4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6 * Manage the dynamic fd arrays in the process files_struct.
9 #include <linux/module.h>
12 #include <linux/mmzone.h>
13 #include <linux/time.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/rcupdate.h>
23 #include <linux/workqueue.h>
25 struct fdtable_defer
{
27 struct work_struct wq
;
31 int sysctl_nr_open __read_mostly
= 1024*1024;
32 int sysctl_nr_open_min
= BITS_PER_LONG
;
33 int sysctl_nr_open_max
= 1024 * 1024; /* raised later */
36 * We use this list to defer free fdtables that have vmalloced
37 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
38 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
39 * this per-task structure.
41 static DEFINE_PER_CPU(struct fdtable_defer
, fdtable_defer_list
);
43 static void *alloc_fdmem(unsigned int size
)
46 * Very large allocations can stress page reclaim, so fall back to
47 * vmalloc() if the allocation size will be considered "large" by the VM.
49 if (size
<= (PAGE_SIZE
<< PAGE_ALLOC_COSTLY_ORDER
)) {
50 void *data
= kmalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
57 static void free_fdmem(void *ptr
)
59 is_vmalloc_addr(ptr
) ? vfree(ptr
) : kfree(ptr
);
62 static void __free_fdtable(struct fdtable
*fdt
)
65 free_fdmem(fdt
->open_fds
);
69 static void free_fdtable_work(struct work_struct
*work
)
71 struct fdtable_defer
*f
=
72 container_of(work
, struct fdtable_defer
, wq
);
75 spin_lock_bh(&f
->lock
);
78 spin_unlock_bh(&f
->lock
);
80 struct fdtable
*next
= fdt
->next
;
87 void free_fdtable_rcu(struct rcu_head
*rcu
)
89 struct fdtable
*fdt
= container_of(rcu
, struct fdtable
, rcu
);
90 struct fdtable_defer
*fddef
;
94 if (fdt
->max_fds
<= NR_OPEN_DEFAULT
) {
96 * This fdtable is embedded in the files structure and that
97 * structure itself is getting destroyed.
99 kmem_cache_free(files_cachep
,
100 container_of(fdt
, struct files_struct
, fdtab
));
103 if (!is_vmalloc_addr(fdt
->fd
) && !is_vmalloc_addr(fdt
->open_fds
)) {
105 kfree(fdt
->open_fds
);
108 fddef
= &get_cpu_var(fdtable_defer_list
);
109 spin_lock(&fddef
->lock
);
110 fdt
->next
= fddef
->next
;
112 /* vmallocs are handled from the workqueue context */
113 schedule_work(&fddef
->wq
);
114 spin_unlock(&fddef
->lock
);
115 put_cpu_var(fdtable_defer_list
);
120 * Expand the fdset in the files_struct. Called with the files spinlock
123 static void copy_fdtable(struct fdtable
*nfdt
, struct fdtable
*ofdt
)
125 unsigned int cpy
, set
;
127 BUG_ON(nfdt
->max_fds
< ofdt
->max_fds
);
129 cpy
= ofdt
->max_fds
* sizeof(struct file
*);
130 set
= (nfdt
->max_fds
- ofdt
->max_fds
) * sizeof(struct file
*);
131 memcpy(nfdt
->fd
, ofdt
->fd
, cpy
);
132 memset((char *)(nfdt
->fd
) + cpy
, 0, set
);
134 cpy
= ofdt
->max_fds
/ BITS_PER_BYTE
;
135 set
= (nfdt
->max_fds
- ofdt
->max_fds
) / BITS_PER_BYTE
;
136 memcpy(nfdt
->open_fds
, ofdt
->open_fds
, cpy
);
137 memset((char *)(nfdt
->open_fds
) + cpy
, 0, set
);
138 memcpy(nfdt
->close_on_exec
, ofdt
->close_on_exec
, cpy
);
139 memset((char *)(nfdt
->close_on_exec
) + cpy
, 0, set
);
142 static struct fdtable
* alloc_fdtable(unsigned int nr
)
148 * Figure out how many fds we actually want to support in this fdtable.
149 * Allocation steps are keyed to the size of the fdarray, since it
150 * grows far faster than any of the other dynamic data. We try to fit
151 * the fdarray into comfortable page-tuned chunks: starting at 1024B
152 * and growing in powers of two from there on.
154 nr
/= (1024 / sizeof(struct file
*));
155 nr
= roundup_pow_of_two(nr
+ 1);
156 nr
*= (1024 / sizeof(struct file
*));
158 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
159 * had been set lower between the check in expand_files() and here. Deal
160 * with that in caller, it's cheaper that way.
162 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
163 * bitmaps handling below becomes unpleasant, to put it mildly...
