2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map
);
50 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
51 EXPORT_SYMBOL(node_possible_map
);
52 struct pglist_data
*pgdat_list __read_mostly
;
53 unsigned long totalram_pages __read_mostly
;
54 unsigned long totalhigh_pages __read_mostly
;
56 int percpu_pagelist_fraction
;
58 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
);
59 static void __free_pages_ok(struct page
*page
, unsigned int order
);
62 * results with 256, 32 in the lowmem_reserve sysctl:
63 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
64 * 1G machine -> (16M dma, 784M normal, 224M high)
65 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
66 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
67 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
69 * TBD: should special case ZONE_DMA32 machines here - in those we normally
70 * don't need any ZONE_NORMAL reservation
72 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 256, 32 };
74 EXPORT_SYMBOL(totalram_pages
);
77 * Used by page_zone() to look up the address of the struct zone whose
78 * id is encoded in the upper bits of page->flags
80 struct zone
*zone_table
[1 << ZONETABLE_SHIFT
] __read_mostly
;
81 EXPORT_SYMBOL(zone_table
);
83 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "DMA32", "Normal", "HighMem" };
84 int min_free_kbytes
= 1024;
86 unsigned long __initdata nr_kernel_pages
;
87 unsigned long __initdata nr_all_pages
;
89 #ifdef CONFIG_DEBUG_VM
90 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
94 unsigned long pfn
= page_to_pfn(page
);
97 seq
= zone_span_seqbegin(zone
);
98 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
100 else if (pfn
< zone
->zone_start_pfn
)
102 } while (zone_span_seqretry(zone
, seq
));
107 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
109 #ifdef CONFIG_HOLES_IN_ZONE
110 if (!pfn_valid(page_to_pfn(page
)))
113 if (zone
!= page_zone(page
))
119 * Temporary debugging check for pages not lying within a given zone.
121 static int bad_range(struct zone
*zone
, struct page
*page
)
123 if (page_outside_zone_boundaries(zone
, page
))
125 if (!page_is_consistent(zone
, page
))
132 static inline int bad_range(struct zone
*zone
, struct page
*page
)
138 static void bad_page(struct page
*page
)
140 printk(KERN_EMERG
"Bad page state in process '%s'\n"
141 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
142 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
143 KERN_EMERG
"Backtrace:\n",
144 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
145 (unsigned long)page
->flags
, page
->mapping
,
146 page_mapcount(page
), page_count(page
));
148 page
->flags
&= ~(1 << PG_lru
|
157 set_page_count(page
, 0);
158 reset_page_mapcount(page
);
159 page
->mapping
= NULL
;
160 add_taint(TAINT_BAD_PAGE
);
164 * Higher-order pages are called "compound pages". They are structured thusly:
166 * The first PAGE_SIZE page is called the "head page".
168 * The remaining PAGE_SIZE pages are called "tail pages".
170 * All pages have PG_compound set. All pages have their ->private pointing at
171 * the head page (even the head page has this).
173 * The first tail page's ->lru.next holds the address of the compound page's
174 * put_page() function. Its ->lru.prev holds the order of allocation.
175 * This usage means that zero-order pages may not be compound.
178 static void free_compound_page(struct page
*page
)
180 __free_pages_ok(page
, (unsigned long)page
[1].lru
.prev
);
183 static void prep_compound_page(struct page
*page
, unsigned long order
)
186 int nr_pages
= 1 << order
;
188 page
[1].lru
.next
= (void *)free_compound_page
; /* set dtor */
189 page
[1].lru
.prev
= (void *)order
;
190 for (i
= 0; i
< nr_pages
; i
++) {
191 struct page
*p
= page
+ i
;
194 set_page_private(p
, (unsigned long)page
);
198 static void destroy_compound_page(struct page
*page
, unsigned long order
)
201 int nr_pages
= 1 << order
;
203 if (unlikely((unsigned long)page
[1].lru
.prev
!= order
))
206 for (i
= 0; i
< nr_pages
; i
++) {
207 struct page
*p
= page
+ i
;
209 if (unlikely(!PageCompound(p
) |
210 (page_private(p
) != (unsigned long)page
)))
212 ClearPageCompound(p
);
217 * function for dealing with page's order in buddy system.
218 * zone->lock is already acquired when we use these.
219 * So, we don't need atomic page->flags operations here.
221 static inline unsigned long page_order(struct page
*page
) {
222 return page_private(page
);
225 static inline void set_page_order(struct page
*page
, int order
) {
226 set_page_private(page
, order
);
227 __SetPagePrivate(page
);
230 static inline void rmv_page_order(struct page
*page
)
232 __ClearPagePrivate(page
);
233 set_page_private(page
, 0);
237 * Locate the struct page for both the matching buddy in our
238 * pair (buddy1) and the combined O(n+1) page they form (page).
240 * 1) Any buddy B1 will have an order O twin B2 which satisfies
241 * the following equation:
243 * For example, if the starting buddy (buddy2) is #8 its order
245 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
247 * 2) Any buddy B will have an order O+1 parent P which
248 * satisfies the following equation:
251 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
253 static inline struct page
*
254 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
256 unsigned long buddy_idx
= page_idx
^ (1 << order
);
258 return page
+ (buddy_idx
- page_idx
);
261 static inline unsigned long
262 __find_combined_index(unsigned long page_idx
, unsigned int order
)
264 return (page_idx
& ~(1 << order
));
268 * This function checks whether a page is free && is the buddy
269 * we can do coalesce a page and its buddy if
270 * (a) the buddy is not in a hole &&
271 * (b) the buddy is free &&
272 * (c) the buddy is on the buddy system &&
273 * (d) a page and its buddy have the same order.
274 * for recording page's order, we use page_private(page) and PG_private.
277 static inline int page_is_buddy(struct page
*page
, int order
)
279 #ifdef CONFIG_HOLES_IN_ZONE
280 if (!pfn_valid(page_to_pfn(page
)))
284 if (PagePrivate(page
) &&
285 (page_order(page
) == order
) &&
286 page_count(page
) == 0)
292 * Freeing function for a buddy system allocator.
294 * The concept of a buddy system is to maintain direct-mapped table
295 * (containing bit values) for memory blocks of various "orders".
296 * The bottom level table contains the map for the smallest allocatable
297 * units of memory (here, pages), and each level above it describes
298 * pairs of units from the levels below, hence, "buddies".
299 * At a high level, all that happens here is marking the table entry
300 * at the bottom level available, and propagating the changes upward
301 * as necessary, plus some accounting needed to play nicely with other
302 * parts of the VM system.
303 * At each level, we keep a list of pages, which are heads of continuous
304 * free pages of length of (1 << order) and marked with PG_Private.Page's
305 * order is recorded in page_private(page) field.
306 * So when we are allocating or freeing one, we can derive the state of the
307 * other. That is, if we allocate a small block, and both were
308 * free, the remainder of the region must be split into blocks.
309 * If a block is freed, and its buddy is also free, then this
310 * triggers coalescing into a block of larger size.
315 static inline void __free_one_page(struct page
*page
,
316 struct zone
*zone
, unsigned int order
)
318 unsigned long page_idx
;
319 int order_size
= 1 << order
;
321 if (unlikely(PageCompound(page
)))
322 destroy_compound_page(page
, order
);
324 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
326 BUG_ON(page_idx
& (order_size
- 1));
327 BUG_ON(bad_range(zone
, page
));
329 zone
->free_pages
+= order_size
;
330 while (order
< MAX_ORDER
-1) {
331 unsigned long combined_idx
;
332 struct free_area
*area
;
335 buddy
= __page_find_buddy(page
, page_idx
, order
);
336 if (!page_is_buddy(buddy
, order
))
337 break; /* Move the buddy up one level. */
339 list_del(&buddy
->lru
);
340 area
= zone
->free_area
+ order
;
342 rmv_page_order(buddy
);
343 combined_idx
= __find_combined_index(page_idx
, order
);
344 page
= page
+ (combined_idx
- page_idx
);
345 page_idx
= combined_idx
;
348 set_page_order(page
, order
);
349 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
350 zone
->free_area
[order
].nr_free
++;
353 static inline int free_pages_check(struct page
*page
)
355 if (unlikely(page_mapcount(page
) |
356 (page
->mapping
!= NULL
) |
357 (page_count(page
) != 0) |
367 1 << PG_reserved
))))
370 __ClearPageDirty(page
);
372 * For now, we report if PG_reserved was found set, but do not
373 * clear it, and do not free the page. But we shall soon need
374 * to do more, for when the ZERO_PAGE count wraps negative.
376 return PageReserved(page
);
380 * Frees a list of pages.
381 * Assumes all pages on list are in same zone, and of same order.
382 * count is the number of pages to free.
384 * If the zone was previously in an "all pages pinned" state then look to
385 * see if this freeing clears that state.
387 * And clear the zone's pages_scanned counter, to hold off the "all pages are
388 * pinned" detection logic.
390 static void free_pages_bulk(struct zone
*zone
, int count
,
391 struct list_head
*list
, int order
)
393 spin_lock(&zone
->lock
);
394 zone
->all_unreclaimable
= 0;
395 zone
->pages_scanned
= 0;
399 BUG_ON(list_empty(list
));
400 page
= list_entry(list
->prev
, struct page
, lru
);
401 /* have to delete it as __free_one_page list manipulates */
402 list_del(&page
->lru
);
403 __free_one_page(page
, zone
, order
);
405 spin_unlock(&zone
->lock
);
408 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
411 list_add(&page
->lru
, &list
);
412 free_pages_bulk(zone
, 1, &list
, order
);
415 static void __free_pages_ok(struct page
*page
, unsigned int order
)
421 arch_free_page(page
, order
);
422 if (!PageHighMem(page
))
423 mutex_debug_check_no_locks_freed(page_address(page
),
427 for (i
= 1 ; i
< (1 << order
) ; ++i
)
428 __put_page(page
+ i
);
431 for (i
= 0 ; i
< (1 << order
) ; ++i
)
432 reserved
+= free_pages_check(page
+ i
);
436 kernel_map_pages(page
, 1 << order
, 0);
437 local_irq_save(flags
);
438 __mod_page_state(pgfree
, 1 << order
);
439 free_one_page(page_zone(page
), page
, order
);
440 local_irq_restore(flags
);
444 * permit the bootmem allocator to evade page validation on high-order frees
446 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
449 __ClearPageReserved(page
);
450 set_page_count(page
, 0);
452 free_hot_cold_page(page
, 0);
457 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
458 struct page
*p
= &page
[loop
];
460 if (loop
+ 16 < BITS_PER_LONG
)
462 __ClearPageReserved(p
);
463 set_page_count(p
, 0);
466 arch_free_page(page
, order
);
468 mod_page_state(pgfree
, 1 << order
);
470 list_add(&page
->lru
, &list
);
471 kernel_map_pages(page
, 1 << order
, 0);
472 free_pages_bulk(page_zone(page
), 1, &list
, order
);
478 * The order of subdivision here is critical for the IO subsystem.
479 * Please do not alter this order without good reasons and regression
480 * testing. Specifically, as large blocks of memory are subdivided,
481 * the order in which smaller blocks are delivered depends on the order
482 * they're subdivided in this function. This is the primary factor
483 * influencing the order in which pages are delivered to the IO
484 * subsystem according to empirical testing, and this is also justified
485 * by considering the behavior of a buddy system containing a single
486 * large block of memory acted on by a series of small allocations.
487 * This behavior is a critical factor in sglist merging's success.
491 static inline void expand(struct zone
*zone
, struct page
*page
,
492 int low
, int high
, struct free_area
*area
)
494 unsigned long size
= 1 << high
;
500 BUG_ON(bad_range(zone
, &page
[size
]));
501 list_add(&page
[size
].lru
, &area
->free_list
);
503 set_page_order(&page
[size
], high
);
508 * This page is about to be returned from the page allocator
510 static int prep_new_page(struct page
*page
, int order
)
512 if (unlikely(page_mapcount(page
) |
513 (page
->mapping
!= NULL
) |
514 (page_count(page
) != 0) |
525 1 << PG_reserved
))))
529 * For now, we report if PG_reserved was found set, but do not
530 * clear it, and do not allocate the page: as a safety net.
532 if (PageReserved(page
))
535 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
536 1 << PG_referenced
| 1 << PG_arch_1
|
537 1 << PG_checked
| 1 << PG_mappedtodisk
);
538 set_page_private(page
, 0);
539 set_page_refs(page
, order
);
540 kernel_map_pages(page
, 1 << order
, 1);
545 * Do the hard work of removing an element from the buddy allocator.
546 * Call me with the zone->lock already held.
548 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
550 struct free_area
* area
;
551 unsigned int current_order
;
554 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
555 area
= zone
->free_area
+ current_order
;
556 if (list_empty(&area
->free_list
))
559 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
560 list_del(&page
->lru
);
561 rmv_page_order(page
);
563 zone
->free_pages
-= 1UL << order
;
564 expand(zone
, page
, order
, current_order
, area
);
572 * Obtain a specified number of elements from the buddy allocator, all under
573 * a single hold of the lock, for efficiency. Add them to the supplied list.
574 * Returns the number of new pages which were placed at *list.
576 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
577 unsigned long count
, struct list_head
*list
)
581 spin_lock(&zone
->lock
);
582 for (i
= 0; i
< count
; ++i
) {
583 struct page
*page
= __rmqueue(zone
, order
);
584 if (unlikely(page
== NULL
))
586 list_add_tail(&page
->lru
, list
);
588 spin_unlock(&zone
->lock
);
593 /* Called from the slab reaper to drain remote pagesets */
594 void drain_remote_pages(void)
600 local_irq_save(flags
);
601 for_each_zone(zone
) {
602 struct per_cpu_pageset
*pset
;
604 /* Do not drain local pagesets */
605 if (zone
->zone_pgdat
->node_id
== numa_node_id())
608 pset
= zone_pcp(zone
, smp_processor_id());
609 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
610 struct per_cpu_pages
*pcp
;
613 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
617 local_irq_restore(flags
);
621 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
622 static void __drain_pages(unsigned int cpu
)
628 for_each_zone(zone
) {
629 struct per_cpu_pageset
*pset
;
631 pset
= zone_pcp(zone
, cpu
);
632 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
633 struct per_cpu_pages
*pcp
;
636 local_irq_save(flags
);
637 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
639 local_irq_restore(flags
);
643 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
647 void mark_free_pages(struct zone
*zone
)
649 unsigned long zone_pfn
, flags
;
651 struct list_head
*curr
;
653 if (!zone
->spanned_pages
)
656 spin_lock_irqsave(&zone
->lock
, flags
);
657 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
658 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
660 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
661 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
662 unsigned long start_pfn
, i
;
664 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
666 for (i
=0; i
< (1<<order
); i
++)
667 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
669 spin_unlock_irqrestore(&zone
->lock
, flags
);
673 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
675 void drain_local_pages(void)
679 local_irq_save(flags
);
680 __drain_pages(smp_processor_id());
681 local_irq_restore(flags
);
683 #endif /* CONFIG_PM */
685 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
, int cpu
)
688 pg_data_t
*pg
= z
->zone_pgdat
;
689 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
690 struct per_cpu_pageset
*p
;
692 p
= zone_pcp(z
, cpu
);
697 zone_pcp(zonelist
->zones
[0], cpu
)->numa_foreign
++;
699 if (pg
== NODE_DATA(numa_node_id()))
707 * Free a 0-order page
709 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
711 struct zone
*zone
= page_zone(page
);
712 struct per_cpu_pages
*pcp
;
715 arch_free_page(page
, 0);
718 page
->mapping
= NULL
;
719 if (free_pages_check(page
))
722 kernel_map_pages(page
, 1, 0);
724 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
725 local_irq_save(flags
);
726 __inc_page_state(pgfree
);
727 list_add(&page
->lru
, &pcp
->list
);
729 if (pcp
->count
>= pcp
->high
) {
730 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
731 pcp
->count
-= pcp
->batch
;
733 local_irq_restore(flags
);
737 void fastcall
free_hot_page(struct page
*page
)
739 free_hot_cold_page(page
, 0);
742 void fastcall
free_cold_page(struct page
*page
)
744 free_hot_cold_page(page
, 1);
747 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
751 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
752 for(i
= 0; i
< (1 << order
); i
++)
753 clear_highpage(page
+ i
);
757 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
758 * we cheat by calling it from here, in the order > 0 path. Saves a branch
761 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
762 struct zone
*zone
, int order
, gfp_t gfp_flags
)
766 int cold
= !!(gfp_flags
& __GFP_COLD
);
771 if (likely(order
== 0)) {
772 struct per_cpu_pages
*pcp
;
774 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
775 local_irq_save(flags
);
777 pcp
->count
+= rmqueue_bulk(zone
, 0,
778 pcp
->batch
, &pcp
->list
);
779 if (unlikely(!pcp
->count
))
782 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
783 list_del(&page
->lru
);
786 spin_lock_irqsave(&zone
->lock
, flags
);
787 page
= __rmqueue(zone
, order
);
788 spin_unlock(&zone
->lock
);
793 __mod_page_state_zone(zone
, pgalloc
, 1 << order
);
794 zone_statistics(zonelist
, zone
, cpu
);
795 local_irq_restore(flags
);
798 BUG_ON(bad_range(zone
, page
));
799 if (prep_new_page(page
, order
))
802 if (gfp_flags
& __GFP_ZERO
)
803 prep_zero_page(page
, order
, gfp_flags
);
805 if (order
&& (gfp_flags
& __GFP_COMP
))
806 prep_compound_page(page
, order
);
810 local_irq_restore(flags
);
815 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
816 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
817 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
818 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
819 #define ALLOC_HARDER 0x10 /* try to alloc harder */
820 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
821 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
824 * Return 1 if free pages are above 'mark'. This takes into account the order
827 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
828 int classzone_idx
, int alloc_flags
)
830 /* free_pages my go negative - that's OK */
831 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
834 if (alloc_flags
& ALLOC_HIGH
)
836 if (alloc_flags
& ALLOC_HARDER
)
839 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
841 for (o
= 0; o
< order
; o
++) {
842 /* At the next order, this order's pages become unavailable */
843 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
845 /* Require fewer higher order pages to be free */
848 if (free_pages
<= min
)
855 * get_page_from_freeliest goes through the zonelist trying to allocate
859 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
860 struct zonelist
*zonelist
, int alloc_flags
)
862 struct zone
**z
= zonelist
->zones
;
863 struct page
*page
= NULL
;
864 int classzone_idx
= zone_idx(*z
);
867 * Go through the zonelist once, looking for a zone with enough free.
868 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
871 if ((alloc_flags
& ALLOC_CPUSET
) &&
872 !cpuset_zone_allowed(*z
, gfp_mask
))
875 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
877 if (alloc_flags
& ALLOC_WMARK_MIN
)
878 mark
= (*z
)->pages_min
;
879 else if (alloc_flags
& ALLOC_WMARK_LOW
)
880 mark
= (*z
)->pages_low
;
882 mark
= (*z
)->pages_high
;
883 if (!zone_watermark_ok(*z
, order
, mark
,
884 classzone_idx
, alloc_flags
))
885 if (!zone_reclaim_mode
||
886 !zone_reclaim(*z
, gfp_mask
, order
))
890 page
= buffered_rmqueue(zonelist
, *z
, order
, gfp_mask
);
894 } while (*(++z
) != NULL
);
899 * This is the 'heart' of the zoned buddy allocator.
901 struct page
* fastcall
902 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
903 struct zonelist
*zonelist
)
905 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
908 struct reclaim_state reclaim_state
;
909 struct task_struct
*p
= current
;
912 int did_some_progress
;
914 might_sleep_if(wait
);
917 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
919 if (unlikely(*z
== NULL
)) {
920 /* Should this ever happen?? */
924 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
925 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
930 wakeup_kswapd(*z
, order
);
934 * OK, we're below the kswapd watermark and have kicked background
935 * reclaim. Now things get more complex, so set up alloc_flags according
936 * to how we want to proceed.
938 * The caller may dip into page reserves a bit more if the caller
939 * cannot run direct reclaim, or if the caller has realtime scheduling
940 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
941 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
943 alloc_flags
= ALLOC_WMARK_MIN
;
944 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
945 alloc_flags
|= ALLOC_HARDER
;
946 if (gfp_mask
& __GFP_HIGH
)
947 alloc_flags
|= ALLOC_HIGH
;
948 alloc_flags
|= ALLOC_CPUSET
;
951 * Go through the zonelist again. Let __GFP_HIGH and allocations
952 * coming from realtime tasks go deeper into reserves.
954 * This is the last chance, in general, before the goto nopage.
955 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
956 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
958 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
962 /* This allocation should allow future memory freeing. */
964 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
965 && !in_interrupt()) {
966 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
968 /* go through the zonelist yet again, ignoring mins */
969 page
= get_page_from_freelist(gfp_mask
, order
,
970 zonelist
, ALLOC_NO_WATERMARKS
);
973 if (gfp_mask
& __GFP_NOFAIL
) {
974 blk_congestion_wait(WRITE
, HZ
/50);
981 /* Atomic allocations - we can't balance anything */
988 /* We now go into synchronous reclaim */
989 cpuset_memory_pressure_bump();
990 p
->flags
|= PF_MEMALLOC
;
991 reclaim_state
.reclaimed_slab
= 0;
992 p
->reclaim_state
= &reclaim_state
;
994 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
996 p
->reclaim_state
= NULL
;
997 p
->flags
&= ~PF_MEMALLOC
;
1001 if (likely(did_some_progress
)) {
1002 page
= get_page_from_freelist(gfp_mask
, order
,
1003 zonelist
, alloc_flags
);
1006 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1008 * Go through the zonelist yet one more time, keep
1009 * very high watermark here, this is only to catch
1010 * a parallel oom killing, we must fail if we're still
1011 * under heavy pressure.
1013 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1014 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1018 out_of_memory(zonelist
, gfp_mask
, order
);
1023 * Don't let big-order allocations loop unless the caller explicitly
1024 * requests that. Wait for some write requests to complete then retry.
1026 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1027 * <= 3, but that may not be true in other implementations.
1030 if (!(gfp_mask
& __GFP_NORETRY
)) {
1031 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1033 if (gfp_mask
& __GFP_NOFAIL
)
1037 blk_congestion_wait(WRITE
, HZ
/50);
1042 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1043 printk(KERN_WARNING
"%s: page allocation failure."
1044 " order:%d, mode:0x%x\n",
1045 p
->comm
, order
, gfp_mask
);
1053 EXPORT_SYMBOL(__alloc_pages
);
1056 * Common helper functions.
1058 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1061 page
= alloc_pages(gfp_mask
, order
);
1064 return (unsigned long) page_address(page
);
1067 EXPORT_SYMBOL(__get_free_pages
);
1069 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1074 * get_zeroed_page() returns a 32-bit address, which cannot represent
1077 BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1079 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1081 return (unsigned long) page_address(page
);
1085 EXPORT_SYMBOL(get_zeroed_page
);
1087 void __pagevec_free(struct pagevec
*pvec
)
1089 int i
= pagevec_count(pvec
);
1092 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1095 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1097 if (put_page_testzero(page
)) {
1099 free_hot_page(page
);
1101 __free_pages_ok(page
, order
);
1105 EXPORT_SYMBOL(__free_pages
);
1107 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1110 BUG_ON(!virt_addr_valid((void *)addr
));
1111 __free_pages(virt_to_page((void *)addr
), order
);
1115 EXPORT_SYMBOL(free_pages
);
1118 * Total amount of free (allocatable) RAM:
1120 unsigned int nr_free_pages(void)
1122 unsigned int sum
= 0;
1126 sum
+= zone
->free_pages
;
1131 EXPORT_SYMBOL(nr_free_pages
);
1134 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1136 unsigned int i
, sum
= 0;
1138 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1139 sum
+= pgdat
->node_zones
[i
].free_pages
;
1145 static unsigned int nr_free_zone_pages(int offset
)
1147 /* Just pick one node, since fallback list is circular */
1148 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1149 unsigned int sum
= 0;
1151 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1152 struct zone
**zonep
= zonelist
->zones
;
1155 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1156 unsigned long size
= zone
->present_pages
;
1157 unsigned long high
= zone
->pages_high
;
1166 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1168 unsigned int nr_free_buffer_pages(void)
1170 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1174 * Amount of free RAM allocatable within all zones
1176 unsigned int nr_free_pagecache_pages(void)
1178 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1181 #ifdef CONFIG_HIGHMEM
1182 unsigned int nr_free_highpages (void)
1185 unsigned int pages
= 0;
1187 for_each_pgdat(pgdat
)
1188 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1195 static void show_node(struct zone
*zone
)
1197 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1200 #define show_node(zone) do { } while (0)
1204 * Accumulate the page_state information across all CPUs.
1205 * The result is unavoidably approximate - it can change
1206 * during and after execution of this function.
1208 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1210 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1211 EXPORT_SYMBOL(nr_pagecache
);
1213 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1216 static void __get_page_state(struct page_state
*ret
, int nr
, cpumask_t
*cpumask
)
1220 memset(ret
, 0, nr
* sizeof(unsigned long));
1221 cpus_and(*cpumask
, *cpumask
, cpu_online_map
);
1223 cpu
= first_cpu(*cpumask
);
1224 while (cpu
< NR_CPUS
) {
1225 unsigned long *in
, *out
, off
;
1227 if (!cpu_isset(cpu
, *cpumask
))
1230 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1232 cpu
= next_cpu(cpu
, *cpumask
);
1234 if (likely(cpu
< NR_CPUS
))
1235 prefetch(&per_cpu(page_states
, cpu
));
1237 out
= (unsigned long *)ret
;
1238 for (off
= 0; off
< nr
; off
++)
1243 void get_page_state_node(struct page_state
*ret
, int node
)
1246 cpumask_t mask
= node_to_cpumask(node
);
1248 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1249 nr
/= sizeof(unsigned long);
1251 __get_page_state(ret
, nr
+1, &mask
);
1254 void get_page_state(struct page_state
*ret
)
1257 cpumask_t mask
= CPU_MASK_ALL
;
1259 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1260 nr
/= sizeof(unsigned long);
1262 __get_page_state(ret
, nr
+ 1, &mask
);
1265 void get_full_page_state(struct page_state
*ret
)
1267 cpumask_t mask
= CPU_MASK_ALL
;
1269 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long), &mask
);
1272 unsigned long read_page_state_offset(unsigned long offset
)
1274 unsigned long ret
= 0;
1277 for_each_online_cpu(cpu
) {
1280 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1281 ret
+= *((unsigned long *)in
);
1286 void __mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1290 ptr
= &__get_cpu_var(page_states
);
1291 *(unsigned long *)(ptr
+ offset
) += delta
;
1293 EXPORT_SYMBOL(__mod_page_state_offset
);
1295 void mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1297 unsigned long flags
;
1300 local_irq_save(flags
);
1301 ptr
= &__get_cpu_var(page_states
);
1302 *(unsigned long *)(ptr
+ offset
) += delta
;
1303 local_irq_restore(flags
);
1305 EXPORT_SYMBOL(mod_page_state_offset
);
1307 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1308 unsigned long *free
, struct pglist_data
*pgdat
)
1310 struct zone
*zones
= pgdat
->node_zones
;
1316 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1317 *active
+= zones
[i
].nr_active
;
1318 *inactive
+= zones
[i
].nr_inactive
;
1319 *free
+= zones
[i
].free_pages
;
1323 void get_zone_counts(unsigned long *active
,
1324 unsigned long *inactive
, unsigned long *free
)
1326 struct pglist_data
*pgdat
;
1331 for_each_pgdat(pgdat
) {
1332 unsigned long l
, m
, n
;
1333 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1340 void si_meminfo(struct sysinfo
*val
)
1342 val
->totalram
= totalram_pages
;
1344 val
->freeram
= nr_free_pages();
1345 val
->bufferram
= nr_blockdev_pages();
1346 #ifdef CONFIG_HIGHMEM
1347 val
->totalhigh
= totalhigh_pages
;
1348 val
->freehigh
= nr_free_highpages();
1353 val
->mem_unit
= PAGE_SIZE
;
1356 EXPORT_SYMBOL(si_meminfo
);
1359 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1361 pg_data_t
*pgdat
= NODE_DATA(nid
);
1363 val
->totalram
= pgdat
->node_present_pages
;
1364 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1365 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1366 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1367 val
->mem_unit
= PAGE_SIZE
;
1371 #define K(x) ((x) << (PAGE_SHIFT-10))
1374 * Show free area list (used inside shift_scroll-lock stuff)
1375 * We also calculate the percentage fragmentation. We do this by counting the
1376 * memory on each free list with the exception of the first item on the list.
1378 void show_free_areas(void)
1380 struct page_state ps
;
1381 int cpu
, temperature
;
1382 unsigned long active
;
1383 unsigned long inactive
;
1387 for_each_zone(zone
) {
1389 printk("%s per-cpu:", zone
->name
);
1391 if (!populated_zone(zone
)) {
1397 for_each_online_cpu(cpu
) {
1398 struct per_cpu_pageset
*pageset
;
1400 pageset
= zone_pcp(zone
, cpu
);
1402 for (temperature
= 0; temperature
< 2; temperature
++)
1403 printk("cpu %d %s: high %d, batch %d used:%d\n",
1405 temperature
? "cold" : "hot",
1406 pageset
->pcp
[temperature
].high
,
1407 pageset
->pcp
[temperature
].batch
,
1408 pageset
->pcp
[temperature
].count
);
1412 get_page_state(&ps
);
1413 get_zone_counts(&active
, &inactive
, &free
);
1415 printk("Free pages: %11ukB (%ukB HighMem)\n",
1417 K(nr_free_highpages()));
1419 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1420 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1429 ps
.nr_page_table_pages
);
1431 for_each_zone(zone
) {
1443 " pages_scanned:%lu"
1444 " all_unreclaimable? %s"
1447 K(zone
->free_pages
),
1450 K(zone
->pages_high
),
1452 K(zone
->nr_inactive
),
1453 K(zone
->present_pages
),
1454 zone
->pages_scanned
,
1455 (zone
->all_unreclaimable
? "yes" : "no")
1457 printk("lowmem_reserve[]:");
1458 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1459 printk(" %lu", zone
->lowmem_reserve
[i
]);
1463 for_each_zone(zone
) {
1464 unsigned long nr
, flags
, order
, total
= 0;
1467 printk("%s: ", zone
->name
);
1468 if (!populated_zone(zone
)) {
1473 spin_lock_irqsave(&zone
->lock
, flags
);
1474 for (order
= 0; order
< MAX_ORDER
; order
++) {
1475 nr
= zone
->free_area
[order
].nr_free
;
1476 total
+= nr
<< order
;
1477 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1479 spin_unlock_irqrestore(&zone
->lock
, flags
);
1480 printk("= %lukB\n", K(total
));
1483 show_swap_cache_info();
1487 * Builds allocation fallback zone lists.
1489 * Add all populated zones of a node to the zonelist.
1491 static int __init
build_zonelists_node(pg_data_t
*pgdat
,
1492 struct zonelist
*zonelist
, int nr_zones
, int zone_type
)
1496 BUG_ON(zone_type
> ZONE_HIGHMEM
);
1499 zone
= pgdat
->node_zones
+ zone_type
;
1500 if (populated_zone(zone
)) {
1501 #ifndef CONFIG_HIGHMEM
1502 BUG_ON(zone_type
> ZONE_NORMAL
);
1504 zonelist
->zones
[nr_zones
++] = zone
;
1505 check_highest_zone(zone_type
);
1509 } while (zone_type
>= 0);
1513 static inline int highest_zone(int zone_bits
)
1515 int res
= ZONE_NORMAL
;
1516 if (zone_bits
& (__force
int)__GFP_HIGHMEM
)
1518 if (zone_bits
& (__force
int)__GFP_DMA32
)
1520 if (zone_bits
& (__force
int)__GFP_DMA
)
1526 #define MAX_NODE_LOAD (num_online_nodes())
1527 static int __initdata node_load
[MAX_NUMNODES
];
1529 * find_next_best_node - find the next node that should appear in a given node's fallback list
1530 * @node: node whose fallback list we're appending
1531 * @used_node_mask: nodemask_t of already used nodes
1533 * We use a number of factors to determine which is the next node that should
1534 * appear on a given node's fallback list. The node should not have appeared
1535 * already in @node's fallback list, and it should be the next closest node
1536 * according to the distance array (which contains arbitrary distance values
1537 * from each node to each node in the system), and should also prefer nodes
1538 * with no CPUs, since presumably they'll have very little allocation pressure
1539 * on them otherwise.
1540 * It returns -1 if no node is found.
1542 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1545 int min_val
= INT_MAX
;
1548 /* Use the local node if we haven't already */
1549 if (!node_isset(node
, *used_node_mask
)) {
1550 node_set(node
, *used_node_mask
);
1554 for_each_online_node(n
) {
1557 /* Don't want a node to appear more than once */
1558 if (node_isset(n
, *used_node_mask
))
1561 /* Use the distance array to find the distance */
1562 val
= node_distance(node
, n
);
1564 /* Penalize nodes under us ("prefer the next node") */
1567 /* Give preference to headless and unused nodes */
1568 tmp
= node_to_cpumask(n
);
1569 if (!cpus_empty(tmp
))
1570 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1572 /* Slight preference for less loaded node */
1573 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1574 val
+= node_load
[n
];
1576 if (val
< min_val
) {
1583 node_set(best_node
, *used_node_mask
);
1588 static void __init
build_zonelists(pg_data_t
*pgdat
)
1590 int i
, j
, k
, node
, local_node
;
1591 int prev_node
, load
;
1592 struct zonelist
*zonelist
;
1593 nodemask_t used_mask
;
1595 /* initialize zonelists */
1596 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1597 zonelist
= pgdat
->node_zonelists
+ i
;
1598 zonelist
->zones
[0] = NULL
;
1601 /* NUMA-aware ordering of nodes */
1602 local_node
= pgdat
->node_id
;
1603 load
= num_online_nodes();
1604 prev_node
= local_node
;
1605 nodes_clear(used_mask
);
1606 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1607 int distance
= node_distance(local_node
, node
);
1610 * If another node is sufficiently far away then it is better
1611 * to reclaim pages in a zone before going off node.
1613 if (distance
> RECLAIM_DISTANCE
)
1614 zone_reclaim_mode
= 1;
1617 * We don't want to pressure a particular node.
1618 * So adding penalty to the first node in same
1619 * distance group to make it round-robin.
1622 if (distance
!= node_distance(local_node
, prev_node
))
1623 node_load
[node
] += load
;
1626 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1627 zonelist
= pgdat
->node_zonelists
+ i
;
1628 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1630 k
= highest_zone(i
);
1632 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1633 zonelist
->zones
[j
] = NULL
;
1638 #else /* CONFIG_NUMA */
1640 static void __init
build_zonelists(pg_data_t
*pgdat
)
1642 int i
, j
, k
, node
, local_node
;
1644 local_node
= pgdat
->node_id
;
1645 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1646 struct zonelist
*zonelist
;
1648 zonelist
= pgdat
->node_zonelists
+ i
;
1651 k
= highest_zone(i
);
1652 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1654 * Now we build the zonelist so that it contains the zones
1655 * of all the other nodes.
1656 * We don't want to pressure a particular node, so when
1657 * building the zones for node N, we make sure that the
1658 * zones coming right after the local ones are those from
1659 * node N+1 (modulo N)
1661 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1662 if (!node_online(node
))
1664 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1666 for (node
= 0; node
< local_node
; node
++) {
1667 if (!node_online(node
))
1669 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1672 zonelist
->zones
[j
] = NULL
;
1676 #endif /* CONFIG_NUMA */
1678 void __init
build_all_zonelists(void)
1682 for_each_online_node(i
)
1683 build_zonelists(NODE_DATA(i
));
1684 printk("Built %i zonelists\n", num_online_nodes());
1685 cpuset_init_current_mems_allowed();
1689 * Helper functions to size the waitqueue hash table.
1690 * Essentially these want to choose hash table sizes sufficiently
1691 * large so that collisions trying to wait on pages are rare.
1692 * But in fact, the number of active page waitqueues on typical
1693 * systems is ridiculously low, less than 200. So this is even
1694 * conservative, even though it seems large.
1696 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1697 * waitqueues, i.e. the size of the waitq table given the number of pages.
1699 #define PAGES_PER_WAITQUEUE 256
1701 static inline unsigned long wait_table_size(unsigned long pages
)
1703 unsigned long size
= 1;
1705 pages
/= PAGES_PER_WAITQUEUE
;
1707 while (size
< pages
)
1711 * Once we have dozens or even hundreds of threads sleeping
1712 * on IO we've got bigger problems than wait queue collision.
1713 * Limit the size of the wait table to a reasonable size.
1715 size
= min(size
, 4096UL);
1717 return max(size
, 4UL);
1721 * This is an integer logarithm so that shifts can be used later
1722 * to extract the more random high bits from the multiplicative
1723 * hash function before the remainder is taken.
1725 static inline unsigned long wait_table_bits(unsigned long size
)
1730 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1732 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1733 unsigned long *zones_size
, unsigned long *zholes_size
)
1735 unsigned long realtotalpages
, totalpages
= 0;
1738 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1739 totalpages
+= zones_size
[i
];
1740 pgdat
->node_spanned_pages
= totalpages
;
1742 realtotalpages
= totalpages
;
1744 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1745 realtotalpages
-= zholes_size
[i
];
1746 pgdat
->node_present_pages
= realtotalpages
;
1747 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1752 * Initially all pages are reserved - free ones are freed
1753 * up by free_all_bootmem() once the early boot process is
1754 * done. Non-atomic initialization, single-pass.
1756 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1757 unsigned long start_pfn
)
1760 unsigned long end_pfn
= start_pfn
+ size
;
1763 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1764 if (!early_pfn_valid(pfn
))
1766 page
= pfn_to_page(pfn
);
1767 set_page_links(page
, zone
, nid
, pfn
);
1768 set_page_count(page
, 1);
1769 reset_page_mapcount(page
);
1770 SetPageReserved(page
);
1771 INIT_LIST_HEAD(&page
->lru
);
1772 #ifdef WANT_PAGE_VIRTUAL
1773 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1774 if (!is_highmem_idx(zone
))
1775 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1780 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1784 for (order
= 0; order
< MAX_ORDER
; order
++) {
1785 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1786 zone
->free_area
[order
].nr_free
= 0;
1790 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1791 void zonetable_add(struct zone
*zone
, int nid
, int zid
, unsigned long pfn
,
1794 unsigned long snum
= pfn_to_section_nr(pfn
);
1795 unsigned long end
= pfn_to_section_nr(pfn
+ size
);
1798 zone_table
[ZONETABLE_INDEX(nid
, zid
)] = zone
;
1800 for (; snum
<= end
; snum
++)
1801 zone_table
[ZONETABLE_INDEX(snum
, zid
)] = zone
;
1804 #ifndef __HAVE_ARCH_MEMMAP_INIT
1805 #define memmap_init(size, nid, zone, start_pfn) \
1806 memmap_init_zone((size), (nid), (zone), (start_pfn))
1809 static int __cpuinit
zone_batchsize(struct zone
*zone
)
1814 * The per-cpu-pages pools are set to around 1000th of the
1815 * size of the zone. But no more than 1/2 of a meg.
1817 * OK, so we don't know how big the cache is. So guess.
1819 batch
= zone
->present_pages
/ 1024;
1820 if (batch
* PAGE_SIZE
> 512 * 1024)
1821 batch
= (512 * 1024) / PAGE_SIZE
;
1822 batch
/= 4; /* We effectively *= 4 below */
1827 * Clamp the batch to a 2^n - 1 value. Having a power
1828 * of 2 value was found to be more likely to have
1829 * suboptimal cache aliasing properties in some cases.
1831 * For example if 2 tasks are alternately allocating
1832 * batches of pages, one task can end up with a lot
1833 * of pages of one half of the possible page colors
1834 * and the other with pages of the other colors.
1836 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
1841 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
1843 struct per_cpu_pages
*pcp
;
1845 memset(p
, 0, sizeof(*p
));
1847 pcp
= &p
->pcp
[0]; /* hot */
1849 pcp
->high
= 6 * batch
;
1850 pcp
->batch
= max(1UL, 1 * batch
);
1851 INIT_LIST_HEAD(&pcp
->list
);
1853 pcp
= &p
->pcp
[1]; /* cold*/
1855 pcp
->high
= 2 * batch
;
1856 pcp
->batch
= max(1UL, batch
/2);
1857 INIT_LIST_HEAD(&pcp
->list
);
1861 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1862 * to the value high for the pageset p.
1865 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
1868 struct per_cpu_pages
*pcp
;
1870 pcp
= &p
->pcp
[0]; /* hot list */
1872 pcp
->batch
= max(1UL, high
/4);
1873 if ((high
/4) > (PAGE_SHIFT
* 8))
1874 pcp
->batch
= PAGE_SHIFT
* 8;
1880 * Boot pageset table. One per cpu which is going to be used for all
1881 * zones and all nodes. The parameters will be set in such a way
1882 * that an item put on a list will immediately be handed over to
1883 * the buddy list. This is safe since pageset manipulation is done
1884 * with interrupts disabled.
1886 * Some NUMA counter updates may also be caught by the boot pagesets.
1888 * The boot_pagesets must be kept even after bootup is complete for
1889 * unused processors and/or zones. They do play a role for bootstrapping
1890 * hotplugged processors.
1892 * zoneinfo_show() and maybe other functions do
1893 * not check if the processor is online before following the pageset pointer.
1894 * Other parts of the kernel may not check if the zone is available.
1896 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
1899 * Dynamically allocate memory for the
1900 * per cpu pageset array in struct zone.
1902 static int __cpuinit
process_zones(int cpu
)
1904 struct zone
*zone
, *dzone
;
1906 for_each_zone(zone
) {
1908 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
1909 GFP_KERNEL
, cpu_to_node(cpu
));
1910 if (!zone_pcp(zone
, cpu
))
1913 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
1915 if (percpu_pagelist_fraction
)
1916 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
1917 (zone
->present_pages
/ percpu_pagelist_fraction
));
1922 for_each_zone(dzone
) {
1925 kfree(zone_pcp(dzone
, cpu
));
1926 zone_pcp(dzone
, cpu
) = NULL
;
1931 static inline void free_zone_pagesets(int cpu
)
1935 for_each_zone(zone
) {
1936 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
1938 zone_pcp(zone
, cpu
) = NULL
;
1943 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
1944 unsigned long action
,
1947 int cpu
= (long)hcpu
;
1948 int ret
= NOTIFY_OK
;
1951 case CPU_UP_PREPARE
:
1952 if (process_zones(cpu
))
1955 case CPU_UP_CANCELED
:
1957 free_zone_pagesets(cpu
);
1965 static struct notifier_block pageset_notifier
=
1966 { &pageset_cpuup_callback
, NULL
, 0 };
1968 void __init
setup_per_cpu_pageset(void)
1972 /* Initialize per_cpu_pageset for cpu 0.
1973 * A cpuup callback will do this for every cpu
1974 * as it comes online
1976 err
= process_zones(smp_processor_id());
1978 register_cpu_notifier(&pageset_notifier
);
1984 void zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
1987 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1990 * The per-page waitqueue mechanism uses hashed waitqueues
1993 zone
->wait_table_size
= wait_table_size(zone_size_pages
);
1994 zone
->wait_table_bits
= wait_table_bits(zone
->wait_table_size
);
1995 zone
->wait_table
= (wait_queue_head_t
*)
1996 alloc_bootmem_node(pgdat
, zone
->wait_table_size
1997 * sizeof(wait_queue_head_t
));
1999 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
2000 init_waitqueue_head(zone
->wait_table
+ i
);
2003 static __meminit
void zone_pcp_init(struct zone
*zone
)
2006 unsigned long batch
= zone_batchsize(zone
);
2008 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2010 /* Early boot. Slab allocator not functional yet */
2011 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2012 setup_pageset(&boot_pageset
[cpu
],0);
2014 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2017 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2018 zone
->name
, zone
->present_pages
, batch
);
2021 static __meminit
void init_currently_empty_zone(struct zone
*zone
,
2022 unsigned long zone_start_pfn
, unsigned long size
)
2024 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2026 zone_wait_table_init(zone
, size
);
2027 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2029 zone
->zone_mem_map
= pfn_to_page(zone_start_pfn
);
2030 zone
->zone_start_pfn
= zone_start_pfn
;
2032 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2034 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2038 * Set up the zone data structures:
2039 * - mark all pages reserved
2040 * - mark all memory queues empty
2041 * - clear the memory bitmaps
2043 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
2044 unsigned long *zones_size
, unsigned long *zholes_size
)
2047 int nid
= pgdat
->node_id
;
2048 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2050 pgdat_resize_init(pgdat
);
2051 pgdat
->nr_zones
= 0;
2052 init_waitqueue_head(&pgdat
->kswapd_wait
);
2053 pgdat
->kswapd_max_order
= 0;
2055 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2056 struct zone
*zone
= pgdat
->node_zones
+ j
;
2057 unsigned long size
, realsize
;
2059 realsize
= size
= zones_size
[j
];
2061 realsize
-= zholes_size
[j
];
2063 if (j
< ZONE_HIGHMEM
)
2064 nr_kernel_pages
+= realsize
;
2065 nr_all_pages
+= realsize
;
2067 zone
->spanned_pages
= size
;
2068 zone
->present_pages
= realsize
;
2069 zone
->name
= zone_names
[j
];
2070 spin_lock_init(&zone
->lock
);
2071 spin_lock_init(&zone
->lru_lock
);
2072 zone_seqlock_init(zone
);
2073 zone
->zone_pgdat
= pgdat
;
2074 zone
->free_pages
= 0;
2076 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
2078 zone_pcp_init(zone
);
2079 INIT_LIST_HEAD(&zone
->active_list
);
2080 INIT_LIST_HEAD(&zone
->inactive_list
);
2081 zone
->nr_scan_active
= 0;
2082 zone
->nr_scan_inactive
= 0;
2083 zone
->nr_active
= 0;
2084 zone
->nr_inactive
= 0;
2085 atomic_set(&zone
->reclaim_in_progress
, 0);
2089 zonetable_add(zone
, nid
, j
, zone_start_pfn
, size
);
2090 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
2091 zone_start_pfn
+= size
;
2095 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2097 /* Skip empty nodes */
2098 if (!pgdat
->node_spanned_pages
)
2101 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2102 /* ia64 gets its own node_mem_map, before this, without bootmem */
2103 if (!pgdat
->node_mem_map
) {
2107 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
2108 map
= alloc_remap(pgdat
->node_id
, size
);
2110 map
= alloc_bootmem_node(pgdat
, size
);
2111 pgdat
->node_mem_map
= map
;
2113 #ifdef CONFIG_FLATMEM
2115 * With no DISCONTIG, the global mem_map is just set as node 0's
2117 if (pgdat
== NODE_DATA(0))
2118 mem_map
= NODE_DATA(0)->node_mem_map
;
2120 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2123 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2124 unsigned long *zones_size
, unsigned long node_start_pfn
,
2125 unsigned long *zholes_size
)
2127 pgdat
->node_id
= nid
;
2128 pgdat
->node_start_pfn
= node_start_pfn
;
2129 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
2131 alloc_node_mem_map(pgdat
);
2133 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2136 #ifndef CONFIG_NEED_MULTIPLE_NODES
2137 static bootmem_data_t contig_bootmem_data
;
2138 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2140 EXPORT_SYMBOL(contig_page_data
);
2143 void __init
free_area_init(unsigned long *zones_size
)
2145 free_area_init_node(0, NODE_DATA(0), zones_size
,
2146 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2149 #ifdef CONFIG_PROC_FS
2151 #include <linux/seq_file.h>
2153 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
2158 for (pgdat
= pgdat_list
; pgdat
&& node
; pgdat
= pgdat
->pgdat_next
)
2164 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2166 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2169 return pgdat
->pgdat_next
;
2172 static void frag_stop(struct seq_file
*m
, void *arg
)
2177 * This walks the free areas for each zone.
2179 static int frag_show(struct seq_file
*m
, void *arg
)
2181 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2183 struct zone
*node_zones
= pgdat
->node_zones
;
2184 unsigned long flags
;
2187 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2188 if (!populated_zone(zone
))
2191 spin_lock_irqsave(&zone
->lock
, flags
);
2192 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
2193 for (order
= 0; order
< MAX_ORDER
; ++order
)
2194 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
2195 spin_unlock_irqrestore(&zone
->lock
, flags
);
2201 struct seq_operations fragmentation_op
= {
2202 .start
= frag_start
,
2209 * Output information about zones in @pgdat.
2211 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
2213 pg_data_t
*pgdat
= arg
;
2215 struct zone
*node_zones
= pgdat
->node_zones
;
2216 unsigned long flags
;
2218 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; zone
++) {
2221 if (!populated_zone(zone
))
2224 spin_lock_irqsave(&zone
->lock
, flags
);
2225 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
2233 "\n scanned %lu (a: %lu i: %lu)"
2242 zone
->pages_scanned
,
2243 zone
->nr_scan_active
, zone
->nr_scan_inactive
,
2244 zone
->spanned_pages
,
2245 zone
->present_pages
);
2247 "\n protection: (%lu",
2248 zone
->lowmem_reserve
[0]);
2249 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
2250 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
2254 for_each_online_cpu(i
) {
2255 struct per_cpu_pageset
*pageset
;
2258 pageset
= zone_pcp(zone
, i
);
2259 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2260 if (pageset
->pcp
[j
].count
)
2263 if (j
== ARRAY_SIZE(pageset
->pcp
))
2265 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2267 "\n cpu: %i pcp: %i"
2272 pageset
->pcp
[j
].count
,
2273 pageset
->pcp
[j
].high
,
2274 pageset
->pcp
[j
].batch
);
2280 "\n numa_foreign: %lu"
2281 "\n interleave_hit: %lu"
2282 "\n local_node: %lu"
2283 "\n other_node: %lu",
2286 pageset
->numa_foreign
,
2287 pageset
->interleave_hit
,
2288 pageset
->local_node
,
2289 pageset
->other_node
);
2293 "\n all_unreclaimable: %u"
2294 "\n prev_priority: %i"
2295 "\n temp_priority: %i"
2296 "\n start_pfn: %lu",
2297 zone
->all_unreclaimable
,
2298 zone
->prev_priority
,
2299 zone
->temp_priority
,
2300 zone
->zone_start_pfn
);
2301 spin_unlock_irqrestore(&zone
->lock
, flags
);
2307 struct seq_operations zoneinfo_op
= {
2308 .start
= frag_start
, /* iterate over all zones. The same as in
2312 .show
= zoneinfo_show
,
2315 static char *vmstat_text
[] = {
2319 "nr_page_table_pages",
2350 "pgscan_kswapd_high",
2351 "pgscan_kswapd_normal",
2352 "pgscan_kswapd_dma32",
2353 "pgscan_kswapd_dma",
2355 "pgscan_direct_high",
2356 "pgscan_direct_normal",
2357 "pgscan_direct_dma32",
2358 "pgscan_direct_dma",
2363 "kswapd_inodesteal",
2371 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
2373 struct page_state
*ps
;
2375 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2378 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
2381 return ERR_PTR(-ENOMEM
);
2382 get_full_page_state(ps
);
2383 ps
->pgpgin
/= 2; /* sectors -> kbytes */
2385 return (unsigned long *)ps
+ *pos
;
2388 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2391 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2393 return (unsigned long *)m
->private + *pos
;
2396 static int vmstat_show(struct seq_file
*m
, void *arg
)
2398 unsigned long *l
= arg
;
2399 unsigned long off
= l
- (unsigned long *)m
->private;
2401 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
2405 static void vmstat_stop(struct seq_file
*m
, void *arg
)
2411 struct seq_operations vmstat_op
= {
2412 .start
= vmstat_start
,
2413 .next
= vmstat_next
,
2414 .stop
= vmstat_stop
,
2415 .show
= vmstat_show
,
2418 #endif /* CONFIG_PROC_FS */
2420 #ifdef CONFIG_HOTPLUG_CPU
2421 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2422 unsigned long action
, void *hcpu
)
2424 int cpu
= (unsigned long)hcpu
;
2426 unsigned long *src
, *dest
;
2428 if (action
== CPU_DEAD
) {
2431 /* Drain local pagecache count. */
2432 count
= &per_cpu(nr_pagecache_local
, cpu
);
2433 atomic_add(*count
, &nr_pagecache
);
2435 local_irq_disable();
2438 /* Add dead cpu's page_states to our own. */
2439 dest
= (unsigned long *)&__get_cpu_var(page_states
);
2440 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
2442 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
2452 #endif /* CONFIG_HOTPLUG_CPU */
2454 void __init
page_alloc_init(void)
2456 hotcpu_notifier(page_alloc_cpu_notify
, 0);
2460 * setup_per_zone_lowmem_reserve - called whenever
2461 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2462 * has a correct pages reserved value, so an adequate number of
2463 * pages are left in the zone after a successful __alloc_pages().
2465 static void setup_per_zone_lowmem_reserve(void)
2467 struct pglist_data
*pgdat
;
2470 for_each_pgdat(pgdat
) {
2471 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2472 struct zone
*zone
= pgdat
->node_zones
+ j
;
2473 unsigned long present_pages
= zone
->present_pages
;
2475 zone
->lowmem_reserve
[j
] = 0;
2477 for (idx
= j
-1; idx
>= 0; idx
--) {
2478 struct zone
*lower_zone
;
2480 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2481 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2483 lower_zone
= pgdat
->node_zones
+ idx
;
2484 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2485 sysctl_lowmem_reserve_ratio
[idx
];
2486 present_pages
+= lower_zone
->present_pages
;
2493 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2494 * that the pages_{min,low,high} values for each zone are set correctly
2495 * with respect to min_free_kbytes.
2497 void setup_per_zone_pages_min(void)
2499 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2500 unsigned long lowmem_pages
= 0;
2502 unsigned long flags
;
2504 /* Calculate total number of !ZONE_HIGHMEM pages */
2505 for_each_zone(zone
) {
2506 if (!is_highmem(zone
))
2507 lowmem_pages
+= zone
->present_pages
;
2510 for_each_zone(zone
) {
2512 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2513 tmp
= (pages_min
* zone
->present_pages
) / lowmem_pages
;
2514 if (is_highmem(zone
)) {
2516 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2517 * need highmem pages, so cap pages_min to a small
2520 * The (pages_high-pages_low) and (pages_low-pages_min)
2521 * deltas controls asynch page reclaim, and so should
2522 * not be capped for highmem.
2526 min_pages
= zone
->present_pages
/ 1024;
2527 if (min_pages
< SWAP_CLUSTER_MAX
)
2528 min_pages
= SWAP_CLUSTER_MAX
;
2529 if (min_pages
> 128)
2531 zone
->pages_min
= min_pages
;
2534 * If it's a lowmem zone, reserve a number of pages
2535 * proportionate to the zone's size.
2537 zone
->pages_min
= tmp
;
2540 zone
->pages_low
= zone
->pages_min
+ tmp
/ 4;
2541 zone
->pages_high
= zone
->pages_min
+ tmp
/ 2;
2542 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2547 * Initialise min_free_kbytes.
2549 * For small machines we want it small (128k min). For large machines
2550 * we want it large (64MB max). But it is not linear, because network
2551 * bandwidth does not increase linearly with machine size. We use
2553 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2554 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2570 static int __init
init_per_zone_pages_min(void)
2572 unsigned long lowmem_kbytes
;
2574 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2576 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2577 if (min_free_kbytes
< 128)
2578 min_free_kbytes
= 128;
2579 if (min_free_kbytes
> 65536)
2580 min_free_kbytes
= 65536;
2581 setup_per_zone_pages_min();
2582 setup_per_zone_lowmem_reserve();
2585 module_init(init_per_zone_pages_min
)
2588 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2589 * that we can call two helper functions whenever min_free_kbytes
2592 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2593 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2595 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2596 setup_per_zone_pages_min();
2601 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2602 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2603 * whenever sysctl_lowmem_reserve_ratio changes.
2605 * The reserve ratio obviously has absolutely no relation with the
2606 * pages_min watermarks. The lowmem reserve ratio can only make sense
2607 * if in function of the boot time zone sizes.
2609 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2610 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2612 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2613 setup_per_zone_lowmem_reserve();
2618 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2619 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2620 * can have before it gets flushed back to buddy allocator.
2623 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
2624 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2630 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2631 if (!write
|| (ret
== -EINVAL
))
2633 for_each_zone(zone
) {
2634 for_each_online_cpu(cpu
) {
2636 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
2637 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
2643 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2646 static int __init
set_hashdist(char *str
)
2650 hashdist
= simple_strtoul(str
, &str
, 0);
2653 __setup("hashdist=", set_hashdist
);
2657 * allocate a large system hash table from bootmem
2658 * - it is assumed that the hash table must contain an exact power-of-2
2659 * quantity of entries
2660 * - limit is the number of hash buckets, not the total allocation size
2662 void *__init
alloc_large_system_hash(const char *tablename
,
2663 unsigned long bucketsize
,
2664 unsigned long numentries
,
2667 unsigned int *_hash_shift
,
2668 unsigned int *_hash_mask
,
2669 unsigned long limit
)
2671 unsigned long long max
= limit
;
2672 unsigned long log2qty
, size
;
2675 /* allow the kernel cmdline to have a say */
2677 /* round applicable memory size up to nearest megabyte */
2678 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2679 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2680 numentries
>>= 20 - PAGE_SHIFT
;
2681 numentries
<<= 20 - PAGE_SHIFT
;
2683 /* limit to 1 bucket per 2^scale bytes of low memory */
2684 if (scale
> PAGE_SHIFT
)
2685 numentries
>>= (scale
- PAGE_SHIFT
);
2687 numentries
<<= (PAGE_SHIFT
- scale
);
2689 /* rounded up to nearest power of 2 in size */
2690 numentries
= 1UL << (long_log2(numentries
) + 1);
2692 /* limit allocation size to 1/16 total memory by default */
2694 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2695 do_div(max
, bucketsize
);
2698 if (numentries
> max
)
2701 log2qty
= long_log2(numentries
);
2704 size
= bucketsize
<< log2qty
;
2705 if (flags
& HASH_EARLY
)
2706 table
= alloc_bootmem(size
);
2708 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2710 unsigned long order
;
2711 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2713 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2715 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2718 panic("Failed to allocate %s hash table\n", tablename
);
2720 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2723 long_log2(size
) - PAGE_SHIFT
,
2727 *_hash_shift
= log2qty
;
2729 *_hash_mask
= (1 << log2qty
) - 1;