tpm_tis: Introduce durations sysfs entry
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blobddffc74cdebe50f1d83a592a6d905ad0ff011f16
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
54 #include <asm/uaccess.h>
56 #include <trace/events/vmscan.h>
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59 #define MEM_CGROUP_RECLAIM_RETRIES 5
60 struct mem_cgroup *root_mem_cgroup __read_mostly;
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly;
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata = 1;
69 #else
70 static int really_do_swap_account __initdata = 0;
71 #endif
73 #else
74 #define do_swap_account (0)
75 #endif
79 * Statistics for memory cgroup.
81 enum mem_cgroup_stat_index {
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
91 MEM_CGROUP_STAT_NSTATS,
94 enum mem_cgroup_events_index {
95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
98 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
100 MEM_CGROUP_EVENTS_NSTATS,
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
108 enum mem_cgroup_events_target {
109 MEM_CGROUP_TARGET_THRESH,
110 MEM_CGROUP_TARGET_SOFTLIMIT,
111 MEM_CGROUP_NTARGETS,
113 #define THRESHOLDS_EVENTS_TARGET (128)
114 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 struct mem_cgroup_stat_cpu {
117 long count[MEM_CGROUP_STAT_NSTATS];
118 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
119 unsigned long targets[MEM_CGROUP_NTARGETS];
123 * per-zone information in memory controller.
125 struct mem_cgroup_per_zone {
127 * spin_lock to protect the per cgroup LRU
129 struct list_head lists[NR_LRU_LISTS];
130 unsigned long count[NR_LRU_LISTS];
132 struct zone_reclaim_stat reclaim_stat;
133 struct rb_node tree_node; /* RB tree node */
134 unsigned long long usage_in_excess;/* Set to the value by which */
135 /* the soft limit is exceeded*/
136 bool on_tree;
137 struct mem_cgroup *mem; /* Back pointer, we cannot */
138 /* use container_of */
140 /* Macro for accessing counter */
141 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
143 struct mem_cgroup_per_node {
144 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147 struct mem_cgroup_lru_info {
148 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
152 * Cgroups above their limits are maintained in a RB-Tree, independent of
153 * their hierarchy representation
156 struct mem_cgroup_tree_per_zone {
157 struct rb_root rb_root;
158 spinlock_t lock;
161 struct mem_cgroup_tree_per_node {
162 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165 struct mem_cgroup_tree {
166 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171 struct mem_cgroup_threshold {
172 struct eventfd_ctx *eventfd;
173 u64 threshold;
176 /* For threshold */
177 struct mem_cgroup_threshold_ary {
178 /* An array index points to threshold just below usage. */
179 int current_threshold;
180 /* Size of entries[] */
181 unsigned int size;
182 /* Array of thresholds */
183 struct mem_cgroup_threshold entries[0];
186 struct mem_cgroup_thresholds {
187 /* Primary thresholds array */
188 struct mem_cgroup_threshold_ary *primary;
190 * Spare threshold array.
191 * This is needed to make mem_cgroup_unregister_event() "never fail".
192 * It must be able to store at least primary->size - 1 entries.
194 struct mem_cgroup_threshold_ary *spare;
197 /* for OOM */
198 struct mem_cgroup_eventfd_list {
199 struct list_head list;
200 struct eventfd_ctx *eventfd;
203 static void mem_cgroup_threshold(struct mem_cgroup *mem);
204 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207 * The memory controller data structure. The memory controller controls both
208 * page cache and RSS per cgroup. We would eventually like to provide
209 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
210 * to help the administrator determine what knobs to tune.
212 * TODO: Add a water mark for the memory controller. Reclaim will begin when
213 * we hit the water mark. May be even add a low water mark, such that
214 * no reclaim occurs from a cgroup at it's low water mark, this is
215 * a feature that will be implemented much later in the future.
217 struct mem_cgroup {
218 struct cgroup_subsys_state css;
220 * the counter to account for memory usage
222 struct res_counter res;
224 * the counter to account for mem+swap usage.
226 struct res_counter memsw;
228 * Per cgroup active and inactive list, similar to the
229 * per zone LRU lists.
231 struct mem_cgroup_lru_info info;
233 * While reclaiming in a hierarchy, we cache the last child we
234 * reclaimed from.
236 int last_scanned_child;
237 int last_scanned_node;
238 #if MAX_NUMNODES > 1
239 nodemask_t scan_nodes;
240 unsigned long next_scan_node_update;
241 #endif
243 * Should the accounting and control be hierarchical, per subtree?
245 bool use_hierarchy;
246 atomic_t oom_lock;
247 atomic_t refcnt;
249 unsigned int swappiness;
250 /* OOM-Killer disable */
251 int oom_kill_disable;
253 /* set when res.limit == memsw.limit */
254 bool memsw_is_minimum;
256 /* protect arrays of thresholds */
257 struct mutex thresholds_lock;
259 /* thresholds for memory usage. RCU-protected */
260 struct mem_cgroup_thresholds thresholds;
262 /* thresholds for mem+swap usage. RCU-protected */
263 struct mem_cgroup_thresholds memsw_thresholds;
265 /* For oom notifier event fd */
266 struct list_head oom_notify;
269 * Should we move charges of a task when a task is moved into this
270 * mem_cgroup ? And what type of charges should we move ?
272 unsigned long move_charge_at_immigrate;
274 * percpu counter.
276 struct mem_cgroup_stat_cpu *stat;
278 * used when a cpu is offlined or other synchronizations
279 * See mem_cgroup_read_stat().
281 struct mem_cgroup_stat_cpu nocpu_base;
282 spinlock_t pcp_counter_lock;
285 /* Stuffs for move charges at task migration. */
287 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
288 * left-shifted bitmap of these types.
290 enum move_type {
291 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
292 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
293 NR_MOVE_TYPE,
296 /* "mc" and its members are protected by cgroup_mutex */
297 static struct move_charge_struct {
298 spinlock_t lock; /* for from, to */
299 struct mem_cgroup *from;
300 struct mem_cgroup *to;
301 unsigned long precharge;
302 unsigned long moved_charge;
303 unsigned long moved_swap;
304 struct task_struct *moving_task; /* a task moving charges */
305 wait_queue_head_t waitq; /* a waitq for other context */
306 } mc = {
307 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
308 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
311 static bool move_anon(void)
313 return test_bit(MOVE_CHARGE_TYPE_ANON,
314 &mc.to->move_charge_at_immigrate);
317 static bool move_file(void)
319 return test_bit(MOVE_CHARGE_TYPE_FILE,
320 &mc.to->move_charge_at_immigrate);
324 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
325 * limit reclaim to prevent infinite loops, if they ever occur.
327 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
328 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
330 enum charge_type {
331 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
332 MEM_CGROUP_CHARGE_TYPE_MAPPED,
333 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
334 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
335 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
336 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
337 NR_CHARGE_TYPE,
340 /* for encoding cft->private value on file */
341 #define _MEM (0)
342 #define _MEMSWAP (1)
343 #define _OOM_TYPE (2)
344 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
345 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
346 #define MEMFILE_ATTR(val) ((val) & 0xffff)
347 /* Used for OOM nofiier */
348 #define OOM_CONTROL (0)
351 * Reclaim flags for mem_cgroup_hierarchical_reclaim
353 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
354 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
355 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
356 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
357 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
358 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
360 static void mem_cgroup_get(struct mem_cgroup *mem);
361 static void mem_cgroup_put(struct mem_cgroup *mem);
362 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
363 static void drain_all_stock_async(struct mem_cgroup *mem);
365 static struct mem_cgroup_per_zone *
366 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
368 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
371 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
373 return &mem->css;
376 static struct mem_cgroup_per_zone *
377 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
379 int nid = page_to_nid(page);
380 int zid = page_zonenum(page);
382 return mem_cgroup_zoneinfo(mem, nid, zid);
385 static struct mem_cgroup_tree_per_zone *
386 soft_limit_tree_node_zone(int nid, int zid)
388 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
391 static struct mem_cgroup_tree_per_zone *
392 soft_limit_tree_from_page(struct page *page)
394 int nid = page_to_nid(page);
395 int zid = page_zonenum(page);
397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
400 static void
401 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
402 struct mem_cgroup_per_zone *mz,
403 struct mem_cgroup_tree_per_zone *mctz,
404 unsigned long long new_usage_in_excess)
406 struct rb_node **p = &mctz->rb_root.rb_node;
407 struct rb_node *parent = NULL;
408 struct mem_cgroup_per_zone *mz_node;
410 if (mz->on_tree)
411 return;
413 mz->usage_in_excess = new_usage_in_excess;
414 if (!mz->usage_in_excess)
415 return;
416 while (*p) {
417 parent = *p;
418 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
419 tree_node);
420 if (mz->usage_in_excess < mz_node->usage_in_excess)
421 p = &(*p)->rb_left;
423 * We can't avoid mem cgroups that are over their soft
424 * limit by the same amount
426 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
427 p = &(*p)->rb_right;
429 rb_link_node(&mz->tree_node, parent, p);
430 rb_insert_color(&mz->tree_node, &mctz->rb_root);
431 mz->on_tree = true;
434 static void
435 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
436 struct mem_cgroup_per_zone *mz,
437 struct mem_cgroup_tree_per_zone *mctz)
439 if (!mz->on_tree)
440 return;
441 rb_erase(&mz->tree_node, &mctz->rb_root);
442 mz->on_tree = false;
445 static void
446 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
447 struct mem_cgroup_per_zone *mz,
448 struct mem_cgroup_tree_per_zone *mctz)
450 spin_lock(&mctz->lock);
451 __mem_cgroup_remove_exceeded(mem, mz, mctz);
452 spin_unlock(&mctz->lock);
456 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458 unsigned long long excess;
459 struct mem_cgroup_per_zone *mz;
460 struct mem_cgroup_tree_per_zone *mctz;
461 int nid = page_to_nid(page);
462 int zid = page_zonenum(page);
463 mctz = soft_limit_tree_from_page(page);
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
469 for (; mem; mem = parent_mem_cgroup(mem)) {
470 mz = mem_cgroup_zoneinfo(mem, nid, zid);
471 excess = res_counter_soft_limit_excess(&mem->res);
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
476 if (excess || mz->on_tree) {
477 spin_lock(&mctz->lock);
478 /* if on-tree, remove it */
479 if (mz->on_tree)
480 __mem_cgroup_remove_exceeded(mem, mz, mctz);
482 * Insert again. mz->usage_in_excess will be updated.
483 * If excess is 0, no tree ops.
485 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
486 spin_unlock(&mctz->lock);
491 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493 int node, zone;
494 struct mem_cgroup_per_zone *mz;
495 struct mem_cgroup_tree_per_zone *mctz;
497 for_each_node_state(node, N_POSSIBLE) {
498 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
499 mz = mem_cgroup_zoneinfo(mem, node, zone);
500 mctz = soft_limit_tree_node_zone(node, zone);
501 mem_cgroup_remove_exceeded(mem, mz, mctz);
506 static struct mem_cgroup_per_zone *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
509 struct rb_node *rightmost = NULL;
510 struct mem_cgroup_per_zone *mz;
512 retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
518 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
524 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
525 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
526 !css_tryget(&mz->mem->css))
527 goto retry;
528 done:
529 return mz;
532 static struct mem_cgroup_per_zone *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
535 struct mem_cgroup_per_zone *mz;
537 spin_lock(&mctz->lock);
538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 spin_unlock(&mctz->lock);
540 return mz;
544 * Implementation Note: reading percpu statistics for memcg.
546 * Both of vmstat[] and percpu_counter has threshold and do periodic
547 * synchronization to implement "quick" read. There are trade-off between
548 * reading cost and precision of value. Then, we may have a chance to implement
549 * a periodic synchronizion of counter in memcg's counter.
551 * But this _read() function is used for user interface now. The user accounts
552 * memory usage by memory cgroup and he _always_ requires exact value because
553 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
554 * have to visit all online cpus and make sum. So, for now, unnecessary
555 * synchronization is not implemented. (just implemented for cpu hotplug)
557 * If there are kernel internal actions which can make use of some not-exact
558 * value, and reading all cpu value can be performance bottleneck in some
559 * common workload, threashold and synchonization as vmstat[] should be
560 * implemented.
562 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
563 enum mem_cgroup_stat_index idx)
565 long val = 0;
566 int cpu;
568 get_online_cpus();
569 for_each_online_cpu(cpu)
570 val += per_cpu(mem->stat->count[idx], cpu);
571 #ifdef CONFIG_HOTPLUG_CPU
572 spin_lock(&mem->pcp_counter_lock);
573 val += mem->nocpu_base.count[idx];
574 spin_unlock(&mem->pcp_counter_lock);
575 #endif
576 put_online_cpus();
577 return val;
580 static long mem_cgroup_local_usage(struct mem_cgroup *mem)
582 long ret;
584 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
585 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
586 return ret;
589 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
590 bool charge)
592 int val = (charge) ? 1 : -1;
593 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
596 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
598 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
601 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
603 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
606 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
607 enum mem_cgroup_events_index idx)
609 unsigned long val = 0;
610 int cpu;
612 for_each_online_cpu(cpu)
613 val += per_cpu(mem->stat->events[idx], cpu);
614 #ifdef CONFIG_HOTPLUG_CPU
615 spin_lock(&mem->pcp_counter_lock);
616 val += mem->nocpu_base.events[idx];
617 spin_unlock(&mem->pcp_counter_lock);
618 #endif
619 return val;
622 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
623 bool file, int nr_pages)
625 preempt_disable();
627 if (file)
628 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
629 else
630 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
632 /* pagein of a big page is an event. So, ignore page size */
633 if (nr_pages > 0)
634 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
635 else {
636 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
637 nr_pages = -nr_pages; /* for event */
640 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
642 preempt_enable();
645 static unsigned long
646 mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
648 struct mem_cgroup_per_zone *mz;
649 u64 total = 0;
650 int zid;
652 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
653 mz = mem_cgroup_zoneinfo(mem, nid, zid);
654 total += MEM_CGROUP_ZSTAT(mz, idx);
656 return total;
658 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
659 enum lru_list idx)
661 int nid;
662 u64 total = 0;
664 for_each_online_node(nid)
665 total += mem_cgroup_get_zonestat_node(mem, nid, idx);
666 return total;
669 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
671 unsigned long val, next;
673 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
674 next = this_cpu_read(mem->stat->targets[target]);
675 /* from time_after() in jiffies.h */
676 return ((long)next - (long)val < 0);
679 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
681 unsigned long val, next;
683 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
685 switch (target) {
686 case MEM_CGROUP_TARGET_THRESH:
687 next = val + THRESHOLDS_EVENTS_TARGET;
688 break;
689 case MEM_CGROUP_TARGET_SOFTLIMIT:
690 next = val + SOFTLIMIT_EVENTS_TARGET;
691 break;
692 default:
693 return;
696 this_cpu_write(mem->stat->targets[target], next);
700 * Check events in order.
703 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
705 /* threshold event is triggered in finer grain than soft limit */
706 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
707 mem_cgroup_threshold(mem);
708 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
709 if (unlikely(__memcg_event_check(mem,
710 MEM_CGROUP_TARGET_SOFTLIMIT))){
711 mem_cgroup_update_tree(mem, page);
712 __mem_cgroup_target_update(mem,
713 MEM_CGROUP_TARGET_SOFTLIMIT);
718 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
720 return container_of(cgroup_subsys_state(cont,
721 mem_cgroup_subsys_id), struct mem_cgroup,
722 css);
725 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
728 * mm_update_next_owner() may clear mm->owner to NULL
729 * if it races with swapoff, page migration, etc.
730 * So this can be called with p == NULL.
732 if (unlikely(!p))
733 return NULL;
735 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
736 struct mem_cgroup, css);
739 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
741 struct mem_cgroup *mem = NULL;
743 if (!mm)
744 return NULL;
746 * Because we have no locks, mm->owner's may be being moved to other
747 * cgroup. We use css_tryget() here even if this looks
748 * pessimistic (rather than adding locks here).
750 rcu_read_lock();
751 do {
752 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
753 if (unlikely(!mem))
754 break;
755 } while (!css_tryget(&mem->css));
756 rcu_read_unlock();
757 return mem;
760 /* The caller has to guarantee "mem" exists before calling this */
761 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
763 struct cgroup_subsys_state *css;
764 int found;
766 if (!mem) /* ROOT cgroup has the smallest ID */
767 return root_mem_cgroup; /*css_put/get against root is ignored*/
768 if (!mem->use_hierarchy) {
769 if (css_tryget(&mem->css))
770 return mem;
771 return NULL;
773 rcu_read_lock();
775 * searching a memory cgroup which has the smallest ID under given
776 * ROOT cgroup. (ID >= 1)
778 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
779 if (css && css_tryget(css))
780 mem = container_of(css, struct mem_cgroup, css);
781 else
782 mem = NULL;
783 rcu_read_unlock();
784 return mem;
787 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
788 struct mem_cgroup *root,
789 bool cond)
791 int nextid = css_id(&iter->css) + 1;
792 int found;
793 int hierarchy_used;
794 struct cgroup_subsys_state *css;
796 hierarchy_used = iter->use_hierarchy;
798 css_put(&iter->css);
799 /* If no ROOT, walk all, ignore hierarchy */
800 if (!cond || (root && !hierarchy_used))
801 return NULL;
803 if (!root)
804 root = root_mem_cgroup;
806 do {
807 iter = NULL;
808 rcu_read_lock();
810 css = css_get_next(&mem_cgroup_subsys, nextid,
811 &root->css, &found);
812 if (css && css_tryget(css))
813 iter = container_of(css, struct mem_cgroup, css);
814 rcu_read_unlock();
815 /* If css is NULL, no more cgroups will be found */
816 nextid = found + 1;
817 } while (css && !iter);
819 return iter;
822 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
823 * be careful that "break" loop is not allowed. We have reference count.
