Merge branches 'stable/drivers-3.2', 'stable/drivers.bugfixes-3.2' and 'stable/pci...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / xen / events.c
blob7a55b292bf3903ecf3db8b1aa742ce10266769ed
1 /*
2 * Xen event channels
4 * Xen models interrupts with abstract event channels. Because each
5 * domain gets 1024 event channels, but NR_IRQ is not that large, we
6 * must dynamically map irqs<->event channels. The event channels
7 * interface with the rest of the kernel by defining a xen interrupt
8 * chip. When an event is received, it is mapped to an irq and sent
9 * through the normal interrupt processing path.
11 * There are four kinds of events which can be mapped to an event
12 * channel:
14 * 1. Inter-domain notifications. This includes all the virtual
15 * device events, since they're driven by front-ends in another domain
16 * (typically dom0).
17 * 2. VIRQs, typically used for timers. These are per-cpu events.
18 * 3. IPIs.
19 * 4. PIRQs - Hardware interrupts.
21 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
24 #include <linux/linkage.h>
25 #include <linux/interrupt.h>
26 #include <linux/irq.h>
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/bootmem.h>
30 #include <linux/slab.h>
31 #include <linux/irqnr.h>
32 #include <linux/pci.h>
34 #include <asm/desc.h>
35 #include <asm/ptrace.h>
36 #include <asm/irq.h>
37 #include <asm/idle.h>
38 #include <asm/io_apic.h>
39 #include <asm/sync_bitops.h>
40 #include <asm/xen/pci.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
44 #include <xen/xen.h>
45 #include <xen/hvm.h>
46 #include <xen/xen-ops.h>
47 #include <xen/events.h>
48 #include <xen/interface/xen.h>
49 #include <xen/interface/event_channel.h>
50 #include <xen/interface/hvm/hvm_op.h>
51 #include <xen/interface/hvm/params.h>
54 * This lock protects updates to the following mapping and reference-count
55 * arrays. The lock does not need to be acquired to read the mapping tables.
57 static DEFINE_MUTEX(irq_mapping_update_lock);
59 static LIST_HEAD(xen_irq_list_head);
61 /* IRQ <-> VIRQ mapping. */
62 static DEFINE_PER_CPU(int [NR_VIRQS], virq_to_irq) = {[0 ... NR_VIRQS-1] = -1};
64 /* IRQ <-> IPI mapping */
65 static DEFINE_PER_CPU(int [XEN_NR_IPIS], ipi_to_irq) = {[0 ... XEN_NR_IPIS-1] = -1};
67 /* Interrupt types. */
68 enum xen_irq_type {
69 IRQT_UNBOUND = 0,
70 IRQT_PIRQ,
71 IRQT_VIRQ,
72 IRQT_IPI,
73 IRQT_EVTCHN
77 * Packed IRQ information:
78 * type - enum xen_irq_type
79 * event channel - irq->event channel mapping
80 * cpu - cpu this event channel is bound to
81 * index - type-specific information:
82 * PIRQ - vector, with MSB being "needs EIO", or physical IRQ of the HVM
83 * guest, or GSI (real passthrough IRQ) of the device.
84 * VIRQ - virq number
85 * IPI - IPI vector
86 * EVTCHN -
88 struct irq_info
90 struct list_head list;
91 enum xen_irq_type type; /* type */
92 unsigned irq;
93 unsigned short evtchn; /* event channel */
94 unsigned short cpu; /* cpu bound */
96 union {
97 unsigned short virq;
98 enum ipi_vector ipi;
99 struct {
100 unsigned short pirq;
101 unsigned short gsi;
102 unsigned char vector;
103 unsigned char flags;
104 uint16_t domid;
105 } pirq;
106 } u;
108 #define PIRQ_NEEDS_EOI (1 << 0)
109 #define PIRQ_SHAREABLE (1 << 1)
111 static int *evtchn_to_irq;
113 static DEFINE_PER_CPU(unsigned long [NR_EVENT_CHANNELS/BITS_PER_LONG],
114 cpu_evtchn_mask);
116 /* Xen will never allocate port zero for any purpose. */
117 #define VALID_EVTCHN(chn) ((chn) != 0)
119 static struct irq_chip xen_dynamic_chip;
120 static struct irq_chip xen_percpu_chip;
121 static struct irq_chip xen_pirq_chip;
122 static void enable_dynirq(struct irq_data *data);
123 static void disable_dynirq(struct irq_data *data);
125 /* Get info for IRQ */
126 static struct irq_info *info_for_irq(unsigned irq)
128 return irq_get_handler_data(irq);
131 /* Constructors for packed IRQ information. */
132 static void xen_irq_info_common_init(struct irq_info *info,
133 unsigned irq,
134 enum xen_irq_type type,
135 unsigned short evtchn,
136 unsigned short cpu)
139 BUG_ON(info->type != IRQT_UNBOUND && info->type != type);
141 info->type = type;
142 info->irq = irq;
143 info->evtchn = evtchn;
144 info->cpu = cpu;
146 evtchn_to_irq[evtchn] = irq;
149 static void xen_irq_info_evtchn_init(unsigned irq,
150 unsigned short evtchn)
152 struct irq_info *info = info_for_irq(irq);
154 xen_irq_info_common_init(info, irq, IRQT_EVTCHN, evtchn, 0);
157 static void xen_irq_info_ipi_init(unsigned cpu,
158 unsigned irq,
159 unsigned short evtchn,
160 enum ipi_vector ipi)
162 struct irq_info *info = info_for_irq(irq);
164 xen_irq_info_common_init(info, irq, IRQT_IPI, evtchn, 0);
166 info->u.ipi = ipi;
168 per_cpu(ipi_to_irq, cpu)[ipi] = irq;
171 static void xen_irq_info_virq_init(unsigned cpu,
172 unsigned irq,
173 unsigned short evtchn,
174 unsigned short virq)
176 struct irq_info *info = info_for_irq(irq);
178 xen_irq_info_common_init(info, irq, IRQT_VIRQ, evtchn, 0);
180 info->u.virq = virq;
182 per_cpu(virq_to_irq, cpu)[virq] = irq;
185 static void xen_irq_info_pirq_init(unsigned irq,
186 unsigned short evtchn,
187 unsigned short pirq,
188 unsigned short gsi,
189 unsigned short vector,
190 uint16_t domid,
191 unsigned char flags)
193 struct irq_info *info = info_for_irq(irq);
195 xen_irq_info_common_init(info, irq, IRQT_PIRQ, evtchn, 0);
197 info->u.pirq.pirq = pirq;
198 info->u.pirq.gsi = gsi;
199 info->u.pirq.vector = vector;
200 info->u.pirq.domid = domid;
201 info->u.pirq.flags = flags;
205 * Accessors for packed IRQ information.
