2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
30 #include <linux/device-mapper.h>
32 #define DM_MSG_PREFIX "crypt"
35 * context holding the current state of a multi-part conversion
37 struct convert_context
{
38 struct completion restart
;
41 unsigned int offset_in
;
42 unsigned int offset_out
;
50 * per bio private data
53 struct dm_target
*target
;
55 struct work_struct work
;
57 struct convert_context ctx
;
62 struct dm_crypt_io
*base_io
;
65 struct dm_crypt_request
{
66 struct convert_context
*ctx
;
67 struct scatterlist sg_in
;
68 struct scatterlist sg_out
;
74 struct crypt_iv_operations
{
75 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
77 void (*dtr
)(struct crypt_config
*cc
);
78 int (*init
)(struct crypt_config
*cc
);
79 int (*wipe
)(struct crypt_config
*cc
);
80 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
81 struct dm_crypt_request
*dmreq
);
82 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
83 struct dm_crypt_request
*dmreq
);
86 struct iv_essiv_private
{
87 struct crypto_hash
*hash_tfm
;
91 struct iv_benbi_private
{
95 #define LMK_SEED_SIZE 64 /* hash + 0 */
96 struct iv_lmk_private
{
97 struct crypto_shash
*hash_tfm
;
102 * Crypt: maps a linear range of a block device
103 * and encrypts / decrypts at the same time.
105 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
};
108 * Duplicated per-CPU state for cipher.
111 struct ablkcipher_request
*req
;
112 /* ESSIV: struct crypto_cipher *essiv_tfm */
114 struct crypto_ablkcipher
*tfms
[0];
118 * The fields in here must be read only after initialization,
119 * changing state should be in crypt_cpu.
121 struct crypt_config
{
126 * pool for per bio private data, crypto requests and
127 * encryption requeusts/buffer pages
131 mempool_t
*page_pool
;
134 struct workqueue_struct
*io_queue
;
135 struct workqueue_struct
*crypt_queue
;
140 struct crypt_iv_operations
*iv_gen_ops
;
142 struct iv_essiv_private essiv
;
143 struct iv_benbi_private benbi
;
144 struct iv_lmk_private lmk
;
147 unsigned int iv_size
;
150 * Duplicated per cpu state. Access through
151 * per_cpu_ptr() only.
153 struct crypt_cpu __percpu
*cpu
;
157 * Layout of each crypto request:
159 * struct ablkcipher_request
162 * struct dm_crypt_request
166 * The padding is added so that dm_crypt_request and the IV are
169 unsigned int dmreq_start
;
172 unsigned int key_size
;
173 unsigned int key_parts
;
178 #define MIN_POOL_PAGES 32
179 #define MIN_BIO_PAGES 8
181 static struct kmem_cache
*_crypt_io_pool
;
183 static void clone_init(struct dm_crypt_io
*, struct bio
*);
184 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
185 static u8
*iv_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
);
187 static struct crypt_cpu
*this_crypt_config(struct crypt_config
*cc
)
189 return this_cpu_ptr(cc
->cpu
);
193 * Use this to access cipher attributes that are the same for each CPU.
195 static struct crypto_ablkcipher
*any_tfm(struct crypt_config
*cc
)
197 return __this_cpu_ptr(cc
->cpu
)->tfms
[0];
201 * Different IV generation algorithms:
203 * plain: the initial vector is the 32-bit little-endian version of the sector
204 * number, padded with zeros if necessary.
206 * plain64: the initial vector is the 64-bit little-endian version of the sector
207 * number, padded with zeros if necessary.
209 * essiv: "encrypted sector|salt initial vector", the sector number is
210 * encrypted with the bulk cipher using a salt as key. The salt
211 * should be derived from the bulk cipher's key via hashing.
213 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
214 * (needed for LRW-32-AES and possible other narrow block modes)
216 * null: the initial vector is always zero. Provides compatibility with
217 * obsolete loop_fish2 devices. Do not use for new devices.
219 * lmk: Compatible implementation of the block chaining mode used
220 * by the Loop-AES block device encryption system
221 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
222 * It operates on full 512 byte sectors and uses CBC
223 * with an IV derived from the sector number, the data and
224 * optionally extra IV seed.
225 * This means that after decryption the first block
226 * of sector must be tweaked according to decrypted data.