824 * Instead of that modify "cond" to be false and "continue" to exit the loop.
826 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
827 for (iter = mem_cgroup_start_loop(root);\
828 iter != NULL;\
829 iter = mem_cgroup_get_next(iter, root, cond))
831 #define for_each_mem_cgroup_tree(iter, root) \
832 for_each_mem_cgroup_tree_cond(iter, root, true)
834 #define for_each_mem_cgroup_all(iter) \
835 for_each_mem_cgroup_tree_cond(iter, NULL, true)
838 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
840 return (mem == root_mem_cgroup);
843 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
845 struct mem_cgroup *mem;
847 if (!mm)
848 return;
850 rcu_read_lock();
851 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
852 if (unlikely(!mem))
853 goto out;
855 switch (idx) {
856 case PGMAJFAULT:
857 mem_cgroup_pgmajfault(mem, 1);
858 break;
859 case PGFAULT:
860 mem_cgroup_pgfault(mem, 1);
861 break;
862 default:
863 BUG();
865 out:
866 rcu_read_unlock();
868 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
871 * Following LRU functions are allowed to be used without PCG_LOCK.
872 * Operations are called by routine of global LRU independently from memcg.
873 * What we have to take care of here is validness of pc->mem_cgroup.
875 * Changes to pc->mem_cgroup happens when
876 * 1. charge
877 * 2. moving account
878 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
879 * It is added to LRU before charge.
880 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
881 * When moving account, the page is not on LRU. It's isolated.
884 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
886 struct page_cgroup *pc;
887 struct mem_cgroup_per_zone *mz;
889 if (mem_cgroup_disabled())
890 return;
891 pc = lookup_page_cgroup(page);
892 /* can happen while we handle swapcache. */
893 if (!TestClearPageCgroupAcctLRU(pc))
894 return;
895 VM_BUG_ON(!pc->mem_cgroup);
897 * We don't check PCG_USED bit. It's cleared when the "page" is finally
898 * removed from global LRU.
900 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
901 /* huge page split is done under lru_lock. so, we have no races. */
902 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
903 if (mem_cgroup_is_root(pc->mem_cgroup))
904 return;
905 VM_BUG_ON(list_empty(&pc->lru));
906 list_del_init(&pc->lru);
909 void mem_cgroup_del_lru(struct page *page)
911 mem_cgroup_del_lru_list(page, page_lru(page));
915 * Writeback is about to end against a page which has been marked for immediate
916 * reclaim. If it still appears to be reclaimable, move it to the tail of the
917 * inactive list.
919 void mem_cgroup_rotate_reclaimable_page(struct page *page)
921 struct mem_cgroup_per_zone *mz;
922 struct page_cgroup *pc;
923 enum lru_list lru = page_lru(page);
925 if (mem_cgroup_disabled())
926 return;
928 pc = lookup_page_cgroup(page);
929 /* unused or root page is not rotated. */
930 if (!PageCgroupUsed(pc))
931 return;
932 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
933 smp_rmb();
934 if (mem_cgroup_is_root(pc->mem_cgroup))
935 return;
936 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
937 list_move_tail(&pc->lru, &mz->lists[lru]);
940 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
942 struct mem_cgroup_per_zone *mz;
943 struct page_cgroup *pc;
945 if (mem_cgroup_disabled())
946 return;
948 pc = lookup_page_cgroup(page);
949 /* unused or root page is not rotated. */
950 if (!PageCgroupUsed(pc))
951 return;
952 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
953 smp_rmb();
954 if (mem_cgroup_is_root(pc->mem_cgroup))
955 return;
956 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
957 list_move(&pc->lru, &mz->lists[lru]);
960 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
962 struct page_cgroup *pc;
963 struct mem_cgroup_per_zone *mz;
965 if (mem_cgroup_disabled())
966 return;
967 pc = lookup_page_cgroup(page);
968 VM_BUG_ON(PageCgroupAcctLRU(pc));
969 if (!PageCgroupUsed(pc))
970 return;
971 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
972 smp_rmb();
973 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
974 /* huge page split is done under lru_lock. so, we have no races. */
975 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
976 SetPageCgroupAcctLRU(pc);
977 if (mem_cgroup_is_root(pc->mem_cgroup))
978 return;
979 list_add(&pc->lru, &mz->lists[lru]);
983 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
984 * while it's linked to lru because the page may be reused after it's fully
985 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
986 * It's done under lock_page and expected that zone->lru_lock isnever held.
988 static void mem_cgroup_lru_del_before_commit(struct page *page)
990 unsigned long flags;
991 struct zone *zone = page_zone(page);
992 struct page_cgroup *pc = lookup_page_cgroup(page);
995 * Doing this check without taking ->lru_lock seems wrong but this
996 * is safe. Because if page_cgroup's USED bit is unset, the page
997 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
998 * set, the commit after this will fail, anyway.
999 * This all charge/uncharge is done under some mutual execustion.
1000 * So, we don't need to taking care of changes in USED bit.
1002 if (likely(!PageLRU(page)))
1003 return;
1005 spin_lock_irqsave(&zone->lru_lock, flags);
1007 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1008 * is guarded by lock_page() because the page is SwapCache.
1010 if (!PageCgroupUsed(pc))
1011 mem_cgroup_del_lru_list(page, page_lru(page));
1012 spin_unlock_irqrestore(&zone->lru_lock, flags);
1015 static void mem_cgroup_lru_add_after_commit(struct page *page)
1017 unsigned long flags;
1018 struct zone *zone = page_zone(page);
1019 struct page_cgroup *pc = lookup_page_cgroup(page);
1021 /* taking care of that the page is added to LRU while we commit it */
1022 if (likely(!PageLRU(page)))
1023 return;
1024 spin_lock_irqsave(&zone->lru_lock, flags);
1025 /* link when the page is linked to LRU but page_cgroup isn't */
1026 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1027 mem_cgroup_add_lru_list(page, page_lru(page));
1028 spin_unlock_irqrestore(&zone->lru_lock, flags);
1032 void mem_cgroup_move_lists(struct page *page,
1033 enum lru_list from, enum lru_list to)
1035 if (mem_cgroup_disabled())
1036 return;
1037 mem_cgroup_del_lru_list(page, from);
1038 mem_cgroup_add_lru_list(page, to);
1041 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1043 int ret;
1044 struct mem_cgroup *curr = NULL;
1045 struct task_struct *p;
1047 p = find_lock_task_mm(task);
1048 if (!p)
1049 return 0;
1050 curr = try_get_mem_cgroup_from_mm(p->mm);
1051 task_unlock(p);
1052 if (!curr)
1053 return 0;
1055 * We should check use_hierarchy of "mem" not "curr". Because checking
1056 * use_hierarchy of "curr" here make this function true if hierarchy is
1057 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1058 * hierarchy(even if use_hierarchy is disabled in "mem").
1060 if (mem->use_hierarchy)
1061 ret = css_is_ancestor(&curr->css, &mem->css);
1062 else
1063 ret = (curr == mem);
1064 css_put(&curr->css);
1065 return ret;
1068 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1070 unsigned long active;
1071 unsigned long inactive;
1072 unsigned long gb;
1073 unsigned long inactive_ratio;
1075 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1076 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1078 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1079 if (gb)
1080 inactive_ratio = int_sqrt(10 * gb);
1081 else
1082 inactive_ratio = 1;
1084 if (present_pages) {
1085 present_pages[0] = inactive;
1086 present_pages[1] = active;
1089 return inactive_ratio;
1092 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1094 unsigned long active;
1095 unsigned long inactive;
1096 unsigned long present_pages[2];
1097 unsigned long inactive_ratio;
1099 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1101 inactive = present_pages[0];
1102 active = present_pages[1];
1104 if (inactive * inactive_ratio < active)
1105 return 1;
1107 return 0;
1110 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1112 unsigned long active;
1113 unsigned long inactive;
1115 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1116 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1118 return (active > inactive);
1121 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
1122 struct zone *zone,
1123 enum lru_list lru)
1125 int nid = zone_to_nid(zone);
1126 int zid = zone_idx(zone);
1127 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1129 return MEM_CGROUP_ZSTAT(mz, lru);
1132 #ifdef CONFIG_NUMA
1133 static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg,
1134 int nid)
1136 unsigned long ret;
1138 ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) +
1139 mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE);
1141 return ret;
1144 static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg)
1146 u64 total = 0;
1147 int nid;
1149 for_each_node_state(nid, N_HIGH_MEMORY)
1150 total += mem_cgroup_node_nr_file_lru_pages(memcg, nid);
1152 return total;
1155 static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg,
1156 int nid)
1158 unsigned long ret;
1160 ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) +
1161 mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON);
1163 return ret;
1166 static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg)
1168 u64 total = 0;
1169 int nid;
1171 for_each_node_state(nid, N_HIGH_MEMORY)
1172 total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid);
1174 return total;
1177 static unsigned long
1178 mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid)
1180 return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE);
1183 static unsigned long
1184 mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg)
1186 u64 total = 0;
1187 int nid;
1189 for_each_node_state(nid, N_HIGH_MEMORY)
1190 total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid);
1192 return total;
1195 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1196 int nid)
1198 enum lru_list l;
1199 u64 total = 0;
1201 for_each_lru(l)
1202 total += mem_cgroup_get_zonestat_node(memcg, nid, l);
1204 return total;
1207 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg)
1209 u64 total = 0;
1210 int nid;
1212 for_each_node_state(nid, N_HIGH_MEMORY)
1213 total += mem_cgroup_node_nr_lru_pages(memcg, nid);
1215 return total;
1217 #endif /* CONFIG_NUMA */
1219 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1220 struct zone *zone)
1222 int nid = zone_to_nid(zone);
1223 int zid = zone_idx(zone);
1224 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1226 return &mz->reclaim_stat;
1229 struct zone_reclaim_stat *
1230 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1232 struct page_cgroup *pc;
1233 struct mem_cgroup_per_zone *mz;
1235 if (mem_cgroup_disabled())
1236 return NULL;
1238 pc = lookup_page_cgroup(page);
1239 if (!PageCgroupUsed(pc))
1240 return NULL;
1241 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1242 smp_rmb();
1243 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1244 return &mz->reclaim_stat;
1247 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1248 struct list_head *dst,
1249 unsigned long *scanned, int order,
1250 int mode, struct zone *z,
1251 struct mem_cgroup *mem_cont,
1252 int active, int file)
1254 unsigned long nr_taken = 0;
1255 struct page *page;
1256 unsigned long scan;
1257 LIST_HEAD(pc_list);
1258 struct list_head *src;
1259 struct page_cgroup *pc, *tmp;
1260 int nid = zone_to_nid(z);
1261 int zid = zone_idx(z);
1262 struct mem_cgroup_per_zone *mz;
1263 int lru = LRU_FILE * file + active;
1264 int ret;
1266 BUG_ON(!mem_cont);
1267 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1268 src = &mz->lists[lru];
1270 scan = 0;
1271 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1272 if (scan >= nr_to_scan)
1273 break;
1275 if (unlikely(!PageCgroupUsed(pc)))
1276 continue;
1278 page = lookup_cgroup_page(pc);
1280 if (unlikely(!PageLRU(page)))
1281 continue;
1283 scan++;
1284 ret = __isolate_lru_page(page, mode, file);
1285 switch (ret) {
1286 case 0:
1287 list_move(&page->lru, dst);
1288 mem_cgroup_del_lru(page);
1289 nr_taken += hpage_nr_pages(page);
1290 break;
1291 case -EBUSY:
1292 /* we don't affect global LRU but rotate in our LRU */
1293 mem_cgroup_rotate_lru_list(page, page_lru(page));
1294 break;
1295 default:
1296 break;
1300 *scanned = scan;
1302 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1303 0, 0, 0, mode);
1305 return nr_taken;
1308 #define mem_cgroup_from_res_counter(counter, member) \
1309 container_of(counter, struct mem_cgroup, member)
1312 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1313 * @mem: the memory cgroup
1315 * Returns the maximum amount of memory @mem can be charged with, in
1316 * pages.
1318 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1320 unsigned long long margin;
1322 margin = res_counter_margin(&mem->res);
1323 if (do_swap_account)
1324 margin = min(margin, res_counter_margin(&mem->memsw));
1325 return margin >> PAGE_SHIFT;
1328 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1330 struct cgroup *cgrp = memcg->css.cgroup;
1332 /* root ? */
1333 if (cgrp->parent == NULL)
1334 return vm_swappiness;
1336 return memcg->swappiness;
1339 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1341 int cpu;
1343 get_online_cpus();
1344 spin_lock(&mem->pcp_counter_lock);
1345 for_each_online_cpu(cpu)
1346 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1347 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1348 spin_unlock(&mem->pcp_counter_lock);
1349 put_online_cpus();
1351 synchronize_rcu();
1354 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1356 int cpu;
1358 if (!mem)
1359 return;
1360 get_online_cpus();
1361 spin_lock(&mem->pcp_counter_lock);
1362 for_each_online_cpu(cpu)
1363 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1364 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1365 spin_unlock(&mem->pcp_counter_lock);
1366 put_online_cpus();
1369 * 2 routines for checking "mem" is under move_account() or not.
1371 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1372 * for avoiding race in accounting. If true,
1373 * pc->mem_cgroup may be overwritten.
1375 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1376 * under hierarchy of moving cgroups. This is for
1377 * waiting at hith-memory prressure caused by "move".
1380 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1382 VM_BUG_ON(!rcu_read_lock_held());
1383 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1386 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1388 struct mem_cgroup *from;
1389 struct mem_cgroup *to;
1390 bool ret = false;
1392 * Unlike task_move routines, we access mc.to, mc.from not under
1393 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1395 spin_lock(&mc.lock);
1396 from = mc.from;
1397 to = mc.to;
1398 if (!from)
1399 goto unlock;
1400 if (from == mem || to == mem
1401 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1402 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1403 ret = true;
1404 unlock:
1405 spin_unlock(&mc.lock);
1406 return ret;
1409 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1411 if (mc.moving_task && current != mc.moving_task) {
1412 if (mem_cgroup_under_move(mem)) {
1413 DEFINE_WAIT(wait);
1414 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1415 /* moving charge context might have finished. */
1416 if (mc.moving_task)
1417 schedule();
1418 finish_wait(&mc.waitq, &wait);
1419 return true;
1422 return false;
1426 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1427 * @memcg: The memory cgroup that went over limit
1428 * @p: Task that is going to be killed
1430 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1431 * enabled
1433 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1435 struct cgroup *task_cgrp;
1436 struct cgroup *mem_cgrp;
1438 * Need a buffer in BSS, can't rely on allocations. The code relies
1439 * on the assumption that OOM is serialized for memory controller.
1440 * If this assumption is broken, revisit this code.
1442 static char memcg_name[PATH_MAX];
1443 int ret;
1445 if (!memcg || !p)
1446 return;
1449 rcu_read_lock();
1451 mem_cgrp = memcg->css.cgroup;
1452 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1454 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1455 if (ret < 0) {
1457 * Unfortunately, we are unable to convert to a useful name
1458 * But we'll still print out the usage information
1460 rcu_read_unlock();
1461 goto done;
1463 rcu_read_unlock();
1465 printk(KERN_INFO "Task in %s killed", memcg_name);
1467 rcu_read_lock();
1468 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1469 if (ret < 0) {
1470 rcu_read_unlock();
1471 goto done;
1473 rcu_read_unlock();
1476 * Continues from above, so we don't need an KERN_ level
1478 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1479 done:
1481 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1482 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1483 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1484 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1485 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1486 "failcnt %llu\n",
1487 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1488 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1489 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1493 * This function returns the number of memcg under hierarchy tree. Returns
1494 * 1(self count) if no children.
1496 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1498 int num = 0;
1499 struct mem_cgroup *iter;
1501 for_each_mem_cgroup_tree(iter, mem)
1502 num++;
1503 return num;
1507 * Return the memory (and swap, if configured) limit for a memcg.
1509 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1511 u64 limit;
1512 u64 memsw;
1514 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1515 limit += total_swap_pages << PAGE_SHIFT;
1517 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1519 * If memsw is finite and limits the amount of swap space available
1520 * to this memcg, return that limit.
1522 return min(limit, memsw);
1526 * Visit the first child (need not be the first child as per the ordering
1527 * of the cgroup list, since we track last_scanned_child) of @mem and use
1528 * that to reclaim free pages from.
1530 static struct mem_cgroup *
1531 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1533 struct mem_cgroup *ret = NULL;
1534 struct cgroup_subsys_state *css;
1535 int nextid, found;
1537 if (!root_mem->use_hierarchy) {
1538 css_get(&root_mem->css);
1539 ret = root_mem;
1542 while (!ret) {
1543 rcu_read_lock();
1544 nextid = root_mem->last_scanned_child + 1;
1545 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1546 &found);
1547 if (css && css_tryget(css))
1548 ret = container_of(css, struct mem_cgroup, css);
1550 rcu_read_unlock();
1551 /* Updates scanning parameter */
1552 if (!css) {
1553 /* this means start scan from ID:1 */
1554 root_mem->last_scanned_child = 0;
1555 } else
1556 root_mem->last_scanned_child = found;
1559 return ret;
1562 #if MAX_NUMNODES > 1
1565 * Always updating the nodemask is not very good - even if we have an empty
1566 * list or the wrong list here, we can start from some node and traverse all
1567 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1570 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1572 int nid;
1574 if (time_after(mem->next_scan_node_update, jiffies))
1575 return;
1577 mem->next_scan_node_update = jiffies + 10*HZ;
1578 /* make a nodemask where this memcg uses memory from */
1579 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1581 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1583 if (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_FILE) ||
1584 mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_FILE))
1585 continue;
1587 if (total_swap_pages &&
1588 (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_ANON) ||
1589 mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_ANON)))
1590 continue;
1591 node_clear(nid, mem->scan_nodes);
1596 * Selecting a node where we start reclaim from. Because what we need is just
1597 * reducing usage counter, start from anywhere is O,K. Considering
1598 * memory reclaim from current node, there are pros. and cons.