207 static unsigned int evtchn_from_irq(unsigned irq)
209 if (unlikely(WARN(irq < 0 || irq >= nr_irqs, "Invalid irq %d!\n", irq)))
210 return 0;
212 return info_for_irq(irq)->evtchn;
215 unsigned irq_from_evtchn(unsigned int evtchn)
217 return evtchn_to_irq[evtchn];
219 EXPORT_SYMBOL_GPL(irq_from_evtchn);
221 static enum ipi_vector ipi_from_irq(unsigned irq)
223 struct irq_info *info = info_for_irq(irq);
225 BUG_ON(info == NULL);
226 BUG_ON(info->type != IRQT_IPI);
228 return info->u.ipi;
231 static unsigned virq_from_irq(unsigned irq)
233 struct irq_info *info = info_for_irq(irq);
235 BUG_ON(info == NULL);
236 BUG_ON(info->type != IRQT_VIRQ);
238 return info->u.virq;
241 static unsigned pirq_from_irq(unsigned irq)
243 struct irq_info *info = info_for_irq(irq);
245 BUG_ON(info == NULL);
246 BUG_ON(info->type != IRQT_PIRQ);
248 return info->u.pirq.pirq;
251 static enum xen_irq_type type_from_irq(unsigned irq)
253 return info_for_irq(irq)->type;
256 static unsigned cpu_from_irq(unsigned irq)
258 return info_for_irq(irq)->cpu;
261 static unsigned int cpu_from_evtchn(unsigned int evtchn)
263 int irq = evtchn_to_irq[evtchn];
264 unsigned ret = 0;
266 if (irq != -1)
267 ret = cpu_from_irq(irq);
269 return ret;
272 static bool pirq_needs_eoi(unsigned irq)
274 struct irq_info *info = info_for_irq(irq);
276 BUG_ON(info->type != IRQT_PIRQ);
278 return info->u.pirq.flags & PIRQ_NEEDS_EOI;
281 static inline unsigned long active_evtchns(unsigned int cpu,
282 struct shared_info *sh,
283 unsigned int idx)
285 return (sh->evtchn_pending[idx] &
286 per_cpu(cpu_evtchn_mask, cpu)[idx] &
287 ~sh->evtchn_mask[idx]);
290 static void bind_evtchn_to_cpu(unsigned int chn, unsigned int cpu)
292 int irq = evtchn_to_irq[chn];
294 BUG_ON(irq == -1);
295 #ifdef CONFIG_SMP
296 cpumask_copy(irq_to_desc(irq)->irq_data.affinity, cpumask_of(cpu));
297 #endif
299 clear_bit(chn, per_cpu(cpu_evtchn_mask, cpu_from_irq(irq)));
300 set_bit(chn, per_cpu(cpu_evtchn_mask, cpu));
302 info_for_irq(irq)->cpu = cpu;
305 static void init_evtchn_cpu_bindings(void)
307 int i;
308 #ifdef CONFIG_SMP
309 struct irq_info *info;
311 /* By default all event channels notify CPU#0. */
312 list_for_each_entry(info, &xen_irq_list_head, list) {
313 struct irq_desc *desc = irq_to_desc(info->irq);
314 cpumask_copy(desc->irq_data.affinity, cpumask_of(0));
316 #endif
318 for_each_possible_cpu(i)
319 memset(per_cpu(cpu_evtchn_mask, i),
320 (i == 0) ? ~0 : 0, sizeof(*per_cpu(cpu_evtchn_mask, i)));
323 static inline void clear_evtchn(int port)
325 struct shared_info *s = HYPERVISOR_shared_info;
326 sync_clear_bit(port, &s->evtchn_pending[0]);
329 static inline void set_evtchn(int port)
331 struct shared_info *s = HYPERVISOR_shared_info;
332 sync_set_bit(port, &s->evtchn_pending[0]);
335 static inline int test_evtchn(int port)
337 struct shared_info *s = HYPERVISOR_shared_info;
338 return sync_test_bit(port, &s->evtchn_pending[0]);
343 * notify_remote_via_irq - send event to remote end of event channel via irq
344 * @irq: irq of event channel to send event to
346 * Unlike notify_remote_via_evtchn(), this is safe to use across
347 * save/restore. Notifications on a broken connection are silently
348 * dropped.
350 void notify_remote_via_irq(int irq)
352 int evtchn = evtchn_from_irq(irq);
354 if (VALID_EVTCHN(evtchn))
355 notify_remote_via_evtchn(evtchn);
357 EXPORT_SYMBOL_GPL(notify_remote_via_irq);
359 static void mask_evtchn(int port)
361 struct shared_info *s = HYPERVISOR_shared_info;
362 sync_set_bit(port, &s->evtchn_mask[0]);
365 static void unmask_evtchn(int port)
367 struct shared_info *s = HYPERVISOR_shared_info;
368 unsigned int cpu = get_cpu();
370 BUG_ON(!irqs_disabled());
372 /* Slow path (hypercall) if this is a non-local port. */
373 if (unlikely(cpu != cpu_from_evtchn(port))) {
374 struct evtchn_unmask unmask = { .port = port };
375 (void)HYPERVISOR_event_channel_op(EVTCHNOP_unmask, &unmask);
376 } else {
377 struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
379 sync_clear_bit(port, &s->evtchn_mask[0]);
382 * The following is basically the equivalent of
383 * 'hw_resend_irq'. Just like a real IO-APIC we 'lose
384 * the interrupt edge' if the channel is masked.
386 if (sync_test_bit(port, &s->evtchn_pending[0]) &&
387 !sync_test_and_set_bit(port / BITS_PER_LONG,
388 &vcpu_info->evtchn_pending_sel))
389 vcpu_info->evtchn_upcall_pending = 1;
392 put_cpu();
395 static void xen_irq_init(unsigned irq)
397 struct irq_info *info;
398 #ifdef CONFIG_SMP
399 struct irq_desc *desc = irq_to_desc(irq);
401 /* By default all event channels notify CPU#0. */
402 cpumask_copy(desc->irq_data.affinity, cpumask_of(0));
403 #endif
405 info = kzalloc(sizeof(*info), GFP_KERNEL);
406 if (info == NULL)
407 panic("Unable to allocate metadata for IRQ%d\n", irq);
409 info->type = IRQT_UNBOUND;
411 irq_set_handler_data(irq, info);
413 list_add_tail(&info->list, &xen_irq_list_head);
416 static int __must_check xen_allocate_irq_dynamic(void)
418 int first = 0;
419 int irq;
421 #ifdef CONFIG_X86_IO_APIC
423 * For an HVM guest or domain 0 which see "real" (emulated or
424 * actual respectively) GSIs we allocate dynamic IRQs
425 * e.g. those corresponding to event channels or MSIs
426 * etc. from the range above those "real" GSIs to avoid
427 * collisions.