227 * Loop-AES can use three encryption schemes:
228 * version 1: is plain aes-cbc mode
229 * version 2: uses 64 multikey scheme with lmk IV generator
230 * version 3: the same as version 2 with additional IV seed
231 * (it uses 65 keys, last key is used as IV seed)
233 * plumb: unimplemented, see:
234 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
237 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
238 struct dm_crypt_request
*dmreq
)
240 memset(iv
, 0, cc
->iv_size
);
241 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
246 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
247 struct dm_crypt_request
*dmreq
)
249 memset(iv
, 0, cc
->iv_size
);
250 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
255 /* Initialise ESSIV - compute salt but no local memory allocations */
256 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
258 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
259 struct hash_desc desc
;
260 struct scatterlist sg
;
261 struct crypto_cipher
*essiv_tfm
;
264 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
265 desc
.tfm
= essiv
->hash_tfm
;
266 desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
268 err
= crypto_hash_digest(&desc
, &sg
, cc
->key_size
, essiv
->salt
);
272 for_each_possible_cpu(cpu
) {
273 essiv_tfm
= per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
,
275 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
276 crypto_hash_digestsize(essiv
->hash_tfm
));
284 /* Wipe salt and reset key derived from volume key */
285 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
287 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
288 unsigned salt_size
= crypto_hash_digestsize(essiv
->hash_tfm
);
289 struct crypto_cipher
*essiv_tfm
;
292 memset(essiv
->salt
, 0, salt_size
);
294 for_each_possible_cpu(cpu
) {
295 essiv_tfm
= per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
;
296 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
304 /* Set up per cpu cipher state */
305 static struct crypto_cipher
*setup_essiv_cpu(struct crypt_config
*cc
,
306 struct dm_target
*ti
,
307 u8
*salt
, unsigned saltsize
)
309 struct crypto_cipher
*essiv_tfm
;
312 /* Setup the essiv_tfm with the given salt */
313 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
314 if (IS_ERR(essiv_tfm
)) {
315 ti
->error
= "Error allocating crypto tfm for ESSIV";
319 if (crypto_cipher_blocksize(essiv_tfm
) !=
320 crypto_ablkcipher_ivsize(any_tfm(cc
))) {
321 ti
->error
= "Block size of ESSIV cipher does "
322 "not match IV size of block cipher";
323 crypto_free_cipher(essiv_tfm
);
324 return ERR_PTR(-EINVAL
);
327 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
329 ti
->error
= "Failed to set key for ESSIV cipher";
330 crypto_free_cipher(essiv_tfm
);
337 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
340 struct crypt_cpu
*cpu_cc
;
341 struct crypto_cipher
*essiv_tfm
;
342 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
344 crypto_free_hash(essiv
->hash_tfm
);
345 essiv
->hash_tfm
= NULL
;
350 for_each_possible_cpu(cpu
) {
351 cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
352 essiv_tfm
= cpu_cc
->iv_private
;
355 crypto_free_cipher(essiv_tfm
);
357 cpu_cc
->iv_private
= NULL
;
361 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
364 struct crypto_cipher
*essiv_tfm
= NULL
;
365 struct crypto_hash
*hash_tfm
= NULL
;
370 ti
->error
= "Digest algorithm missing for ESSIV mode";
374 /* Allocate hash algorithm */
375 hash_tfm
= crypto_alloc_hash(opts
, 0, CRYPTO_ALG_ASYNC
);
376 if (IS_ERR(hash_tfm
)) {
377 ti
->error
= "Error initializing ESSIV hash";
378 err
= PTR_ERR(hash_tfm
);
382 salt
= kzalloc(crypto_hash_digestsize(hash_tfm
), GFP_KERNEL
);
384 ti
->error
= "Error kmallocing salt storage in ESSIV";
389 cc
->iv_gen_private
.essiv
.salt
= salt
;
390 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
392 for_each_possible_cpu(cpu
) {
393 essiv_tfm
= setup_essiv_cpu(cc
, ti
, salt
,
394 crypto_hash_digestsize(hash_tfm
));
395 if (IS_ERR(essiv_tfm
)) {
396 crypt_iv_essiv_dtr(cc
);
397 return PTR_ERR(essiv_tfm
);
399 per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
= essiv_tfm
;
405 if (hash_tfm
&& !IS_ERR(hash_tfm
))
406 crypto_free_hash(hash_tfm
);
411 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
412 struct dm_crypt_request
*dmreq
)
414 struct crypto_cipher
*essiv_tfm
= this_crypt_config(cc
)->iv_private
;
416 memset(iv
, 0, cc
->iv_size
);
417 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
418 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
423 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
426 unsigned bs
= crypto_ablkcipher_blocksize(any_tfm(cc
));
429 /* we need to calculate how far we must shift the sector count
430 * to get the cipher block count, we use this shift in _gen */
432 if (1 << log
!= bs
) {
433 ti
->error
= "cypher blocksize is not a power of 2";
438 ti
->error
= "cypher blocksize is > 512";
442 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
447 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
451 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
452 struct dm_crypt_request
*dmreq
)
456 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
458 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
459 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
464 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
465 struct dm_crypt_request
*dmreq
)
467 memset(iv
, 0, cc
->iv_size
);
472 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
474 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
476 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
477 crypto_free_shash(lmk
->hash_tfm
);
478 lmk
->hash_tfm
= NULL
;
484 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
487 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
489 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
490 if (IS_ERR(lmk
->hash_tfm
)) {
491 ti
->error
= "Error initializing LMK hash";
492 return PTR_ERR(lmk
->hash_tfm
);
495 /* No seed in LMK version 2 */
496 if (cc
->key_parts
== cc
->tfms_count
) {
501 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
503 crypt_iv_lmk_dtr(cc
);
504 ti
->error
= "Error kmallocing seed storage in LMK";
511 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
513 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
514 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
516 /* LMK seed is on the position of LMK_KEYS + 1 key */
518 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
519 crypto_shash_digestsize(lmk
->hash_tfm
));
524 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
526 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
529 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
