2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
49 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
50 EXPORT_SYMBOL(node_online_map
);
51 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
52 EXPORT_SYMBOL(node_possible_map
);
53 unsigned long totalram_pages __read_mostly
;
54 unsigned long totalhigh_pages __read_mostly
;
55 unsigned long totalreserve_pages __read_mostly
;
57 int percpu_pagelist_fraction
;
59 static void __free_pages_ok(struct page
*page
, unsigned int order
);
62 * results with 256, 32 in the lowmem_reserve sysctl:
63 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
64 * 1G machine -> (16M dma, 784M normal, 224M high)
65 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
66 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
67 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
69 * TBD: should special case ZONE_DMA32 machines here - in those we normally
70 * don't need any ZONE_NORMAL reservation
72 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 256, 32 };
74 EXPORT_SYMBOL(totalram_pages
);
77 * Used by page_zone() to look up the address of the struct zone whose
78 * id is encoded in the upper bits of page->flags
80 struct zone
*zone_table
[1 << ZONETABLE_SHIFT
] __read_mostly
;
81 EXPORT_SYMBOL(zone_table
);
83 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "DMA32", "Normal", "HighMem" };
84 int min_free_kbytes
= 1024;
86 unsigned long __initdata nr_kernel_pages
;
87 unsigned long __initdata nr_all_pages
;
89 #ifdef CONFIG_DEBUG_VM
90 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
94 unsigned long pfn
= page_to_pfn(page
);
97 seq
= zone_span_seqbegin(zone
);
98 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
100 else if (pfn
< zone
->zone_start_pfn
)
102 } while (zone_span_seqretry(zone
, seq
));
107 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
109 #ifdef CONFIG_HOLES_IN_ZONE
110 if (!pfn_valid(page_to_pfn(page
)))
113 if (zone
!= page_zone(page
))
119 * Temporary debugging check for pages not lying within a given zone.
121 static int bad_range(struct zone
*zone
, struct page
*page
)
123 if (page_outside_zone_boundaries(zone
, page
))
125 if (!page_is_consistent(zone
, page
))
132 static inline int bad_range(struct zone
*zone
, struct page
*page
)
138 static void bad_page(struct page
*page
)
140 printk(KERN_EMERG
"Bad page state in process '%s'\n"
141 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
142 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
143 KERN_EMERG
"Backtrace:\n",
144 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
145 (unsigned long)page
->flags
, page
->mapping
,
146 page_mapcount(page
), page_count(page
));
148 page
->flags
&= ~(1 << PG_lru
|
158 set_page_count(page
, 0);
159 reset_page_mapcount(page
);
160 page
->mapping
= NULL
;
161 add_taint(TAINT_BAD_PAGE
);
165 * Higher-order pages are called "compound pages". They are structured thusly:
167 * The first PAGE_SIZE page is called the "head page".
169 * The remaining PAGE_SIZE pages are called "tail pages".
171 * All pages have PG_compound set. All pages have their ->private pointing at
172 * the head page (even the head page has this).
174 * The first tail page's ->lru.next holds the address of the compound page's
175 * put_page() function. Its ->lru.prev holds the order of allocation.
176 * This usage means that zero-order pages may not be compound.
179 static void free_compound_page(struct page
*page
)
181 __free_pages_ok(page
, (unsigned long)page
[1].lru
.prev
);
184 static void prep_compound_page(struct page
*page
, unsigned long order
)
187 int nr_pages
= 1 << order
;
189 page
[1].lru
.next
= (void *)free_compound_page
; /* set dtor */
190 page
[1].lru
.prev
= (void *)order
;
191 for (i
= 0; i
< nr_pages
; i
++) {
192 struct page
*p
= page
+ i
;
194 __SetPageCompound(p
);
195 set_page_private(p
, (unsigned long)page
);
199 static void destroy_compound_page(struct page
*page
, unsigned long order
)
202 int nr_pages
= 1 << order
;
204 if (unlikely((unsigned long)page
[1].lru
.prev
!= order
))
207 for (i
= 0; i
< nr_pages
; i
++) {
208 struct page
*p
= page
+ i
;
210 if (unlikely(!PageCompound(p
) |
211 (page_private(p
) != (unsigned long)page
)))
213 __ClearPageCompound(p
);
217 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
221 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
223 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
224 * and __GFP_HIGHMEM from hard or soft interrupt context.
226 BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
227 for (i
= 0; i
< (1 << order
); i
++)
228 clear_highpage(page
+ i
);
232 * function for dealing with page's order in buddy system.
233 * zone->lock is already acquired when we use these.
234 * So, we don't need atomic page->flags operations here.
236 static inline unsigned long page_order(struct page
*page
)
238 return page_private(page
);
241 static inline void set_page_order(struct page
*page
, int order
)
243 set_page_private(page
, order
);
244 __SetPageBuddy(page
);
247 static inline void rmv_page_order(struct page
*page
)
249 __ClearPageBuddy(page
);
250 set_page_private(page
, 0);
254 * Locate the struct page for both the matching buddy in our
255 * pair (buddy1) and the combined O(n+1) page they form (page).
257 * 1) Any buddy B1 will have an order O twin B2 which satisfies
258 * the following equation:
260 * For example, if the starting buddy (buddy2) is #8 its order
262 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
264 * 2) Any buddy B will have an order O+1 parent P which
265 * satisfies the following equation:
268 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
270 static inline struct page
*
271 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
273 unsigned long buddy_idx
= page_idx
^ (1 << order
);
275 return page
+ (buddy_idx
- page_idx
);
278 static inline unsigned long
279 __find_combined_index(unsigned long page_idx
, unsigned int order
)
281 return (page_idx
& ~(1 << order
));
285 * This function checks whether a page is free && is the buddy
286 * we can do coalesce a page and its buddy if
287 * (a) the buddy is not in a hole &&
288 * (b) the buddy is in the buddy system &&
289 * (c) a page and its buddy have the same order.
291 * For recording whether a page is in the buddy system, we use PG_buddy.
292 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
294 * For recording page's order, we use page_private(page).
296 static inline int page_is_buddy(struct page
*page
, int order
)
298 #ifdef CONFIG_HOLES_IN_ZONE
299 if (!pfn_valid(page_to_pfn(page
)))
303 if (PageBuddy(page
) && page_order(page
) == order
) {
304 BUG_ON(page_count(page
) != 0);
311 * Freeing function for a buddy system allocator.
313 * The concept of a buddy system is to maintain direct-mapped table
314 * (containing bit values) for memory blocks of various "orders".
315 * The bottom level table contains the map for the smallest allocatable
316 * units of memory (here, pages), and each level above it describes
317 * pairs of units from the levels below, hence, "buddies".
318 * At a high level, all that happens here is marking the table entry
319 * at the bottom level available, and propagating the changes upward
320 * as necessary, plus some accounting needed to play nicely with other
321 * parts of the VM system.
322 * At each level, we keep a list of pages, which are heads of continuous
323 * free pages of length of (1 << order) and marked with PG_buddy. Page's
324 * order is recorded in page_private(page) field.
325 * So when we are allocating or freeing one, we can derive the state of the
326 * other. That is, if we allocate a small block, and both were
327 * free, the remainder of the region must be split into blocks.
328 * If a block is freed, and its buddy is also free, then this
329 * triggers coalescing into a block of larger size.
