before(timer
->it_clock
, val
,
781 timer
->it
.cpu
.expires
)) {
782 old_expires
= cpu_time_sub(
784 timer
->it
.cpu
.expires
, val
);
785 sample_to_timespec(timer
->it_clock
,
789 old
->it_value
.tv_nsec
= 1;
790 old
->it_value
.tv_sec
= 0;
797 * We are colliding with the timer actually firing.
798 * Punt after filling in the timer's old value, and
799 * disable this firing since we are already reporting
800 * it as an overrun (thanks to bump_cpu_timer above).
802 read_unlock(&tasklist_lock
);
806 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
807 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
811 * Install the new expiry time (or zero).
812 * For a timer with no notification action, we don't actually
813 * arm the timer (we'll just fake it for timer_gettime).
815 timer
->it
.cpu
.expires
= new_expires
;
816 if (new_expires
.sched
!= 0 &&
817 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
818 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
819 arm_timer(timer
, val
);
822 read_unlock(&tasklist_lock
);
825 * Install the new reload setting, and
826 * set up the signal and overrun bookkeeping.
828 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
832 * This acts as a modification timestamp for the timer,
833 * so any automatic reload attempt will punt on seeing
834 * that we have reset the timer manually.
836 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
838 timer
->it_overrun_last
= 0;
839 timer
->it_overrun
= -1;
841 if (new_expires
.sched
!= 0 &&
842 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
843 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
845 * The designated time already passed, so we notify
846 * immediately, even if the thread never runs to
847 * accumulate more time on this clock.
849 cpu_timer_fire(timer
);
855 sample_to_timespec(timer
->it_clock
,
856 timer
->it
.cpu
.incr
, &old
->it_interval
);
861 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
863 union cpu_time_count now
;
864 struct task_struct
*p
= timer
->it
.cpu
.task
;
868 * Easy part: convert the reload time.
870 sample_to_timespec(timer
->it_clock
,
871 timer
->it
.cpu
.incr
, &itp
->it_interval
);
873 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
874 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
878 if (unlikely(p
== NULL
)) {
880 * This task already died and the timer will never fire.
881 * In this case, expires is actually the dead value.
884 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
890 * Sample the clock to take the difference with the expiry time.
892 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
893 cpu_clock_sample(timer
->it_clock
, p
, &now
);
894 clear_dead
= p
->exit_state
;
896 read_lock(&tasklist_lock
);
897 if (unlikely(p
->signal
== NULL
)) {
899 * The process has been reaped.
900 * We can't even collect a sample any more.
901 * Call the timer disarmed, nothing else to do.
904 timer
->it
.cpu
.task
= NULL
;
905 timer
->it
.cpu
.expires
.sched
= 0;
906 read_unlock(&tasklist_lock
);
909 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
910 clear_dead
= (unlikely(p
->exit_state
) &&
911 thread_group_empty(p
));
913 read_unlock(&tasklist_lock
);
916 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
917 if (timer
->it
.cpu
.incr
.sched
== 0 &&
918 cpu_time_before(timer
->it_clock
,
919 timer
->it
.cpu
.expires
, now
)) {
921 * Do-nothing timer expired and has no reload,
922 * so it's as if it was never set.
924 timer
->it
.cpu
.expires
.sched
= 0;
925 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
929 * Account for any expirations and reloads that should
932 bump_cpu_timer(timer
, now
);
935 if (unlikely(clear_dead
)) {
937 * We've noticed that the thread is dead, but
938 * not yet reaped. Take this opportunity to
941 clear_dead_task(timer
, now
);
945 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
946 sample_to_timespec(timer
->it_clock
,
947 cpu_time_sub(timer
->it_clock
,
948 timer
->it
.cpu
.expires
, now
),
952 * The timer should have expired already, but the firing
953 * hasn't taken place yet. Say it's just about to expire.
955 itp
->it_value
.tv_nsec
= 1;
956 itp
->it_value
.tv_sec
= 0;
961 * Check for any per-thread CPU timers that have fired and move them off
962 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
963 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
965 static void check_thread_timers(struct task_struct
*tsk
,
966 struct list_head
*firing
)
969 struct list_head
*timers
= tsk
->cpu_timers
;
972 tsk
->it_prof_expires
= cputime_zero
;
973 while (!list_empty(timers
)) {
974 struct cpu_timer_list
*t
= list_entry(timers
->next
,
975 struct cpu_timer_list
,
977 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
978 tsk
->it_prof_expires
= t
->expires
.cpu
;
982 list_move_tail(&t
->entry
, firing
);
987 tsk
->it_virt_expires
= cputime_zero
;
988 while (!list_empty(timers
)) {
989 struct cpu_timer_list
*t
= list_entry(timers
->next
,
990 struct cpu_timer_list
,
992 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
993 tsk
->it_virt_expires
= t
->expires
.cpu
;
997 list_move_tail(&t
->entry
, firing
);
1002 tsk
->it_sched_expires
= 0;
1003 while (!list_empty(timers
)) {
1004 struct cpu_timer_list
*t
= list_entry(timers
->next
,
1005 struct cpu_timer_list
,
1007 if (!--maxfire
|| tsk
->sched_time
< t
->expires
.sched
) {
1008 tsk
->it_sched_expires
= t
->expires
.sched
;
1012 list_move_tail(&t
->entry
, firing
);
1017 * Check for any per-thread CPU timers that have fired and move them
1018 * off the tsk->*_timers list onto the firing list. Per-thread timers
1019 * have already been taken off.
1021 static void check_process_timers(struct task_struct
*tsk
,
1022 struct list_head
*firing
)
1025 struct signal_struct
*const sig
= tsk
->signal
;
1026 cputime_t utime
, stime
, ptime
, virt_expires
, prof_expires
;
1027 unsigned long long sched_time
, sched_expires
;
1028 struct task_struct
*t
;
1029 struct list_head
*timers
= sig
->cpu_timers
;
1032 * Don't sample the current process CPU clocks if there are no timers.
1034 if (list_empty(&timers
[CPUCLOCK_PROF
]) &&
1035 cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1036 sig
->rlim
[RLIMIT_CPU
].rlim_cur
== RLIM_INFINITY
&&
1037 list_empty(&timers
[CPUCLOCK_VIRT
]) &&
1038 cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1039 list_empty(&timers
[CPUCLOCK_SCHED
]))
1043 * Collect the current process totals.
1047 sched_time
= sig
->sched_time
;
1050 utime
= cputime_add(utime
, t
->utime
);
1051 stime
= cputime_add(stime
, t
->stime
);
1052 sched_time
+= t
->sched_time
;
1055 ptime
= cputime_add(utime
, stime
);
1058 prof_expires
= cputime_zero
;
1059 while (!list_empty(timers
)) {
1060 struct cpu_timer_list
*t
= list_entry(timers
->next
,
1061 struct cpu_timer_list
,
1063 if (!--maxfire
|| cputime_lt(ptime
, t
->expires
.cpu
)) {
1064 prof_expires
= t
->expires
.cpu
;
1068 list_move_tail(&t
->entry
, firing
);
1073 virt_expires
= cputime_zero
;
1074 while (!list_empty(timers
)) {
1075 struct cpu_timer_list
*t
= list_entry(timers
->next
,
1076 struct cpu_timer_list
,
1078 if (!--maxfire
|| cputime_lt(utime
, t
->expires
.cpu
)) {
1079 virt_expires
= t
->expires
.cpu
;
1083 list_move_tail(&t
->entry
, firing
);
1089 while (!list_empty(timers
)) {
1090 struct cpu_timer_list
*t
= list_entry(timers
->next
,
1091 struct cpu_timer_list
,
1093 if (!--maxfire
|| sched_time
< t
->expires
.sched
) {
1094 sched_expires
= t
->expires
.sched
;
1098 list_move_tail(&t
->entry
, firing
);
1102 * Check for the special case process timers.
1104 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1105 if (cputime_ge(ptime
, sig
->it_prof_expires
)) {
1106 /* ITIMER_PROF fires and reloads. */
1107 sig
->it_prof_expires
= sig
->it_prof_incr
;
1108 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1109 sig
->it_prof_expires
= cputime_add(
1110 sig
->it_prof_expires
, ptime
);
1112 __group_send_sig_info(SIGPROF
, SEND_SIG_PRIV
, tsk
);
1114 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1115 (cputime_eq(prof_expires
, cputime_zero
) ||
1116 cputime_lt(sig
->it_prof_expires
, prof_expires
))) {
1117 prof_expires
= sig
->it_prof_expires
;
1120 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1121 if (cputime_ge(utime
, sig
->it_virt_expires
)) {
1122 /* ITIMER_VIRTUAL fires and reloads. */
1123 sig
->it_virt_expires
= sig
->it_virt_incr
;
1124 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1125 sig
->it_virt_expires
= cputime_add(
1126 sig
->it_virt_expires
, utime
);
1128 __group_send_sig_info(SIGVTALRM
, SEND_SIG_PRIV
, tsk
);
1130 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1131 (cputime_eq(virt_expires
, cputime_zero
) ||
1132 cputime_lt(sig
->it_virt_expires
, virt_expires
))) {
1133 virt_expires
= sig
->it_virt_expires
;
1136 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1137 unsigned long psecs
= cputime_to_secs(ptime
);
1139 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1141 * At the hard limit, we just die.
1142 * No need to calculate anything else now.
1144 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1147 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_cur
) {
1149 * At the soft limit, send a SIGXCPU every second.
1151 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1152 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
1153 < sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1154 sig
->rlim
[RLIMIT_CPU
].rlim_cur
++;
1157 x
= secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1158 if (cputime_eq(prof_expires
, cputime_zero
) ||
1159 cputime_lt(x
, prof_expires
)) {
1164 if (!cputime_eq(prof_expires
, cputime_zero
) ||
1165 !cputime_eq(virt_expires
, cputime_zero
) ||
1166 sched_expires
!= 0) {
1168 * Rebalance the threads' expiry times for the remaining
1169 * process CPU timers.
1172 cputime_t prof_left
, virt_left
, ticks
;
1173 unsigned long long sched_left
, sched
;
1174 const unsigned int nthreads
= atomic_read(&sig
->live
);
1179 prof_left
= cputime_sub(prof_expires
, utime
);
1180 prof_left
= cputime_sub(prof_left
, stime
);
1181 prof_left
= cputime_div_non_zero(prof_left
, nthreads
);
1182 virt_left
= cputime_sub(virt_expires
, utime
);
1183 virt_left
= cputime_div_non_zero(virt_left
, nthreads
);
1184 if (sched_expires
) {
1185 sched_left
= sched_expires
- sched_time
;
1186 do_div(sched_left
, nthreads
);
1187 sched_left
= max_t(unsigned long long, sched_left
, 1);
1193 if (unlikely(t
->flags
& PF_EXITING
))
1196 ticks
= cputime_add(cputime_add(t
->utime
, t
->stime
),
1198 if (!cputime_eq(prof_expires
, cputime_zero
) &&
1199 (cputime_eq(t
->it_prof_expires
, cputime_zero
) ||
1200 cputime_gt(t
->it_prof_expires
, ticks
))) {
1201 t
->it_prof_expires
= ticks
;
1204 ticks
= cputime_add(t
->utime
, virt_left
);
1205 if (!cputime_eq(virt_expires
, cputime_zero
) &&
1206 (cputime_eq(t
->it_virt_expires
, cputime_zero
) ||
1207 cputime_gt(t
->it_virt_expires
, ticks
))) {
1208 t
->it_virt_expires
= ticks
;
1211 sched
= t
->sched_time
+ sched_left
;
1212 if (sched_expires
&& (t
->it_sched_expires
== 0 ||
1213 t
->it_sched_expires
> sched
)) {
1214 t
->it_sched_expires
= sched
;
1216 } while ((t
= next_thread(t
)) != tsk
);
1221 * This is called from the signal code (via do_schedule_next_timer)
1222 * when the last timer signal was delivered and we have to reload the timer.
1224 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1226 struct task_struct
*p
= timer
->it
.cpu
.task
;
1227 union cpu_time_count now
;
1229 if (unlikely(p
== NULL
))
1231 * The task was cleaned up already, no future firings.
1236 * Fetch the current sample and update the timer's expiry time.
1238 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1239 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1240 bump_cpu_timer(timer
, now
);
1241 if (unlikely(p
->exit_state
)) {
1242 clear_dead_task(timer
, now
);
1245 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1247 read_lock(&tasklist_lock
);
1248 if (unlikely(p
->signal
== NULL
)) {
1250 * The process has been reaped.
1251 * We can't even collect a sample any more.
1254 timer
->it
.cpu
.task
= p
= NULL
;
1255 timer
->it
.cpu
.expires
.sched
= 0;
1257 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1259 * We've noticed that the thread is dead, but
1260 * not yet reaped. Take this opportunity to
1261 * drop our task ref.
1263 clear_dead_task(timer
, now
);
1266 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
1267 bump_cpu_timer(timer
, now
);
1268 /* Leave the tasklist_lock locked for the call below. */
1272 * Now re-arm for the new expiry time.
1274 arm_timer(timer
, now
);
1277 read_unlock(&tasklist_lock
);
1280 timer
->it_overrun_last
= timer
->it_overrun
;
1281 timer
->it_overrun
= -1;
1282 ++timer
->it_requeue_pending
;
1286 * This is called from the timer interrupt handler. The irq handler has
1287 * already updated our counts. We need to check if any timers fire now.
1288 * Interrupts are disabled.
1290 void run_posix_cpu_timers(struct task_struct
*tsk
)
1293 struct k_itimer
*timer
, *next
;
1295 BUG_ON(!irqs_disabled());
1297 #define UNEXPIRED(clock) \
1298 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1299 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1301 if (UNEXPIRED(prof
) && UNEXPIRED(virt
) &&
1302 (tsk
->it_sched_expires
== 0 ||
1303 tsk
->sched_time
< tsk
->it_sched_expires
))
1309 * Double-check with locks held.
1311 read_lock(&tasklist_lock
);
1312 if (likely(tsk
->signal
!= NULL
)) {
1313 spin_lock(&tsk
->sighand
->siglock
);
1316 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1317 * all the timers that are firing, and put them on the firing list.
1319 check_thread_timers(tsk
, &firing
);
1320 check_process_timers(tsk
, &firing
);
1323 * We must release these locks before taking any timer's lock.
1324 * There is a potential race with timer deletion here, as the
1325 * siglock now protects our private firing list. We have set
1326 * the firing flag in each timer, so that a deletion attempt
1327 * that gets the timer lock before we do will give it up and
1328 * spin until we've taken care of that timer below.
1330 spin_unlock(&tsk
->sighand
->siglock
);
1332 read_unlock(&tasklist_lock
);
1335 * Now that all the timers on our list have the firing flag,
1336 * noone will touch their list entries but us. We'll take
1337 * each timer's lock before clearing its firing flag, so no
1338 * timer call will interfere.
1340 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1342 spin_lock(&timer
->it_lock
);
1343 list_del_init(&timer
->it
.cpu
.entry
);
1344 firing
= timer
->it
.cpu
.firing
;
1345 timer
->it
.cpu
.firing
= 0;
1347 * The firing flag is -1 if we collided with a reset
1348 * of the timer, which already reported this
1349 * almost-firing as an overrun. So don't generate an event.
1351 if (likely(firing
>= 0)) {
1352 cpu_timer_fire(timer
);
1354 spin_unlock(&timer
->it_lock
);
1359 * Set one of the process-wide special case CPU timers.
1360 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1361 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1362 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1363 * it to be absolute, *oldval is absolute and we update it to be relative.
1365 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1366 cputime_t
*newval
, cputime_t
*oldval
)
1368 union cpu_time_count now
;
1369 struct list_head
*head
;
1371 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1372 cpu_clock_sample_group_locked(clock_idx
, tsk
, &now
);
1375 if (!cputime_eq(*oldval
, cputime_zero
)) {
1376 if (cputime_le(*oldval
, now
.cpu
)) {
1377 /* Just about to fire. */
1378 *oldval
= jiffies_to_cputime(1);
1380 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1384 if (cputime_eq(*newval
, cputime_zero
))
1386 *newval
= cputime_add(*newval
, now
.cpu
);
1389 * If the RLIMIT_CPU timer will expire before the
1390 * ITIMER_PROF timer, we have nothing else to do.
1392 if (tsk
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
1393 < cputime_to_secs(*newval
))
1398 * Check whether there are any process timers already set to fire
1399 * before this one. If so, we don't have anything more to do.
1401 head
= &tsk
->signal
->cpu_timers
[clock_idx
];
1402 if (list_empty(head
) ||
1403 cputime_ge(list_entry(head
->next
,
1404 struct cpu_timer_list
, entry
)->expires
.cpu
,
1407 * Rejigger each thread's expiry time so that one will
1408 * notice before we hit the process-cumulative expiry time.
1410 union cpu_time_count expires
= { .sched
= 0 };
1411 expires
.cpu
= *newval
;
1412 process_timer_rebalance(tsk
, clock_idx
, expires
, now
);
1416 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1417 struct timespec
*rqtp
, struct itimerspec
*it
)
1419 struct k_itimer timer
;
1423 * Set up a temporary timer and then wait for it to go off.
1425 memset(&timer
, 0, sizeof timer
);
1426 spin_lock_init(&timer
.it_lock
);
1427 timer
.it_clock
= which_clock
;
1428 timer
.it_overrun
= -1;
1429 error
= posix_cpu_timer_create(&timer
);
1430 timer
.it_process
= current
;
1432 static struct itimerspec zero_it
;
1434 memset(it
, 0, sizeof *it
);
1435 it
->it_value
= *rqtp
;
1437 spin_lock_irq(&timer
.it_lock
);
1438 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1440 spin_unlock_irq(&timer
.it_lock
);
1444 while (!signal_pending(current
)) {
1445 if (timer
.it
.cpu
.expires
.sched
== 0) {
1447 * Our timer fired and was reset.
1449 spin_unlock_irq(&timer
.it_lock
);
1454 * Block until cpu_timer_fire (or a signal) wakes us.
1456 __set_current_state(TASK_INTERRUPTIBLE
);
1457 spin_unlock_irq(&timer
.it_lock
);
1459 spin_lock_irq(&timer
.it_lock
);
1463 * We were interrupted by a signal.
1465 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1466 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1467 spin_unlock_irq(&timer
.it_lock
);
1469 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1471 * It actually did fire already.
1476 error
= -ERESTART_RESTARTBLOCK
;
1482 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1483 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1485 struct restart_block
*restart_block
=
1486 ¤t_thread_info()->restart_block
;
1487 struct itimerspec it
;
1491 * Diagnose required errors first.
1493 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1494 (CPUCLOCK_PID(which_clock
) == 0 ||
1495 CPUCLOCK_PID(which_clock
) == current
->pid
))
1498 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1500 if (error
== -ERESTART_RESTARTBLOCK
) {
1502 if (flags
& TIMER_ABSTIME
)
1503 return -ERESTARTNOHAND
;
1505 * Report back to the user the time still remaining.
1507 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1510 restart_block
->fn
= posix_cpu_nsleep_restart
;
1511 restart_block
->arg0
= which_clock
;
1512 restart_block
->arg1
= (unsigned long) rmtp
;
1513 restart_block
->arg2
= rqtp
->tv_sec
;
1514 restart_block
->arg3
= rqtp
->tv_nsec
;
1519 long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1521 clockid_t which_clock
= restart_block
->arg0
;
1522 struct timespec __user
*rmtp
;
1524 struct itimerspec it
;
1527 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1528 t
.tv_sec
= restart_block
->arg2
;
1529 t
.tv_nsec
= restart_block
->arg3
;
1531 restart_block
->fn
= do_no_restart_syscall
;
1532 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1534 if (error
== -ERESTART_RESTARTBLOCK
) {
1536 * Report back to the user the time still remaining.
1538 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1541 restart_block
->fn
= posix_cpu_nsleep_restart
;
1542 restart_block
->arg0
= which_clock
;
1543 restart_block
->arg1
= (unsigned long) rmtp
;
1544 restart_block
->arg2
= t
.tv_sec
;
1545 restart_block
->arg3
= t
.tv_nsec
;
1552 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1553 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1555 static int process_cpu_clock_getres(const clockid_t which_clock
,
1556 struct timespec
*tp
)
1558 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1560 static int process_cpu_clock_get(const clockid_t which_clock
,
1561 struct timespec
*tp
)
1563 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1565 static int process_cpu_timer_create(struct k_itimer
*timer
)
1567 timer
->it_clock
= PROCESS_CLOCK
;
1568 return posix_cpu_timer_create(timer
);
1570 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1571 struct timespec
*rqtp
,
1572 struct timespec __user
*rmtp
)
1574 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1576 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1580 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1581 struct timespec
*tp
)
1583 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1585 static int thread_cpu_clock_get(const clockid_t which_clock
,
1586 struct timespec
*tp
)
1588 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1590 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1592 timer
->it_clock
= THREAD_CLOCK
;
1593 return posix_cpu_timer_create(timer
);
1595 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1596 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1600 static long thread_cpu_nsleep_restart(struct restart_block
*restart_block
)
1605 static __init
int init_posix_cpu_timers(void)
1607 struct k_clock process
= {
1608 .clock_getres
= process_cpu_clock_getres
,
1609 .clock_get
= process_cpu_clock_get
,
1610 .clock_set
= do_posix_clock_nosettime
,
1611 .timer_create
= process_cpu_timer_create
,
1612 .nsleep
= process_cpu_nsleep
,
1613 .nsleep_restart
= process_cpu_nsleep_restart
,
1615 struct k_clock thread
= {
1616 .clock_getres
= thread_cpu_clock_getres
,
1617 .clock_get
= thread_cpu_clock_get
,
1618 .clock_set
= do_posix_clock_nosettime
,
1619 .timer_create
= thread_cpu_timer_create
,
1620 .nsleep
= thread_cpu_nsleep
,
1621 .nsleep_restart
= thread_cpu_nsleep_restart
,
1624 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1625 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1629 __initcall(init_posix_cpu_timers
);