1600 * Freeing memory from current node means freeing memory from a node which
1601 * we'll use or we've used. So, it may make LRU bad. And if several threads
1602 * hit limits, it will see a contention on a node. But freeing from remote
1603 * node means more costs for memory reclaim because of memory latency.
1605 * Now, we use round-robin. Better algorithm is welcomed.
1607 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1609 int node;
1611 mem_cgroup_may_update_nodemask(mem);
1612 node = mem->last_scanned_node;
1614 node = next_node(node, mem->scan_nodes);
1615 if (node == MAX_NUMNODES)
1616 node = first_node(mem->scan_nodes);
1618 * We call this when we hit limit, not when pages are added to LRU.
1619 * No LRU may hold pages because all pages are UNEVICTABLE or
1620 * memcg is too small and all pages are not on LRU. In that case,
1621 * we use curret node.
1623 if (unlikely(node == MAX_NUMNODES))
1624 node = numa_node_id();
1626 mem->last_scanned_node = node;
1627 return node;
1630 #else
1631 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1633 return 0;
1635 #endif
1638 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1639 * we reclaimed from, so that we don't end up penalizing one child extensively
1640 * based on its position in the children list.
1642 * root_mem is the original ancestor that we've been reclaim from.
1644 * We give up and return to the caller when we visit root_mem twice.
1645 * (other groups can be removed while we're walking....)
1647 * If shrink==true, for avoiding to free too much, this returns immedieately.
1649 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1650 struct zone *zone,
1651 gfp_t gfp_mask,
1652 unsigned long reclaim_options,
1653 unsigned long *total_scanned)
1655 struct mem_cgroup *victim;
1656 int ret, total = 0;
1657 int loop = 0;
1658 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1659 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1660 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1661 unsigned long excess;
1662 unsigned long nr_scanned;
1664 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1666 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1667 if (!check_soft && root_mem->memsw_is_minimum)
1668 noswap = true;
1670 while (1) {
1671 victim = mem_cgroup_select_victim(root_mem);
1672 if (victim == root_mem) {
1673 loop++;
1675 * We are not draining per cpu cached charges during
1676 * soft limit reclaim because global reclaim doesn't
1677 * care about charges. It tries to free some memory and
1678 * charges will not give any.
1680 if (!check_soft && loop >= 1)
1681 drain_all_stock_async(root_mem);
1682 if (loop >= 2) {
1684 * If we have not been able to reclaim
1685 * anything, it might because there are
1686 * no reclaimable pages under this hierarchy
1688 if (!check_soft || !total) {
1689 css_put(&victim->css);
1690 break;
1693 * We want to do more targeted reclaim.
1694 * excess >> 2 is not to excessive so as to
1695 * reclaim too much, nor too less that we keep
1696 * coming back to reclaim from this cgroup
1698 if (total >= (excess >> 2) ||
1699 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1700 css_put(&victim->css);
1701 break;
1705 if (!mem_cgroup_local_usage(victim)) {
1706 /* this cgroup's local usage == 0 */
1707 css_put(&victim->css);
1708 continue;
1710 /* we use swappiness of local cgroup */
1711 if (check_soft) {
1712 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1713 noswap, get_swappiness(victim), zone,
1714 &nr_scanned);
1715 *total_scanned += nr_scanned;
1716 } else
1717 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1718 noswap, get_swappiness(victim));
1719 css_put(&victim->css);
1721 * At shrinking usage, we can't check we should stop here or
1722 * reclaim more. It's depends on callers. last_scanned_child
1723 * will work enough for keeping fairness under tree.
1725 if (shrink)
1726 return ret;
1727 total += ret;
1728 if (check_soft) {
1729 if (!res_counter_soft_limit_excess(&root_mem->res))
1730 return total;
1731 } else if (mem_cgroup_margin(root_mem))
1732 return total;
1734 return total;
1738 * Check OOM-Killer is already running under our hierarchy.
1739 * If someone is running, return false.
1741 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1743 int x, lock_count = 0;
1744 struct mem_cgroup *iter;
1746 for_each_mem_cgroup_tree(iter, mem) {
1747 x = atomic_inc_return(&iter->oom_lock);
1748 lock_count = max(x, lock_count);
1751 if (lock_count == 1)
1752 return true;
1753 return false;
1756 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1758 struct mem_cgroup *iter;
1761 * When a new child is created while the hierarchy is under oom,
1762 * mem_cgroup_oom_lock() may not be called. We have to use
1763 * atomic_add_unless() here.
1765 for_each_mem_cgroup_tree(iter, mem)
1766 atomic_add_unless(&iter->oom_lock, -1, 0);
1767 return 0;
1771 static DEFINE_MUTEX(memcg_oom_mutex);
1772 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1774 struct oom_wait_info {
1775 struct mem_cgroup *mem;
1776 wait_queue_t wait;
1779 static int memcg_oom_wake_function(wait_queue_t *wait,
1780 unsigned mode, int sync, void *arg)
1782 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1783 struct oom_wait_info *oom_wait_info;
1785 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1787 if (oom_wait_info->mem == wake_mem)
1788 goto wakeup;
1789 /* if no hierarchy, no match */
1790 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1791 return 0;
1793 * Both of oom_wait_info->mem and wake_mem are stable under us.
1794 * Then we can use css_is_ancestor without taking care of RCU.
1796 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1797 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1798 return 0;
1800 wakeup:
1801 return autoremove_wake_function(wait, mode, sync, arg);
1804 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1806 /* for filtering, pass "mem" as argument. */
1807 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1810 static void memcg_oom_recover(struct mem_cgroup *mem)
1812 if (mem && atomic_read(&mem->oom_lock))
1813 memcg_wakeup_oom(mem);
1817 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1819 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1821 struct oom_wait_info owait;
1822 bool locked, need_to_kill;
1824 owait.mem = mem;
1825 owait.wait.flags = 0;
1826 owait.wait.func = memcg_oom_wake_function;
1827 owait.wait.private = current;
1828 INIT_LIST_HEAD(&owait.wait.task_list);
1829 need_to_kill = true;
1830 /* At first, try to OOM lock hierarchy under mem.*/
1831 mutex_lock(&memcg_oom_mutex);
1832 locked = mem_cgroup_oom_lock(mem);
1834 * Even if signal_pending(), we can't quit charge() loop without
1835 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1836 * under OOM is always welcomed, use TASK_KILLABLE here.
1838 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1839 if (!locked || mem->oom_kill_disable)
1840 need_to_kill = false;
1841 if (locked)
1842 mem_cgroup_oom_notify(mem);
1843 mutex_unlock(&memcg_oom_mutex);
1845 if (need_to_kill) {
1846 finish_wait(&memcg_oom_waitq, &owait.wait);
1847 mem_cgroup_out_of_memory(mem, mask);
1848 } else {
1849 schedule();
1850 finish_wait(&memcg_oom_waitq, &owait.wait);
1852 mutex_lock(&memcg_oom_mutex);
1853 mem_cgroup_oom_unlock(mem);
1854 memcg_wakeup_oom(mem);
1855 mutex_unlock(&memcg_oom_mutex);
1857 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1858 return false;
1859 /* Give chance to dying process */
1860 schedule_timeout(1);
1861 return true;
1865 * Currently used to update mapped file statistics, but the routine can be
1866 * generalized to update other statistics as well.
1868 * Notes: Race condition
1870 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1871 * it tends to be costly. But considering some conditions, we doesn't need
1872 * to do so _always_.
1874 * Considering "charge", lock_page_cgroup() is not required because all
1875 * file-stat operations happen after a page is attached to radix-tree. There
1876 * are no race with "charge".
1878 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1879 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1880 * if there are race with "uncharge". Statistics itself is properly handled
1881 * by flags.
1883 * Considering "move", this is an only case we see a race. To make the race
1884 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1885 * possibility of race condition. If there is, we take a lock.
1888 void mem_cgroup_update_page_stat(struct page *page,
1889 enum mem_cgroup_page_stat_item idx, int val)
1891 struct mem_cgroup *mem;
1892 struct page_cgroup *pc = lookup_page_cgroup(page);
1893 bool need_unlock = false;
1894 unsigned long uninitialized_var(flags);
1896 if (unlikely(!pc))
1897 return;
1899 rcu_read_lock();
1900 mem = pc->mem_cgroup;
1901 if (unlikely(!mem || !PageCgroupUsed(pc)))
1902 goto out;
1903 /* pc->mem_cgroup is unstable ? */
1904 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1905 /* take a lock against to access pc->mem_cgroup */
1906 move_lock_page_cgroup(pc, &flags);
1907 need_unlock = true;
1908 mem = pc->mem_cgroup;
1909 if (!mem || !PageCgroupUsed(pc))
1910 goto out;
1913 switch (idx) {
1914 case MEMCG_NR_FILE_MAPPED:
1915 if (val > 0)
1916 SetPageCgroupFileMapped(pc);
1917 else if (!page_mapped(page))
1918 ClearPageCgroupFileMapped(pc);
1919 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1920 break;
1921 default:
1922 BUG();
1925 this_cpu_add(mem->stat->count[idx], val);
1927 out:
1928 if (unlikely(need_unlock))
1929 move_unlock_page_cgroup(pc, &flags);
1930 rcu_read_unlock();
1931 return;
1933 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1936 * size of first charge trial. "32" comes from vmscan.c's magic value.
1937 * TODO: maybe necessary to use big numbers in big irons.
1939 #define CHARGE_BATCH 32U
1940 struct memcg_stock_pcp {
1941 struct mem_cgroup *cached; /* this never be root cgroup */
1942 unsigned int nr_pages;
1943 struct work_struct work;
1944 unsigned long flags;
1945 #define FLUSHING_CACHED_CHARGE (0)
1947 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1948 static DEFINE_MUTEX(percpu_charge_mutex);
1951 * Try to consume stocked charge on this cpu. If success, one page is consumed
1952 * from local stock and true is returned. If the stock is 0 or charges from a
1953 * cgroup which is not current target, returns false. This stock will be
1954 * refilled.
1956 static bool consume_stock(struct mem_cgroup *mem)
1958 struct memcg_stock_pcp *stock;
1959 bool ret = true;
1961 stock = &get_cpu_var(memcg_stock);
1962 if (mem == stock->cached && stock->nr_pages)
1963 stock->nr_pages--;
1964 else /* need to call res_counter_charge */
1965 ret = false;
1966 put_cpu_var(memcg_stock);
1967 return ret;
1971 * Returns stocks cached in percpu to res_counter and reset cached information.
1973 static void drain_stock(struct memcg_stock_pcp *stock)
1975 struct mem_cgroup *old = stock->cached;
1977 if (stock->nr_pages) {
1978 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1980 res_counter_uncharge(&old->res, bytes);
1981 if (do_swap_account)
1982 res_counter_uncharge(&old->memsw, bytes);
1983 stock->nr_pages = 0;
1985 stock->cached = NULL;
1989 * This must be called under preempt disabled or must be called by
1990 * a thread which is pinned to local cpu.
1992 static void drain_local_stock(struct work_struct *dummy)
1994 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1995 drain_stock(stock);
1996 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2000 * Cache charges(val) which is from res_counter, to local per_cpu area.
2001 * This will be consumed by consume_stock() function, later.
2003 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2005 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2007 if (stock->cached != mem) { /* reset if necessary */
2008 drain_stock(stock);
2009 stock->cached = mem;
2011 stock->nr_pages += nr_pages;
2012 put_cpu_var(memcg_stock);
2016 * Tries to drain stocked charges in other cpus. This function is asynchronous
2017 * and just put a work per cpu for draining localy on each cpu. Caller can
2018 * expects some charges will be back to res_counter later but cannot wait for
2019 * it.
2021 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2023 int cpu, curcpu;
2025 * If someone calls draining, avoid adding more kworker runs.
2027 if (!mutex_trylock(&percpu_charge_mutex))
2028 return;
2029 /* Notify other cpus that system-wide "drain" is running */
2030 get_online_cpus();
2032 * Get a hint for avoiding draining charges on the current cpu,
2033 * which must be exhausted by our charging. It is not required that
2034 * this be a precise check, so we use raw_smp_processor_id() instead of
2035 * getcpu()/putcpu().
2037 curcpu = raw_smp_processor_id();
2038 for_each_online_cpu(cpu) {
2039 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2040 struct mem_cgroup *mem;
2042 if (cpu == curcpu)
2043 continue;
2045 mem = stock->cached;
2046 if (!mem)
2047 continue;
2048 if (mem != root_mem) {
2049 if (!root_mem->use_hierarchy)
2050 continue;
2051 /* check whether "mem" is under tree of "root_mem" */
2052 if (!css_is_ancestor(&mem->css, &root_mem->css))
2053 continue;
2055 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2056 schedule_work_on(cpu, &stock->work);
2058 put_online_cpus();
2059 mutex_unlock(&percpu_charge_mutex);
2060 /* We don't wait for flush_work */
2063 /* This is a synchronous drain interface. */
2064 static void drain_all_stock_sync(void)
2066 /* called when force_empty is called */
2067 mutex_lock(&percpu_charge_mutex);
2068 schedule_on_each_cpu(drain_local_stock);
2069 mutex_unlock(&percpu_charge_mutex);
2073 * This function drains percpu counter value from DEAD cpu and
2074 * move it to local cpu. Note that this function can be preempted.
2076 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2078 int i;
2080 spin_lock(&mem->pcp_counter_lock);
2081 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2082 long x = per_cpu(mem->stat->count[i], cpu);
2084 per_cpu(mem->stat->count[i], cpu) = 0;
2085 mem->nocpu_base.count[i] += x;
2087 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2088 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2090 per_cpu(mem->stat->events[i], cpu) = 0;
2091 mem->nocpu_base.events[i] += x;
2093 /* need to clear ON_MOVE value, works as a kind of lock. */
2094 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2095 spin_unlock(&mem->pcp_counter_lock);
2098 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2100 int idx = MEM_CGROUP_ON_MOVE;
2102 spin_lock(&mem->pcp_counter_lock);
2103 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2104 spin_unlock(&mem->pcp_counter_lock);
2107 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2108 unsigned long action,
2109 void *hcpu)
2111 int cpu = (unsigned long)hcpu;
2112 struct memcg_stock_pcp *stock;
2113 struct mem_cgroup *iter;
2115 if ((action == CPU_ONLINE)) {
2116 for_each_mem_cgroup_all(iter)
2117 synchronize_mem_cgroup_on_move(iter, cpu);
2118 return NOTIFY_OK;
2121 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2122 return NOTIFY_OK;
2124 for_each_mem_cgroup_all(iter)
2125 mem_cgroup_drain_pcp_counter(iter, cpu);
2127 stock = &per_cpu(memcg_stock, cpu);
2128 drain_stock(stock);
2129 return NOTIFY_OK;
2133 /* See __mem_cgroup_try_charge() for details */
2134 enum {
2135 CHARGE_OK, /* success */
2136 CHARGE_RETRY, /* need to retry but retry is not bad */
2137 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2138 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2139 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2142 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2143 unsigned int nr_pages, bool oom_check)
2145 unsigned long csize = nr_pages * PAGE_SIZE;
2146 struct mem_cgroup *mem_over_limit;
2147 struct res_counter *fail_res;
2148 unsigned long flags = 0;
2149 int ret;
2151 ret = res_counter_charge(&mem->res, csize, &fail_res);
2153 if (likely(!ret)) {
2154 if (!do_swap_account)
2155 return CHARGE_OK;
2156 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2157 if (likely(!ret))
2158 return CHARGE_OK;
2160 res_counter_uncharge(&mem->res, csize);
2161 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2162 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2163 } else
2164 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2166 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2167 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2169 * Never reclaim on behalf of optional batching, retry with a
2170 * single page instead.
2172 if (nr_pages == CHARGE_BATCH)
2173 return CHARGE_RETRY;
2175 if (!(gfp_mask & __GFP_WAIT))
2176 return CHARGE_WOULDBLOCK;
2178 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2179 gfp_mask, flags, NULL);
2180 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2181 return CHARGE_RETRY;
2183 * Even though the limit is exceeded at this point, reclaim
2184 * may have been able to free some pages. Retry the charge
2185 * before killing the task.
2187 * Only for regular pages, though: huge pages are rather
2188 * unlikely to succeed so close to the limit, and we fall back
2189 * to regular pages anyway in case of failure.
2191 if (nr_pages == 1 && ret)
2192 return CHARGE_RETRY;
2195 * At task move, charge accounts can be doubly counted. So, it's
2196 * better to wait until the end of task_move if something is going on.
2198 if (mem_cgroup_wait_acct_move(mem_over_limit))
2199 return CHARGE_RETRY;
2201 /* If we don't need to call oom-killer at el, return immediately */
2202 if (!oom_check)
2203 return CHARGE_NOMEM;
2204 /* check OOM */
2205 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2206 return CHARGE_OOM_DIE;
2208 return CHARGE_RETRY;
2212 * Unlike exported interface, "oom" parameter is added. if oom==true,
2213 * oom-killer can be invoked.