334 static inline void __free_one_page(struct page
*page
,
335 struct zone
*zone
, unsigned int order
)
337 unsigned long page_idx
;
338 int order_size
= 1 << order
;
340 if (unlikely(PageCompound(page
)))
341 destroy_compound_page(page
, order
);
343 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
345 BUG_ON(page_idx
& (order_size
- 1));
346 BUG_ON(bad_range(zone
, page
));
348 zone
->free_pages
+= order_size
;
349 while (order
< MAX_ORDER
-1) {
350 unsigned long combined_idx
;
351 struct free_area
*area
;
354 buddy
= __page_find_buddy(page
, page_idx
, order
);
355 if (!page_is_buddy(buddy
, order
))
356 break; /* Move the buddy up one level. */
358 list_del(&buddy
->lru
);
359 area
= zone
->free_area
+ order
;
361 rmv_page_order(buddy
);
362 combined_idx
= __find_combined_index(page_idx
, order
);
363 page
= page
+ (combined_idx
- page_idx
);
364 page_idx
= combined_idx
;
367 set_page_order(page
, order
);
368 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
369 zone
->free_area
[order
].nr_free
++;
372 static inline int free_pages_check(struct page
*page
)
374 if (unlikely(page_mapcount(page
) |
375 (page
->mapping
!= NULL
) |
376 (page_count(page
) != 0) |
390 __ClearPageDirty(page
);
392 * For now, we report if PG_reserved was found set, but do not
393 * clear it, and do not free the page. But we shall soon need
394 * to do more, for when the ZERO_PAGE count wraps negative.
396 return PageReserved(page
);
400 * Frees a list of pages.
401 * Assumes all pages on list are in same zone, and of same order.
402 * count is the number of pages to free.
404 * If the zone was previously in an "all pages pinned" state then look to
405 * see if this freeing clears that state.
407 * And clear the zone's pages_scanned counter, to hold off the "all pages are
408 * pinned" detection logic.
410 static void free_pages_bulk(struct zone
*zone
, int count
,
411 struct list_head
*list
, int order
)
413 spin_lock(&zone
->lock
);
414 zone
->all_unreclaimable
= 0;
415 zone
->pages_scanned
= 0;
419 BUG_ON(list_empty(list
));
420 page
= list_entry(list
->prev
, struct page
, lru
);
421 /* have to delete it as __free_one_page list manipulates */
422 list_del(&page
->lru
);
423 __free_one_page(page
, zone
, order
);
425 spin_unlock(&zone
->lock
);
428 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
431 list_add(&page
->lru
, &list
);
432 free_pages_bulk(zone
, 1, &list
, order
);
435 static void __free_pages_ok(struct page
*page
, unsigned int order
)
441 arch_free_page(page
, order
);
442 if (!PageHighMem(page
))
443 mutex_debug_check_no_locks_freed(page_address(page
),
446 for (i
= 0 ; i
< (1 << order
) ; ++i
)
447 reserved
+= free_pages_check(page
+ i
);
451 kernel_map_pages(page
, 1 << order
, 0);
452 local_irq_save(flags
);
453 __mod_page_state(pgfree
, 1 << order
);
454 free_one_page(page_zone(page
), page
, order
);
455 local_irq_restore(flags
);
459 * permit the bootmem allocator to evade page validation on high-order frees
461 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
464 __ClearPageReserved(page
);
465 set_page_count(page
, 0);
466 set_page_refcounted(page
);
472 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
473 struct page
*p
= &page
[loop
];
475 if (loop
+ 1 < BITS_PER_LONG
)
477 __ClearPageReserved(p
);
478 set_page_count(p
, 0);
481 set_page_refcounted(page
);
482 __free_pages(page
, order
);
488 * The order of subdivision here is critical for the IO subsystem.
489 * Please do not alter this order without good reasons and regression
490 * testing. Specifically, as large blocks of memory are subdivided,
491 * the order in which smaller blocks are delivered depends on the order
492 * they're subdivided in this function. This is the primary factor
493 * influencing the order in which pages are delivered to the IO
494 * subsystem according to empirical testing, and this is also justified
495 * by considering the behavior of a buddy system containing a single
496 * large block of memory acted on by a series of small allocations.
497 * This behavior is a critical factor in sglist merging's success.
501 static inline void expand(struct zone
*zone
, struct page
*page
,
502 int low
, int high
, struct free_area
*area
)
504 unsigned long size
= 1 << high
;
510 BUG_ON(bad_range(zone
, &page
[size
]));
511 list_add(&page
[size
].lru
, &area
->free_list
);
513 set_page_order(&page
[size
], high
);
518 * This page is about to be returned from the page allocator
520 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
522 if (unlikely(page_mapcount(page
) |
523 (page
->mapping
!= NULL
) |
524 (page_count(page
) != 0) |
540 * For now, we report if PG_reserved was found set, but do not
541 * clear it, and do not allocate the page: as a safety net.
543 if (PageReserved(page
))
546 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
547 1 << PG_referenced
| 1 << PG_arch_1
|
548 1 << PG_checked
| 1 << PG_mappedtodisk
);
549 set_page_private(page
, 0);
550 set_page_refcounted(page
);
551 kernel_map_pages(page
, 1 << order
, 1);
553 if (gfp_flags
& __GFP_ZERO
)
554 prep_zero_page(page
, order
, gfp_flags
);
556 if (order
&& (gfp_flags
& __GFP_COMP
))
557 prep_compound_page(page
, order
);
563 * Do the hard work of removing an element from the buddy allocator.
564 * Call me with the zone->lock already held.
566 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
568 struct free_area
* area
;
569 unsigned int current_order
;
572 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
573 area
= zone
->free_area
+ current_order
;
574 if (list_empty(&area
->free_list
))
577 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
578 list_del(&page
->lru
);
579 rmv_page_order(page
);
581 zone
->free_pages
-= 1UL << order
;
582 expand(zone
, page
, order
, current_order
, area
);
590 * Obtain a specified number of elements from the buddy allocator, all under
591 * a single hold of the lock, for efficiency. Add them to the supplied list.
592 * Returns the number of new pages which were placed at *list.
594 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
595 unsigned long count
, struct list_head
*list
)
599 spin_lock(&zone
->lock
);
600 for (i
= 0; i
< count
; ++i
) {
601 struct page
*page
= __rmqueue(zone
, order
);
602 if (unlikely(page
== NULL
))
604 list_add_tail(&page
->lru
, list
);
606 spin_unlock(&zone
->lock
);
612 * Called from the slab reaper to drain pagesets on a particular node that
613 * belong to the currently executing processor.
614 * Note that this function must be called with the thread pinned to
615 * a single processor.
617 void drain_node_pages(int nodeid
)
622 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
623 struct zone
*zone
= NODE_DATA(nodeid
)->node_zones
+ z
;
624 struct per_cpu_pageset
*pset
;
626 pset
= zone_pcp(zone
, smp_processor_id());
627 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
628 struct per_cpu_pages
*pcp
;
632 local_irq_save(flags
);
633 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
635 local_irq_restore(flags
);
642 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
643 static void __drain_pages(unsigned int cpu
)
649 for_each_zone(zone
) {
650 struct per_cpu_pageset
*pset
;
652 pset
= zone_pcp(zone
, cpu
);
653 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
654 struct per_cpu_pages
*pcp
;
657 local_irq_save(flags
);
658 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
660 local_irq_restore(flags
);
664 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
668 void mark_free_pages(struct zone
*zone
)
670 unsigned long zone_pfn
, flags
;
672 struct list_head
*curr
;
674 if (!zone
->spanned_pages
)
677 spin_lock_irqsave(&zone
->lock
, flags
);
678 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
679 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
681 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
682 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
683 unsigned long start_pfn
, i
;
685 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
687 for (i
=0; i
< (1<<order
); i
++)
688 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
690 spin_unlock_irqrestore(&zone
->lock
, flags
);
694 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
696 void drain_local_pages(void)
700 local_irq_save(flags
);
701 __drain_pages(smp_processor_id());
702 local_irq_restore(flags
);
704 #endif /* CONFIG_PM */
706 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
, int cpu
)
709 pg_data_t
*pg
= z
->zone_pgdat
;
710 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
711 struct per_cpu_pageset
*p
;
713 p
= zone_pcp(z
, cpu
);
718 zone_pcp(zonelist
->zones
[0], cpu
)->numa_foreign
++;
720 if (pg
== NODE_DATA(numa_node_id()))
728 * Free a 0-order page
730 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
732 struct zone
*zone
= page_zone(page
);
733 struct per_cpu_pages
*pcp
;
736 arch_free_page(page
, 0);
739 page
->mapping
= NULL
;
740 if (free_pages_check(page
))
743 kernel_map_pages(page
, 1, 0);
745 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
746 local_irq_save(flags
);
747 __inc_page_state(pgfree
);
748 list_add(&page
->lru
, &pcp
->list
);
750 if (pcp
->count
>= pcp
->high
) {
751 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
752 pcp
->count
-= pcp
->batch
;
754 local_irq_restore(flags
);
758 void fastcall
free_hot_page(struct page
*page
)
760 free_hot_cold_page(page
, 0);
763 void fastcall
free_cold_page(struct page
*page
)
765 free_hot_cold_page(page
, 1);
769 * split_page takes a non-compound higher-order page, and splits it into
770 * n (1<<order) sub-pages: page[0..n]
771 * Each sub-page must be freed individually.