534 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
535 struct dm_crypt_request
*dmreq
,
538 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
540 struct shash_desc desc
;
541 char ctx
[crypto_shash_descsize(lmk
->hash_tfm
)];
543 struct md5_state md5state
;
547 sdesc
.desc
.tfm
= lmk
->hash_tfm
;
548 sdesc
.desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
550 r
= crypto_shash_init(&sdesc
.desc
);
555 r
= crypto_shash_update(&sdesc
.desc
, lmk
->seed
, LMK_SEED_SIZE
);
560 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
561 r
= crypto_shash_update(&sdesc
.desc
, data
+ 16, 16 * 31);
565 /* Sector is cropped to 56 bits here */
566 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
567 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
568 buf
[2] = cpu_to_le32(4024);
570 r
= crypto_shash_update(&sdesc
.desc
, (u8
*)buf
, sizeof(buf
));
574 /* No MD5 padding here */
575 r
= crypto_shash_export(&sdesc
.desc
, &md5state
);
579 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
580 __cpu_to_le32s(&md5state
.hash
[i
]);
581 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
586 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
587 struct dm_crypt_request
*dmreq
)
592 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
593 src
= kmap_atomic(sg_page(&dmreq
->sg_in
), KM_USER0
);
594 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ dmreq
->sg_in
.offset
);
595 kunmap_atomic(src
, KM_USER0
);
597 memset(iv
, 0, cc
->iv_size
);
602 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
603 struct dm_crypt_request
*dmreq
)
608 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
611 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
), KM_USER0
);
612 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
614 /* Tweak the first block of plaintext sector */
616 crypto_xor(dst
+ dmreq
->sg_out
.offset
, iv
, cc
->iv_size
);
618 kunmap_atomic(dst
, KM_USER0
);
622 static struct crypt_iv_operations crypt_iv_plain_ops
= {
623 .generator
= crypt_iv_plain_gen
626 static struct crypt_iv_operations crypt_iv_plain64_ops
= {
627 .generator
= crypt_iv_plain64_gen
630 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
631 .ctr
= crypt_iv_essiv_ctr
,
632 .dtr
= crypt_iv_essiv_dtr
,
633 .init
= crypt_iv_essiv_init
,
634 .wipe
= crypt_iv_essiv_wipe
,
635 .generator
= crypt_iv_essiv_gen
638 static struct crypt_iv_operations crypt_iv_benbi_ops
= {
639 .ctr
= crypt_iv_benbi_ctr
,
640 .dtr
= crypt_iv_benbi_dtr
,
641 .generator
= crypt_iv_benbi_gen
644 static struct crypt_iv_operations crypt_iv_null_ops
= {
645 .generator
= crypt_iv_null_gen
648 static struct crypt_iv_operations crypt_iv_lmk_ops
= {
649 .ctr
= crypt_iv_lmk_ctr
,
650 .dtr
= crypt_iv_lmk_dtr
,
651 .init
= crypt_iv_lmk_init
,
652 .wipe
= crypt_iv_lmk_wipe
,
653 .generator
= crypt_iv_lmk_gen
,
654 .post
= crypt_iv_lmk_post
657 static void crypt_convert_init(struct crypt_config
*cc
,
658 struct convert_context
*ctx
,
659 struct bio
*bio_out
, struct bio
*bio_in
,
662 ctx
->bio_in
= bio_in
;
663 ctx
->bio_out
= bio_out
;
666 ctx
->idx_in
= bio_in
? bio_in
->bi_idx
: 0;
667 ctx
->idx_out
= bio_out
? bio_out
->bi_idx
: 0;
668 ctx
->sector
= sector
+ cc
->iv_offset
;
669 init_completion(&ctx
->restart
);
672 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
673 struct ablkcipher_request
*req
)
675 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
678 static struct ablkcipher_request
*req_of_dmreq(struct crypt_config
*cc
,
679 struct dm_crypt_request
*dmreq
)
681 return (struct ablkcipher_request
*)((char *)dmreq
- cc
->dmreq_start
);
684 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
685 struct dm_crypt_request
*dmreq
)
687 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
688 crypto_ablkcipher_alignmask(any_tfm(cc
)) + 1);
691 static int crypt_convert_block(struct crypt_config
*cc
,
692 struct convert_context
*ctx
,
693 struct ablkcipher_request
*req
)
695 struct bio_vec
*bv_in
= bio_iovec_idx(ctx
->bio_in
, ctx
->idx_in
);
696 struct bio_vec
*bv_out
= bio_iovec_idx(ctx
->bio_out
, ctx
->idx_out
);
697 struct dm_crypt_request
*dmreq
;
701 dmreq
= dmreq_of_req(cc
, req
);
702 iv
= iv_of_dmreq(cc
, dmreq
);
704 dmreq
->iv_sector
= ctx
->sector
;
706 sg_init_table(&dmreq
->sg_in
, 1);
707 sg_set_page(&dmreq
->sg_in
, bv_in
->bv_page
, 1 << SECTOR_SHIFT
,
708 bv_in
->bv_offset
+ ctx
->offset_in
);
710 sg_init_table(&dmreq
->sg_out
, 1);
711 sg_set_page(&dmreq
->sg_out
, bv_out
->bv_page
, 1 << SECTOR_SHIFT
,
712 bv_out
->bv_offset
+ ctx
->offset_out
);
714 ctx
->offset_in
+= 1 << SECTOR_SHIFT
;
715 if (ctx
->offset_in
>= bv_in
->bv_len
) {
720 ctx
->offset_out
+= 1 << SECTOR_SHIFT
;
721 if (ctx
->offset_out
>= bv_out
->bv_len
) {
726 if (cc
->iv_gen_ops
) {
727 r
= cc
->iv_gen_ops
->generator(cc
, iv
, dmreq
);
732 ablkcipher_request_set_crypt(req
, &dmreq
->sg_in
, &dmreq
->sg_out
,
733 1 << SECTOR_SHIFT
, iv
);
735 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
736 r
= crypto_ablkcipher_encrypt(req
);
738 r
= crypto_ablkcipher_decrypt(req
);
740 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
741 r
= cc
->iv_gen_ops
->post(cc
, iv
, dmreq
);
746 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
749 static void crypt_alloc_req(struct crypt_config
*cc
,
750 struct convert_context
*ctx
)
752 struct crypt_cpu
*this_cc
= this_crypt_config(cc
);
753 unsigned key_index
= ctx
->sector
& (cc
->tfms_count
- 1);
756 this_cc
->req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
758 ablkcipher_request_set_tfm(this_cc
->req
, this_cc
->tfms
[key_index
]);
759 ablkcipher_request_set_callback(this_cc
->req
,
760 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
761 kcryptd_async_done
, dmreq_of_req(cc
, this_cc
->req
));
765 * Encrypt / decrypt data from one bio to another one (can be the same one)
767 static int crypt_convert(struct crypt_config
*cc
,
768 struct convert_context
*ctx
)
770 struct crypt_cpu
*this_cc
= this_crypt_config(cc
);
773 atomic_set(&ctx
->pending
, 1);
775 while(ctx
->idx_in
< ctx
->bio_in
->bi_vcnt
&&
776 ctx
->idx_out
< ctx
->bio_out
->bi_vcnt
) {
778 crypt_alloc_req(cc
, ctx
);
780 atomic_inc(&ctx
->pending
);
782 r
= crypt_convert_block(cc
, ctx
, this_cc
->req
);
787 wait_for_completion(&ctx
->restart
);
788 INIT_COMPLETION(ctx
->restart
);
797 atomic_dec(&ctx
->pending
);
804 atomic_dec(&ctx
->pending
);
812 static void dm_crypt_bio_destructor(struct bio
*bio
)
814 struct dm_crypt_io
*io
= bio
->bi_private
;
815 struct crypt_config
*cc
= io
->target
->private;
817 bio_free(bio
, cc
->bs
);
821 * Generate a new unfragmented bio with the given size
822 * This should never violate the device limitations
823 * May return a smaller bio when running out of pages, indicated by
824 * *out_of_pages set to 1.