165 if (unlikely(nr
> sysctl_nr_open
))
166 nr
= ((sysctl_nr_open
- 1) | (BITS_PER_LONG
- 1)) + 1;
168 fdt
= kmalloc(sizeof(struct fdtable
), GFP_KERNEL
);
172 data
= alloc_fdmem(nr
* sizeof(struct file
*));
175 fdt
->fd
= (struct file
**)data
;
176 data
= alloc_fdmem(max_t(unsigned int,
177 2 * nr
/ BITS_PER_BYTE
, L1_CACHE_BYTES
));
180 fdt
->open_fds
= (fd_set
*)data
;
181 data
+= nr
/ BITS_PER_BYTE
;
182 fdt
->close_on_exec
= (fd_set
*)data
;
196 * Expand the file descriptor table.
197 * This function will allocate a new fdtable and both fd array and fdset, of
199 * Return <0 error code on error; 1 on successful completion.
200 * The files->file_lock should be held on entry, and will be held on exit.
202 static int expand_fdtable(struct files_struct
*files
, int nr
)
203 __releases(files
->file_lock
)
204 __acquires(files
->file_lock
)
206 struct fdtable
*new_fdt
, *cur_fdt
;
208 spin_unlock(&files
->file_lock
);
209 new_fdt
= alloc_fdtable(nr
);
210 spin_lock(&files
->file_lock
);
214 * extremely unlikely race - sysctl_nr_open decreased between the check in
215 * caller and alloc_fdtable(). Cheaper to catch it here...
217 if (unlikely(new_fdt
->max_fds
<= nr
)) {
218 __free_fdtable(new_fdt
);
222 * Check again since another task may have expanded the fd table while
223 * we dropped the lock
225 cur_fdt
= files_fdtable(files
);
226 if (nr
>= cur_fdt
->max_fds
) {
227 /* Continue as planned */
228 copy_fdtable(new_fdt
, cur_fdt
);
229 rcu_assign_pointer(files
->fdt
, new_fdt
);
230 if (cur_fdt
->max_fds
> NR_OPEN_DEFAULT
)
231 free_fdtable(cur_fdt
);
233 /* Somebody else expanded, so undo our attempt */
234 __free_fdtable(new_fdt
);
241 * This function will expand the file structures, if the requested size exceeds
242 * the current capacity and there is room for expansion.
243 * Return <0 error code on error; 0 when nothing done; 1 when files were
244 * expanded and execution may have blocked.
245 * The files->file_lock should be held on entry, and will be held on exit.
247 int expand_files(struct files_struct
*files
, int nr
)
251 fdt
= files_fdtable(files
);
254 * N.B. For clone tasks sharing a files structure, this test
255 * will limit the total number of files that can be opened.
257 if (nr
>= rlimit(RLIMIT_NOFILE
))
260 /* Do we need to expand? */
261 if (nr
< fdt
->max_fds
)
265 if (nr
>= sysctl_nr_open
)
268 /* All good, so we try */
269 return expand_fdtable(files
, nr
);
272 static int count_open_files(struct fdtable
*fdt
)
274 int size
= fdt
->max_fds
;
277 /* Find the last open fd */
278 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
279 if (fdt
->open_fds
->fds_bits
[--i
])
282 i
= (i
+1) * 8 * sizeof(long);
287 * Allocate a new files structure and copy contents from the
288 * passed in files structure.
289 * errorp will be valid only when the returned files_struct is NULL.
291 struct files_struct
*dup_fd(struct files_struct
*oldf
, int *errorp
)
293 struct files_struct
*newf
;
294 struct file
**old_fds
, **new_fds
;
295 int open_files
, size
, i
;
296 struct fdtable
*old_fdt
, *new_fdt
;
299 newf
= kmem_cache_alloc(files_cachep
, GFP_KERNEL
);
303 atomic_set(&newf
->count
, 1);
305 spin_lock_init(&newf
->file_lock
);
307 new_fdt
= &newf
->fdtab
;
308 new_fdt
->max_fds
= NR_OPEN_DEFAULT
;
309 new_fdt
->close_on_exec
= (fd_set
*)&newf
->close_on_exec_init
;
310 new_fdt
->open_fds
= (fd_set
*)&newf
->open_fds_init
;
311 new_fdt
->fd
= &newf
->fd_array
[0];
312 new_fdt
->next
= NULL
;
314 spin_lock(&oldf
->file_lock
);
315 old_fdt
= files_fdtable(oldf
);
316 open_files
= count_open_files(old_fdt
);
319 * Check whether we need to allocate a larger fd array and fd set.