773 * Note: this is probably too low level an operation for use in drivers.
774 * Please consult with lkml before using this in your driver.
776 void split_page(struct page
*page
, unsigned int order
)
780 BUG_ON(PageCompound(page
));
781 BUG_ON(!page_count(page
));
782 for (i
= 1; i
< (1 << order
); i
++)
783 set_page_refcounted(page
+ i
);
787 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
788 * we cheat by calling it from here, in the order > 0 path. Saves a branch
791 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
792 struct zone
*zone
, int order
, gfp_t gfp_flags
)
796 int cold
= !!(gfp_flags
& __GFP_COLD
);
801 if (likely(order
== 0)) {
802 struct per_cpu_pages
*pcp
;
804 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
805 local_irq_save(flags
);
807 pcp
->count
+= rmqueue_bulk(zone
, 0,
808 pcp
->batch
, &pcp
->list
);
809 if (unlikely(!pcp
->count
))
812 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
813 list_del(&page
->lru
);
816 spin_lock_irqsave(&zone
->lock
, flags
);
817 page
= __rmqueue(zone
, order
);
818 spin_unlock(&zone
->lock
);
823 __mod_page_state_zone(zone
, pgalloc
, 1 << order
);
824 zone_statistics(zonelist
, zone
, cpu
);
825 local_irq_restore(flags
);
828 BUG_ON(bad_range(zone
, page
));
829 if (prep_new_page(page
, order
, gfp_flags
))
834 local_irq_restore(flags
);
839 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
840 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
841 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
842 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
843 #define ALLOC_HARDER 0x10 /* try to alloc harder */
844 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
845 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
848 * Return 1 if free pages are above 'mark'. This takes into account the order
851 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
852 int classzone_idx
, int alloc_flags
)
854 /* free_pages my go negative - that's OK */
855 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
858 if (alloc_flags
& ALLOC_HIGH
)
860 if (alloc_flags
& ALLOC_HARDER
)
863 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
865 for (o
= 0; o
< order
; o
++) {
866 /* At the next order, this order's pages become unavailable */
867 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
869 /* Require fewer higher order pages to be free */
872 if (free_pages
<= min
)
879 * get_page_from_freeliest goes through the zonelist trying to allocate
883 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
884 struct zonelist
*zonelist
, int alloc_flags
)
886 struct zone
**z
= zonelist
->zones
;
887 struct page
*page
= NULL
;
888 int classzone_idx
= zone_idx(*z
);
891 * Go through the zonelist once, looking for a zone with enough free.
892 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
895 if ((alloc_flags
& ALLOC_CPUSET
) &&
896 !cpuset_zone_allowed(*z
, gfp_mask
))
899 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
901 if (alloc_flags
& ALLOC_WMARK_MIN
)
902 mark
= (*z
)->pages_min
;
903 else if (alloc_flags
& ALLOC_WMARK_LOW
)
904 mark
= (*z
)->pages_low
;
906 mark
= (*z
)->pages_high
;
907 if (!zone_watermark_ok(*z
, order
, mark
,
908 classzone_idx
, alloc_flags
))
909 if (!zone_reclaim_mode
||
910 !zone_reclaim(*z
, gfp_mask
, order
))
914 page
= buffered_rmqueue(zonelist
, *z
, order
, gfp_mask
);
918 } while (*(++z
) != NULL
);
923 * This is the 'heart' of the zoned buddy allocator.
925 struct page
* fastcall
926 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
927 struct zonelist
*zonelist
)
929 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
932 struct reclaim_state reclaim_state
;
933 struct task_struct
*p
= current
;
936 int did_some_progress
;
938 might_sleep_if(wait
);
941 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
943 if (unlikely(*z
== NULL
)) {
944 /* Should this ever happen?? */
948 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
949 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
954 if (cpuset_zone_allowed(*z
, gfp_mask
))
955 wakeup_kswapd(*z
, order
);
959 * OK, we're below the kswapd watermark and have kicked background
960 * reclaim. Now things get more complex, so set up alloc_flags according
961 * to how we want to proceed.
963 * The caller may dip into page reserves a bit more if the caller
964 * cannot run direct reclaim, or if the caller has realtime scheduling
965 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
966 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
968 alloc_flags
= ALLOC_WMARK_MIN
;
969 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
970 alloc_flags
|= ALLOC_HARDER
;
971 if (gfp_mask
& __GFP_HIGH
)
972 alloc_flags
|= ALLOC_HIGH
;
973 alloc_flags
|= ALLOC_CPUSET
;
976 * Go through the zonelist again. Let __GFP_HIGH and allocations
977 * coming from realtime tasks go deeper into reserves.
979 * This is the last chance, in general, before the goto nopage.
980 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
981 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
983 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
987 /* This allocation should allow future memory freeing. */
989 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
990 && !in_interrupt()) {
991 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
993 /* go through the zonelist yet again, ignoring mins */
994 page
= get_page_from_freelist(gfp_mask
, order
,
995 zonelist
, ALLOC_NO_WATERMARKS
);
998 if (gfp_mask
& __GFP_NOFAIL
) {
999 blk_congestion_wait(WRITE
, HZ
/50);
1006 /* Atomic allocations - we can't balance anything */
1013 /* We now go into synchronous reclaim */
1014 cpuset_memory_pressure_bump();
1015 p
->flags
|= PF_MEMALLOC
;
1016 reclaim_state
.reclaimed_slab
= 0;
1017 p
->reclaim_state
= &reclaim_state
;
1019 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
1021 p
->reclaim_state
= NULL
;
1022 p
->flags
&= ~PF_MEMALLOC
;
1026 if (likely(did_some_progress
)) {
1027 page
= get_page_from_freelist(gfp_mask
, order
,
1028 zonelist
, alloc_flags
);
1031 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1033 * Go through the zonelist yet one more time, keep
1034 * very high watermark here, this is only to catch
1035 * a parallel oom killing, we must fail if we're still
1036 * under heavy pressure.
1038 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1039 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1043 out_of_memory(zonelist
, gfp_mask
, order
);
1048 * Don't let big-order allocations loop unless the caller explicitly
1049 * requests that. Wait for some write requests to complete then retry.
1051 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1052 * <= 3, but that may not be true in other implementations.
1055 if (!(gfp_mask
& __GFP_NORETRY
)) {
1056 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1058 if (gfp_mask
& __GFP_NOFAIL
)
1062 blk_congestion_wait(WRITE
, HZ
/50);
1067 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1068 printk(KERN_WARNING
"%s: page allocation failure."
1069 " order:%d, mode:0x%x\n",
1070 p
->comm
, order
, gfp_mask
);
1078 EXPORT_SYMBOL(__alloc_pages
);
1081 * Common helper functions.