2215 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2216 gfp_t gfp_mask,
2217 unsigned int nr_pages,
2218 struct mem_cgroup **memcg,
2219 bool oom)
2221 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2222 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2223 struct mem_cgroup *mem = NULL;
2224 int ret;
2227 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2228 * in system level. So, allow to go ahead dying process in addition to
2229 * MEMDIE process.
2231 if (unlikely(test_thread_flag(TIF_MEMDIE)
2232 || fatal_signal_pending(current)))
2233 goto bypass;
2236 * We always charge the cgroup the mm_struct belongs to.
2237 * The mm_struct's mem_cgroup changes on task migration if the
2238 * thread group leader migrates. It's possible that mm is not
2239 * set, if so charge the init_mm (happens for pagecache usage).
2241 if (!*memcg && !mm)
2242 goto bypass;
2243 again:
2244 if (*memcg) { /* css should be a valid one */
2245 mem = *memcg;
2246 VM_BUG_ON(css_is_removed(&mem->css));
2247 if (mem_cgroup_is_root(mem))
2248 goto done;
2249 if (nr_pages == 1 && consume_stock(mem))
2250 goto done;
2251 css_get(&mem->css);
2252 } else {
2253 struct task_struct *p;
2255 rcu_read_lock();
2256 p = rcu_dereference(mm->owner);
2258 * Because we don't have task_lock(), "p" can exit.
2259 * In that case, "mem" can point to root or p can be NULL with
2260 * race with swapoff. Then, we have small risk of mis-accouning.
2261 * But such kind of mis-account by race always happens because
2262 * we don't have cgroup_mutex(). It's overkill and we allo that
2263 * small race, here.
2264 * (*) swapoff at el will charge against mm-struct not against
2265 * task-struct. So, mm->owner can be NULL.
2267 mem = mem_cgroup_from_task(p);
2268 if (!mem || mem_cgroup_is_root(mem)) {
2269 rcu_read_unlock();
2270 goto done;
2272 if (nr_pages == 1 && consume_stock(mem)) {
2274 * It seems dagerous to access memcg without css_get().
2275 * But considering how consume_stok works, it's not
2276 * necessary. If consume_stock success, some charges
2277 * from this memcg are cached on this cpu. So, we
2278 * don't need to call css_get()/css_tryget() before
2279 * calling consume_stock().
2281 rcu_read_unlock();
2282 goto done;
2284 /* after here, we may be blocked. we need to get refcnt */
2285 if (!css_tryget(&mem->css)) {
2286 rcu_read_unlock();
2287 goto again;
2289 rcu_read_unlock();
2292 do {
2293 bool oom_check;
2295 /* If killed, bypass charge */
2296 if (fatal_signal_pending(current)) {
2297 css_put(&mem->css);
2298 goto bypass;
2301 oom_check = false;
2302 if (oom && !nr_oom_retries) {
2303 oom_check = true;
2304 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2307 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2308 switch (ret) {
2309 case CHARGE_OK:
2310 break;
2311 case CHARGE_RETRY: /* not in OOM situation but retry */
2312 batch = nr_pages;
2313 css_put(&mem->css);
2314 mem = NULL;
2315 goto again;
2316 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2317 css_put(&mem->css);
2318 goto nomem;
2319 case CHARGE_NOMEM: /* OOM routine works */
2320 if (!oom) {
2321 css_put(&mem->css);
2322 goto nomem;
2324 /* If oom, we never return -ENOMEM */
2325 nr_oom_retries--;
2326 break;
2327 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2328 css_put(&mem->css);
2329 goto bypass;
2331 } while (ret != CHARGE_OK);
2333 if (batch > nr_pages)
2334 refill_stock(mem, batch - nr_pages);
2335 css_put(&mem->css);
2336 done:
2337 *memcg = mem;
2338 return 0;
2339 nomem:
2340 *memcg = NULL;
2341 return -ENOMEM;
2342 bypass:
2343 *memcg = NULL;
2344 return 0;
2348 * Somemtimes we have to undo a charge we got by try_charge().
2349 * This function is for that and do uncharge, put css's refcnt.
2350 * gotten by try_charge().
2352 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2353 unsigned int nr_pages)
2355 if (!mem_cgroup_is_root(mem)) {
2356 unsigned long bytes = nr_pages * PAGE_SIZE;
2358 res_counter_uncharge(&mem->res, bytes);
2359 if (do_swap_account)
2360 res_counter_uncharge(&mem->memsw, bytes);
2365 * A helper function to get mem_cgroup from ID. must be called under
2366 * rcu_read_lock(). The caller must check css_is_removed() or some if
2367 * it's concern. (dropping refcnt from swap can be called against removed
2368 * memcg.)
2370 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2372 struct cgroup_subsys_state *css;
2374 /* ID 0 is unused ID */
2375 if (!id)
2376 return NULL;
2377 css = css_lookup(&mem_cgroup_subsys, id);
2378 if (!css)
2379 return NULL;
2380 return container_of(css, struct mem_cgroup, css);
2383 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2385 struct mem_cgroup *mem = NULL;
2386 struct page_cgroup *pc;
2387 unsigned short id;
2388 swp_entry_t ent;
2390 VM_BUG_ON(!PageLocked(page));
2392 pc = lookup_page_cgroup(page);
2393 lock_page_cgroup(pc);
2394 if (PageCgroupUsed(pc)) {
2395 mem = pc->mem_cgroup;
2396 if (mem && !css_tryget(&mem->css))
2397 mem = NULL;
2398 } else if (PageSwapCache(page)) {
2399 ent.val = page_private(page);
2400 id = lookup_swap_cgroup(ent);
2401 rcu_read_lock();
2402 mem = mem_cgroup_lookup(id);
2403 if (mem && !css_tryget(&mem->css))
2404 mem = NULL;
2405 rcu_read_unlock();
2407 unlock_page_cgroup(pc);
2408 return mem;
2411 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2412 struct page *page,
2413 unsigned int nr_pages,
2414 struct page_cgroup *pc,
2415 enum charge_type ctype)
2417 lock_page_cgroup(pc);
2418 if (unlikely(PageCgroupUsed(pc))) {
2419 unlock_page_cgroup(pc);
2420 __mem_cgroup_cancel_charge(mem, nr_pages);
2421 return;
2424 * we don't need page_cgroup_lock about tail pages, becase they are not
2425 * accessed by any other context at this point.
2427 pc->mem_cgroup = mem;
2429 * We access a page_cgroup asynchronously without lock_page_cgroup().
2430 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2431 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2432 * before USED bit, we need memory barrier here.
2433 * See mem_cgroup_add_lru_list(), etc.
2435 smp_wmb();
2436 switch (ctype) {
2437 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2438 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2439 SetPageCgroupCache(pc);
2440 SetPageCgroupUsed(pc);
2441 break;
2442 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2443 ClearPageCgroupCache(pc);
2444 SetPageCgroupUsed(pc);
2445 break;
2446 default:
2447 break;
2450 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2451 unlock_page_cgroup(pc);
2453 * "charge_statistics" updated event counter. Then, check it.
2454 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2455 * if they exceeds softlimit.
2457 memcg_check_events(mem, page);
2460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2462 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2463 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2465 * Because tail pages are not marked as "used", set it. We're under
2466 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2468 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2470 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2471 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2472 unsigned long flags;
2474 if (mem_cgroup_disabled())
2475 return;
2477 * We have no races with charge/uncharge but will have races with
2478 * page state accounting.
2480 move_lock_page_cgroup(head_pc, &flags);
2482 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2483 smp_wmb(); /* see __commit_charge() */
2484 if (PageCgroupAcctLRU(head_pc)) {
2485 enum lru_list lru;
2486 struct mem_cgroup_per_zone *mz;
2489 * LRU flags cannot be copied because we need to add tail
2490 *.page to LRU by generic call and our hook will be called.
2491 * We hold lru_lock, then, reduce counter directly.
2493 lru = page_lru(head);
2494 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2495 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2497 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2498 move_unlock_page_cgroup(head_pc, &flags);
2500 #endif
2503 * mem_cgroup_move_account - move account of the page
2504 * @page: the page
2505 * @nr_pages: number of regular pages (>1 for huge pages)
2506 * @pc: page_cgroup of the page.
2507 * @from: mem_cgroup which the page is moved from.
2508 * @to: mem_cgroup which the page is moved to. @from != @to.
2509 * @uncharge: whether we should call uncharge and css_put against @from.
2511 * The caller must confirm following.
2512 * - page is not on LRU (isolate_page() is useful.)
2513 * - compound_lock is held when nr_pages > 1
2515 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2516 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2517 * true, this function does "uncharge" from old cgroup, but it doesn't if
2518 * @uncharge is false, so a caller should do "uncharge".
2520 static int mem_cgroup_move_account(struct page *page,
2521 unsigned int nr_pages,
2522 struct page_cgroup *pc,
2523 struct mem_cgroup *from,
2524 struct mem_cgroup *to,
2525 bool uncharge)
2527 unsigned long flags;
2528 int ret;
2530 VM_BUG_ON(from == to);
2531 VM_BUG_ON(PageLRU(page));
2533 * The page is isolated from LRU. So, collapse function
2534 * will not handle this page. But page splitting can happen.
2535 * Do this check under compound_page_lock(). The caller should
2536 * hold it.
2538 ret = -EBUSY;
2539 if (nr_pages > 1 && !PageTransHuge(page))
2540 goto out;
2542 lock_page_cgroup(pc);
2544 ret = -EINVAL;
2545 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2546 goto unlock;
2548 move_lock_page_cgroup(pc, &flags);
2550 if (PageCgroupFileMapped(pc)) {
2551 /* Update mapped_file data for mem_cgroup */
2552 preempt_disable();
2553 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2554 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2555 preempt_enable();
2557 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2558 if (uncharge)
2559 /* This is not "cancel", but cancel_charge does all we need. */
2560 __mem_cgroup_cancel_charge(from, nr_pages);
2562 /* caller should have done css_get */
2563 pc->mem_cgroup = to;
2564 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2566 * We charges against "to" which may not have any tasks. Then, "to"
2567 * can be under rmdir(). But in current implementation, caller of
2568 * this function is just force_empty() and move charge, so it's
2569 * guaranteed that "to" is never removed. So, we don't check rmdir
2570 * status here.
2572 move_unlock_page_cgroup(pc, &flags);
2573 ret = 0;
2574 unlock:
2575 unlock_page_cgroup(pc);
2577 * check events
2579 memcg_check_events(to, page);
2580 memcg_check_events(from, page);
2581 out:
2582 return ret;
2586 * move charges to its parent.
2589 static int mem_cgroup_move_parent(struct page *page,
2590 struct page_cgroup *pc,
2591 struct mem_cgroup *child,
2592 gfp_t gfp_mask)
2594 struct cgroup *cg = child->css.cgroup;
2595 struct cgroup *pcg = cg->parent;
2596 struct mem_cgroup *parent;
2597 unsigned int nr_pages;
2598 unsigned long uninitialized_var(flags);
2599 int ret;
2601 /* Is ROOT ? */
2602 if (!pcg)
2603 return -EINVAL;
2605 ret = -EBUSY;
2606 if (!get_page_unless_zero(page))
2607 goto out;
2608 if (isolate_lru_page(page))
2609 goto put;
2611 nr_pages = hpage_nr_pages(page);
2613 parent = mem_cgroup_from_cont(pcg);
2614 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2615 if (ret || !parent)
2616 goto put_back;
2618 if (nr_pages > 1)
2619 flags = compound_lock_irqsave(page);
2621 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2622 if (ret)
2623 __mem_cgroup_cancel_charge(parent, nr_pages);
2625 if (nr_pages > 1)
2626 compound_unlock_irqrestore(page, flags);
2627 put_back:
2628 putback_lru_page(page);
2629 put:
2630 put_page(page);
2631 out:
2632 return ret;
2636 * Charge the memory controller for page usage.
2637 * Return
2638 * 0 if the charge was successful
2639 * < 0 if the cgroup is over its limit
2641 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2642 gfp_t gfp_mask, enum charge_type ctype)
2644 struct mem_cgroup *mem = NULL;
2645 unsigned int nr_pages = 1;
2646 struct page_cgroup *pc;
2647 bool oom = true;
2648 int ret;
2650 if (PageTransHuge(page)) {
2651 nr_pages <<= compound_order(page);
2652 VM_BUG_ON(!PageTransHuge(page));
2654 * Never OOM-kill a process for a huge page. The
2655 * fault handler will fall back to regular pages.
2657 oom = false;
2660 pc = lookup_page_cgroup(page);
2661 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2663 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2664 if (ret || !mem)
2665 return ret;
2667 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2668 return 0;
2671 int mem_cgroup_newpage_charge(struct page *page,
2672 struct mm_struct *mm, gfp_t gfp_mask)
2674 if (mem_cgroup_disabled())
2675 return 0;
2677 * If already mapped, we don't have to account.
2678 * If page cache, page->mapping has address_space.
2679 * But page->mapping may have out-of-use anon_vma pointer,
2680 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2681 * is NULL.
2683 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2684 return 0;
2685 if (unlikely(!mm))
2686 mm = &init_mm;
2687 return mem_cgroup_charge_common(page, mm, gfp_mask,
2688 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2691 static void
2692 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2693 enum charge_type ctype);
2695 static void
2696 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2697 enum charge_type ctype)
2699 struct page_cgroup *pc = lookup_page_cgroup(page);
2701 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2702 * is already on LRU. It means the page may on some other page_cgroup's
2703 * LRU. Take care of it.
2705 mem_cgroup_lru_del_before_commit(page);
2706 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2707 mem_cgroup_lru_add_after_commit(page);
2708 return;
2711 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2712 gfp_t gfp_mask)
2714 struct mem_cgroup *mem = NULL;
2715 int ret;
2717 if (mem_cgroup_disabled())
2718 return 0;
2719 if (PageCompound(page))
2720 return 0;
2722 * Corner case handling. This is called from add_to_page_cache()
2723 * in usual. But some FS (shmem) precharges this page before calling it
2724 * and call add_to_page_cache() with GFP_NOWAIT.
2726 * For GFP_NOWAIT case, the page may be pre-charged before calling
2727 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2728 * charge twice. (It works but has to pay a bit larger cost.)
2729 * And when the page is SwapCache, it should take swap information
2730 * into account. This is under lock_page() now.
2732 if (!(gfp_mask & __GFP_WAIT)) {
2733 struct page_cgroup *pc;
2735 pc = lookup_page_cgroup(page);
2736 if (!pc)
2737 return 0;
2738 lock_page_cgroup(pc);
2739 if (PageCgroupUsed(pc)) {
2740 unlock_page_cgroup(pc);
2741 return 0;
2743 unlock_page_cgroup(pc);
2746 if (unlikely(!mm))
2747 mm = &init_mm;
2749 if (page_is_file_cache(page)) {
2750 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2751 if (ret || !mem)
2752 return ret;
2755 * FUSE reuses pages without going through the final
2756 * put that would remove them from the LRU list, make
2757 * sure that they get relinked properly.
2759 __mem_cgroup_commit_charge_lrucare(page, mem,
2760 MEM_CGROUP_CHARGE_TYPE_CACHE);
2761 return ret;
2763 /* shmem */
2764 if (PageSwapCache(page)) {
2765 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2766 if (!ret)
2767 __mem_cgroup_commit_charge_swapin(page, mem,
2768 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2769 } else
2770 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2771 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2773 return ret;
2777 * While swap-in, try_charge -> commit or cancel, the page is locked.
2778 * And when try_charge() successfully returns, one refcnt to memcg without
2779 * struct page_cgroup is acquired. This refcnt will be consumed by
2780 * "commit()" or removed by "cancel()"
2782 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2783 struct page *page,
2784 gfp_t mask, struct mem_cgroup **ptr)
2786 struct mem_cgroup *mem;
2787 int ret;
2789 *ptr = NULL;
2791 if (mem_cgroup_disabled())
2792 return 0;
2794 if (!do_swap_account)
2795 goto charge_cur_mm;
2797 * A racing thread's fault, or swapoff, may have already updated
2798 * the pte, and even removed page from swap cache: in those cases
2799 * do_swap_page()'s pte_same() test will fail; but there's also a
2800 * KSM case which does need to charge the page.
2802 if (!PageSwapCache(page))
2803 goto charge_cur_mm;
2804 mem = try_get_mem_cgroup_from_page(page);
2805 if (!mem)
2806 goto charge_cur_mm;
2807 *ptr = mem;
2808 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2809 css_put(&mem->css);
2810 return ret;
2811 charge_cur_mm:
2812 if (unlikely(!mm))
2813 mm = &init_mm;
2814 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2817 static void
2818 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2819 enum charge_type ctype)
2821 if (mem_cgroup_disabled())
2822 return;
2823 if (!ptr)
2824 return;
2825 cgroup_exclude_rmdir(&ptr->css);
2827 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2829 * Now swap is on-memory. This means this page may be
2830 * counted both as mem and swap....double count.
2831 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2832 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2833 * may call delete_from_swap_cache() before reach here.
2835 if (do_swap_account && PageSwapCache(page)) {
2836 swp_entry_t ent = {.val = page_private(page)};
2837 unsigned short id;
2838 struct mem_cgroup *memcg;
2840 id = swap_cgroup_record(ent, 0);
2841 rcu_read_lock();
2842 memcg = mem_cgroup_lookup(id);
2843 if (memcg) {
2845 * This recorded memcg can be obsolete one. So, avoid
2846 * calling css_tryget
2848 if (!mem_cgroup_is_root(memcg))
2849 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2850 mem_cgroup_swap_statistics(memcg, false);
2851 mem_cgroup_put(memcg);
2853 rcu_read_unlock();
2856 * At swapin, we may charge account against cgroup which has no tasks.