321 while (unlikely(open_files
> new_fdt
->max_fds
)) {
322 spin_unlock(&oldf
->file_lock
);
324 if (new_fdt
!= &newf
->fdtab
)
325 __free_fdtable(new_fdt
);
327 new_fdt
= alloc_fdtable(open_files
- 1);
333 /* beyond sysctl_nr_open; nothing to do */
334 if (unlikely(new_fdt
->max_fds
< open_files
)) {
335 __free_fdtable(new_fdt
);
341 * Reacquire the oldf lock and a pointer to its fd table
342 * who knows it may have a new bigger fd table. We need
343 * the latest pointer.
345 spin_lock(&oldf
->file_lock
);
346 old_fdt
= files_fdtable(oldf
);
347 open_files
= count_open_files(old_fdt
);
350 old_fds
= old_fdt
->fd
;
351 new_fds
= new_fdt
->fd
;
353 memcpy(new_fdt
->open_fds
->fds_bits
,
354 old_fdt
->open_fds
->fds_bits
, open_files
/8);
355 memcpy(new_fdt
->close_on_exec
->fds_bits
,
356 old_fdt
->close_on_exec
->fds_bits
, open_files
/8);
358 for (i
= open_files
; i
!= 0; i
--) {
359 struct file
*f
= *old_fds
++;
364 * The fd may be claimed in the fd bitmap but not yet
365 * instantiated in the files array if a sibling thread
366 * is partway through open(). So make sure that this
367 * fd is available to the new process.
369 FD_CLR(open_files
- i
, new_fdt
->open_fds
);
371 rcu_assign_pointer(*new_fds
++, f
);
373 spin_unlock(&oldf
->file_lock
);
375 /* compute the remainder to be cleared */
376 size
= (new_fdt
->max_fds
- open_files
) * sizeof(struct file
*);
378 /* This is long word aligned thus could use a optimized version */
379 memset(new_fds
, 0, size
);
381 if (new_fdt
->max_fds
> open_files
) {
382 int left
= (new_fdt
->max_fds
-open_files
)/8;
383 int start
= open_files
/ (8 * sizeof(unsigned long));
385 memset(&new_fdt
->open_fds
->fds_bits
[start
], 0, left
);
386 memset(&new_fdt
->close_on_exec
->fds_bits
[start
], 0, left
);
389 rcu_assign_pointer(newf
->fdt
, new_fdt
);
394 kmem_cache_free(files_cachep
, newf
);
399 static void __devinit
fdtable_defer_list_init(int cpu
)
401 struct fdtable_defer
*fddef
= &per_cpu(fdtable_defer_list
, cpu
);
402 spin_lock_init(&fddef
->lock
);
403 INIT_WORK(&fddef
->wq
, free_fdtable_work
);
407 void __init
files_defer_init(void)
410 for_each_possible_cpu(i
)
411 fdtable_defer_list_init(i
);
412 sysctl_nr_open_max
= min((size_t)INT_MAX
, ~(size_t)0/sizeof(void *)) &
416 struct files_struct init_files
= {
417 .count
= ATOMIC_INIT(1),
418 .fdt
= &init_files
.fdtab
,
420 .max_fds
= NR_OPEN_DEFAULT
,
421 .fd
= &init_files
.fd_array
[0],
422 .close_on_exec
= (fd_set
*)&init_files
.close_on_exec_init
,
423 .open_fds
= (fd_set
*)&init_files
.open_fds_init
,
425 .file_lock
= __SPIN_LOCK_UNLOCKED(init_task
.file_lock
),
429 * allocate a file descriptor, mark it busy.
431 int alloc_fd(unsigned start
, unsigned flags
)
433 struct files_struct
*files
= current
->files
;
438 spin_lock(&files
->file_lock
);
440 fdt
= files_fdtable(files
);
442 if (fd
< files
->next_fd
)
445 if (fd
< fdt
->max_fds
)
446 fd
= find_next_zero_bit(fdt
->open_fds
->fds_bits
,
449 error
= expand_files(files
, fd
);
454 * If we needed to expand the fs array we
455 * might have blocked - try again.
460 if (start
<= files
->next_fd
)
461 files
->next_fd
= fd
+ 1;
463 FD_SET(fd
, fdt
->open_fds
);
464 if (flags
& O_CLOEXEC
)
465 FD_SET(fd
, fdt
->close_on_exec
);
467 FD_CLR(fd
, fdt
->close_on_exec
);
471 if (rcu_dereference_raw(fdt
->fd
[fd
]) != NULL
) {
472 printk(KERN_WARNING
"alloc_fd: slot %d not NULL!\n", fd
);
473 rcu_assign_pointer(fdt
->fd
[fd
], NULL
);
478 spin_unlock(&files
->file_lock
);
482 int get_unused_fd(void)
484 return alloc_fd(0, 0);
486 EXPORT_SYMBOL(get_unused_fd
);