1083 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1086 page
= alloc_pages(gfp_mask
, order
);
1089 return (unsigned long) page_address(page
);
1092 EXPORT_SYMBOL(__get_free_pages
);
1094 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1099 * get_zeroed_page() returns a 32-bit address, which cannot represent
1102 BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1104 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1106 return (unsigned long) page_address(page
);
1110 EXPORT_SYMBOL(get_zeroed_page
);
1112 void __pagevec_free(struct pagevec
*pvec
)
1114 int i
= pagevec_count(pvec
);
1117 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1120 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1122 if (put_page_testzero(page
)) {
1124 free_hot_page(page
);
1126 __free_pages_ok(page
, order
);
1130 EXPORT_SYMBOL(__free_pages
);
1132 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1135 BUG_ON(!virt_addr_valid((void *)addr
));
1136 __free_pages(virt_to_page((void *)addr
), order
);
1140 EXPORT_SYMBOL(free_pages
);
1143 * Total amount of free (allocatable) RAM:
1145 unsigned int nr_free_pages(void)
1147 unsigned int sum
= 0;
1151 sum
+= zone
->free_pages
;
1156 EXPORT_SYMBOL(nr_free_pages
);
1159 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1161 unsigned int i
, sum
= 0;
1163 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1164 sum
+= pgdat
->node_zones
[i
].free_pages
;
1170 static unsigned int nr_free_zone_pages(int offset
)
1172 /* Just pick one node, since fallback list is circular */
1173 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1174 unsigned int sum
= 0;
1176 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1177 struct zone
**zonep
= zonelist
->zones
;
1180 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1181 unsigned long size
= zone
->present_pages
;
1182 unsigned long high
= zone
->pages_high
;
1191 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1193 unsigned int nr_free_buffer_pages(void)
1195 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1199 * Amount of free RAM allocatable within all zones
1201 unsigned int nr_free_pagecache_pages(void)
1203 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1206 #ifdef CONFIG_HIGHMEM
1207 unsigned int nr_free_highpages (void)
1210 unsigned int pages
= 0;
1212 for_each_online_pgdat(pgdat
)
1213 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1220 static void show_node(struct zone
*zone
)
1222 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1225 #define show_node(zone) do { } while (0)
1229 * Accumulate the page_state information across all CPUs.
1230 * The result is unavoidably approximate - it can change
1231 * during and after execution of this function.
1233 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1235 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1236 EXPORT_SYMBOL(nr_pagecache
);
1238 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1241 static void __get_page_state(struct page_state
*ret
, int nr
, cpumask_t
*cpumask
)
1245 memset(ret
, 0, nr
* sizeof(unsigned long));
1246 cpus_and(*cpumask
, *cpumask
, cpu_online_map
);
1248 for_each_cpu_mask(cpu
, *cpumask
) {
1254 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1256 next_cpu
= next_cpu(cpu
, *cpumask
);
1257 if (likely(next_cpu
< NR_CPUS
))
1258 prefetch(&per_cpu(page_states
, next_cpu
));
1260 out
= (unsigned long *)ret
;
1261 for (off
= 0; off
< nr
; off
++)
1266 void get_page_state_node(struct page_state
*ret
, int node
)
1269 cpumask_t mask
= node_to_cpumask(node
);
1271 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1272 nr
/= sizeof(unsigned long);
1274 __get_page_state(ret
, nr
+1, &mask
);
1277 void get_page_state(struct page_state
*ret
)
1280 cpumask_t mask
= CPU_MASK_ALL
;
1282 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1283 nr
/= sizeof(unsigned long);
1285 __get_page_state(ret
, nr
+ 1, &mask
);
1288 void get_full_page_state(struct page_state
*ret
)
1290 cpumask_t mask
= CPU_MASK_ALL
;
1292 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long), &mask
);
1295 unsigned long read_page_state_offset(unsigned long offset
)
1297 unsigned long ret
= 0;
1300 for_each_online_cpu(cpu
) {
1303 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1304 ret
+= *((unsigned long *)in
);
1309 void __mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1313 ptr
= &__get_cpu_var(page_states
);
1314 *(unsigned long *)(ptr
+ offset
) += delta
;
1316 EXPORT_SYMBOL(__mod_page_state_offset
);
1318 void mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1320 unsigned long flags
;
1323 local_irq_save(flags
);
1324 ptr
= &__get_cpu_var(page_states
);
1325 *(unsigned long *)(ptr
+ offset
) += delta
;
1326 local_irq_restore(flags
);
1328 EXPORT_SYMBOL(mod_page_state_offset
);
1330 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1331 unsigned long *free
, struct pglist_data
*pgdat
)
1333 struct zone
*zones
= pgdat
->node_zones
;
1339 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1340 *active
+= zones
[i
].nr_active
;
1341 *inactive
+= zones
[i
].nr_inactive
;
1342 *free
+= zones
[i
].free_pages
;
1346 void get_zone_counts(unsigned long *active
,
1347 unsigned long *inactive
, unsigned long *free
)
1349 struct pglist_data
*pgdat
;
1354 for_each_online_pgdat(pgdat
) {
1355 unsigned long l
, m
, n
;
1356 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1363 void si_meminfo(struct sysinfo
*val
)
1365 val
->totalram
= totalram_pages
;
1367 val
->freeram
= nr_free_pages();
1368 val
->bufferram
= nr_blockdev_pages();
1369 #ifdef CONFIG_HIGHMEM
1370 val
->totalhigh
= totalhigh_pages
;
1371 val
->freehigh
= nr_free_highpages();
1376 val
->mem_unit
= PAGE_SIZE
;
1379 EXPORT_SYMBOL(si_meminfo
);
1382 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1384 pg_data_t
*pgdat
= NODE_DATA(nid
);
1386 val
->totalram
= pgdat
->node_present_pages
;
1387 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1388 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1389 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1390 val
->mem_unit
= PAGE_SIZE
;
1394 #define K(x) ((x) << (PAGE_SHIFT-10))
1397 * Show free area list (used inside shift_scroll-lock stuff)
1398 * We also calculate the percentage fragmentation. We do this by counting the
1399 * memory on each free list with the exception of the first item on the list.
1401 void show_free_areas(void)
1403 struct page_state ps
;
1404 int cpu
, temperature
;
1405 unsigned long active
;
1406 unsigned long inactive
;
1410 for_each_zone(zone
) {
1412 printk("%s per-cpu:", zone
->name
);
1414 if (!populated_zone(zone
)) {
1420 for_each_online_cpu(cpu
) {
1421 struct per_cpu_pageset
*pageset
;
1423 pageset
= zone_pcp(zone
, cpu
);
1425 for (temperature
= 0; temperature
< 2; temperature
++)
1426 printk("cpu %d %s: high %d, batch %d used:%d\n",
1428 temperature
? "cold" : "hot",
1429 pageset
->pcp
[temperature
].high
,
1430 pageset
->pcp
[temperature
].batch
,
1431 pageset
->pcp
[temperature
].count
);
1435 get_page_state(&ps
);
1436 get_zone_counts(&active
, &inactive
, &free
);
1438 printk("Free pages: %11ukB (%ukB HighMem)\n",
1440 K(nr_free_highpages()));
1442 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1443 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1452 ps
.nr_page_table_pages
);
1454 for_each_zone(zone
) {
1466 " pages_scanned:%lu"
1467 " all_unreclaimable? %s"
1470 K(zone
->free_pages
),
1473 K(zone
->pages_high
),
1475 K(zone
->nr_inactive
),
1476 K(zone
->present_pages
),
1477 zone
->pages_scanned
,
1478 (zone
->all_unreclaimable
? "yes" : "no")
1480 printk("lowmem_reserve[]:");
1481 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1482 printk(" %lu", zone
->lowmem_reserve
[i
]);
1486 for_each_zone(zone
) {
1487 unsigned long nr
, flags
, order
, total
= 0;
1490 printk("%s: ", zone
->name
);
1491 if (!populated_zone(zone
)) {
1496 spin_lock_irqsave(&zone
->lock
, flags
);
1497 for (order
= 0; order
< MAX_ORDER
; order
++) {
1498 nr
= zone
->free_area
[order
].nr_free
;
1499 total
+= nr
<< order
;
1500 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1502 spin_unlock_irqrestore(&zone
->lock
, flags
);
1503 printk("= %lukB\n", K(total
));
1506 show_swap_cache_info();
1510 * Builds allocation fallback zone lists.