429 if (xen_initial_domain() || xen_hvm_domain())
430 first = get_nr_irqs_gsi();
431 #endif
433 irq = irq_alloc_desc_from(first, -1);
435 if (irq >= 0)
436 xen_irq_init(irq);
438 return irq;
441 static int __must_check xen_allocate_irq_gsi(unsigned gsi)
443 int irq;
446 * A PV guest has no concept of a GSI (since it has no ACPI
447 * nor access to/knowledge of the physical APICs). Therefore
448 * all IRQs are dynamically allocated from the entire IRQ
449 * space.
451 if (xen_pv_domain() && !xen_initial_domain())
452 return xen_allocate_irq_dynamic();
454 /* Legacy IRQ descriptors are already allocated by the arch. */
455 if (gsi < NR_IRQS_LEGACY)
456 irq = gsi;
457 else
458 irq = irq_alloc_desc_at(gsi, -1);
460 xen_irq_init(irq);
462 return irq;
465 static void xen_free_irq(unsigned irq)
467 struct irq_info *info = irq_get_handler_data(irq);
469 list_del(&info->list);
471 irq_set_handler_data(irq, NULL);
473 kfree(info);
475 /* Legacy IRQ descriptors are managed by the arch. */
476 if (irq < NR_IRQS_LEGACY)
477 return;
479 irq_free_desc(irq);
482 static void pirq_query_unmask(int irq)
484 struct physdev_irq_status_query irq_status;
485 struct irq_info *info = info_for_irq(irq);
487 BUG_ON(info->type != IRQT_PIRQ);
489 irq_status.irq = pirq_from_irq(irq);
490 if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status))
491 irq_status.flags = 0;
493 info->u.pirq.flags &= ~PIRQ_NEEDS_EOI;
494 if (irq_status.flags & XENIRQSTAT_needs_eoi)
495 info->u.pirq.flags |= PIRQ_NEEDS_EOI;
498 static bool probing_irq(int irq)
500 struct irq_desc *desc = irq_to_desc(irq);
502 return desc && desc->action == NULL;
505 static void eoi_pirq(struct irq_data *data)
507 int evtchn = evtchn_from_irq(data->irq);
508 struct physdev_eoi eoi = { .irq = pirq_from_irq(data->irq) };
509 int rc = 0;
511 irq_move_irq(data);
513 if (VALID_EVTCHN(evtchn))
514 clear_evtchn(evtchn);
516 if (pirq_needs_eoi(data->irq)) {
517 rc = HYPERVISOR_physdev_op(PHYSDEVOP_eoi, &eoi);
518 WARN_ON(rc);
522 static void mask_ack_pirq(struct irq_data *data)
524 disable_dynirq(data);
525 eoi_pirq(data);
528 static unsigned int __startup_pirq(unsigned int irq)
530 struct evtchn_bind_pirq bind_pirq;
531 struct irq_info *info = info_for_irq(irq);
532 int evtchn = evtchn_from_irq(irq);
533 int rc;
535 BUG_ON(info->type != IRQT_PIRQ);
537 if (VALID_EVTCHN(evtchn))
538 goto out;
540 bind_pirq.pirq = pirq_from_irq(irq);
541 /* NB. We are happy to share unless we are probing. */
542 bind_pirq.flags = info->u.pirq.flags & PIRQ_SHAREABLE ?
543 BIND_PIRQ__WILL_SHARE : 0;
544 rc = HYPERVISOR_event_channel_op(EVTCHNOP_bind_pirq, &bind_pirq);
545 if (rc != 0) {
546 if (!probing_irq(irq))
547 printk(KERN_INFO "Failed to obtain physical IRQ %d\n",
548 irq);
549 return 0;
551 evtchn = bind_pirq.port;
553 pirq_query_unmask(irq);
555 evtchn_to_irq[evtchn] = irq;
556 bind_evtchn_to_cpu(evtchn, 0);
557 info->evtchn = evtchn;
559 out:
560 unmask_evtchn(evtchn);
561 eoi_pirq(irq_get_irq_data(irq));
563 return 0;
566 static unsigned int startup_pirq(struct irq_data *data)
568 return __startup_pirq(data->irq);
571 static void shutdown_pirq(struct irq_data *data)
573 struct evtchn_close close;
574 unsigned int irq = data->irq;
575 struct irq_info *info = info_for_irq(irq);
576 int evtchn = evtchn_from_irq(irq);
578 BUG_ON(info->type != IRQT_PIRQ);
580 if (!VALID_EVTCHN(evtchn))
581 return;
583 mask_evtchn(evtchn);
585 close.port = evtchn;
586 if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
587 BUG();
589 bind_evtchn_to_cpu(evtchn, 0);
590 evtchn_to_irq[evtchn] = -1;
591 info->evtchn = 0;
594 static void enable_pirq(struct irq_data *data)
596 startup_pirq(data);
599 static void disable_pirq(struct irq_data *data)
601 disable_dynirq(data);
604 static int find_irq_by_gsi(unsigned gsi)
606 struct irq_info *info;
608 list_for_each_entry(info, &xen_irq_list_head, list) {
609 if (info->type != IRQT_PIRQ)
610 continue;
612 if (info->u.pirq.gsi == gsi)
613 return info->irq;
616 return -1;
620 * Do not make any assumptions regarding the relationship between the
621 * IRQ number returned here and the Xen pirq argument.
623 * Note: We don't assign an event channel until the irq actually started
624 * up. Return an existing irq if we've already got one for the gsi.
626 * Shareable implies level triggered, not shareable implies edge
627 * triggered here.
629 int xen_bind_pirq_gsi_to_irq(unsigned gsi,
630 unsigned pirq, int shareable, char *name)
632 int irq = -1;
633 struct physdev_irq irq_op;
635 mutex_lock(&irq_mapping_update_lock);
637 irq = find_irq_by_gsi(gsi);
638 if (irq != -1) {
639 printk(KERN_INFO "xen_map_pirq_gsi: returning irq %d for gsi %u\n",
640 irq, gsi);
641 goto out; /* XXX need refcount? */
644 irq = xen_allocate_irq_gsi(gsi);
645 if (irq < 0)
646 goto out;
648 irq_op.irq = irq;
649 irq_op.vector = 0;
651 /* Only the privileged domain can do this. For non-priv, the pcifront
652 * driver provides a PCI bus that does the call to do exactly
653 * this in the priv domain. */
654 if (xen_initial_domain() &&
655 HYPERVISOR_physdev_op(PHYSDEVOP_alloc_irq_vector, &irq_op)) {
656 xen_free_irq(irq);
657 irq = -ENOSPC;
658 goto out;
661 xen_irq_info_pirq_init(irq, 0, pirq, gsi, irq_op.vector, DOMID_SELF,
662 shareable ? PIRQ_SHAREABLE : 0);
664 pirq_query_unmask(irq);
665 /* We try to use the handler with the appropriate semantic for the
666 * type of interrupt: if the interrupt is an edge triggered
667 * interrupt we use handle_edge_irq.
669 * On the other hand if the interrupt is level triggered we use
670 * handle_fasteoi_irq like the native code does for this kind of
671 * interrupts.
673 * Depending on the Xen version, pirq_needs_eoi might return true
674 * not only for level triggered interrupts but for edge triggered
675 * interrupts too. In any case Xen always honors the eoi mechanism,
676 * not injecting any more pirqs of the same kind if the first one
677 * hasn't received an eoi yet. Therefore using the fasteoi handler
678 * is the right choice either way.
680 if (shareable)
681 irq_set_chip_and_handler_name(irq, &xen_pirq_chip,
682 handle_fasteoi_irq, name);
683 else
684 irq_set_chip_and_handler_name(irq, &xen_pirq_chip,
685 handle_edge_irq, name);
687 out:
688 mutex_unlock(&irq_mapping_update_lock);
690 return irq;
693 #ifdef CONFIG_PCI_MSI
694 int xen_allocate_pirq_msi(struct pci_dev *dev, struct msi_desc *msidesc)
696 int rc;
697 struct physdev_get_free_pirq op_get_free_pirq;
699 op_get_free_pirq.type = MAP_PIRQ_TYPE_MSI;
700 rc = HYPERVISOR_physdev_op(PHYSDEVOP_get_free_pirq, &op_get_free_pirq);
702 WARN_ONCE(rc == -ENOSYS,
703 "hypervisor does not support the PHYSDEVOP_get_free_pirq interface\n");
705 return rc ? -1 : op_get_free_pirq.pirq;
708 int xen_bind_pirq_msi_to_irq(struct pci_dev *dev, struct msi_desc *msidesc,
709 int pirq, int vector, const char *name,
710 domid_t domid)
712 int irq, ret;
714 mutex_lock(&irq_mapping_update_lock);
716 irq = xen_allocate_irq_dynamic();
717 if (irq < 0)
718 goto out;
720 irq_set_chip_and_handler_name(irq, &xen_pirq_chip, handle_edge_irq,
721 name);
723 xen_irq_info_pirq_init(irq, 0, pirq, 0, vector, domid, 0);
724 ret = irq_set_msi_desc(irq, msidesc);
725 if (ret < 0)
726 goto error_irq;
727 out:
728 mutex_unlock(&irq_mapping_update_lock);
729 return irq;
730 error_irq:
731 mutex_unlock(&irq_mapping_update_lock);
732 xen_free_irq(irq);
733 return ret;
735 #endif
737 int xen_destroy_irq(int irq)
739 struct irq_desc *desc;
740 struct physdev_unmap_pirq unmap_irq;
741 struct irq_info *info = info_for_irq(irq);
742 int rc = -ENOENT;
744 mutex_lock(&irq_mapping_update_lock);
746 desc = irq_to_desc(irq);
747 if (!desc)
748 goto out;
750 if (xen_initial_domain()) {
751 unmap_irq.pirq = info->u.pirq.pirq;
752 unmap_irq.domid = info->u.pirq.domid;
753 rc = HYPERVISOR_physdev_op(PHYSDEVOP_unmap_pirq, &unmap_irq);
754 /* If another domain quits without making the pci_disable_msix
755 * call, the Xen hypervisor takes care of freeing the PIRQs
756 * (free_domain_pirqs).
758 if ((rc == -ESRCH && info->u.pirq.domid != DOMID_SELF))
759 printk(KERN_INFO "domain %d does not have %d anymore\n",
760 info->u.pirq.domid, info->u.pirq.pirq);
761 else if (rc) {
762 printk(KERN_WARNING "unmap irq failed %d\n", rc);
763 goto out;
767 xen_free_irq(irq);
769 out:
770 mutex_unlock(&irq_mapping_update_lock);
771 return rc;
774 int xen_irq_from_pirq(unsigned pirq)
776 int irq;
778 struct irq_info *info;
780 mutex_lock(&irq_mapping_update_lock);
782 list_for_each_entry(info, &xen_irq_list_head, list) {
783 if (info->type != IRQT_PIRQ)
784 continue;
785 irq = info->irq;
786 if (info->u.pirq.pirq == pirq)
787 goto out;
789 irq = -1;
790 out:
791 mutex_unlock(&irq_mapping_update_lock);
793 return irq;
797 int xen_pirq_from_irq(unsigned irq)
799 return pirq_from_irq(irq);
801 EXPORT_SYMBOL_GPL(xen_pirq_from_irq);
802 int bind_evtchn_to_irq(unsigned int evtchn)
804 int irq;
806 mutex_lock(&irq_mapping_update_lock);
808 irq = evtchn_to_irq[evtchn];
810 if (irq == -1) {
811 irq = xen_allocate_irq_dynamic();
812 if (irq == -1)
813 goto out;
815 irq_set_chip_and_handler_name(irq, &xen_dynamic_chip,
816 handle_edge_irq, "event");
818 xen_irq_info_evtchn_init(irq, evtchn);
821 out:
822 mutex_unlock(&irq_mapping_update_lock);
824 return irq;
826 EXPORT_SYMBOL_GPL(bind_evtchn_to_irq);
828 static int bind_ipi_to_irq(unsigned int ipi, unsigned int cpu)
830 struct evtchn_bind_ipi bind_ipi;
831 int evtchn, irq;
833 mutex_lock(&irq_mapping_update_lock);
835 irq = per_cpu(ipi_to_irq, cpu)[ipi];
837 if (irq == -1) {
838 irq = xen_allocate_irq_dynamic();
839 if (irq < 0)
840 goto out;
842 irq_set_chip_and_handler_name(irq, &xen_percpu_chip,
843 handle_percpu_irq, "ipi");
845 bind_ipi.vcpu = cpu;
846 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
847 &bind_ipi) != 0)
848 BUG();
849 evtchn = bind_ipi.port;
851 xen_irq_info_ipi_init(cpu, irq, evtchn, ipi);
853 bind_evtchn_to_cpu(evtchn, cpu);
856 out:
857 mutex_unlock(&irq_mapping_update_lock);
858 return irq;
861 static int bind_interdomain_evtchn_to_irq(unsigned int remote_domain,
862 unsigned int remote_port)
864 struct evtchn_bind_interdomain bind_interdomain;
865 int err;
867 bind_interdomain.remote_dom = remote_domain;
868 bind_interdomain.remote_port = remote_port;
870 err = HYPERVISOR_event_channel_op(EVTCHNOP_bind_interdomain,
871 &bind_interdomain);
873 return err ? : bind_evtchn_to_irq(bind_interdomain.local_port);
876 static int find_virq(unsigned int virq, unsigned int cpu)
878 struct evtchn_status status;
879 int port, rc = -ENOENT;
881 memset(&status, 0, sizeof(status));
882 for (port = 0; port <= NR_EVENT_CHANNELS; port++) {
883 status.dom = DOMID_SELF;
884 status.port = port;
885 rc = HYPERVISOR_event_channel_op(EVTCHNOP_status, &status);
886 if (rc < 0)
887 continue;
888 if (status.status != EVTCHNSTAT_virq)
889 continue;
890 if (status.u.virq == virq && status.vcpu == cpu) {
891 rc = port;
892 break;
895 return rc;
898 int bind_virq_to_irq(unsigned int virq, unsigned int cpu)
900 struct evtchn_bind_virq bind_virq;
901 int evtchn, irq, ret;
903 mutex_lock(&irq_mapping_update_lock);
905 irq = per_cpu(virq_to_irq, cpu)[virq];
907 if (irq == -1) {
908 irq = xen_allocate_irq_dynamic();
909 if (irq == -1)
910 goto out;
912 irq_set_chip_and_handler_name(irq, &xen_percpu_chip,
913 handle_percpu_irq, "virq");
915 bind_virq.virq = virq;
916 bind_virq.vcpu = cpu;
917 ret = HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
918 &bind_virq);
919 if (ret == 0)
920 evtchn = bind_virq.port;
921 else {
922 if (ret == -EEXIST)
923 ret = find_virq(virq, cpu);
924 BUG_ON(ret < 0);
925 evtchn = ret;
928 xen_irq_info_virq_init(cpu, irq, evtchn, virq);
930 bind_evtchn_to_cpu(evtchn, cpu);
933 out:
934 mutex_unlock(&irq_mapping_update_lock);
936 return irq;
939 static void unbind_from_irq(unsigned int irq)
941 struct evtchn_close close;
942 int evtchn = evtchn_from_irq(irq);
944 mutex_lock(&irq_mapping_update_lock);
946 if (VALID_EVTCHN(evtchn)) {
947 close.port = evtchn;
948 if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
949 BUG();
951 switch (type_from_irq(irq)) {
952 case IRQT_VIRQ:
953 per_cpu(virq_to_irq, cpu_from_evtchn(evtchn))
954 [virq_from_irq(irq)] = -1;
955 break;
956 case IRQT_IPI:
957 per_cpu(ipi_to_irq, cpu_from_evtchn(evtchn))
958 [ipi_from_irq(irq)] = -1;
959 break;
960 default:
961 break;
964 /* Closed ports are implicitly re-bound to VCPU0. */
965 bind_evtchn_to_cpu(evtchn, 0);
967 evtchn_to_irq[evtchn] = -1;
970 BUG_ON(info_for_irq(irq)->type == IRQT_UNBOUND);
972 xen_free_irq(irq);
974 mutex_unlock(&irq_mapping_update_lock);
977 int bind_evtchn_to_irqhandler(unsigned int evtchn,
978 irq_handler_t handler,
979 unsigned long irqflags,
980 const char *devname, void *dev_id)
982 int irq, retval;
984 irq = bind_evtchn_to_irq(evtchn);
985 if (irq < 0)
986 return irq;
987 retval = request_irq(irq, handler, irqflags, devname, dev_id);
988 if (retval != 0) {
989 unbind_from_irq(irq);
990 return retval;
993 return irq;
995 EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler);
997 int bind_interdomain_evtchn_to_irqhandler(unsigned int remote_domain,
998 unsigned int remote_port,
999 irq_handler_t handler,
1000 unsigned long irqflags,
1001 const char *devname,
1002 void *dev_id)
1004 int irq, retval;
1006 irq = bind_interdomain_evtchn_to_irq(remote_domain, remote_port);
1007 if (irq < 0)
1008 return irq;
1010 retval = request_irq(irq, handler, irqflags, devname, dev_id);
1011 if (retval != 0) {
1012 unbind_from_irq(irq);
1013 return retval;
1016 return irq;
1018 EXPORT_SYMBOL_GPL(bind_interdomain_evtchn_to_irqhandler);
1020 int bind_virq_to_irqhandler(unsigned int virq, unsigned int cpu,
1021 irq_handler_t handler,
1022 unsigned long irqflags, const char *devname, void *dev_id)
1024 int irq, retval;
1026 irq = bind_virq_to_irq(virq, cpu);
1027 if (irq < 0)
1028 return irq;
1029 retval = request_irq(irq, handler, irqflags, devname, dev_id);
1030 if (retval != 0) {
1031 unbind_from_irq(irq);
1032 return retval;
1035 return irq;
1037 EXPORT_SYMBOL_GPL(bind_virq_to_irqhandler);
1039 int bind_ipi_to_irqhandler(enum ipi_vector ipi,
1040 unsigned int cpu,
1041 irq_handler_t handler,
1042 unsigned long irqflags,
1043 const char *devname,
1044 void *dev_id)
1046 int irq, retval;
1048 irq = bind_ipi_to_irq(ipi, cpu);
1049 if (irq < 0)
1050 return irq;
1052 irqflags |= IRQF_NO_SUSPEND | IRQF_FORCE_RESUME;
1053 retval = request_irq(irq, handler, irqflags, devname, dev_id);
1054 if (retval != 0) {
1055 unbind_from_irq(irq);
1056 return retval;
1059 return irq;
1062 void unbind_from_irqhandler(unsigned int irq, void *dev_id)
1064 free_irq(irq, dev_id);
1065 unbind_from_irq(irq);
1067 EXPORT_SYMBOL_GPL(unbind_from_irqhandler);
1069 void xen_send_IPI_one(unsigned int cpu, enum ipi_vector vector)
1071 int irq = per_cpu(ipi_to_irq, cpu)[vector];
1072 BUG_ON(irq < 0);
1073 notify_remote_via_irq(irq);
1076 irqreturn_t xen_debug_interrupt(int irq, void *dev_id)
1078 struct shared_info *sh = HYPERVISOR_shared_info;
1079 int cpu = smp_processor_id();
1080 unsigned long *cpu_evtchn = per_cpu(cpu_evtchn_mask, cpu);
1081 int i;
1082 unsigned long flags;
1083 static DEFINE_SPINLOCK(debug_lock);
1084 struct vcpu_info *v;
1086 spin_lock_irqsave(&debug_lock, flags);
1088 printk("\nvcpu %d\n ", cpu);
1090 for_each_online_cpu(i) {
1091 int pending;
1092 v = per_cpu(xen_vcpu, i);
1093 pending = (get_irq_regs() && i == cpu)
1094 ? xen_irqs_disabled(get_irq_regs())
1095 : v->evtchn_upcall_mask;
1096 printk("%d: masked=%d pending=%d event_sel %0*lx\n ", i,
1097 pending, v->evtchn_upcall_pending,
1098 (int)(sizeof(v->evtchn_pending_sel)*2),
1099 v->evtchn_pending_sel);
1101 v = per_cpu(xen_vcpu, cpu);
1103 printk("\npending:\n ");
1104 for (i = ARRAY_SIZE(sh->evtchn_pending)-1; i >= 0; i--)
1105 printk("%0*lx%s", (int)sizeof(sh->evtchn_pending[0])*2,
1106 sh->evtchn_pending[i],
1107 i % 8 == 0 ? "\n " : " ");
1108 printk("\nglobal mask:\n ");
1109 for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
1110 printk("%0*lx%s",
1111 (int)(sizeof(sh->evtchn_mask[0])*2),
1112 sh->evtchn_mask[i],
1113 i % 8 == 0 ? "\n " : " ");
1115 printk("\nglobally unmasked:\n ");
1116 for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
1117 printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
1118 sh->evtchn_pending[i] & ~sh->evtchn_mask[i],
1119 i % 8 == 0 ? "\n " : " ");
1121 printk("\nlocal cpu%d mask:\n ", cpu);
1122 for (i = (NR_EVENT_CHANNELS/BITS_PER_LONG)-1; i >= 0; i--)
1123 printk("%0*lx%s", (int)(sizeof(cpu_evtchn[0])*2),
1124 cpu_evtchn[i],
1125 i % 8 == 0 ? "\n " : " ");
1127 printk("\nlocally unmasked:\n ");
1128 for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--) {
1129 unsigned long pending = sh->evtchn_pending[i]
1130 & ~sh->evtchn_mask[i]
1131 & cpu_evtchn[i];
1132 printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
1133 pending, i % 8 == 0 ? "\n " : " ");
1136 printk("\npending list:\n");
1137 for (i = 0; i < NR_EVENT_CHANNELS; i++) {
1138 if (sync_test_bit(i, sh->evtchn_pending)) {
1139 int word_idx = i / BITS_PER_LONG;
1140 printk(" %d: event %d -> irq %d%s%s%s\n",
1141 cpu_from_evtchn(i), i,
1142 evtchn_to_irq[i],
1143 sync_test_bit(word_idx, &v->evtchn_pending_sel)
1144 ? "" : " l2-clear",
1145 !sync_test_bit(i, sh->evtchn_mask)
1146 ? "" : " globally-masked",
1147 sync_test_bit(i, cpu_evtchn)
1148 ? "" : " locally-masked");
1152 spin_unlock_irqrestore(&debug_lock, flags);
1154 return IRQ_HANDLED;
1157 static DEFINE_PER_CPU(unsigned, xed_nesting_count);
1158 static DEFINE_PER_CPU(unsigned int, current_word_idx);
1159 static DEFINE_PER_CPU(unsigned int, current_bit_idx);
1162 * Mask out the i least significant bits of w
1164 #define MASK_LSBS(w, i) (w & ((~0UL) << i))
1167 * Search the CPUs pending events bitmasks. For each one found, map
1168 * the event number to an irq, and feed it into do_IRQ() for
1169 * handling.
1171 * Xen uses a two-level bitmap to speed searching. The first level is
1172 * a bitset of words which contain pending event bits. The second
1173 * level is a bitset of pending events themselves.
1175 static void __xen_evtchn_do_upcall(void)
1177 int start_word_idx, start_bit_idx;
1178 int word_idx, bit_idx;
1179 int i;
1180 int cpu = get_cpu();
1181 struct shared_info *s = HYPERVISOR_shared_info;
1182 struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
1183 unsigned count;
1185 do {
1186 unsigned long pending_words;
1188 vcpu_info->evtchn_upcall_pending = 0;
1190 if (__this_cpu_inc_return(xed_nesting_count) - 1)
1191 goto out;
1193 #ifndef CONFIG_X86 /* No need for a barrier -- XCHG is a barrier on x86. */
1194 /* Clear master flag /before/ clearing selector flag. */
1195 wmb();
1196 #endif
1197 pending_words = xchg(&vcpu_info->evtchn_pending_sel, 0);
1199 start_word_idx = __this_cpu_read(current_word_idx);
1200 start_bit_idx = __this_cpu_read(current_bit_idx);
1202 word_idx = start_word_idx;
1204 for (i = 0; pending_words != 0; i++) {
1205 unsigned long pending_bits;
1206 unsigned long words;
1208 words = MASK_LSBS(pending_words, word_idx);
1211 * If we masked out all events, wrap to beginning.
1213 if (words == 0) {
1214 word_idx = 0;
1215 bit_idx = 0;
1216 continue;
1218 word_idx = __ffs(words);
1220 pending_bits = active_evtchns(cpu, s, word_idx);
1221 bit_idx = 0; /* usually scan entire word from start */
1222 if (word_idx == start_word_idx) {
1223 /* We scan the starting word in two parts */
1224 if (i == 0)
1225 /* 1st time: start in the middle */
1226 bit_idx = start_bit_idx;
1227 else
1228 /* 2nd time: mask bits done already */
1229 bit_idx &= (1UL << start_bit_idx) - 1;
1232 do {
1233 unsigned long bits;
1234 int port, irq;
1235 struct irq_desc *desc;
1237 bits = MASK_LSBS(pending_bits, bit_idx);
1239 /* If we masked out all events, move on. */
1240 if (bits == 0)
1241 break;
1243 bit_idx = __ffs(bits);
1245 /* Process port. */
1246 port = (word_idx * BITS_PER_LONG) + bit_idx;
1247 irq = evtchn_to_irq[port];
1249 if (irq != -1) {
1250 desc = irq_to_desc(irq);
1251 if (desc)
1252 generic_handle_irq_desc(irq, desc);
1255 bit_idx = (bit_idx + 1) % BITS_PER_LONG;
1257 /* Next caller starts at last processed + 1 */
1258 __this_cpu_write(current_word_idx,
1259 bit_idx ? word_idx :
1260 (word_idx+1) % BITS_PER_LONG);
1261 __this_cpu_write(current_bit_idx, bit_idx);
1262 } while (bit_idx != 0);
1264 /* Scan start_l1i twice; all others once. */
1265 if ((word_idx != start_word_idx) || (i != 0))
1266 pending_words &= ~(1UL << word_idx);
1268 word_idx = (word_idx + 1) % BITS_PER_LONG;
1271 BUG_ON(!irqs_disabled());
1273 count = __this_cpu_read(xed_nesting_count);
1274 __this_cpu_write(xed_nesting_count, 0);
1275 } while (count != 1 || vcpu_info->evtchn_upcall_pending);
1277 out:
1279 put_cpu();
1282 void xen_evtchn_do_upcall(struct pt_regs *regs)
1284 struct pt_regs *old_regs = set_irq_regs(regs);
1286 exit_idle();
1287 irq_enter();
1289 __xen_evtchn_do_upcall();
1291 irq_exit();
1292 set_irq_regs(old_regs);
1295 void xen_hvm_evtchn_do_upcall(void)
1297 __xen_evtchn_do_upcall();
1299 EXPORT_SYMBOL_GPL(xen_hvm_evtchn_do_upcall);
1301 /* Rebind a new event channel to an existing irq. */
1302 void rebind_evtchn_irq(int evtchn, int irq)
1304 struct irq_info *info = info_for_irq(irq);
1306 /* Make sure the irq is masked, since the new event channel
1307 will also be masked. */
1308 disable_irq(irq);
1310 mutex_lock(&irq_mapping_update_lock);
1312 /* After resume the irq<->evtchn mappings are all cleared out */
1313 BUG_ON(evtchn_to_irq[evtchn] != -1);
1314 /* Expect irq to have been bound before,
1315 so there should be a proper type */
1316 BUG_ON(info->type == IRQT_UNBOUND);
1318 xen_irq_info_evtchn_init(irq, evtchn);
1320 mutex_unlock(&irq_mapping_update_lock);
1322 /* new event channels are always bound to cpu 0 */
1323 irq_set_affinity(irq, cpumask_of(0));
1325 /* Unmask the event channel. */
1326 enable_irq(irq);
1329 /* Rebind an evtchn so that it gets delivered to a specific cpu */
1330 static int rebind_irq_to_cpu(unsigned irq, unsigned tcpu)
1332 struct evtchn_bind_vcpu bind_vcpu;
1333 int evtchn = evtchn_from_irq(irq);
1335 if (!VALID_EVTCHN(evtchn))
1336 return -1;
1339 * Events delivered via platform PCI interrupts are always
1340 * routed to vcpu 0 and hence cannot be rebound.