826 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
,
827 unsigned *out_of_pages
)
829 struct crypt_config
*cc
= io
->target
->private;
831 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
832 gfp_t gfp_mask
= GFP_NOIO
| __GFP_HIGHMEM
;
836 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
840 clone_init(io
, clone
);
843 for (i
= 0; i
< nr_iovecs
; i
++) {
844 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
851 * if additional pages cannot be allocated without waiting,
852 * return a partially allocated bio, the caller will then try
853 * to allocate additional bios while submitting this partial bio
855 if (i
== (MIN_BIO_PAGES
- 1))
856 gfp_mask
= (gfp_mask
| __GFP_NOWARN
) & ~__GFP_WAIT
;
858 len
= (size
> PAGE_SIZE
) ? PAGE_SIZE
: size
;
860 if (!bio_add_page(clone
, page
, len
, 0)) {
861 mempool_free(page
, cc
->page_pool
);
868 if (!clone
->bi_size
) {
876 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
881 for (i
= 0; i
< clone
->bi_vcnt
; i
++) {
882 bv
= bio_iovec_idx(clone
, i
);
883 BUG_ON(!bv
->bv_page
);
884 mempool_free(bv
->bv_page
, cc
->page_pool
);
889 static struct dm_crypt_io
*crypt_io_alloc(struct dm_target
*ti
,
890 struct bio
*bio
, sector_t sector
)
892 struct crypt_config
*cc
= ti
->private;
893 struct dm_crypt_io
*io
;
895 io
= mempool_alloc(cc
->io_pool
, GFP_NOIO
);
901 atomic_set(&io
->pending
, 0);
906 static void crypt_inc_pending(struct dm_crypt_io
*io
)
908 atomic_inc(&io
->pending
);
912 * One of the bios was finished. Check for completion of
913 * the whole request and correctly clean up the buffer.
914 * If base_io is set, wait for the last fragment to complete.
916 static void crypt_dec_pending(struct dm_crypt_io
*io
)
918 struct crypt_config
*cc
= io
->target
->private;
919 struct bio
*base_bio
= io
->base_bio
;
920 struct dm_crypt_io
*base_io
= io
->base_io
;
921 int error
= io
->error
;
923 if (!atomic_dec_and_test(&io
->pending
))
926 mempool_free(io
, cc
->io_pool
);
928 if (likely(!base_io
))
929 bio_endio(base_bio
, error
);
931 if (error
&& !base_io
->error
)
932 base_io
->error
= error
;
933 crypt_dec_pending(base_io
);
938 * kcryptd/kcryptd_io:
940 * Needed because it would be very unwise to do decryption in an
943 * kcryptd performs the actual encryption or decryption.
945 * kcryptd_io performs the IO submission.
947 * They must be separated as otherwise the final stages could be
948 * starved by new requests which can block in the first stages due
949 * to memory allocation.
951 * The work is done per CPU global for all dm-crypt instances.
952 * They should not depend on each other and do not block.
954 static void crypt_endio(struct bio
*clone
, int error
)
956 struct dm_crypt_io
*io
= clone
->bi_private
;
957 struct crypt_config
*cc
= io
->target
->private;
958 unsigned rw
= bio_data_dir(clone
);
960 if (unlikely(!bio_flagged(clone
, BIO_UPTODATE
) && !error
))
964 * free the processed pages
967 crypt_free_buffer_pages(cc
, clone
);
971 if (rw
== READ
&& !error
) {
972 kcryptd_queue_crypt(io
);
979 crypt_dec_pending(io
);
982 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
984 struct crypt_config
*cc
= io
->target
->private;
986 clone
->bi_private
= io
;
987 clone
->bi_end_io
= crypt_endio
;
988 clone
->bi_bdev
= cc
->dev
->bdev
;
989 clone
->bi_rw
= io
->base_bio
->bi_rw
;
990 clone
->bi_destructor
= dm_crypt_bio_destructor
;
993 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
995 struct crypt_config
*cc
= io
->target
->private;
996 struct bio
*base_bio
= io
->base_bio
;
1000 * The block layer might modify the bvec array, so always
1001 * copy the required bvecs because we need the original
1002 * one in order to decrypt the whole bio data *afterwards*.
1004 clone
= bio_alloc_bioset(gfp
, bio_segments(base_bio
), cc
->bs
);
1008 crypt_inc_pending(io
);
1010 clone_init(io
, clone
);
1012 clone
->bi_vcnt
= bio_segments(base_bio
);
1013 clone
->bi_size
= base_bio
->bi_size
;
1014 clone
->bi_sector
= cc
->start
+ io
->sector
;
1015 memcpy(clone
->bi_io_vec
, bio_iovec(base_bio
),
1016 sizeof(struct bio_vec
) * clone
->bi_vcnt
);
1018 generic_make_request(clone
);
1022 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1024 struct bio
*clone
= io
->ctx
.bio_out
;
1025 generic_make_request(clone
);
1028 static void kcryptd_io(struct work_struct
*work
)
1030 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1032 if (bio_data_dir(io
->base_bio
) == READ
) {
1033 crypt_inc_pending(io
);
1034 if (kcryptd_io_read(io
, GFP_NOIO
))
1035 io
->error
= -ENOMEM
;
1036 crypt_dec_pending(io
);
1038 kcryptd_io_write(io
);
1041 static void kcryptd_queue_io(struct dm_crypt_io
*io
)
1043 struct crypt_config
*cc
= io
->target
->private;
1045 INIT_WORK(&io
->work
, kcryptd_io
);
1046 queue_work(cc
->io_queue
, &io
->work
);
1049 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
,
1050 int error
, int async
)
1052 struct bio
*clone
= io
->ctx
.bio_out
;
1053 struct crypt_config
*cc
= io
->target
->private;
1055 if (unlikely(error
< 0)) {
1056 crypt_free_buffer_pages(cc
, clone
);
1059 crypt_dec_pending(io
);
1063 /* crypt_convert should have filled the clone bio */
1064 BUG_ON(io
->ctx
.idx_out
< clone
->bi_vcnt
);
1066 clone
->bi_sector
= cc
->start
+ io
->sector
;
1069 kcryptd_queue_io(io
);
1071 generic_make_request(clone
);
1074 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1076 struct crypt_config
*cc
= io
->target
->private;
1078 struct dm_crypt_io
*new_io
;
1080 unsigned out_of_pages
= 0;
1081 unsigned remaining
= io
->base_bio
->bi_size
;
1082 sector_t sector
= io
->sector
;
1086 * Prevent io from disappearing until this function completes.
1088 crypt_inc_pending(io
);
1089 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1092 * The allocated buffers can be smaller than the whole bio,
1093 * so repeat the whole process until all the data can be handled.
1096 clone
= crypt_alloc_buffer(io
, remaining
, &out_of_pages
);
1097 if (unlikely(!clone
)) {
1098 io
->error
= -ENOMEM
;
1102 io
->ctx
.bio_out
= clone
;
1103 io
->ctx
.idx_out
= 0;
1105 remaining
-= clone
->bi_size
;
1106 sector
+= bio_sectors(clone
);
1108 crypt_inc_pending(io
);
1109 r
= crypt_convert(cc
, &io
->ctx
);
1110 crypt_finished
= atomic_dec_and_test(&io
->ctx
.pending
);
1112 /* Encryption was already finished, submit io now */
1113 if (crypt_finished
) {
1114 kcryptd_crypt_write_io_submit(io
, r
, 0);
1117 * If there was an error, do not try next fragments.
1118 * For async, error is processed in async handler.
1120 if (unlikely(r
< 0))
1123 io
->sector
= sector
;
1127 * Out of memory -> run queues
1128 * But don't wait if split was due to the io size restriction
1130 if (unlikely(out_of_pages
))
1131 congestion_wait(BLK_RW_ASYNC
, HZ
/100);
1134 * With async crypto it is unsafe to share the crypto context
1135 * between fragments, so switch to a new dm_crypt_io structure.
1137 if (unlikely(!crypt_finished
&& remaining
)) {
1138 new_io
= crypt_io_alloc(io
->target
, io
->base_bio
,
1140 crypt_inc_pending(new_io
);
1141 crypt_convert_init(cc
, &new_io
->ctx
, NULL
,
1142 io
->base_bio
, sector
);
1143 new_io
->ctx
.idx_in
= io
->ctx
.idx_in
;
1144 new_io
->ctx
.offset_in
= io
->ctx
.offset_in
;
1147 * Fragments after the first use the base_io
1151 new_io
->base_io
= io
;
1153 new_io
->base_io
= io
->base_io
;
1154 crypt_inc_pending(io
->base_io
);
1155 crypt_dec_pending(io
);
1162 crypt_dec_pending(io
);
1165 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
, int error
)
1167 if (unlikely(error
< 0))
1170 crypt_dec_pending(io
);
1173 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1175 struct crypt_config
*cc
= io
->target
->private;
1178 crypt_inc_pending(io
);
1180 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1183 r
= crypt_convert(cc
, &io
->ctx
);
1185 if (atomic_dec_and_test(&io
->ctx
.pending
))
1186 kcryptd_crypt_read_done(io
, r
);
1188 crypt_dec_pending(io
);
1191 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1194 struct dm_crypt_request
*dmreq
= async_req
->data
;
1195 struct convert_context
*ctx
= dmreq
->ctx
;
1196 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1197 struct crypt_config
*cc
= io
->target
->private;
1199 if (error
== -EINPROGRESS
) {
1200 complete(&ctx
->restart
);
1204 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1205 error
= cc
->iv_gen_ops
->post(cc
, iv_of_dmreq(cc
, dmreq
), dmreq
);
1207 mempool_free(req_of_dmreq(cc
, dmreq
), cc
->req_pool
);
1209 if (!atomic_dec_and_test(&ctx
->pending
))
1212 if (bio_data_dir(io
->base_bio
) == READ
)
1213 kcryptd_crypt_read_done(io
, error
);
1215 kcryptd_crypt_write_io_submit(io
, error
, 1);
1218 static void kcryptd_crypt(struct work_struct
*work
)
1220 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1222 if (bio_data_dir(io
->base_bio
) == READ
)
1223 kcryptd_crypt_read_convert(io
);
1225 kcryptd_crypt_write_convert(io
);
1228 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1230 struct crypt_config
*cc
= io
->target
->private;
1232 INIT_WORK(&io
->work
, kcryptd_crypt
);
1233 queue_work(cc
->crypt_queue
, &io
->work
);
1237 * Decode key from its hex representation
1239 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
1247 for (i
= 0; i
< size
; i
++) {
1251 key
[i
] = (u8
)simple_strtoul(buffer
, &endp
, 16);
1253 if (endp
!= &buffer
[2])
1264 * Encode key into its hex representation
1266 static void crypt_encode_key(char *hex
, u8
*key
, unsigned int size
)
1270 for (i
= 0; i
< size
; i
++) {
1271 sprintf(hex
, "%02x", *key
);
1277 static void crypt_free_tfms(struct crypt_config
*cc
, int cpu
)
1279 struct crypt_cpu
*cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1282 for (i
= 0; i
< cc
->tfms_count
; i
++)
1283 if (cpu_cc
->tfms
[i
] && !IS_ERR(cpu_cc
->tfms
[i
])) {
1284 crypto_free_ablkcipher(cpu_cc
->tfms
[i
]);
1285 cpu_cc
->tfms
[i
] = NULL
;
1289 static int crypt_alloc_tfms(struct crypt_config
*cc
, int cpu
, char *ciphermode
)
1291 struct crypt_cpu
*cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1295 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1296 cpu_cc
->tfms
[i
] = crypto_alloc_ablkcipher(ciphermode
, 0, 0);
1297 if (IS_ERR(cpu_cc
->tfms
[i
])) {
1298 err
= PTR_ERR(cpu_cc
->tfms
[i
]);
1299 crypt_free_tfms(cc
, cpu
);
1307 static int crypt_setkey_allcpus(struct crypt_config
*cc
)
1309 unsigned subkey_size
= cc
->key_size
>> ilog2(cc
->tfms_count
);
1310 int cpu
, err
= 0, i
, r
;
1312 for_each_possible_cpu(cpu
) {
1313 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1314 r
= crypto_ablkcipher_setkey(per_cpu_ptr(cc
->cpu
, cpu
)->tfms
[i
],
1315 cc
->key
+ (i
* subkey_size
), subkey_size
);
1324 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
1327 int key_string_len
= strlen(key
);
1329 /* The key size may not be changed. */
1330 if (cc
->key_size
!= (key_string_len
>> 1))
1333 /* Hyphen (which gives a key_size of zero) means there is no key. */
1334 if (!cc
->key_size
&& strcmp(key
, "-"))
1337 if (cc
->key_size
&& crypt_decode_key(cc
->key
, key
, cc
->key_size
) < 0)
1340 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1342 r
= crypt_setkey_allcpus(cc
);
1345 /* Hex key string not needed after here, so wipe it. */
1346 memset(key
, '0', key_string_len
);
1351 static int crypt_wipe_key(struct crypt_config
*cc
)
1353 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1354 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1356 return crypt_setkey_allcpus(cc
);
1359 static void crypt_dtr(struct dm_target
*ti
)
1361 struct crypt_config
*cc
= ti
->private;
1362 struct crypt_cpu
*cpu_cc
;
1371 destroy_workqueue(cc
->io_queue
);
1372 if (cc
->crypt_queue
)
1373 destroy_workqueue(cc
->crypt_queue
);
1376 for_each_possible_cpu(cpu
) {
1377 cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1379 mempool_free(cpu_cc
->req
, cc
->req_pool
);
1380 crypt_free_tfms(cc
, cpu
);
1384 bioset_free(cc
->bs
);
1387 mempool_destroy(cc
->page_pool
);
1389 mempool_destroy(cc
->req_pool
);
1391 mempool_destroy(cc
->io_pool
);
1393 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
1394 cc
->iv_gen_ops
->dtr(cc
);
1397 dm_put_device(ti
, cc
->dev
);
1400 free_percpu(cc
->cpu
);
1403 kzfree(cc
->cipher_string
);
1405 /* Must zero key material before freeing */
1409 static int crypt_ctr_cipher(struct dm_target
*ti
,
1410 char *cipher_in
, char *key
)
1412 struct crypt_config
*cc
= ti
->private;
1413 char *tmp
, *cipher
, *chainmode
, *ivmode
, *ivopts
, *keycount
;
1414 char *cipher_api
= NULL
;
1415 int cpu
, ret
= -EINVAL
;
1417 /* Convert to crypto api definition? */
1418 if (strchr(cipher_in
, '(')) {
1419 ti
->error
= "Bad cipher specification";
1423 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
1424 if (!cc
->cipher_string
)
1428 * Legacy dm-crypt cipher specification
1429 * cipher[:keycount]-mode-iv:ivopts
1432 keycount
= strsep(&tmp
, "-");
1433 cipher
= strsep(&keycount
, ":");
1437 else if (sscanf(keycount
, "%u", &cc
->tfms_count
) != 1 ||
1438 !is_power_of_2(cc
->tfms_count
)) {
1439 ti
->error
= "Bad cipher key count specification";
1442 cc
->key_parts
= cc
->tfms_count
;
1444 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
1448 chainmode
= strsep(&tmp
, "-");
1449 ivopts
= strsep(&tmp
, "-");
1450 ivmode
= strsep(&ivopts
, ":");
1453 DMWARN("Ignoring unexpected additional cipher options");
1455 cc
->cpu
= __alloc_percpu(sizeof(*(cc
->cpu
)) +
1456 cc
->tfms_count
* sizeof(*(cc
->cpu
->tfms
)),
1457 __alignof__(struct crypt_cpu
));
1459 ti
->error
= "Cannot allocate per cpu state";
1464 * For compatibility with the original dm-crypt mapping format, if
1465 * only the cipher name is supplied, use cbc-plain.
1467 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !ivmode
)) {
1472 if (strcmp(chainmode
, "ecb") && !ivmode
) {
1473 ti
->error
= "IV mechanism required";
1477 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
1481 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
1482 "%s(%s)", chainmode
, cipher
);
1488 /* Allocate cipher */
1489 for_each_possible_cpu(cpu
) {
1490 ret
= crypt_alloc_tfms(cc
, cpu
, cipher_api
);
1492 ti
->error
= "Error allocating crypto tfm";
1497 /* Initialize and set key */
1498 ret
= crypt_set_key(cc
, key
);
1500 ti
->error
= "Error decoding and setting key";
1505 cc
->iv_size
= crypto_ablkcipher_ivsize(any_tfm(cc
));
1507 /* at least a 64 bit sector number should fit in our buffer */
1508 cc
->iv_size
= max(cc
->iv_size
,
1509 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
1511 DMWARN("Selected cipher does not support IVs");
1515 /* Choose ivmode, see comments at iv code. */
1517 cc
->iv_gen_ops
= NULL
;
1518 else if (strcmp(ivmode
, "plain") == 0)
1519 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
1520 else if (strcmp(ivmode
, "plain64") == 0)
1521 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
1522 else if (strcmp(ivmode
, "essiv") == 0)
1523 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
1524 else if (strcmp(ivmode
, "benbi") == 0)
1525 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
1526 else if (strcmp(ivmode
, "null") == 0)
1527 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
1528 else if (strcmp(ivmode
, "lmk") == 0) {
1529 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
1530 /* Version 2 and 3 is recognised according
1531 * to length of provided multi-key string.
1532 * If present (version 3), last key is used as IV seed.
1534 if (cc
->key_size
% cc
->key_parts
)
1538 ti
->error
= "Invalid IV mode";
1543 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
1544 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
1546 ti
->error
= "Error creating IV";
1551 /* Initialize IV (set keys for ESSIV etc) */
1552 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
1553 ret
= cc
->iv_gen_ops
->init(cc
);
1555 ti
->error
= "Error initialising IV";
1566 ti
->error
= "Cannot allocate cipher strings";
1571 * Construct an encryption mapping:
1572 * <cipher> <key> <iv_offset> <dev_path> <start>
1574 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
1576 struct crypt_config
*cc
;
1577 unsigned int key_size
, opt_params
;
1578 unsigned long long tmpll
;
1580 struct dm_arg_set as
;
1581 const char *opt_string
;
1583 static struct dm_arg _args
[] = {
1584 {0, 1, "Invalid number of feature args"},
1588 ti
->error
= "Not enough arguments";
1592 key_size
= strlen(argv
[1]) >> 1;
1594 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
1596 ti
->error
= "Cannot allocate encryption context";
1599 cc
->key_size
= key_size
;
1602 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
1607 cc
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _crypt_io_pool
);
1609 ti
->error
= "Cannot allocate crypt io mempool";
1613 cc
->dmreq_start
= sizeof(struct ablkcipher_request
);
1614 cc
->dmreq_start
+= crypto_ablkcipher_reqsize(any_tfm(cc
));
1615 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, crypto_tfm_ctx_alignment());
1616 cc
->dmreq_start
+= crypto_ablkcipher_alignmask(any_tfm(cc
)) &
1617 ~(crypto_tfm_ctx_alignment() - 1);
1619 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+
1620 sizeof(struct dm_crypt_request
) + cc
->iv_size
);
1621 if (!cc
->req_pool
) {
1622 ti
->error
= "Cannot allocate crypt request mempool";
1626 cc
->page_pool
= mempool_create_page_pool(MIN_POOL_PAGES
, 0);
1627 if (!cc
->page_pool
) {
1628 ti
->error
= "Cannot allocate page mempool";
1632 cc
->bs
= bioset_create(MIN_IOS
, 0);
1634 ti
->error
= "Cannot allocate crypt bioset";
1639 if (sscanf(argv
[2], "%llu", &tmpll
) != 1) {
1640 ti
->error
= "Invalid iv_offset sector";
1643 cc
->iv_offset
= tmpll
;
1645 if (dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
)) {
1646 ti
->error
= "Device lookup failed";
1650 if (sscanf(argv
[4], "%llu", &tmpll
) != 1) {
1651 ti
->error
= "Invalid device sector";
1659 /* Optional parameters */
1664 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
1668 opt_string
= dm_shift_arg(&as
);
1670 if (opt_params
== 1 && opt_string
&&
1671 !strcasecmp(opt_string
, "allow_discards"))
1672 ti
->num_discard_requests
= 1;
1673 else if (opt_params
) {
1675 ti
->error
= "Invalid feature arguments";
1681 cc
->io_queue
= alloc_workqueue("kcryptd_io",
1685 if (!cc
->io_queue
) {
1686 ti
->error
= "Couldn't create kcryptd io queue";
1690 cc
->crypt_queue
= alloc_workqueue("kcryptd",
1695 if (!cc
->crypt_queue
) {
1696 ti
->error
= "Couldn't create kcryptd queue";
1700 ti
->num_flush_requests
= 1;
1701 ti
->discard_zeroes_data_unsupported
= 1;
1710 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
,
1711 union map_info
*map_context
)
1713 struct dm_crypt_io
*io
;
1714 struct crypt_config
*cc
;
1717 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1718 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1719 * - for REQ_DISCARD caller must use flush if IO ordering matters
1721 if (unlikely(bio
->bi_rw
& (REQ_FLUSH
| REQ_DISCARD
))) {
1723 bio
->bi_bdev
= cc
->dev
->bdev
;
1724 if (bio_sectors(bio
))
1725 bio
->bi_sector
= cc
->start
+ dm_target_offset(ti
, bio
->bi_sector
);
1726 return DM_MAPIO_REMAPPED
;
1729 io
= crypt_io_alloc(ti
, bio
, dm_target_offset(ti
, bio
->bi_sector
));
1731 if (bio_data_dir(io
->base_bio
) == READ
) {
1732 if (kcryptd_io_read(io
, GFP_NOWAIT
))
1733 kcryptd_queue_io(io
);
1735 kcryptd_queue_crypt(io
);
1737 return DM_MAPIO_SUBMITTED
;
1740 static int crypt_status(struct dm_target
*ti
, status_type_t type
,
1741 char *result
, unsigned int maxlen
)
1743 struct crypt_config
*cc
= ti
->private;
1744 unsigned int sz
= 0;
1747 case STATUSTYPE_INFO
:
1751 case STATUSTYPE_TABLE
:
1752 DMEMIT("%s ", cc
->cipher_string
);
1754 if (cc
->key_size
> 0) {
1755 if ((maxlen
- sz
) < ((cc
->key_size
<< 1) + 1))
1758 crypt_encode_key(result
+ sz
, cc
->key
, cc
->key_size
);
1759 sz
+= cc
->key_size
<< 1;
1766 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
1767 cc
->dev
->name
, (unsigned long long)cc
->start
);
1769 if (ti
->num_discard_requests
)
1770 DMEMIT(" 1 allow_discards");
1777 static void crypt_postsuspend(struct dm_target
*ti
)
1779 struct crypt_config
*cc
= ti
->private;
1781 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1784 static int crypt_preresume(struct dm_target
*ti
)
1786 struct crypt_config
*cc
= ti
->private;
1788 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
1789 DMERR("aborting resume - crypt key is not set.");
1796 static void crypt_resume(struct dm_target
*ti
)
1798 struct crypt_config
*cc
= ti
->private;
1800 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1803 /* Message interface
1807 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
1809 struct crypt_config
*cc
= ti
->private;
1815 if (!strcasecmp(argv
[0], "key")) {
1816 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
1817 DMWARN("not suspended during key manipulation.");
1820 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
1821 ret
= crypt_set_key(cc
, argv
[2]);
1824 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
1825 ret
= cc
->iv_gen_ops
->init(cc
);
1828 if (argc
== 2 && !strcasecmp(argv
[1], "wipe")) {
1829 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
1830 ret
= cc
->iv_gen_ops
->wipe(cc
);
1834 return crypt_wipe_key(cc
);
1839 DMWARN("unrecognised message received.");
1843 static int crypt_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
1844 struct bio_vec
*biovec
, int max_size
)
1846 struct crypt_config
*cc
= ti
->private;
1847 struct request_queue
*q
= bdev_get_queue(cc
->dev
->bdev
);
1849 if (!q
->merge_bvec_fn
)
1852 bvm
->bi_bdev
= cc
->dev
->bdev
;
1853 bvm
->bi_sector
= cc
->start
+ dm_target_offset(ti
, bvm
->bi_sector
);
1855 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
1858 static int crypt_iterate_devices(struct dm_target
*ti
,
1859 iterate_devices_callout_fn fn
, void *data
)
1861 struct crypt_config
*cc
= ti
->private;
1863 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
1866 static struct target_type crypt_target
= {
1868 .version
= {1, 11, 0},
1869 .module
= THIS_MODULE
,
1873 .status
= crypt_status
,
1874 .postsuspend
= crypt_postsuspend
,
1875 .preresume
= crypt_preresume
,
1876 .resume
= crypt_resume
,
1877 .message
= crypt_message
,
1878 .merge
= crypt_merge
,
1879 .iterate_devices
= crypt_iterate_devices
,
1882 static int __init
dm_crypt_init(void)
1886 _crypt_io_pool
= KMEM_CACHE(dm_crypt_io
, 0);
1887 if (!_crypt_io_pool
)
1890 r
= dm_register_target(&crypt_target
);
1892 DMERR("register failed %d", r
);
1893 kmem_cache_destroy(_crypt_io_pool
);
1899 static void __exit
dm_crypt_exit(void)
1901 dm_unregister_target(&crypt_target
);
1902 kmem_cache_destroy(_crypt_io_pool
);
1905 module_init(dm_crypt_init
);
1906 module_exit(dm_crypt_exit
);
1908 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1909 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
1910 MODULE_LICENSE("GPL");