1512 * Add all populated zones of a node to the zonelist.
1514 static int __init
build_zonelists_node(pg_data_t
*pgdat
,
1515 struct zonelist
*zonelist
, int nr_zones
, int zone_type
)
1519 BUG_ON(zone_type
> ZONE_HIGHMEM
);
1522 zone
= pgdat
->node_zones
+ zone_type
;
1523 if (populated_zone(zone
)) {
1524 #ifndef CONFIG_HIGHMEM
1525 BUG_ON(zone_type
> ZONE_NORMAL
);
1527 zonelist
->zones
[nr_zones
++] = zone
;
1528 check_highest_zone(zone_type
);
1532 } while (zone_type
>= 0);
1536 static inline int highest_zone(int zone_bits
)
1538 int res
= ZONE_NORMAL
;
1539 if (zone_bits
& (__force
int)__GFP_HIGHMEM
)
1541 if (zone_bits
& (__force
int)__GFP_DMA32
)
1543 if (zone_bits
& (__force
int)__GFP_DMA
)
1549 #define MAX_NODE_LOAD (num_online_nodes())
1550 static int __initdata node_load
[MAX_NUMNODES
];
1552 * find_next_best_node - find the next node that should appear in a given node's fallback list
1553 * @node: node whose fallback list we're appending
1554 * @used_node_mask: nodemask_t of already used nodes
1556 * We use a number of factors to determine which is the next node that should
1557 * appear on a given node's fallback list. The node should not have appeared
1558 * already in @node's fallback list, and it should be the next closest node
1559 * according to the distance array (which contains arbitrary distance values
1560 * from each node to each node in the system), and should also prefer nodes
1561 * with no CPUs, since presumably they'll have very little allocation pressure
1562 * on them otherwise.
1563 * It returns -1 if no node is found.
1565 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1568 int min_val
= INT_MAX
;
1571 /* Use the local node if we haven't already */
1572 if (!node_isset(node
, *used_node_mask
)) {
1573 node_set(node
, *used_node_mask
);
1577 for_each_online_node(n
) {
1580 /* Don't want a node to appear more than once */
1581 if (node_isset(n
, *used_node_mask
))
1584 /* Use the distance array to find the distance */
1585 val
= node_distance(node
, n
);
1587 /* Penalize nodes under us ("prefer the next node") */
1590 /* Give preference to headless and unused nodes */
1591 tmp
= node_to_cpumask(n
);
1592 if (!cpus_empty(tmp
))
1593 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1595 /* Slight preference for less loaded node */
1596 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1597 val
+= node_load
[n
];
1599 if (val
< min_val
) {
1606 node_set(best_node
, *used_node_mask
);
1611 static void __init
build_zonelists(pg_data_t
*pgdat
)
1613 int i
, j
, k
, node
, local_node
;
1614 int prev_node
, load
;
1615 struct zonelist
*zonelist
;
1616 nodemask_t used_mask
;
1618 /* initialize zonelists */
1619 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1620 zonelist
= pgdat
->node_zonelists
+ i
;
1621 zonelist
->zones
[0] = NULL
;
1624 /* NUMA-aware ordering of nodes */
1625 local_node
= pgdat
->node_id
;
1626 load
= num_online_nodes();
1627 prev_node
= local_node
;
1628 nodes_clear(used_mask
);
1629 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1630 int distance
= node_distance(local_node
, node
);
1633 * If another node is sufficiently far away then it is better
1634 * to reclaim pages in a zone before going off node.
1636 if (distance
> RECLAIM_DISTANCE
)
1637 zone_reclaim_mode
= 1;
1640 * We don't want to pressure a particular node.
1641 * So adding penalty to the first node in same
1642 * distance group to make it round-robin.
1645 if (distance
!= node_distance(local_node
, prev_node
))
1646 node_load
[node
] += load
;
1649 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1650 zonelist
= pgdat
->node_zonelists
+ i
;
1651 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1653 k
= highest_zone(i
);
1655 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1656 zonelist
->zones
[j
] = NULL
;
1661 #else /* CONFIG_NUMA */
1663 static void __init
build_zonelists(pg_data_t
*pgdat
)
1665 int i
, j
, k
, node
, local_node
;
1667 local_node
= pgdat
->node_id
;
1668 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1669 struct zonelist
*zonelist
;
1671 zonelist
= pgdat
->node_zonelists
+ i
;
1674 k
= highest_zone(i
);
1675 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1677 * Now we build the zonelist so that it contains the zones
1678 * of all the other nodes.
1679 * We don't want to pressure a particular node, so when
1680 * building the zones for node N, we make sure that the
1681 * zones coming right after the local ones are those from
1682 * node N+1 (modulo N)
1684 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1685 if (!node_online(node
))
1687 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1689 for (node
= 0; node
< local_node
; node
++) {
1690 if (!node_online(node
))
1692 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1695 zonelist
->zones
[j
] = NULL
;
1699 #endif /* CONFIG_NUMA */
1701 void __init
build_all_zonelists(void)
1705 for_each_online_node(i
)
1706 build_zonelists(NODE_DATA(i
));
1707 printk("Built %i zonelists\n", num_online_nodes());
1708 cpuset_init_current_mems_allowed();
1712 * Helper functions to size the waitqueue hash table.
1713 * Essentially these want to choose hash table sizes sufficiently
1714 * large so that collisions trying to wait on pages are rare.
1715 * But in fact, the number of active page waitqueues on typical
1716 * systems is ridiculously low, less than 200. So this is even
1717 * conservative, even though it seems large.
1719 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1720 * waitqueues, i.e. the size of the waitq table given the number of pages.
1722 #define PAGES_PER_WAITQUEUE 256
1724 static inline unsigned long wait_table_size(unsigned long pages
)
1726 unsigned long size
= 1;
1728 pages
/= PAGES_PER_WAITQUEUE
;
1730 while (size
< pages
)
1734 * Once we have dozens or even hundreds of threads sleeping
1735 * on IO we've got bigger problems than wait queue collision.
1736 * Limit the size of the wait table to a reasonable size.
1738 size
= min(size
, 4096UL);
1740 return max(size
, 4UL);
1744 * This is an integer logarithm so that shifts can be used later
1745 * to extract the more random high bits from the multiplicative
1746 * hash function before the remainder is taken.
1748 static inline unsigned long wait_table_bits(unsigned long size
)
1753 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1755 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1756 unsigned long *zones_size
, unsigned long *zholes_size
)
1758 unsigned long realtotalpages
, totalpages
= 0;
1761 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1762 totalpages
+= zones_size
[i
];
1763 pgdat
->node_spanned_pages
= totalpages
;
1765 realtotalpages
= totalpages
;
1767 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1768 realtotalpages
-= zholes_size
[i
];
1769 pgdat
->node_present_pages
= realtotalpages
;
1770 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1775 * Initially all pages are reserved - free ones are freed
1776 * up by free_all_bootmem() once the early boot process is
1777 * done. Non-atomic initialization, single-pass.