1342 if (xen_hvm_domain() && !xen_have_vector_callback)
1343 return -1;
1345 /* Send future instances of this interrupt to other vcpu. */
1346 bind_vcpu.port = evtchn;
1347 bind_vcpu.vcpu = tcpu;
1350 * If this fails, it usually just indicates that we're dealing with a
1351 * virq or IPI channel, which don't actually need to be rebound. Ignore
1352 * it, but don't do the xenlinux-level rebind in that case.
1354 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_vcpu, &bind_vcpu) >= 0)
1355 bind_evtchn_to_cpu(evtchn, tcpu);
1357 return 0;
1360 static int set_affinity_irq(struct irq_data *data, const struct cpumask *dest,
1361 bool force)
1363 unsigned tcpu = cpumask_first(dest);
1365 return rebind_irq_to_cpu(data->irq, tcpu);
1368 int resend_irq_on_evtchn(unsigned int irq)
1370 int masked, evtchn = evtchn_from_irq(irq);
1371 struct shared_info *s = HYPERVISOR_shared_info;
1373 if (!VALID_EVTCHN(evtchn))
1374 return 1;
1376 masked = sync_test_and_set_bit(evtchn, s->evtchn_mask);
1377 sync_set_bit(evtchn, s->evtchn_pending);
1378 if (!masked)
1379 unmask_evtchn(evtchn);
1381 return 1;
1384 static void enable_dynirq(struct irq_data *data)
1386 int evtchn = evtchn_from_irq(data->irq);
1388 if (VALID_EVTCHN(evtchn))
1389 unmask_evtchn(evtchn);
1392 static void disable_dynirq(struct irq_data *data)
1394 int evtchn = evtchn_from_irq(data->irq);
1396 if (VALID_EVTCHN(evtchn))
1397 mask_evtchn(evtchn);
1400 static void ack_dynirq(struct irq_data *data)
1402 int evtchn = evtchn_from_irq(data->irq);
1404 irq_move_irq(data);
1406 if (VALID_EVTCHN(evtchn))
1407 clear_evtchn(evtchn);
1410 static void mask_ack_dynirq(struct irq_data *data)
1412 disable_dynirq(data);
1413 ack_dynirq(data);
1416 static int retrigger_dynirq(struct irq_data *data)
1418 int evtchn = evtchn_from_irq(data->irq);
1419 struct shared_info *sh = HYPERVISOR_shared_info;
1420 int ret = 0;
1422 if (VALID_EVTCHN(evtchn)) {
1423 int masked;
1425 masked = sync_test_and_set_bit(evtchn, sh->evtchn_mask);
1426 sync_set_bit(evtchn, sh->evtchn_pending);
1427 if (!masked)
1428 unmask_evtchn(evtchn);
1429 ret = 1;
1432 return ret;
1435 static void restore_pirqs(void)
1437 int pirq, rc, irq, gsi;
1438 struct physdev_map_pirq map_irq;
1439 struct irq_info *info;
1441 list_for_each_entry(info, &xen_irq_list_head, list) {
1442 if (info->type != IRQT_PIRQ)
1443 continue;
1445 pirq = info->u.pirq.pirq;
1446 gsi = info->u.pirq.gsi;
1447 irq = info->irq;
1449 /* save/restore of PT devices doesn't work, so at this point the
1450 * only devices present are GSI based emulated devices */
1451 if (!gsi)
1452 continue;
1454 map_irq.domid = DOMID_SELF;
1455 map_irq.type = MAP_PIRQ_TYPE_GSI;
1456 map_irq.index = gsi;
1457 map_irq.pirq = pirq;
1459 rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq);
1460 if (rc) {
1461 printk(KERN_WARNING "xen map irq failed gsi=%d irq=%d pirq=%d rc=%d\n",
1462 gsi, irq, pirq, rc);
1463 xen_free_irq(irq);
1464 continue;
1467 printk(KERN_DEBUG "xen: --> irq=%d, pirq=%d\n", irq, map_irq.pirq);
1469 __startup_pirq(irq);
1473 static void restore_cpu_virqs(unsigned int cpu)
1475 struct evtchn_bind_virq bind_virq;
1476 int virq, irq, evtchn;
1478 for (virq = 0; virq < NR_VIRQS; virq++) {
1479 if ((irq = per_cpu(virq_to_irq, cpu)[virq]) == -1)
1480 continue;
1482 BUG_ON(virq_from_irq(irq) != virq);
1484 /* Get a new binding from Xen. */
1485 bind_virq.virq = virq;
1486 bind_virq.vcpu = cpu;
1487 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
1488 &bind_virq) != 0)
1489 BUG();
1490 evtchn = bind_virq.port;
1492 /* Record the new mapping. */
1493 xen_irq_info_virq_init(cpu, irq, evtchn, virq);
1494 bind_evtchn_to_cpu(evtchn, cpu);
1498 static void restore_cpu_ipis(unsigned int cpu)
1500 struct evtchn_bind_ipi bind_ipi;
1501 int ipi, irq, evtchn;
1503 for (ipi = 0; ipi < XEN_NR_IPIS; ipi++) {
1504 if ((irq = per_cpu(ipi_to_irq, cpu)[ipi]) == -1)
1505 continue;
1507 BUG_ON(ipi_from_irq(irq) != ipi);
1509 /* Get a new binding from Xen. */
1510 bind_ipi.vcpu = cpu;
1511 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
1512 &bind_ipi) != 0)
1513 BUG();
1514 evtchn = bind_ipi.port;
1516 /* Record the new mapping. */
1517 xen_irq_info_ipi_init(cpu, irq, evtchn, ipi);
1518 bind_evtchn_to_cpu(evtchn, cpu);
1522 /* Clear an irq's pending state, in preparation for polling on it */
1523 void xen_clear_irq_pending(int irq)
1525 int evtchn = evtchn_from_irq(irq);
1527 if (VALID_EVTCHN(evtchn))
1528 clear_evtchn(evtchn);
1530 EXPORT_SYMBOL(xen_clear_irq_pending);
1531 void xen_set_irq_pending(int irq)
1533 int evtchn = evtchn_from_irq(irq);
1535 if (VALID_EVTCHN(evtchn))
1536 set_evtchn(evtchn);
1539 bool xen_test_irq_pending(int irq)
1541 int evtchn = evtchn_from_irq(irq);
1542 bool ret = false;
1544 if (VALID_EVTCHN(evtchn))
1545 ret = test_evtchn(evtchn);
1547 return ret;
1550 /* Poll waiting for an irq to become pending with timeout. In the usual case,
1551 * the irq will be disabled so it won't deliver an interrupt. */
1552 void xen_poll_irq_timeout(int irq, u64 timeout)
1554 evtchn_port_t evtchn = evtchn_from_irq(irq);
1556 if (VALID_EVTCHN(evtchn)) {
1557 struct sched_poll poll;
1559 poll.nr_ports = 1;
1560 poll.timeout = timeout;
1561 set_xen_guest_handle(poll.ports, &evtchn);
1563 if (HYPERVISOR_sched_op(SCHEDOP_poll, &poll) != 0)
1564 BUG();
1567 EXPORT_SYMBOL(xen_poll_irq_timeout);
1568 /* Poll waiting for an irq to become pending. In the usual case, the
1569 * irq will be disabled so it won't deliver an interrupt. */
1570 void xen_poll_irq(int irq)
1572 xen_poll_irq_timeout(irq, 0 /* no timeout */);
1575 /* Check whether the IRQ line is shared with other guests. */
1576 int xen_test_irq_shared(int irq)
1578 struct irq_info *info = info_for_irq(irq);
1579 struct physdev_irq_status_query irq_status = { .irq = info->u.pirq.pirq };
1581 if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status))
1582 return 0;
1583 return !(irq_status.flags & XENIRQSTAT_shared);
1585 EXPORT_SYMBOL_GPL(xen_test_irq_shared);
1587 void xen_irq_resume(void)
1589 unsigned int cpu, evtchn;
1590 struct irq_info *info;
1592 init_evtchn_cpu_bindings();
1594 /* New event-channel space is not 'live' yet. */
1595 for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
1596 mask_evtchn(evtchn);
1598 /* No IRQ <-> event-channel mappings. */
1599 list_for_each_entry(info, &xen_irq_list_head, list)
1600 info->evtchn = 0; /* zap event-channel binding */
1602 for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
1603 evtchn_to_irq[evtchn] = -1;
1605 for_each_possible_cpu(cpu) {
1606 restore_cpu_virqs(cpu);
1607 restore_cpu_ipis(cpu);
1610 restore_pirqs();
1613 static struct irq_chip xen_dynamic_chip __read_mostly = {
1614 .name = "xen-dyn",
1616 .irq_disable = disable_dynirq,
1617 .irq_mask = disable_dynirq,
1618 .irq_unmask = enable_dynirq,
1620 .irq_ack = ack_dynirq,
1621 .irq_mask_ack = mask_ack_dynirq,
1623 .irq_set_affinity = set_affinity_irq,
1624 .irq_retrigger = retrigger_dynirq,
1627 static struct irq_chip xen_pirq_chip __read_mostly = {
1628 .name = "xen-pirq",
1630 .irq_startup = startup_pirq,
1631 .irq_shutdown = shutdown_pirq,
1632 .irq_enable = enable_pirq,
1633 .irq_disable = disable_pirq,
1635 .irq_mask = disable_dynirq,
1636 .irq_unmask = enable_dynirq,
1638 .irq_ack = eoi_pirq,
1639 .irq_eoi = eoi_pirq,
1640 .irq_mask_ack = mask_ack_pirq,
1642 .irq_set_affinity = set_affinity_irq,
1644 .irq_retrigger = retrigger_dynirq,
1647 static struct irq_chip xen_percpu_chip __read_mostly = {
1648 .name = "xen-percpu",
1650 .irq_disable = disable_dynirq,
1651 .irq_mask = disable_dynirq,
1652 .irq_unmask = enable_dynirq,
1654 .irq_ack = ack_dynirq,
1657 int xen_set_callback_via(uint64_t via)
1659 struct xen_hvm_param a;
1660 a.domid = DOMID_SELF;
1661 a.index = HVM_PARAM_CALLBACK_IRQ;
1662 a.value = via;
1663 return HYPERVISOR_hvm_op(HVMOP_set_param, &a);
1665 EXPORT_SYMBOL_GPL(xen_set_callback_via);
1667 #ifdef CONFIG_XEN_PVHVM
1668 /* Vector callbacks are better than PCI interrupts to receive event
1669 * channel notifications because we can receive vector callbacks on any
1670 * vcpu and we don't need PCI support or APIC interactions. */
1671 void xen_callback_vector(void)
1673 int rc;
1674 uint64_t callback_via;
1675 if (xen_have_vector_callback) {
1676 callback_via = HVM_CALLBACK_VECTOR(XEN_HVM_EVTCHN_CALLBACK);
1677 rc = xen_set_callback_via(callback_via);
1678 if (rc) {
1679 printk(KERN_ERR "Request for Xen HVM callback vector"
1680 " failed.\n");
1681 xen_have_vector_callback = 0;
1682 return;
1684 printk(KERN_INFO "Xen HVM callback vector for event delivery is "
1685 "enabled\n");
1686 /* in the restore case the vector has already been allocated */
1687 if (!test_bit(XEN_HVM_EVTCHN_CALLBACK, used_vectors))
1688 alloc_intr_gate(XEN_HVM_EVTCHN_CALLBACK, xen_hvm_callback_vector);
1691 #else
1692 void xen_callback_vector(void) {}
1693 #endif
1695 void __init xen_init_IRQ(void)
1697 int i;
1699 evtchn_to_irq = kcalloc(NR_EVENT_CHANNELS, sizeof(*evtchn_to_irq),
1700 GFP_KERNEL);
1701 BUG_ON(!evtchn_to_irq);
1702 for (i = 0; i < NR_EVENT_CHANNELS; i++)
1703 evtchn_to_irq[i] = -1;
1705 init_evtchn_cpu_bindings();
1707 /* No event channels are 'live' right now. */
1708 for (i = 0; i < NR_EVENT_CHANNELS; i++)
1709 mask_evtchn(i);
1711 if (xen_hvm_domain()) {
1712 xen_callback_vector();
1713 native_init_IRQ();
1714 /* pci_xen_hvm_init must be called after native_init_IRQ so that
1715 * __acpi_register_gsi can point at the right function */
1716 pci_xen_hvm_init();
1717 } else {
1718 irq_ctx_init(smp_processor_id());
1719 if (xen_initial_domain())
1720 pci_xen_initial_domain();