2857 * So, rmdir()->pre_destroy() can be called while we do this charge.
2858 * In that case, we need to call pre_destroy() again. check it here.
2860 cgroup_release_and_wakeup_rmdir(&ptr->css);
2863 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2865 __mem_cgroup_commit_charge_swapin(page, ptr,
2866 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2869 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2871 if (mem_cgroup_disabled())
2872 return;
2873 if (!mem)
2874 return;
2875 __mem_cgroup_cancel_charge(mem, 1);
2878 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2879 unsigned int nr_pages,
2880 const enum charge_type ctype)
2882 struct memcg_batch_info *batch = NULL;
2883 bool uncharge_memsw = true;
2885 /* If swapout, usage of swap doesn't decrease */
2886 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2887 uncharge_memsw = false;
2889 batch = &current->memcg_batch;
2891 * In usual, we do css_get() when we remember memcg pointer.
2892 * But in this case, we keep res->usage until end of a series of
2893 * uncharges. Then, it's ok to ignore memcg's refcnt.
2895 if (!batch->memcg)
2896 batch->memcg = mem;
2898 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2899 * In those cases, all pages freed continuously can be expected to be in
2900 * the same cgroup and we have chance to coalesce uncharges.
2901 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2902 * because we want to do uncharge as soon as possible.
2905 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2906 goto direct_uncharge;
2908 if (nr_pages > 1)
2909 goto direct_uncharge;
2912 * In typical case, batch->memcg == mem. This means we can
2913 * merge a series of uncharges to an uncharge of res_counter.
2914 * If not, we uncharge res_counter ony by one.
2916 if (batch->memcg != mem)
2917 goto direct_uncharge;
2918 /* remember freed charge and uncharge it later */
2919 batch->nr_pages++;
2920 if (uncharge_memsw)
2921 batch->memsw_nr_pages++;
2922 return;
2923 direct_uncharge:
2924 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2925 if (uncharge_memsw)
2926 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2927 if (unlikely(batch->memcg != mem))
2928 memcg_oom_recover(mem);
2929 return;
2933 * uncharge if !page_mapped(page)
2935 static struct mem_cgroup *
2936 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2938 struct mem_cgroup *mem = NULL;
2939 unsigned int nr_pages = 1;
2940 struct page_cgroup *pc;
2942 if (mem_cgroup_disabled())
2943 return NULL;
2945 if (PageSwapCache(page))
2946 return NULL;
2948 if (PageTransHuge(page)) {
2949 nr_pages <<= compound_order(page);
2950 VM_BUG_ON(!PageTransHuge(page));
2953 * Check if our page_cgroup is valid
2955 pc = lookup_page_cgroup(page);
2956 if (unlikely(!pc || !PageCgroupUsed(pc)))
2957 return NULL;
2959 lock_page_cgroup(pc);
2961 mem = pc->mem_cgroup;
2963 if (!PageCgroupUsed(pc))
2964 goto unlock_out;
2966 switch (ctype) {
2967 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2968 case MEM_CGROUP_CHARGE_TYPE_DROP:
2969 /* See mem_cgroup_prepare_migration() */
2970 if (page_mapped(page) || PageCgroupMigration(pc))
2971 goto unlock_out;
2972 break;
2973 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2974 if (!PageAnon(page)) { /* Shared memory */
2975 if (page->mapping && !page_is_file_cache(page))
2976 goto unlock_out;
2977 } else if (page_mapped(page)) /* Anon */
2978 goto unlock_out;
2979 break;
2980 default:
2981 break;
2984 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
2986 ClearPageCgroupUsed(pc);
2988 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2989 * freed from LRU. This is safe because uncharged page is expected not
2990 * to be reused (freed soon). Exception is SwapCache, it's handled by
2991 * special functions.
2994 unlock_page_cgroup(pc);
2996 * even after unlock, we have mem->res.usage here and this memcg
2997 * will never be freed.
2999 memcg_check_events(mem, page);
3000 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3001 mem_cgroup_swap_statistics(mem, true);
3002 mem_cgroup_get(mem);
3004 if (!mem_cgroup_is_root(mem))
3005 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3007 return mem;
3009 unlock_out:
3010 unlock_page_cgroup(pc);
3011 return NULL;
3014 void mem_cgroup_uncharge_page(struct page *page)
3016 /* early check. */
3017 if (page_mapped(page))
3018 return;
3019 if (page->mapping && !PageAnon(page))
3020 return;
3021 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3024 void mem_cgroup_uncharge_cache_page(struct page *page)
3026 VM_BUG_ON(page_mapped(page));
3027 VM_BUG_ON(page->mapping);
3028 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3032 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3033 * In that cases, pages are freed continuously and we can expect pages
3034 * are in the same memcg. All these calls itself limits the number of
3035 * pages freed at once, then uncharge_start/end() is called properly.
3036 * This may be called prural(2) times in a context,
3039 void mem_cgroup_uncharge_start(void)
3041 current->memcg_batch.do_batch++;
3042 /* We can do nest. */
3043 if (current->memcg_batch.do_batch == 1) {
3044 current->memcg_batch.memcg = NULL;
3045 current->memcg_batch.nr_pages = 0;
3046 current->memcg_batch.memsw_nr_pages = 0;
3050 void mem_cgroup_uncharge_end(void)
3052 struct memcg_batch_info *batch = &current->memcg_batch;
3054 if (!batch->do_batch)
3055 return;
3057 batch->do_batch--;
3058 if (batch->do_batch) /* If stacked, do nothing. */
3059 return;
3061 if (!batch->memcg)
3062 return;
3064 * This "batch->memcg" is valid without any css_get/put etc...
3065 * bacause we hide charges behind us.
3067 if (batch->nr_pages)
3068 res_counter_uncharge(&batch->memcg->res,
3069 batch->nr_pages * PAGE_SIZE);
3070 if (batch->memsw_nr_pages)
3071 res_counter_uncharge(&batch->memcg->memsw,
3072 batch->memsw_nr_pages * PAGE_SIZE);
3073 memcg_oom_recover(batch->memcg);
3074 /* forget this pointer (for sanity check) */
3075 batch->memcg = NULL;
3078 #ifdef CONFIG_SWAP
3080 * called after __delete_from_swap_cache() and drop "page" account.
3081 * memcg information is recorded to swap_cgroup of "ent"
3083 void
3084 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3086 struct mem_cgroup *memcg;
3087 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3089 if (!swapout) /* this was a swap cache but the swap is unused ! */
3090 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3092 memcg = __mem_cgroup_uncharge_common(page, ctype);
3095 * record memcg information, if swapout && memcg != NULL,
3096 * mem_cgroup_get() was called in uncharge().
3098 if (do_swap_account && swapout && memcg)
3099 swap_cgroup_record(ent, css_id(&memcg->css));
3101 #endif
3103 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3105 * called from swap_entry_free(). remove record in swap_cgroup and
3106 * uncharge "memsw" account.
3108 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3110 struct mem_cgroup *memcg;
3111 unsigned short id;
3113 if (!do_swap_account)
3114 return;
3116 id = swap_cgroup_record(ent, 0);
3117 rcu_read_lock();
3118 memcg = mem_cgroup_lookup(id);
3119 if (memcg) {
3121 * We uncharge this because swap is freed.
3122 * This memcg can be obsolete one. We avoid calling css_tryget
3124 if (!mem_cgroup_is_root(memcg))
3125 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3126 mem_cgroup_swap_statistics(memcg, false);
3127 mem_cgroup_put(memcg);
3129 rcu_read_unlock();
3133 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3134 * @entry: swap entry to be moved
3135 * @from: mem_cgroup which the entry is moved from
3136 * @to: mem_cgroup which the entry is moved to
3137 * @need_fixup: whether we should fixup res_counters and refcounts.
3139 * It succeeds only when the swap_cgroup's record for this entry is the same
3140 * as the mem_cgroup's id of @from.
3142 * Returns 0 on success, -EINVAL on failure.
3144 * The caller must have charged to @to, IOW, called res_counter_charge() about
3145 * both res and memsw, and called css_get().
3147 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3148 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3150 unsigned short old_id, new_id;
3152 old_id = css_id(&from->css);
3153 new_id = css_id(&to->css);
3155 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3156 mem_cgroup_swap_statistics(from, false);
3157 mem_cgroup_swap_statistics(to, true);
3159 * This function is only called from task migration context now.
3160 * It postpones res_counter and refcount handling till the end
3161 * of task migration(mem_cgroup_clear_mc()) for performance
3162 * improvement. But we cannot postpone mem_cgroup_get(to)
3163 * because if the process that has been moved to @to does
3164 * swap-in, the refcount of @to might be decreased to 0.
3166 mem_cgroup_get(to);
3167 if (need_fixup) {
3168 if (!mem_cgroup_is_root(from))
3169 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3170 mem_cgroup_put(from);
3172 * we charged both to->res and to->memsw, so we should
3173 * uncharge to->res.
3175 if (!mem_cgroup_is_root(to))
3176 res_counter_uncharge(&to->res, PAGE_SIZE);
3178 return 0;
3180 return -EINVAL;
3182 #else
3183 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3184 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3186 return -EINVAL;
3188 #endif
3191 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3192 * page belongs to.
3194 int mem_cgroup_prepare_migration(struct page *page,
3195 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3197 struct mem_cgroup *mem = NULL;
3198 struct page_cgroup *pc;
3199 enum charge_type ctype;
3200 int ret = 0;
3202 *ptr = NULL;
3204 VM_BUG_ON(PageTransHuge(page));
3205 if (mem_cgroup_disabled())
3206 return 0;
3208 pc = lookup_page_cgroup(page);
3209 lock_page_cgroup(pc);
3210 if (PageCgroupUsed(pc)) {
3211 mem = pc->mem_cgroup;
3212 css_get(&mem->css);
3214 * At migrating an anonymous page, its mapcount goes down
3215 * to 0 and uncharge() will be called. But, even if it's fully
3216 * unmapped, migration may fail and this page has to be
3217 * charged again. We set MIGRATION flag here and delay uncharge
3218 * until end_migration() is called
3220 * Corner Case Thinking
3221 * A)
3222 * When the old page was mapped as Anon and it's unmap-and-freed
3223 * while migration was ongoing.
3224 * If unmap finds the old page, uncharge() of it will be delayed
3225 * until end_migration(). If unmap finds a new page, it's
3226 * uncharged when it make mapcount to be 1->0. If unmap code
3227 * finds swap_migration_entry, the new page will not be mapped
3228 * and end_migration() will find it(mapcount==0).
3230 * B)
3231 * When the old page was mapped but migraion fails, the kernel
3232 * remaps it. A charge for it is kept by MIGRATION flag even
3233 * if mapcount goes down to 0. We can do remap successfully
3234 * without charging it again.
3236 * C)
3237 * The "old" page is under lock_page() until the end of
3238 * migration, so, the old page itself will not be swapped-out.
3239 * If the new page is swapped out before end_migraton, our
3240 * hook to usual swap-out path will catch the event.
3242 if (PageAnon(page))
3243 SetPageCgroupMigration(pc);
3245 unlock_page_cgroup(pc);
3247 * If the page is not charged at this point,
3248 * we return here.
3250 if (!mem)
3251 return 0;
3253 *ptr = mem;
3254 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3255 css_put(&mem->css);/* drop extra refcnt */
3256 if (ret || *ptr == NULL) {
3257 if (PageAnon(page)) {
3258 lock_page_cgroup(pc);
3259 ClearPageCgroupMigration(pc);
3260 unlock_page_cgroup(pc);
3262 * The old page may be fully unmapped while we kept it.
3264 mem_cgroup_uncharge_page(page);
3266 return -ENOMEM;
3269 * We charge new page before it's used/mapped. So, even if unlock_page()
3270 * is called before end_migration, we can catch all events on this new
3271 * page. In the case new page is migrated but not remapped, new page's
3272 * mapcount will be finally 0 and we call uncharge in end_migration().
3274 pc = lookup_page_cgroup(newpage);
3275 if (PageAnon(page))
3276 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3277 else if (page_is_file_cache(page))
3278 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3279 else
3280 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3281 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3282 return ret;
3285 /* remove redundant charge if migration failed*/
3286 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3287 struct page *oldpage, struct page *newpage, bool migration_ok)
3289 struct page *used, *unused;
3290 struct page_cgroup *pc;
3292 if (!mem)
3293 return;
3294 /* blocks rmdir() */
3295 cgroup_exclude_rmdir(&mem->css);
3296 if (!migration_ok) {
3297 used = oldpage;
3298 unused = newpage;
3299 } else {
3300 used = newpage;
3301 unused = oldpage;
3304 * We disallowed uncharge of pages under migration because mapcount
3305 * of the page goes down to zero, temporarly.
3306 * Clear the flag and check the page should be charged.
3308 pc = lookup_page_cgroup(oldpage);
3309 lock_page_cgroup(pc);
3310 ClearPageCgroupMigration(pc);
3311 unlock_page_cgroup(pc);
3313 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3316 * If a page is a file cache, radix-tree replacement is very atomic
3317 * and we can skip this check. When it was an Anon page, its mapcount
3318 * goes down to 0. But because we added MIGRATION flage, it's not
3319 * uncharged yet. There are several case but page->mapcount check
3320 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3321 * check. (see prepare_charge() also)
3323 if (PageAnon(used))
3324 mem_cgroup_uncharge_page(used);
3326 * At migration, we may charge account against cgroup which has no
3327 * tasks.
3328 * So, rmdir()->pre_destroy() can be called while we do this charge.
3329 * In that case, we need to call pre_destroy() again. check it here.
3331 cgroup_release_and_wakeup_rmdir(&mem->css);
3335 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3336 * Calling hierarchical_reclaim is not enough because we should update
3337 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3338 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3339 * not from the memcg which this page would be charged to.
3340 * try_charge_swapin does all of these works properly.
3342 int mem_cgroup_shmem_charge_fallback(struct page *page,
3343 struct mm_struct *mm,
3344 gfp_t gfp_mask)
3346 struct mem_cgroup *mem;
3347 int ret;
3349 if (mem_cgroup_disabled())
3350 return 0;
3352 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3353 if (!ret)
3354 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3356 return ret;
3359 #ifdef CONFIG_DEBUG_VM
3360 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3362 struct page_cgroup *pc;
3364 pc = lookup_page_cgroup(page);
3365 if (likely(pc) && PageCgroupUsed(pc))
3366 return pc;
3367 return NULL;
3370 bool mem_cgroup_bad_page_check(struct page *page)
3372 if (mem_cgroup_disabled())
3373 return false;
3375 return lookup_page_cgroup_used(page) != NULL;
3378 void mem_cgroup_print_bad_page(struct page *page)
3380 struct page_cgroup *pc;
3382 pc = lookup_page_cgroup_used(page);
3383 if (pc) {
3384 int ret = -1;
3385 char *path;
3387 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3388 pc, pc->flags, pc->mem_cgroup);
3390 path = kmalloc(PATH_MAX, GFP_KERNEL);
3391 if (path) {
3392 rcu_read_lock();
3393 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3394 path, PATH_MAX);
3395 rcu_read_unlock();
3398 printk(KERN_CONT "(%s)\n",
3399 (ret < 0) ? "cannot get the path" : path);
3400 kfree(path);
3403 #endif
3405 static DEFINE_MUTEX(set_limit_mutex);
3407 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3408 unsigned long long val)
3410 int retry_count;
3411 u64 memswlimit, memlimit;
3412 int ret = 0;
3413 int children = mem_cgroup_count_children(memcg);
3414 u64 curusage, oldusage;
3415 int enlarge;
3418 * For keeping hierarchical_reclaim simple, how long we should retry
3419 * is depends on callers. We set our retry-count to be function
3420 * of # of children which we should visit in this loop.
3422 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3424 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3426 enlarge = 0;
3427 while (retry_count) {
3428 if (signal_pending(current)) {
3429 ret = -EINTR;
3430 break;
3433 * Rather than hide all in some function, I do this in
3434 * open coded manner. You see what this really does.
3435 * We have to guarantee mem->res.limit < mem->memsw.limit.
3437 mutex_lock(&set_limit_mutex);
3438 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3439 if (memswlimit < val) {
3440 ret = -EINVAL;
3441 mutex_unlock(&set_limit_mutex);
3442 break;
3445 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3446 if (memlimit < val)
3447 enlarge = 1;
3449 ret = res_counter_set_limit(&memcg->res, val);
3450 if (!ret) {
3451 if (memswlimit == val)
3452 memcg->memsw_is_minimum = true;
3453 else
3454 memcg->memsw_is_minimum = false;
3456 mutex_unlock(&set_limit_mutex);
3458 if (!ret)
3459 break;
3461 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3462 MEM_CGROUP_RECLAIM_SHRINK,
3463 NULL);
3464 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3465 /* Usage is reduced ? */
3466 if (curusage >= oldusage)
3467 retry_count--;
3468 else
3469 oldusage = curusage;
3471 if (!ret && enlarge)
3472 memcg_oom_recover(memcg);
3474 return ret;
3477 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3478 unsigned long long val)
3480 int retry_count;
3481 u64 memlimit, memswlimit, oldusage, curusage;
3482 int children = mem_cgroup_count_children(memcg);
3483 int ret = -EBUSY;
3484 int enlarge = 0;
3486 /* see mem_cgroup_resize_res_limit */
3487 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3488 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3489 while (retry_count) {
3490 if (signal_pending(current)) {
3491 ret = -EINTR;
3492 break;
3495 * Rather than hide all in some function, I do this in
3496 * open coded manner. You see what this really does.
3497 * We have to guarantee mem->res.limit < mem->memsw.limit.
3499 mutex_lock(&set_limit_mutex);
3500 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3501 if (memlimit > val) {
3502 ret = -EINVAL;
3503 mutex_unlock(&set_limit_mutex);
3504 break;
3506 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3507 if (memswlimit < val)
3508 enlarge = 1;
3509 ret = res_counter_set_limit(&memcg->memsw, val);
3510 if (!ret) {
3511 if (memlimit == val)
3512 memcg->memsw_is_minimum = true;
3513 else
3514 memcg->memsw_is_minimum = false;
3516 mutex_unlock(&set_limit_mutex);
3518 if (!ret)
3519 break;
3521 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3522 MEM_CGROUP_RECLAIM_NOSWAP |
3523 MEM_CGROUP_RECLAIM_SHRINK,
3524 NULL);
3525 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3526 /* Usage is reduced ? */
3527 if (curusage >= oldusage)
3528 retry_count--;
3529 else
3530 oldusage = curusage;
3532 if (!ret && enlarge)
3533 memcg_oom_recover(memcg);
3534 return ret;
3537 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3538 gfp_t gfp_mask,
3539 unsigned long *total_scanned)
3541 unsigned long nr_reclaimed = 0;
3542 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3543 unsigned long reclaimed;
3544 int loop = 0;
3545 struct mem_cgroup_tree_per_zone *mctz;
3546 unsigned long long excess;
3547 unsigned long nr_scanned;
3549 if (order > 0)
3550 return 0;
3552 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3554 * This loop can run a while, specially if mem_cgroup's continuously
3555 * keep exceeding their soft limit and putting the system under
3556 * pressure
3558 do {
3559 if (next_mz)
3560 mz = next_mz;
3561 else
3562 mz = mem_cgroup_largest_soft_limit_node(mctz);
3563 if (!mz)
3564 break;
3566 nr_scanned = 0;
3567 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3568 gfp_mask,
3569 MEM_CGROUP_RECLAIM_SOFT,
3570 &nr_scanned);
3571 nr_reclaimed += reclaimed;
3572 *total_scanned += nr_scanned;
3573 spin_lock(&mctz->lock);
3576 * If we failed to reclaim anything from this memory cgroup
3577 * it is time to move on to the next cgroup
3579 next_mz = NULL;
3580 if (!reclaimed) {
3581 do {
3583 * Loop until we find yet another one.
3585 * By the time we get the soft_limit lock
3586 * again, someone might have aded the
3587 * group back on the RB tree. Iterate to
3588 * make sure we get a different mem.
3589 * mem_cgroup_largest_soft_limit_node returns
3590 * NULL if no other cgroup is present on
3591 * the tree
3593 next_mz =
3594 __mem_cgroup_largest_soft_limit_node(mctz);
3595 if (next_mz == mz)
3596 css_put(&next_mz->mem->css);
3597 else /* next_mz == NULL or other memcg */
3598 break;
3599 } while (1);
3601 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3602 excess = res_counter_soft_limit_excess(&mz->mem->res);
3604 * One school of thought says that we should not add
3605 * back the node to the tree if reclaim returns 0.
3606 * But our reclaim could return 0, simply because due
3607 * to priority we are exposing a smaller subset of
3608 * memory to reclaim from. Consider this as a longer
3609 * term TODO.
3611 /* If excess == 0, no tree ops */
3612 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3613 spin_unlock(&mctz->lock);
3614 css_put(&mz->mem->css);
3615 loop++;
3617 * Could not reclaim anything and there are no more
3618 * mem cgroups to try or we seem to be looping without
3619 * reclaiming anything.
3621 if (!nr_reclaimed &&
3622 (next_mz == NULL ||
3623 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3624 break;
3625 } while (!nr_reclaimed);
3626 if (next_mz)
3627 css_put(&next_mz->mem->css);
3628 return nr_reclaimed;
3632 * This routine traverse page_cgroup in given list and drop them all.
3633 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3635 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3636 int node, int zid, enum lru_list lru)
3638 struct zone *zone;
3639 struct mem_cgroup_per_zone *mz;
3640 struct page_cgroup *pc, *busy;
3641 unsigned long flags, loop;
3642 struct list_head *list;
3643 int ret = 0;
3645 zone = &NODE_DATA(node)->node_zones[zid];
3646 mz = mem_cgroup_zoneinfo(mem, node, zid);
3647 list = &mz->lists[lru];
3649 loop = MEM_CGROUP_ZSTAT(mz, lru);
3650 /* give some margin against EBUSY etc...*/
3651 loop += 256;
3652 busy = NULL;
3653 while (loop--) {
3654 struct page *page;
3656 ret = 0;
3657 spin_lock_irqsave(&zone->lru_lock, flags);
3658 if (list_empty(list)) {
3659 spin_unlock_irqrestore(&zone->lru_lock, flags);
3660 break;
3662 pc = list_entry(list->prev, struct page_cgroup, lru);
3663 if (busy == pc) {
3664 list_move(&pc->lru, list);
3665 busy = NULL;
3666 spin_unlock_irqrestore(&zone->lru_lock, flags);
3667 continue;
3669 spin_unlock_irqrestore(&zone->lru_lock, flags);
3671 page = lookup_cgroup_page(pc);
3673 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3674 if (ret == -ENOMEM)
3675 break;
3677 if (ret == -EBUSY || ret == -EINVAL) {
3678 /* found lock contention or "pc" is obsolete. */
3679 busy = pc;
3680 cond_resched();
3681 } else
3682 busy = NULL;
3685 if (!ret && !list_empty(list))
3686 return -EBUSY;
3687 return ret;
3691 * make mem_cgroup's charge to be 0 if there is no task.
3692 * This enables deleting this mem_cgroup.
3694 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3696 int ret;
3697 int node, zid, shrink;
3698 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3699 struct cgroup *cgrp = mem->css.cgroup;
3701 css_get(&mem->css);
3703 shrink = 0;
3704 /* should free all ? */
3705 if (free_all)
3706 goto try_to_free;
3707 move_account:
3708 do {
3709 ret = -EBUSY;
3710 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3711 goto out;
3712 ret = -EINTR;
3713 if (signal_pending(current))
3714 goto out;
3715 /* This is for making all *used* pages to be on LRU. */
3716 lru_add_drain_all();
3717 drain_all_stock_sync();
3718 ret = 0;
3719 mem_cgroup_start_move(mem);
3720 for_each_node_state(node, N_HIGH_MEMORY) {
3721 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3722 enum lru_list l;
3723 for_each_lru(l) {
3724 ret = mem_cgroup_force_empty_list(mem,
3725 node, zid, l);
3726 if (ret)
3727 break;
3730 if (ret)
3731 break;
3733 mem_cgroup_end_move(mem);
3734 memcg_oom_recover(mem);
3735 /* it seems parent cgroup doesn't have enough mem */
3736 if (ret == -ENOMEM)
3737 goto try_to_free;
3738 cond_resched();
3739 /* "ret" should also be checked to ensure all lists are empty. */
3740 } while (mem->res.usage > 0 || ret);
3741 out:
3742 css_put(&mem->css);
3743 return ret;
3745 try_to_free:
3746 /* returns EBUSY if there is a task or if we come here twice. */
3747 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3748 ret = -EBUSY;
3749 goto out;
3751 /* we call try-to-free pages for make this cgroup empty */
3752 lru_add_drain_all();
3753 /* try to free all pages in this cgroup */
3754 shrink = 1;
3755 while (nr_retries && mem->res.usage > 0) {
3756 int progress;
3758 if (signal_pending(current)) {
3759 ret = -EINTR;
3760 goto out;
3762 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3763 false, get_swappiness(mem));
3764 if (!progress) {
3765 nr_retries--;
3766 /* maybe some writeback is necessary */
3767 congestion_wait(BLK_RW_ASYNC, HZ/10);
3771 lru_add_drain();
3772 /* try move_account...there may be some *locked* pages. */
3773 goto move_account;
3776 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3778 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3782 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3784 return mem_cgroup_from_cont(cont)->use_hierarchy;
3787 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3788 u64 val)
3790 int retval = 0;
3791 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3792 struct cgroup *parent = cont->parent;
3793 struct mem_cgroup *parent_mem = NULL;
3795 if (parent)
3796 parent_mem = mem_cgroup_from_cont(parent);
3798 cgroup_lock();
3800 * If parent's use_hierarchy is set, we can't make any modifications
3801 * in the child subtrees. If it is unset, then the change can
3802 * occur, provided the current cgroup has no children.
3804 * For the root cgroup, parent_mem is NULL, we allow value to be
3805 * set if there are no children.
3807 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3808 (val == 1 || val == 0)) {
3809 if (list_empty(&cont->children))
3810 mem->use_hierarchy = val;
3811 else
3812 retval = -EBUSY;
3813 } else
3814 retval = -EINVAL;
3815 cgroup_unlock();
3817 return retval;
3821 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3822 enum mem_cgroup_stat_index idx)
3824 struct mem_cgroup *iter;
3825 long val = 0;
3827 /* Per-cpu values can be negative, use a signed accumulator */
3828 for_each_mem_cgroup_tree(iter, mem)
3829 val += mem_cgroup_read_stat(iter, idx);
3831 if (val < 0) /* race ? */
3832 val = 0;
3833 return val;
3836 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3838 u64 val;
3840 if (!mem_cgroup_is_root(mem)) {
3841 if (!swap)
3842 return res_counter_read_u64(&mem->res, RES_USAGE);
3843 else
3844 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3847 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3848 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3850 if (swap)
3851 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3853 return val << PAGE_SHIFT;
3856 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3858 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3859 u64 val;
3860 int type, name;
3862 type = MEMFILE_TYPE(cft->private);
3863 name = MEMFILE_ATTR(cft->private);
3864 switch (type) {
3865 case _MEM:
3866 if (name == RES_USAGE)
3867 val = mem_cgroup_usage(mem, false);
3868 else
3869 val = res_counter_read_u64(&mem->res, name);
3870 break;
3871 case _MEMSWAP:
3872 if (name == RES_USAGE)
3873 val = mem_cgroup_usage(mem, true);
3874 else
3875 val = res_counter_read_u64(&mem->memsw, name);
3876 break;
3877 default:
3878 BUG();
3879 break;
3881 return val;
3884 * The user of this function is...
3885 * RES_LIMIT.
3887 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3888 const char *buffer)
3890 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3891 int type, name;
3892 unsigned long long val;
3893 int ret;
3895 type = MEMFILE_TYPE(cft->private);
3896 name = MEMFILE_ATTR(cft->private);
3897 switch (name) {
3898 case RES_LIMIT:
3899 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3900 ret = -EINVAL;
3901 break;
3903 /* This function does all necessary parse...reuse it */
3904 ret = res_counter_memparse_write_strategy(buffer, &val);
3905 if (ret)
3906 break;
3907 if (type == _MEM)
3908 ret = mem_cgroup_resize_limit(memcg, val);
3909 else
3910 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3911 break;
3912 case RES_SOFT_LIMIT:
3913 ret = res_counter_memparse_write_strategy(buffer, &val);
3914 if (ret)
3915 break;
3917 * For memsw, soft limits are hard to implement in terms
3918 * of semantics, for now, we support soft limits for
3919 * control without swap
3921 if (type == _MEM)
3922 ret = res_counter_set_soft_limit(&memcg->res, val);
3923 else
3924 ret = -EINVAL;
3925 break;
3926 default:
3927 ret = -EINVAL; /* should be BUG() ? */
3928 break;
3930 return ret;
3933 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3934 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3936 struct cgroup *cgroup;
3937 unsigned long long min_limit, min_memsw_limit, tmp;
3939 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3940 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3941 cgroup = memcg->css.cgroup;
3942 if (!memcg->use_hierarchy)
3943 goto out;
3945 while (cgroup->parent) {
3946 cgroup = cgroup->parent;
3947 memcg = mem_cgroup_from_cont(cgroup);
3948 if (!memcg->use_hierarchy)
3949 break;
3950 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3951 min_limit = min(min_limit, tmp);
3952 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3953 min_memsw_limit = min(min_memsw_limit, tmp);
3955 out:
3956 *mem_limit = min_limit;
3957 *memsw_limit = min_memsw_limit;
3958 return;
3961 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3963 struct mem_cgroup *mem;
3964 int type, name;
3966 mem = mem_cgroup_from_cont(cont);
3967 type = MEMFILE_TYPE(event);
3968 name = MEMFILE_ATTR(event);
3969 switch (name) {
3970 case RES_MAX_USAGE:
3971 if (type == _MEM)
3972 res_counter_reset_max(&mem->res);
3973 else
3974 res_counter_reset_max(&mem->memsw);
3975 break;
3976 case RES_FAILCNT:
3977 if (type == _MEM)
3978 res_counter_reset_failcnt(&mem->res);
3979 else
3980 res_counter_reset_failcnt(&mem->memsw);
3981 break;
3984 return 0;
3987 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3988 struct cftype *cft)
3990 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3993 #ifdef CONFIG_MMU
3994 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3995 struct cftype *cft, u64 val)
3997 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3999 if (val >= (1 << NR_MOVE_TYPE))
4000 return -EINVAL;
4002 * We check this value several times in both in can_attach() and
4003 * attach(), so we need cgroup lock to prevent this value from being
4004 * inconsistent.
4006 cgroup_lock();
4007 mem->move_charge_at_immigrate = val;
4008 cgroup_unlock();
4010 return 0;
4012 #else
4013 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4014 struct cftype *cft, u64 val)
4016 return -ENOSYS;
4018 #endif
4021 /* For read statistics */
4022 enum {
4023 MCS_CACHE,
4024 MCS_RSS,
4025 MCS_FILE_MAPPED,
4026 MCS_PGPGIN,
4027 MCS_PGPGOUT,
4028 MCS_SWAP,
4029 MCS_PGFAULT,
4030 MCS_PGMAJFAULT,
4031 MCS_INACTIVE_ANON,
4032 MCS_ACTIVE_ANON,
4033 MCS_INACTIVE_FILE,
4034 MCS_ACTIVE_FILE,
4035 MCS_UNEVICTABLE,
4036 NR_MCS_STAT,
4039 struct mcs_total_stat {
4040 s64 stat[NR_MCS_STAT];
4043 struct {
4044 char *local_name;
4045 char *total_name;
4046 } memcg_stat_strings[NR_MCS_STAT] = {
4047 {"cache", "total_cache"},
4048 {"rss", "total_rss"},
4049 {"mapped_file", "total_mapped_file"},
4050 {"pgpgin", "total_pgpgin"},
4051 {"pgpgout", "total_pgpgout"},
4052 {"swap", "total_swap"},
4053 {"pgfault", "total_pgfault"},
4054 {"pgmajfault", "total_pgmajfault"},
4055 {"inactive_anon", "total_inactive_anon"},
4056 {"active_anon", "total_active_anon"},
4057 {"inactive_file", "total_inactive_file"},
4058 {"active_file", "total_active_file"},
4059 {"unevictable", "total_unevictable"}
4063 static void
4064 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4066 s64 val;
4068 /* per cpu stat */
4069 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4070 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4071 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4072 s->stat[MCS_RSS] += val * PAGE_SIZE;
4073 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4074 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4075 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4076 s->stat[MCS_PGPGIN] += val;
4077 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4078 s->stat[MCS_PGPGOUT] += val;
4079 if (do_swap_account) {
4080 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4081 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4083 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4084 s->stat[MCS_PGFAULT] += val;
4085 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4086 s->stat[MCS_PGMAJFAULT] += val;
4088 /* per zone stat */
4089 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
4090 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4091 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
4092 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4093 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
4094 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4095 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
4096 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4097 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
4098 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4101 static void
4102 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4104 struct mem_cgroup *iter;
4106 for_each_mem_cgroup_tree(iter, mem)
4107 mem_cgroup_get_local_stat(iter, s);
4110 #ifdef CONFIG_NUMA
4111 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4113 int nid;
4114 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4115 unsigned long node_nr;
4116 struct cgroup *cont = m->private;
4117 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4119 total_nr = mem_cgroup_nr_lru_pages(mem_cont);
4120 seq_printf(m, "total=%lu", total_nr);
4121 for_each_node_state(nid, N_HIGH_MEMORY) {
4122 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
4123 seq_printf(m, " N%d=%lu", nid, node_nr);
4125 seq_putc(m, '\n');
4127 file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
4128 seq_printf(m, "file=%lu", file_nr);
4129 for_each_node_state(nid, N_HIGH_MEMORY) {
4130 node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
4131 seq_printf(m, " N%d=%lu", nid, node_nr);
4133 seq_putc(m, '\n');
4135 anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
4136 seq_printf(m, "anon=%lu", anon_nr);
4137 for_each_node_state(nid, N_HIGH_MEMORY) {
4138 node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
4139 seq_printf(m, " N%d=%lu", nid, node_nr);
4141 seq_putc(m, '\n');
4143 unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
4144 seq_printf(m, "unevictable=%lu", unevictable_nr);
4145 for_each_node_state(nid, N_HIGH_MEMORY) {
4146 node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
4147 nid);
4148 seq_printf(m, " N%d=%lu", nid, node_nr);
4150 seq_putc(m, '\n');
4151 return 0;
4153 #endif /* CONFIG_NUMA */
4155 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4156 struct cgroup_map_cb *cb)
4158 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4159 struct mcs_total_stat mystat;
4160 int i;
4162 memset(&mystat, 0, sizeof(mystat));
4163 mem_cgroup_get_local_stat(mem_cont, &mystat);
4166 for (i = 0; i < NR_MCS_STAT; i++) {
4167 if (i == MCS_SWAP && !do_swap_account)
4168 continue;
4169 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4172 /* Hierarchical information */
4174 unsigned long long limit, memsw_limit;
4175 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4176 cb->fill(cb, "hierarchical_memory_limit", limit);
4177 if (do_swap_account)
4178 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4181 memset(&mystat, 0, sizeof(mystat));
4182 mem_cgroup_get_total_stat(mem_cont, &mystat);
4183 for (i = 0; i < NR_MCS_STAT; i++) {
4184 if (i == MCS_SWAP && !do_swap_account)
4185 continue;
4186 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4189 #ifdef CONFIG_DEBUG_VM
4190 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4193 int nid, zid;
4194 struct mem_cgroup_per_zone *mz;
4195 unsigned long recent_rotated[2] = {0, 0};
4196 unsigned long recent_scanned[2] = {0, 0};
4198 for_each_online_node(nid)
4199 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4200 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4202 recent_rotated[0] +=
4203 mz->reclaim_stat.recent_rotated[0];
4204 recent_rotated[1] +=
4205 mz->reclaim_stat.recent_rotated[1];
4206 recent_scanned[0] +=
4207 mz->reclaim_stat.recent_scanned[0];
4208 recent_scanned[1] +=
4209 mz->reclaim_stat.recent_scanned[1];
4211 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4212 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4213 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4214 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4216 #endif
4218 return 0;
4221 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4223 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4225 return get_swappiness(memcg);
4228 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4229 u64 val)
4231 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4232 struct mem_cgroup *parent;
4234 if (val > 100)
4235 return -EINVAL;
4237 if (cgrp->parent == NULL)
4238 return -EINVAL;
4240 parent = mem_cgroup_from_cont(cgrp->parent);
4242 cgroup_lock();
4244 /* If under hierarchy, only empty-root can set this value */
4245 if ((parent->use_hierarchy) ||
4246 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4247 cgroup_unlock();
4248 return -EINVAL;
4251 memcg->swappiness = val;
4253 cgroup_unlock();
4255 return 0;
4258 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4260 struct mem_cgroup_threshold_ary *t;
4261 u64 usage;
4262 int i;
4264 rcu_read_lock();
4265 if (!swap)
4266 t = rcu_dereference(memcg->thresholds.primary);
4267 else
4268 t = rcu_dereference(memcg->memsw_thresholds.primary);
4270 if (!t)
4271 goto unlock;
4273 usage = mem_cgroup_usage(memcg, swap);
4276 * current_threshold points to threshold just below usage.
4277 * If it's not true, a threshold was crossed after last
4278 * call of __mem_cgroup_threshold().
4280 i = t->current_threshold;
4283 * Iterate backward over array of thresholds starting from
4284 * current_threshold and check if a threshold is crossed.
4285 * If none of thresholds below usage is crossed, we read
4286 * only one element of the array here.
4288 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4289 eventfd_signal(t->entries[i].eventfd, 1);
4291 /* i = current_threshold + 1 */
4292 i++;
4295 * Iterate forward over array of thresholds starting from
4296 * current_threshold+1 and check if a threshold is crossed.
4297 * If none of thresholds above usage is crossed, we read
4298 * only one element of the array here.
4300 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4301 eventfd_signal(t->entries[i].eventfd, 1);
4303 /* Update current_threshold */
4304 t->current_threshold = i - 1;
4305 unlock:
4306 rcu_read_unlock();
4309 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4311 while (memcg) {
4312 __mem_cgroup_threshold(memcg, false);
4313 if (do_swap_account)
4314 __mem_cgroup_threshold(memcg, true);
4316 memcg = parent_mem_cgroup(memcg);
4320 static int compare_thresholds(const void *a, const void *b)
4322 const struct mem_cgroup_threshold *_a = a;
4323 const struct mem_cgroup_threshold *_b = b;
4325 return _a->threshold - _b->threshold;
4328 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4330 struct mem_cgroup_eventfd_list *ev;
4332 list_for_each_entry(ev, &mem->oom_notify, list)
4333 eventfd_signal(ev->eventfd, 1);
4334 return 0;
4337 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4339 struct mem_cgroup *iter;
4341 for_each_mem_cgroup_tree(iter, mem)
4342 mem_cgroup_oom_notify_cb(iter);
4345 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4346 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4348 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4349 struct mem_cgroup_thresholds *thresholds;
4350 struct mem_cgroup_threshold_ary *new;
4351 int type = MEMFILE_TYPE(cft->private);
4352 u64 threshold, usage;
4353 int i, size, ret;
4355 ret = res_counter_memparse_write_strategy(args, &threshold);
4356 if (ret)
4357 return ret;
4359 mutex_lock(&memcg->thresholds_lock);
4361 if (type == _MEM)
4362 thresholds = &memcg->thresholds;
4363 else if (type == _MEMSWAP)
4364 thresholds = &memcg->memsw_thresholds;
4365 else
4366 BUG();
4368 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4370 /* Check if a threshold crossed before adding a new one */
4371 if (thresholds->primary)
4372 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4374 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4376 /* Allocate memory for new array of thresholds */
4377 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4378 GFP_KERNEL);
4379 if (!new) {
4380 ret = -ENOMEM;
4381 goto unlock;
4383 new->size = size;
4385 /* Copy thresholds (if any) to new array */
4386 if (thresholds->primary) {
4387 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4388 sizeof(struct mem_cgroup_threshold));
4391 /* Add new threshold */
4392 new->entries[size - 1].eventfd = eventfd;
4393 new->entries[size - 1].threshold = threshold;
4395 /* Sort thresholds. Registering of new threshold isn't time-critical */
4396 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4397 compare_thresholds, NULL);
4399 /* Find current threshold */
4400 new->current_threshold = -1;
4401 for (i = 0; i < size; i++) {
4402 if (new->entries[i].threshold < usage) {
4404 * new->current_threshold will not be used until
4405 * rcu_assign_pointer(), so it's safe to increment
4406 * it here.
4408 ++new->current_threshold;
4412 /* Free old spare buffer and save old primary buffer as spare */
4413 kfree(thresholds->spare);
4414 thresholds->spare = thresholds->primary;
4416 rcu_assign_pointer(thresholds->primary, new);
4418 /* To be sure that nobody uses thresholds */
4419 synchronize_rcu();
4421 unlock:
4422 mutex_unlock(&memcg->thresholds_lock);
4424 return ret;
4427 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4428 struct cftype *cft, struct eventfd_ctx *eventfd)
4430 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4431 struct mem_cgroup_thresholds *thresholds;
4432 struct mem_cgroup_threshold_ary *new;
4433 int type = MEMFILE_TYPE(cft->private);
4434 u64 usage;
4435 int i, j, size;
4437 mutex_lock(&memcg->thresholds_lock);
4438 if (type == _MEM)
4439 thresholds = &memcg->thresholds;
4440 else if (type == _MEMSWAP)
4441 thresholds = &memcg->memsw_thresholds;
4442 else
4443 BUG();
4446 * Something went wrong if we trying to unregister a threshold
4447 * if we don't have thresholds
4449 BUG_ON(!thresholds);
4451 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4453 /* Check if a threshold crossed before removing */
4454 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4456 /* Calculate new number of threshold */
4457 size = 0;
4458 for (i = 0; i < thresholds->primary->size; i++) {
4459 if (thresholds->primary->entries[i].eventfd != eventfd)
4460 size++;
4463 new = thresholds->spare;
4465 /* Set thresholds array to NULL if we don't have thresholds */
4466 if (!size) {
4467 kfree(new);
4468 new = NULL;
4469 goto swap_buffers;
4472 new->size = size;
4474 /* Copy thresholds and find current threshold */
4475 new->current_threshold = -1;
4476 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4477 if (thresholds->primary->entries[i].eventfd == eventfd)
4478 continue;
4480 new->entries[j] = thresholds->primary->entries[i];
4481 if (new->entries[j].threshold < usage) {
4483 * new->current_threshold will not be used
4484 * until rcu_assign_pointer(), so it's safe to increment
4485 * it here.
4487 ++new->current_threshold;
4489 j++;
4492 swap_buffers:
4493 /* Swap primary and spare array */
4494 thresholds->spare = thresholds->primary;
4495 rcu_assign_pointer(thresholds->primary, new);
4497 /* To be sure that nobody uses thresholds */
4498 synchronize_rcu();
4500 mutex_unlock(&memcg->thresholds_lock);
4503 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4504 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4506 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4507 struct mem_cgroup_eventfd_list *event;
4508 int type = MEMFILE_TYPE(cft->private);
4510 BUG_ON(type != _OOM_TYPE);
4511 event = kmalloc(sizeof(*event), GFP_KERNEL);
4512 if (!event)
4513 return -ENOMEM;
4515 mutex_lock(&memcg_oom_mutex);
4517 event->eventfd = eventfd;
4518 list_add(&event->list, &memcg->oom_notify);
4520 /* already in OOM ? */
4521 if (atomic_read(&memcg->oom_lock))
4522 eventfd_signal(eventfd, 1);
4523 mutex_unlock(&memcg_oom_mutex);
4525 return 0;
4528 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4529 struct cftype *cft, struct eventfd_ctx *eventfd)
4531 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4532 struct mem_cgroup_eventfd_list *ev, *tmp;
4533 int type = MEMFILE_TYPE(cft->private);
4535 BUG_ON(type != _OOM_TYPE);
4537 mutex_lock(&memcg_oom_mutex);
4539 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4540 if (ev->eventfd == eventfd) {
4541 list_del(&ev->list);
4542 kfree(ev);
4546 mutex_unlock(&memcg_oom_mutex);
4549 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4550 struct cftype *cft, struct cgroup_map_cb *cb)
4552 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4554 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4556 if (atomic_read(&mem->oom_lock))
4557 cb->fill(cb, "under_oom", 1);
4558 else
4559 cb->fill(cb, "under_oom", 0);
4560 return 0;
4563 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4564 struct cftype *cft, u64 val)
4566 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4567 struct mem_cgroup *parent;
4569 /* cannot set to root cgroup and only 0 and 1 are allowed */
4570 if (!cgrp->parent || !((val == 0) || (val == 1)))
4571 return -EINVAL;
4573 parent = mem_cgroup_from_cont(cgrp->parent);
4575 cgroup_lock();
4576 /* oom-kill-disable is a flag for subhierarchy. */
4577 if ((parent->use_hierarchy) ||
4578 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4579 cgroup_unlock();
4580 return -EINVAL;
4582 mem->oom_kill_disable = val;
4583 if (!val)
4584 memcg_oom_recover(mem);
4585 cgroup_unlock();
4586 return 0;
4589 #ifdef CONFIG_NUMA
4590 static const struct file_operations mem_control_numa_stat_file_operations = {
4591 .read = seq_read,
4592 .llseek = seq_lseek,
4593 .release = single_release,
4596 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4598 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4600 file->f_op = &mem_control_numa_stat_file_operations;
4601 return single_open(file, mem_control_numa_stat_show, cont);
4603 #endif /* CONFIG_NUMA */
4605 static struct cftype mem_cgroup_files[] = {
4607 .name = "usage_in_bytes",
4608 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4609 .read_u64 = mem_cgroup_read,
4610 .register_event = mem_cgroup_usage_register_event,
4611 .unregister_event = mem_cgroup_usage_unregister_event,
4614 .name = "max_usage_in_bytes",
4615 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4616 .trigger = mem_cgroup_reset,
4617 .read_u64 = mem_cgroup_read,
4620 .name = "limit_in_bytes",
4621 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4622 .write_string = mem_cgroup_write,
4623 .read_u64 = mem_cgroup_read,
4626 .name = "soft_limit_in_bytes",
4627 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4628 .write_string = mem_cgroup_write,
4629 .read_u64 = mem_cgroup_read,
4632 .name = "failcnt",
4633 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4634 .trigger = mem_cgroup_reset,
4635 .read_u64 = mem_cgroup_read,
4638 .name = "stat",
4639 .read_map = mem_control_stat_show,
4642 .name = "force_empty",
4643 .trigger = mem_cgroup_force_empty_write,
4646 .name = "use_hierarchy",
4647 .write_u64 = mem_cgroup_hierarchy_write,
4648 .read_u64 = mem_cgroup_hierarchy_read,
4651 .name = "swappiness",
4652 .read_u64 = mem_cgroup_swappiness_read,
4653 .write_u64 = mem_cgroup_swappiness_write,
4656 .name = "move_charge_at_immigrate",
4657 .read_u64 = mem_cgroup_move_charge_read,
4658 .write_u64 = mem_cgroup_move_charge_write,
4661 .name = "oom_control",
4662 .read_map = mem_cgroup_oom_control_read,
4663 .write_u64 = mem_cgroup_oom_control_write,
4664 .register_event = mem_cgroup_oom_register_event,
4665 .unregister_event = mem_cgroup_oom_unregister_event,
4666 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4668 #ifdef CONFIG_NUMA
4670 .name = "numa_stat",
4671 .open = mem_control_numa_stat_open,
4672 .mode = S_IRUGO,
4674 #endif
4677 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4678 static struct cftype memsw_cgroup_files[] = {
4680 .name = "memsw.usage_in_bytes",
4681 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4682 .read_u64 = mem_cgroup_read,
4683 .register_event = mem_cgroup_usage_register_event,
4684 .unregister_event = mem_cgroup_usage_unregister_event,
4687 .name = "memsw.max_usage_in_bytes",
4688 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4689 .trigger = mem_cgroup_reset,
4690 .read_u64 = mem_cgroup_read,
4693 .name = "memsw.limit_in_bytes",
4694 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4695 .write_string = mem_cgroup_write,
4696 .read_u64 = mem_cgroup_read,
4699 .name = "memsw.failcnt",
4700 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4701 .trigger = mem_cgroup_reset,
4702 .read_u64 = mem_cgroup_read,
4706 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4708 if (!do_swap_account)
4709 return 0;
4710 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4711 ARRAY_SIZE(memsw_cgroup_files));
4713 #else
4714 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4716 return 0;
4718 #endif
4720 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4722 struct mem_cgroup_per_node *pn;
4723 struct mem_cgroup_per_zone *mz;
4724 enum lru_list l;
4725 int zone, tmp = node;
4727 * This routine is called against possible nodes.
4728 * But it's BUG to call kmalloc() against offline node.
4730 * TODO: this routine can waste much memory for nodes which will
4731 * never be onlined. It's better to use memory hotplug callback
4732 * function.
4734 if (!node_state(node, N_NORMAL_MEMORY))
4735 tmp = -1;
4736 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4737 if (!pn)
4738 return 1;
4740 mem->info.nodeinfo[node] = pn;
4741 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4742 mz = &pn->zoneinfo[zone];
4743 for_each_lru(l)
4744 INIT_LIST_HEAD(&mz->lists[l]);
4745 mz->usage_in_excess = 0;
4746 mz->on_tree = false;
4747 mz->mem = mem;
4749 return 0;
4752 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4754 kfree(mem->info.nodeinfo[node]);
4757 static struct mem_cgroup *mem_cgroup_alloc(void)
4759 struct mem_cgroup *mem;
4760 int size = sizeof(struct mem_cgroup);
4762 /* Can be very big if MAX_NUMNODES is very big */
4763 if (size < PAGE_SIZE)
4764 mem = kzalloc(size, GFP_KERNEL);
4765 else
4766 mem = vzalloc(size);
4768 if (!mem)
4769 return NULL;
4771 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4772 if (!mem->stat)
4773 goto out_free;
4774 spin_lock_init(&mem->pcp_counter_lock);
4775 return mem;
4777 out_free:
4778 if (size < PAGE_SIZE)
4779 kfree(mem);
4780 else
4781 vfree(mem);
4782 return NULL;
4786 * At destroying mem_cgroup, references from swap_cgroup can remain.
4787 * (scanning all at force_empty is too costly...)
4789 * Instead of clearing all references at force_empty, we remember
4790 * the number of reference from swap_cgroup and free mem_cgroup when
4791 * it goes down to 0.
4793 * Removal of cgroup itself succeeds regardless of refs from swap.
4796 static void __mem_cgroup_free(struct mem_cgroup *mem)
4798 int node;
4800 mem_cgroup_remove_from_trees(mem);
4801 free_css_id(&mem_cgroup_subsys, &mem->css);
4803 for_each_node_state(node, N_POSSIBLE)
4804 free_mem_cgroup_per_zone_info(mem, node);
4806 free_percpu(mem->stat);
4807 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4808 kfree(mem);
4809 else
4810 vfree(mem);
4813 static void mem_cgroup_get(struct mem_cgroup *mem)
4815 atomic_inc(&mem->refcnt);
4818 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4820 if (atomic_sub_and_test(count, &mem->refcnt)) {
4821 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4822 __mem_cgroup_free(mem);
4823 if (parent)
4824 mem_cgroup_put(parent);
4828 static void mem_cgroup_put(struct mem_cgroup *mem)
4830 __mem_cgroup_put(mem, 1);
4834 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4836 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4838 if (!mem->res.parent)
4839 return NULL;
4840 return mem_cgroup_from_res_counter(mem->res.parent, res);
4843 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4844 static void __init enable_swap_cgroup(void)
4846 if (!mem_cgroup_disabled() && really_do_swap_account)
4847 do_swap_account = 1;
4849 #else
4850 static void __init enable_swap_cgroup(void)
4853 #endif
4855 static int mem_cgroup_soft_limit_tree_init(void)
4857 struct mem_cgroup_tree_per_node *rtpn;
4858 struct mem_cgroup_tree_per_zone *rtpz;
4859 int tmp, node, zone;
4861 for_each_node_state(node, N_POSSIBLE) {
4862 tmp = node;
4863 if (!node_state(node, N_NORMAL_MEMORY))
4864 tmp = -1;
4865 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4866 if (!rtpn)
4867 return 1;
4869 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4871 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4872 rtpz = &rtpn->rb_tree_per_zone[zone];
4873 rtpz->rb_root = RB_ROOT;
4874 spin_lock_init(&rtpz->lock);
4877 return 0;
4880 static struct cgroup_subsys_state * __ref
4881 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4883 struct mem_cgroup *mem, *parent;
4884 long error = -ENOMEM;
4885 int node;
4887 mem = mem_cgroup_alloc();
4888 if (!mem)
4889 return ERR_PTR(error);
4891 for_each_node_state(node, N_POSSIBLE)
4892 if (alloc_mem_cgroup_per_zone_info(mem, node))
4893 goto free_out;
4895 /* root ? */
4896 if (cont->parent == NULL) {
4897 int cpu;
4898 enable_swap_cgroup();
4899 parent = NULL;
4900 root_mem_cgroup = mem;
4901 if (mem_cgroup_soft_limit_tree_init())
4902 goto free_out;
4903 for_each_possible_cpu(cpu) {
4904 struct memcg_stock_pcp *stock =
4905 &per_cpu(memcg_stock, cpu);
4906 INIT_WORK(&stock->work, drain_local_stock);
4908 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4909 } else {
4910 parent = mem_cgroup_from_cont(cont->parent);
4911 mem->use_hierarchy = parent->use_hierarchy;
4912 mem->oom_kill_disable = parent->oom_kill_disable;
4915 if (parent && parent->use_hierarchy) {
4916 res_counter_init(&mem->res, &parent->res);
4917 res_counter_init(&mem->memsw, &parent->memsw);
4919 * We increment refcnt of the parent to ensure that we can
4920 * safely access it on res_counter_charge/uncharge.