1779 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1780 unsigned long start_pfn
)
1783 unsigned long end_pfn
= start_pfn
+ size
;
1786 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1787 if (!early_pfn_valid(pfn
))
1789 page
= pfn_to_page(pfn
);
1790 set_page_links(page
, zone
, nid
, pfn
);
1791 init_page_count(page
);
1792 reset_page_mapcount(page
);
1793 SetPageReserved(page
);
1794 INIT_LIST_HEAD(&page
->lru
);
1795 #ifdef WANT_PAGE_VIRTUAL
1796 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1797 if (!is_highmem_idx(zone
))
1798 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1803 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1807 for (order
= 0; order
< MAX_ORDER
; order
++) {
1808 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1809 zone
->free_area
[order
].nr_free
= 0;
1813 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1814 void zonetable_add(struct zone
*zone
, int nid
, int zid
, unsigned long pfn
,
1817 unsigned long snum
= pfn_to_section_nr(pfn
);
1818 unsigned long end
= pfn_to_section_nr(pfn
+ size
);
1821 zone_table
[ZONETABLE_INDEX(nid
, zid
)] = zone
;
1823 for (; snum
<= end
; snum
++)
1824 zone_table
[ZONETABLE_INDEX(snum
, zid
)] = zone
;
1827 #ifndef __HAVE_ARCH_MEMMAP_INIT
1828 #define memmap_init(size, nid, zone, start_pfn) \
1829 memmap_init_zone((size), (nid), (zone), (start_pfn))
1832 static int __cpuinit
zone_batchsize(struct zone
*zone
)
1837 * The per-cpu-pages pools are set to around 1000th of the
1838 * size of the zone. But no more than 1/2 of a meg.
1840 * OK, so we don't know how big the cache is. So guess.
1842 batch
= zone
->present_pages
/ 1024;
1843 if (batch
* PAGE_SIZE
> 512 * 1024)
1844 batch
= (512 * 1024) / PAGE_SIZE
;
1845 batch
/= 4; /* We effectively *= 4 below */
1850 * Clamp the batch to a 2^n - 1 value. Having a power
1851 * of 2 value was found to be more likely to have
1852 * suboptimal cache aliasing properties in some cases.
1854 * For example if 2 tasks are alternately allocating
1855 * batches of pages, one task can end up with a lot
1856 * of pages of one half of the possible page colors
1857 * and the other with pages of the other colors.
1859 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
1864 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
1866 struct per_cpu_pages
*pcp
;
1868 memset(p
, 0, sizeof(*p
));
1870 pcp
= &p
->pcp
[0]; /* hot */
1872 pcp
->high
= 6 * batch
;
1873 pcp
->batch
= max(1UL, 1 * batch
);
1874 INIT_LIST_HEAD(&pcp
->list
);
1876 pcp
= &p
->pcp
[1]; /* cold*/
1878 pcp
->high
= 2 * batch
;
1879 pcp
->batch
= max(1UL, batch
/2);
1880 INIT_LIST_HEAD(&pcp
->list
);
1884 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1885 * to the value high for the pageset p.
1888 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
1891 struct per_cpu_pages
*pcp
;
1893 pcp
= &p
->pcp
[0]; /* hot list */
1895 pcp
->batch
= max(1UL, high
/4);
1896 if ((high
/4) > (PAGE_SHIFT
* 8))
1897 pcp
->batch
= PAGE_SHIFT
* 8;
1903 * Boot pageset table. One per cpu which is going to be used for all
1904 * zones and all nodes. The parameters will be set in such a way
1905 * that an item put on a list will immediately be handed over to
1906 * the buddy list. This is safe since pageset manipulation is done
1907 * with interrupts disabled.
1909 * Some NUMA counter updates may also be caught by the boot pagesets.
1911 * The boot_pagesets must be kept even after bootup is complete for
1912 * unused processors and/or zones. They do play a role for bootstrapping
1913 * hotplugged processors.
1915 * zoneinfo_show() and maybe other functions do
1916 * not check if the processor is online before following the pageset pointer.
1917 * Other parts of the kernel may not check if the zone is available.
1919 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
1922 * Dynamically allocate memory for the
1923 * per cpu pageset array in struct zone.
1925 static int __cpuinit
process_zones(int cpu
)
1927 struct zone
*zone
, *dzone
;
1929 for_each_zone(zone
) {
1931 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
1932 GFP_KERNEL
, cpu_to_node(cpu
));
1933 if (!zone_pcp(zone
, cpu
))
1936 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
1938 if (percpu_pagelist_fraction
)
1939 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
1940 (zone
->present_pages
/ percpu_pagelist_fraction
));
1945 for_each_zone(dzone
) {
1948 kfree(zone_pcp(dzone
, cpu
));
1949 zone_pcp(dzone
, cpu
) = NULL
;
1954 static inline void free_zone_pagesets(int cpu
)
1958 for_each_zone(zone
) {
1959 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
1961 zone_pcp(zone
, cpu
) = NULL
;
1966 static int pageset_cpuup_callback(struct notifier_block
*nfb
,
1967 unsigned long action
,
1970 int cpu
= (long)hcpu
;
1971 int ret
= NOTIFY_OK
;
1974 case CPU_UP_PREPARE
:
1975 if (process_zones(cpu
))
1978 case CPU_UP_CANCELED
:
1980 free_zone_pagesets(cpu
);
1988 static struct notifier_block pageset_notifier
=
1989 { &pageset_cpuup_callback
, NULL
, 0 };
1991 void __init
setup_per_cpu_pageset(void)
1995 /* Initialize per_cpu_pageset for cpu 0.
1996 * A cpuup callback will do this for every cpu
1997 * as it comes online
1999 err
= process_zones(smp_processor_id());
2001 register_cpu_notifier(&pageset_notifier
);
2007 void zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2010 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2013 * The per-page waitqueue mechanism uses hashed waitqueues
2016 zone
->wait_table_size
= wait_table_size(zone_size_pages
);
2017 zone
->wait_table_bits
= wait_table_bits(zone
->wait_table_size
);
2018 zone
->wait_table
= (wait_queue_head_t
*)
2019 alloc_bootmem_node(pgdat
, zone
->wait_table_size
2020 * sizeof(wait_queue_head_t
));
2022 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
2023 init_waitqueue_head(zone
->wait_table
+ i
);
2026 static __meminit
void zone_pcp_init(struct zone
*zone
)
2029 unsigned long batch
= zone_batchsize(zone
);
2031 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2033 /* Early boot. Slab allocator not functional yet */
2034 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2035 setup_pageset(&boot_pageset
[cpu
],0);
2037 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2040 if (zone
->present_pages
)
2041 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2042 zone
->name
, zone
->present_pages
, batch
);
2045 static __meminit
void init_currently_empty_zone(struct zone
*zone
,
2046 unsigned long zone_start_pfn
, unsigned long size
)
2048 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2050 zone_wait_table_init(zone
, size
);
2051 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2053 zone
->zone_start_pfn
= zone_start_pfn
;
2055 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2057 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2061 * Set up the zone data structures:
2062 * - mark all pages reserved
2063 * - mark all memory queues empty
2064 * - clear the memory bitmaps
2066 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
2067 unsigned long *zones_size
, unsigned long *zholes_size
)
2070 int nid
= pgdat
->node_id
;
2071 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2073 pgdat_resize_init(pgdat
);
2074 pgdat
->nr_zones
= 0;
2075 init_waitqueue_head(&pgdat
->kswapd_wait
);
2076 pgdat
->kswapd_max_order
= 0;
2078 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2079 struct zone
*zone
= pgdat
->node_zones
+ j
;
2080 unsigned long size
, realsize
;
2082 realsize
= size
= zones_size
[j
];
2084 realsize
-= zholes_size
[j
];
2086 if (j
< ZONE_HIGHMEM
)
2087 nr_kernel_pages
+= realsize
;
2088 nr_all_pages
+= realsize
;
2090 zone
->spanned_pages
= size
;
2091 zone
->present_pages
= realsize
;
2092 zone
->name
= zone_names
[j
];
2093 spin_lock_init(&zone
->lock
);
2094 spin_lock_init(&zone
->lru_lock
);
2095 zone_seqlock_init(zone
);
2096 zone
->zone_pgdat
= pgdat
;
2097 zone
->free_pages
= 0;
2099 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
2101 zone_pcp_init(zone
);
2102 INIT_LIST_HEAD(&zone
->active_list
);
2103 INIT_LIST_HEAD(&zone
->inactive_list
);
2104 zone
->nr_scan_active
= 0;
2105 zone
->nr_scan_inactive
= 0;
2106 zone
->nr_active
= 0;
2107 zone
->nr_inactive
= 0;
2108 atomic_set(&zone
->reclaim_in_progress
, 0);
2112 zonetable_add(zone
, nid
, j
, zone_start_pfn
, size
);
2113 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
2114 zone_start_pfn
+= size
;
2118 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2120 /* Skip empty nodes */
2121 if (!pgdat
->node_spanned_pages
)
2124 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2125 /* ia64 gets its own node_mem_map, before this, without bootmem */
2126 if (!pgdat
->node_mem_map
) {
2130 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
2131 map
= alloc_remap(pgdat
->node_id
, size
);
2133 map
= alloc_bootmem_node(pgdat
, size
);
2134 pgdat
->node_mem_map
= map
;
2136 #ifdef CONFIG_FLATMEM
2138 * With no DISCONTIG, the global mem_map is just set as node 0's
2140 if (pgdat
== NODE_DATA(0))
2141 mem_map
= NODE_DATA(0)->node_mem_map
;
2143 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2146 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2147 unsigned long *zones_size
, unsigned long node_start_pfn
,
2148 unsigned long *zholes_size
)
2150 pgdat
->node_id
= nid
;
2151 pgdat
->node_start_pfn
= node_start_pfn
;
2152 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
2154 alloc_node_mem_map(pgdat
);
2156 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2159 #ifndef CONFIG_NEED_MULTIPLE_NODES
2160 static bootmem_data_t contig_bootmem_data
;
2161 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2163 EXPORT_SYMBOL(contig_page_data
);
2166 void __init
free_area_init(unsigned long *zones_size
)
2168 free_area_init_node(0, NODE_DATA(0), zones_size
,
2169 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2172 #ifdef CONFIG_PROC_FS
2174 #include <linux/seq_file.h>
2176 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
2180 for (pgdat
= first_online_pgdat();
2182 pgdat
= next_online_pgdat(pgdat
))
2188 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2190 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2193 return next_online_pgdat(pgdat
);
2196 static void frag_stop(struct seq_file
*m
, void *arg
)
2201 * This walks the free areas for each zone.
2203 static int frag_show(struct seq_file
*m
, void *arg
)
2205 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2207 struct zone
*node_zones
= pgdat
->node_zones
;
2208 unsigned long flags
;
2211 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2212 if (!populated_zone(zone
))
2215 spin_lock_irqsave(&zone
->lock
, flags
);
2216 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
2217 for (order
= 0; order
< MAX_ORDER
; ++order
)
2218 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
2219 spin_unlock_irqrestore(&zone
->lock
, flags
);
2225 struct seq_operations fragmentation_op
= {
2226 .start
= frag_start
,
2233 * Output information about zones in @pgdat.
2235 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
2237 pg_data_t
*pgdat
= arg
;
2239 struct zone
*node_zones
= pgdat
->node_zones
;
2240 unsigned long flags
;
2242 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; zone
++) {
2245 if (!populated_zone(zone
))
2248 spin_lock_irqsave(&zone
->lock
, flags
);
2249 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
2257 "\n scanned %lu (a: %lu i: %lu)"
2266 zone
->pages_scanned
,
2267 zone
->nr_scan_active
, zone
->nr_scan_inactive
,
2268 zone
->spanned_pages
,
2269 zone
->present_pages
);
2271 "\n protection: (%lu",
2272 zone
->lowmem_reserve
[0]);
2273 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
2274 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
2278 for_each_online_cpu(i
) {
2279 struct per_cpu_pageset
*pageset
;
2282 pageset
= zone_pcp(zone
, i
);
2283 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2284 if (pageset
->pcp
[j
].count
)
2287 if (j
== ARRAY_SIZE(pageset
->pcp
))
2289 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2291 "\n cpu: %i pcp: %i"
2296 pageset
->pcp
[j
].count
,
2297 pageset
->pcp
[j
].high
,
2298 pageset
->pcp
[j
].batch
);
2304 "\n numa_foreign: %lu"
2305 "\n interleave_hit: %lu"
2306 "\n local_node: %lu"
2307 "\n other_node: %lu",
2310 pageset
->numa_foreign
,
2311 pageset
->interleave_hit
,
2312 pageset
->local_node
,
2313 pageset
->other_node
);
2317 "\n all_unreclaimable: %u"
2318 "\n prev_priority: %i"
2319 "\n temp_priority: %i"
2320 "\n start_pfn: %lu",
2321 zone
->all_unreclaimable
,
2322 zone
->prev_priority
,
2323 zone
->temp_priority
,
2324 zone
->zone_start_pfn
);
2325 spin_unlock_irqrestore(&zone
->lock
, flags
);
2331 struct seq_operations zoneinfo_op
= {
2332 .start
= frag_start
, /* iterate over all zones. The same as in
2336 .show
= zoneinfo_show
,
2339 static char *vmstat_text
[] = {
2343 "nr_page_table_pages",
2374 "pgscan_kswapd_high",
2375 "pgscan_kswapd_normal",
2376 "pgscan_kswapd_dma32",
2377 "pgscan_kswapd_dma",
2379 "pgscan_direct_high",
2380 "pgscan_direct_normal",
2381 "pgscan_direct_dma32",
2382 "pgscan_direct_dma",
2387 "kswapd_inodesteal",
2395 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
2397 struct page_state
*ps
;
2399 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2402 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
2405 return ERR_PTR(-ENOMEM
);
2406 get_full_page_state(ps
);
2407 ps
->pgpgin
/= 2; /* sectors -> kbytes */
2409 return (unsigned long *)ps
+ *pos
;
2412 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2415 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2417 return (unsigned long *)m
->private + *pos
;
2420 static int vmstat_show(struct seq_file
*m
, void *arg
)
2422 unsigned long *l
= arg
;
2423 unsigned long off
= l
- (unsigned long *)m
->private;
2425 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
2429 static void vmstat_stop(struct seq_file
*m
, void *arg
)
2435 struct seq_operations vmstat_op
= {
2436 .start
= vmstat_start
,
2437 .next
= vmstat_next
,
2438 .stop
= vmstat_stop
,
2439 .show
= vmstat_show
,
2442 #endif /* CONFIG_PROC_FS */
2444 #ifdef CONFIG_HOTPLUG_CPU
2445 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2446 unsigned long action
, void *hcpu
)
2448 int cpu
= (unsigned long)hcpu
;
2450 unsigned long *src
, *dest
;
2452 if (action
== CPU_DEAD
) {
2455 /* Drain local pagecache count. */
2456 count
= &per_cpu(nr_pagecache_local
, cpu
);
2457 atomic_add(*count
, &nr_pagecache
);
2459 local_irq_disable();
2462 /* Add dead cpu's page_states to our own. */
2463 dest
= (unsigned long *)&__get_cpu_var(page_states
);
2464 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
2466 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
2476 #endif /* CONFIG_HOTPLUG_CPU */
2478 void __init
page_alloc_init(void)
2480 hotcpu_notifier(page_alloc_cpu_notify
, 0);
2484 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2485 * or min_free_kbytes changes.