4921 * This refcnt will be decremented when freeing this
4922 * mem_cgroup(see mem_cgroup_put).
4924 mem_cgroup_get(parent);
4925 } else {
4926 res_counter_init(&mem->res, NULL);
4927 res_counter_init(&mem->memsw, NULL);
4929 mem->last_scanned_child = 0;
4930 mem->last_scanned_node = MAX_NUMNODES;
4931 INIT_LIST_HEAD(&mem->oom_notify);
4933 if (parent)
4934 mem->swappiness = get_swappiness(parent);
4935 atomic_set(&mem->refcnt, 1);
4936 mem->move_charge_at_immigrate = 0;
4937 mutex_init(&mem->thresholds_lock);
4938 return &mem->css;
4939 free_out:
4940 __mem_cgroup_free(mem);
4941 root_mem_cgroup = NULL;
4942 return ERR_PTR(error);
4945 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4946 struct cgroup *cont)
4948 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4950 return mem_cgroup_force_empty(mem, false);
4953 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4954 struct cgroup *cont)
4956 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4958 mem_cgroup_put(mem);
4961 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4962 struct cgroup *cont)
4964 int ret;
4966 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4967 ARRAY_SIZE(mem_cgroup_files));
4969 if (!ret)
4970 ret = register_memsw_files(cont, ss);
4971 return ret;
4974 #ifdef CONFIG_MMU
4975 /* Handlers for move charge at task migration. */
4976 #define PRECHARGE_COUNT_AT_ONCE 256
4977 static int mem_cgroup_do_precharge(unsigned long count)
4979 int ret = 0;
4980 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4981 struct mem_cgroup *mem = mc.to;
4983 if (mem_cgroup_is_root(mem)) {
4984 mc.precharge += count;
4985 /* we don't need css_get for root */
4986 return ret;
4988 /* try to charge at once */
4989 if (count > 1) {
4990 struct res_counter *dummy;
4992 * "mem" cannot be under rmdir() because we've already checked
4993 * by cgroup_lock_live_cgroup() that it is not removed and we
4994 * are still under the same cgroup_mutex. So we can postpone
4995 * css_get().
4997 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4998 goto one_by_one;
4999 if (do_swap_account && res_counter_charge(&mem->memsw,
5000 PAGE_SIZE * count, &dummy)) {
5001 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5002 goto one_by_one;
5004 mc.precharge += count;
5005 return ret;
5007 one_by_one:
5008 /* fall back to one by one charge */
5009 while (count--) {
5010 if (signal_pending(current)) {
5011 ret = -EINTR;
5012 break;
5014 if (!batch_count--) {
5015 batch_count = PRECHARGE_COUNT_AT_ONCE;
5016 cond_resched();
5018 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5019 if (ret || !mem)
5020 /* mem_cgroup_clear_mc() will do uncharge later */
5021 return -ENOMEM;
5022 mc.precharge++;
5024 return ret;
5028 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5029 * @vma: the vma the pte to be checked belongs
5030 * @addr: the address corresponding to the pte to be checked
5031 * @ptent: the pte to be checked
5032 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5034 * Returns
5035 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5036 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5037 * move charge. if @target is not NULL, the page is stored in target->page
5038 * with extra refcnt got(Callers should handle it).
5039 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5040 * target for charge migration. if @target is not NULL, the entry is stored
5041 * in target->ent.
5043 * Called with pte lock held.
5045 union mc_target {
5046 struct page *page;
5047 swp_entry_t ent;
5050 enum mc_target_type {
5051 MC_TARGET_NONE, /* not used */
5052 MC_TARGET_PAGE,
5053 MC_TARGET_SWAP,
5056 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5057 unsigned long addr, pte_t ptent)
5059 struct page *page = vm_normal_page(vma, addr, ptent);
5061 if (!page || !page_mapped(page))
5062 return NULL;
5063 if (PageAnon(page)) {
5064 /* we don't move shared anon */
5065 if (!move_anon() || page_mapcount(page) > 2)
5066 return NULL;
5067 } else if (!move_file())
5068 /* we ignore mapcount for file pages */
5069 return NULL;
5070 if (!get_page_unless_zero(page))
5071 return NULL;
5073 return page;
5076 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5077 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5079 int usage_count;
5080 struct page *page = NULL;
5081 swp_entry_t ent = pte_to_swp_entry(ptent);
5083 if (!move_anon() || non_swap_entry(ent))
5084 return NULL;
5085 usage_count = mem_cgroup_count_swap_user(ent, &page);
5086 if (usage_count > 1) { /* we don't move shared anon */
5087 if (page)
5088 put_page(page);
5089 return NULL;
5091 if (do_swap_account)
5092 entry->val = ent.val;
5094 return page;
5097 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5098 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5100 struct page *page = NULL;
5101 struct inode *inode;
5102 struct address_space *mapping;
5103 pgoff_t pgoff;
5105 if (!vma->vm_file) /* anonymous vma */
5106 return NULL;
5107 if (!move_file())
5108 return NULL;
5110 inode = vma->vm_file->f_path.dentry->d_inode;
5111 mapping = vma->vm_file->f_mapping;
5112 if (pte_none(ptent))
5113 pgoff = linear_page_index(vma, addr);
5114 else /* pte_file(ptent) is true */
5115 pgoff = pte_to_pgoff(ptent);
5117 /* page is moved even if it's not RSS of this task(page-faulted). */
5118 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5119 page = find_get_page(mapping, pgoff);
5120 } else { /* shmem/tmpfs file. we should take account of swap too. */
5121 swp_entry_t ent;
5122 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5123 if (do_swap_account)
5124 entry->val = ent.val;
5127 return page;
5130 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5131 unsigned long addr, pte_t ptent, union mc_target *target)
5133 struct page *page = NULL;
5134 struct page_cgroup *pc;
5135 int ret = 0;
5136 swp_entry_t ent = { .val = 0 };
5138 if (pte_present(ptent))
5139 page = mc_handle_present_pte(vma, addr, ptent);
5140 else if (is_swap_pte(ptent))
5141 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5142 else if (pte_none(ptent) || pte_file(ptent))
5143 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5145 if (!page && !ent.val)
5146 return 0;
5147 if (page) {
5148 pc = lookup_page_cgroup(page);
5150 * Do only loose check w/o page_cgroup lock.
5151 * mem_cgroup_move_account() checks the pc is valid or not under
5152 * the lock.
5154 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5155 ret = MC_TARGET_PAGE;
5156 if (target)
5157 target->page = page;
5159 if (!ret || !target)
5160 put_page(page);
5162 /* There is a swap entry and a page doesn't exist or isn't charged */
5163 if (ent.val && !ret &&
5164 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5165 ret = MC_TARGET_SWAP;
5166 if (target)
5167 target->ent = ent;
5169 return ret;
5172 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5173 unsigned long addr, unsigned long end,
5174 struct mm_walk *walk)
5176 struct vm_area_struct *vma = walk->private;
5177 pte_t *pte;
5178 spinlock_t *ptl;
5180 split_huge_page_pmd(walk->mm, pmd);
5182 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5183 for (; addr != end; pte++, addr += PAGE_SIZE)
5184 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5185 mc.precharge++; /* increment precharge temporarily */
5186 pte_unmap_unlock(pte - 1, ptl);
5187 cond_resched();
5189 return 0;
5192 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5194 unsigned long precharge;
5195 struct vm_area_struct *vma;
5197 down_read(&mm->mmap_sem);
5198 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5199 struct mm_walk mem_cgroup_count_precharge_walk = {
5200 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5201 .mm = mm,
5202 .private = vma,
5204 if (is_vm_hugetlb_page(vma))
5205 continue;
5206 walk_page_range(vma->vm_start, vma->vm_end,
5207 &mem_cgroup_count_precharge_walk);
5209 up_read(&mm->mmap_sem);
5211 precharge = mc.precharge;
5212 mc.precharge = 0;
5214 return precharge;
5217 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5219 unsigned long precharge = mem_cgroup_count_precharge(mm);
5221 VM_BUG_ON(mc.moving_task);
5222 mc.moving_task = current;
5223 return mem_cgroup_do_precharge(precharge);
5226 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5227 static void __mem_cgroup_clear_mc(void)
5229 struct mem_cgroup *from = mc.from;
5230 struct mem_cgroup *to = mc.to;
5232 /* we must uncharge all the leftover precharges from mc.to */
5233 if (mc.precharge) {
5234 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5235 mc.precharge = 0;
5238 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5239 * we must uncharge here.
5241 if (mc.moved_charge) {
5242 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5243 mc.moved_charge = 0;
5245 /* we must fixup refcnts and charges */
5246 if (mc.moved_swap) {
5247 /* uncharge swap account from the old cgroup */
5248 if (!mem_cgroup_is_root(mc.from))
5249 res_counter_uncharge(&mc.from->memsw,
5250 PAGE_SIZE * mc.moved_swap);
5251 __mem_cgroup_put(mc.from, mc.moved_swap);
5253 if (!mem_cgroup_is_root(mc.to)) {
5255 * we charged both to->res and to->memsw, so we should
5256 * uncharge to->res.
5258 res_counter_uncharge(&mc.to->res,
5259 PAGE_SIZE * mc.moved_swap);
5261 /* we've already done mem_cgroup_get(mc.to) */
5262 mc.moved_swap = 0;
5264 memcg_oom_recover(from);
5265 memcg_oom_recover(to);
5266 wake_up_all(&mc.waitq);
5269 static void mem_cgroup_clear_mc(void)
5271 struct mem_cgroup *from = mc.from;
5274 * we must clear moving_task before waking up waiters at the end of
5275 * task migration.
5277 mc.moving_task = NULL;
5278 __mem_cgroup_clear_mc();
5279 spin_lock(&mc.lock);
5280 mc.from = NULL;
5281 mc.to = NULL;
5282 spin_unlock(&mc.lock);
5283 mem_cgroup_end_move(from);
5286 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5287 struct cgroup *cgroup,
5288 struct task_struct *p)
5290 int ret = 0;
5291 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5293 if (mem->move_charge_at_immigrate) {
5294 struct mm_struct *mm;
5295 struct mem_cgroup *from = mem_cgroup_from_task(p);
5297 VM_BUG_ON(from == mem);
5299 mm = get_task_mm(p);
5300 if (!mm)
5301 return 0;
5302 /* We move charges only when we move a owner of the mm */
5303 if (mm->owner == p) {
5304 VM_BUG_ON(mc.from);
5305 VM_BUG_ON(mc.to);
5306 VM_BUG_ON(mc.precharge);
5307 VM_BUG_ON(mc.moved_charge);
5308 VM_BUG_ON(mc.moved_swap);
5309 mem_cgroup_start_move(from);
5310 spin_lock(&mc.lock);
5311 mc.from = from;
5312 mc.to = mem;
5313 spin_unlock(&mc.lock);
5314 /* We set mc.moving_task later */
5316 ret = mem_cgroup_precharge_mc(mm);
5317 if (ret)
5318 mem_cgroup_clear_mc();
5320 mmput(mm);
5322 return ret;
5325 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5326 struct cgroup *cgroup,
5327 struct task_struct *p)
5329 mem_cgroup_clear_mc();
5332 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5333 unsigned long addr, unsigned long end,
5334 struct mm_walk *walk)
5336 int ret = 0;
5337 struct vm_area_struct *vma = walk->private;
5338 pte_t *pte;
5339 spinlock_t *ptl;
5341 split_huge_page_pmd(walk->mm, pmd);
5342 retry:
5343 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5344 for (; addr != end; addr += PAGE_SIZE) {
5345 pte_t ptent = *(pte++);
5346 union mc_target target;
5347 int type;
5348 struct page *page;
5349 struct page_cgroup *pc;
5350 swp_entry_t ent;
5352 if (!mc.precharge)
5353 break;
5355 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5356 switch (type) {
5357 case MC_TARGET_PAGE:
5358 page = target.page;
5359 if (isolate_lru_page(page))
5360 goto put;
5361 pc = lookup_page_cgroup(page);
5362 if (!mem_cgroup_move_account(page, 1, pc,
5363 mc.from, mc.to, false)) {
5364 mc.precharge--;
5365 /* we uncharge from mc.from later. */
5366 mc.moved_charge++;
5368 putback_lru_page(page);
5369 put: /* is_target_pte_for_mc() gets the page */
5370 put_page(page);
5371 break;
5372 case MC_TARGET_SWAP:
5373 ent = target.ent;
5374 if (!mem_cgroup_move_swap_account(ent,
5375 mc.from, mc.to, false)) {
5376 mc.precharge--;
5377 /* we fixup refcnts and charges later. */
5378 mc.moved_swap++;
5380 break;
5381 default:
5382 break;
5385 pte_unmap_unlock(pte - 1, ptl);
5386 cond_resched();
5388 if (addr != end) {
5390 * We have consumed all precharges we got in can_attach().
5391 * We try charge one by one, but don't do any additional
5392 * charges to mc.to if we have failed in charge once in attach()
5393 * phase.
5395 ret = mem_cgroup_do_precharge(1);
5396 if (!ret)
5397 goto retry;
5400 return ret;
5403 static void mem_cgroup_move_charge(struct mm_struct *mm)
5405 struct vm_area_struct *vma;
5407 lru_add_drain_all();
5408 retry:
5409 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5411 * Someone who are holding the mmap_sem might be waiting in
5412 * waitq. So we cancel all extra charges, wake up all waiters,
5413 * and retry. Because we cancel precharges, we might not be able
5414 * to move enough charges, but moving charge is a best-effort
5415 * feature anyway, so it wouldn't be a big problem.
5417 __mem_cgroup_clear_mc();
5418 cond_resched();
5419 goto retry;
5421 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5422 int ret;
5423 struct mm_walk mem_cgroup_move_charge_walk = {
5424 .pmd_entry = mem_cgroup_move_charge_pte_range,
5425 .mm = mm,
5426 .private = vma,
5428 if (is_vm_hugetlb_page(vma))
5429 continue;
5430 ret = walk_page_range(vma->vm_start, vma->vm_end,
5431 &mem_cgroup_move_charge_walk);
5432 if (ret)
5434 * means we have consumed all precharges and failed in
5435 * doing additional charge. Just abandon here.
5437 break;
5439 up_read(&mm->mmap_sem);
5442 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5443 struct cgroup *cont,
5444 struct cgroup *old_cont,
5445 struct task_struct *p)
5447 struct mm_struct *mm = get_task_mm(p);
5449 if (mm) {
5450 if (mc.to)
5451 mem_cgroup_move_charge(mm);
5452 put_swap_token(mm);
5453 mmput(mm);
5455 if (mc.to)
5456 mem_cgroup_clear_mc();
5458 #else /* !CONFIG_MMU */
5459 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5460 struct cgroup *cgroup,
5461 struct task_struct *p)
5463 return 0;
5465 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5466 struct cgroup *cgroup,
5467 struct task_struct *p)
5470 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5471 struct cgroup *cont,
5472 struct cgroup *old_cont,
5473 struct task_struct *p)
5476 #endif
5478 struct cgroup_subsys mem_cgroup_subsys = {
5479 .name = "memory",
5480 .subsys_id = mem_cgroup_subsys_id,
5481 .create = mem_cgroup_create,
5482 .pre_destroy = mem_cgroup_pre_destroy,
5483 .destroy = mem_cgroup_destroy,
5484 .populate = mem_cgroup_populate,
5485 .can_attach = mem_cgroup_can_attach,
5486 .cancel_attach = mem_cgroup_cancel_attach,
5487 .attach = mem_cgroup_move_task,
5488 .early_init = 0,
5489 .use_id = 1,
5492 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5493 static int __init enable_swap_account(char *s)
5495 /* consider enabled if no parameter or 1 is given */
5496 if (!strcmp(s, "1"))
5497 really_do_swap_account = 1;
5498 else if (!strcmp(s, "0"))
5499 really_do_swap_account = 0;
5500 return 1;
5502 __setup("swapaccount=", enable_swap_account);
5504 #endif