2487 static void calculate_totalreserve_pages(void)
2489 struct pglist_data
*pgdat
;
2490 unsigned long reserve_pages
= 0;
2493 for_each_online_pgdat(pgdat
) {
2494 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2495 struct zone
*zone
= pgdat
->node_zones
+ i
;
2496 unsigned long max
= 0;
2498 /* Find valid and maximum lowmem_reserve in the zone */
2499 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
2500 if (zone
->lowmem_reserve
[j
] > max
)
2501 max
= zone
->lowmem_reserve
[j
];
2504 /* we treat pages_high as reserved pages. */
2505 max
+= zone
->pages_high
;
2507 if (max
> zone
->present_pages
)
2508 max
= zone
->present_pages
;
2509 reserve_pages
+= max
;
2512 totalreserve_pages
= reserve_pages
;
2516 * setup_per_zone_lowmem_reserve - called whenever
2517 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2518 * has a correct pages reserved value, so an adequate number of
2519 * pages are left in the zone after a successful __alloc_pages().
2521 static void setup_per_zone_lowmem_reserve(void)
2523 struct pglist_data
*pgdat
;
2526 for_each_online_pgdat(pgdat
) {
2527 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2528 struct zone
*zone
= pgdat
->node_zones
+ j
;
2529 unsigned long present_pages
= zone
->present_pages
;
2531 zone
->lowmem_reserve
[j
] = 0;
2533 for (idx
= j
-1; idx
>= 0; idx
--) {
2534 struct zone
*lower_zone
;
2536 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2537 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2539 lower_zone
= pgdat
->node_zones
+ idx
;
2540 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2541 sysctl_lowmem_reserve_ratio
[idx
];
2542 present_pages
+= lower_zone
->present_pages
;
2547 /* update totalreserve_pages */
2548 calculate_totalreserve_pages();
2552 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2553 * that the pages_{min,low,high} values for each zone are set correctly
2554 * with respect to min_free_kbytes.
2556 void setup_per_zone_pages_min(void)
2558 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2559 unsigned long lowmem_pages
= 0;
2561 unsigned long flags
;
2563 /* Calculate total number of !ZONE_HIGHMEM pages */
2564 for_each_zone(zone
) {
2565 if (!is_highmem(zone
))
2566 lowmem_pages
+= zone
->present_pages
;
2569 for_each_zone(zone
) {
2572 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2573 tmp
= (u64
)pages_min
* zone
->present_pages
;
2574 do_div(tmp
, lowmem_pages
);
2575 if (is_highmem(zone
)) {
2577 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2578 * need highmem pages, so cap pages_min to a small
2581 * The (pages_high-pages_low) and (pages_low-pages_min)
2582 * deltas controls asynch page reclaim, and so should
2583 * not be capped for highmem.
2587 min_pages
= zone
->present_pages
/ 1024;
2588 if (min_pages
< SWAP_CLUSTER_MAX
)
2589 min_pages
= SWAP_CLUSTER_MAX
;
2590 if (min_pages
> 128)
2592 zone
->pages_min
= min_pages
;
2595 * If it's a lowmem zone, reserve a number of pages
2596 * proportionate to the zone's size.
2598 zone
->pages_min
= tmp
;
2601 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
2602 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
2603 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2606 /* update totalreserve_pages */
2607 calculate_totalreserve_pages();
2611 * Initialise min_free_kbytes.
2613 * For small machines we want it small (128k min). For large machines
2614 * we want it large (64MB max). But it is not linear, because network
2615 * bandwidth does not increase linearly with machine size. We use
2617 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2618 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2634 static int __init
init_per_zone_pages_min(void)
2636 unsigned long lowmem_kbytes
;
2638 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2640 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2641 if (min_free_kbytes
< 128)
2642 min_free_kbytes
= 128;
2643 if (min_free_kbytes
> 65536)
2644 min_free_kbytes
= 65536;
2645 setup_per_zone_pages_min();
2646 setup_per_zone_lowmem_reserve();
2649 module_init(init_per_zone_pages_min
)
2652 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2653 * that we can call two helper functions whenever min_free_kbytes
2656 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2657 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2659 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2660 setup_per_zone_pages_min();
2665 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2666 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2667 * whenever sysctl_lowmem_reserve_ratio changes.
2669 * The reserve ratio obviously has absolutely no relation with the
2670 * pages_min watermarks. The lowmem reserve ratio can only make sense
2671 * if in function of the boot time zone sizes.
2673 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2674 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2676 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2677 setup_per_zone_lowmem_reserve();
2682 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2683 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2684 * can have before it gets flushed back to buddy allocator.
2687 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
2688 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2694 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2695 if (!write
|| (ret
== -EINVAL
))
2697 for_each_zone(zone
) {
2698 for_each_online_cpu(cpu
) {
2700 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
2701 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
2707 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2710 static int __init
set_hashdist(char *str
)
2714 hashdist
= simple_strtoul(str
, &str
, 0);
2717 __setup("hashdist=", set_hashdist
);
2721 * allocate a large system hash table from bootmem
2722 * - it is assumed that the hash table must contain an exact power-of-2
2723 * quantity of entries
2724 * - limit is the number of hash buckets, not the total allocation size
2726 void *__init
alloc_large_system_hash(const char *tablename
,
2727 unsigned long bucketsize
,
2728 unsigned long numentries
,
2731 unsigned int *_hash_shift
,
2732 unsigned int *_hash_mask
,
2733 unsigned long limit
)
2735 unsigned long long max
= limit
;
2736 unsigned long log2qty
, size
;
2739 /* allow the kernel cmdline to have a say */
2741 /* round applicable memory size up to nearest megabyte */
2742 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2743 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2744 numentries
>>= 20 - PAGE_SHIFT
;
2745 numentries
<<= 20 - PAGE_SHIFT
;
2747 /* limit to 1 bucket per 2^scale bytes of low memory */
2748 if (scale
> PAGE_SHIFT
)
2749 numentries
>>= (scale
- PAGE_SHIFT
);
2751 numentries
<<= (PAGE_SHIFT
- scale
);
2753 numentries
= roundup_pow_of_two(numentries
);
2755 /* limit allocation size to 1/16 total memory by default */
2757 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2758 do_div(max
, bucketsize
);
2761 if (numentries
> max
)
2764 log2qty
= long_log2(numentries
);
2767 size
= bucketsize
<< log2qty
;
2768 if (flags
& HASH_EARLY
)
2769 table
= alloc_bootmem(size
);
2771 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2773 unsigned long order
;
2774 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2776 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2778 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2781 panic("Failed to allocate %s hash table\n", tablename
);
2783 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2786 long_log2(size
) - PAGE_SHIFT
,
2790 *_hash_shift
= log2qty
;
2792 *_hash_mask
= (1 << log2qty
) - 1;
2797 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2799 * pfn <-> page translation. out-of-line version.
2800 * (see asm-generic/memory_model.h)
2802 #if defined(CONFIG_FLATMEM)
2803 struct page
*pfn_to_page(unsigned long pfn
)
2805 return mem_map
+ (pfn
- ARCH_PFN_OFFSET
);
2807 unsigned long page_to_pfn(struct page
*page
)
2809 return (page
- mem_map
) + ARCH_PFN_OFFSET
;
2811 #elif defined(CONFIG_DISCONTIGMEM)
2812 struct page
*pfn_to_page(unsigned long pfn
)
2814 int nid
= arch_pfn_to_nid(pfn
);
2815 return NODE_DATA(nid
)->node_mem_map
+ arch_local_page_offset(pfn
,nid
);
2817 unsigned long page_to_pfn(struct page
*page
)
2819 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
2820 return (page
- pgdat
->node_mem_map
) + pgdat
->node_start_pfn
;
2822 #elif defined(CONFIG_SPARSEMEM)
2823 struct page
*pfn_to_page(unsigned long pfn
)
2825 return __section_mem_map_addr(__pfn_to_section(pfn
)) + pfn
;
2828 unsigned long page_to_pfn(struct page
*page
)
2830 long section_id
= page_to_section(page
);
2831 return page
- __section_mem_map_addr(__nr_to_section(section_id
));
2833 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2834 EXPORT_SYMBOL(pfn_to_page
);
2835 EXPORT_SYMBOL(page_to_pfn
);
2836 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */