[PATCH] time: fix formatting in /proc/timer_list
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / aio.c
blob0b4ee0a5c83e809f07ca6a0a049e9521226782c0
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
20 #define DEBUG 0
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
34 #include <asm/kmap_types.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
38 #if DEBUG > 1
39 #define dprintk printk
40 #else
41 #define dprintk(x...) do { ; } while (0)
42 #endif
44 /*------ sysctl variables----*/
45 static DEFINE_SPINLOCK(aio_nr_lock);
46 unsigned long aio_nr; /* current system wide number of aio requests */
47 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
48 /*----end sysctl variables---*/
50 static struct kmem_cache *kiocb_cachep;
51 static struct kmem_cache *kioctx_cachep;
53 static struct workqueue_struct *aio_wq;
55 /* Used for rare fput completion. */
56 static void aio_fput_routine(struct work_struct *);
57 static DECLARE_WORK(fput_work, aio_fput_routine);
59 static DEFINE_SPINLOCK(fput_lock);
60 static LIST_HEAD(fput_head);
62 static void aio_kick_handler(struct work_struct *);
63 static void aio_queue_work(struct kioctx *);
65 /* aio_setup
66 * Creates the slab caches used by the aio routines, panic on
67 * failure as this is done early during the boot sequence.
69 static int __init aio_setup(void)
71 kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
72 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
73 kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
74 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
76 aio_wq = create_workqueue("aio");
78 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
80 return 0;
83 static void aio_free_ring(struct kioctx *ctx)
85 struct aio_ring_info *info = &ctx->ring_info;
86 long i;
88 for (i=0; i<info->nr_pages; i++)
89 put_page(info->ring_pages[i]);
91 if (info->mmap_size) {
92 down_write(&ctx->mm->mmap_sem);
93 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
94 up_write(&ctx->mm->mmap_sem);
97 if (info->ring_pages && info->ring_pages != info->internal_pages)
98 kfree(info->ring_pages);
99 info->ring_pages = NULL;
100 info->nr = 0;
103 static int aio_setup_ring(struct kioctx *ctx)
105 struct aio_ring *ring;
106 struct aio_ring_info *info = &ctx->ring_info;
107 unsigned nr_events = ctx->max_reqs;
108 unsigned long size;
109 int nr_pages;
111 /* Compensate for the ring buffer's head/tail overlap entry */
112 nr_events += 2; /* 1 is required, 2 for good luck */
114 size = sizeof(struct aio_ring);
115 size += sizeof(struct io_event) * nr_events;
116 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
118 if (nr_pages < 0)
119 return -EINVAL;
121 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
123 info->nr = 0;
124 info->ring_pages = info->internal_pages;
125 if (nr_pages > AIO_RING_PAGES) {
126 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
127 if (!info->ring_pages)
128 return -ENOMEM;
131 info->mmap_size = nr_pages * PAGE_SIZE;
132 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
133 down_write(&ctx->mm->mmap_sem);
134 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
135 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
137 if (IS_ERR((void *)info->mmap_base)) {
138 up_write(&ctx->mm->mmap_sem);
139 printk("mmap err: %ld\n", -info->mmap_base);
140 info->mmap_size = 0;
141 aio_free_ring(ctx);
142 return -EAGAIN;
145 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
146 info->nr_pages = get_user_pages(current, ctx->mm,
147 info->mmap_base, nr_pages,
148 1, 0, info->ring_pages, NULL);
149 up_write(&ctx->mm->mmap_sem);
151 if (unlikely(info->nr_pages != nr_pages)) {
152 aio_free_ring(ctx);
153 return -EAGAIN;
156 ctx->user_id = info->mmap_base;
158 info->nr = nr_events; /* trusted copy */
160 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
161 ring->nr = nr_events; /* user copy */
162 ring->id = ctx->user_id;
163 ring->head = ring->tail = 0;
164 ring->magic = AIO_RING_MAGIC;
165 ring->compat_features = AIO_RING_COMPAT_FEATURES;
166 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
167 ring->header_length = sizeof(struct aio_ring);
168 kunmap_atomic(ring, KM_USER0);
170 return 0;
174 /* aio_ring_event: returns a pointer to the event at the given index from
175 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
177 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
178 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
179 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
181 #define aio_ring_event(info, nr, km) ({ \
182 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
183 struct io_event *__event; \
184 __event = kmap_atomic( \
185 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
186 __event += pos % AIO_EVENTS_PER_PAGE; \
187 __event; \
190 #define put_aio_ring_event(event, km) do { \
191 struct io_event *__event = (event); \
192 (void)__event; \
193 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
194 } while(0)
196 /* ioctx_alloc
197 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
199 static struct kioctx *ioctx_alloc(unsigned nr_events)
201 struct mm_struct *mm;
202 struct kioctx *ctx;
204 /* Prevent overflows */
205 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
206 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
207 pr_debug("ENOMEM: nr_events too high\n");
208 return ERR_PTR(-EINVAL);
211 if ((unsigned long)nr_events > aio_max_nr)
212 return ERR_PTR(-EAGAIN);
214 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
215 if (!ctx)
216 return ERR_PTR(-ENOMEM);
218 ctx->max_reqs = nr_events;
219 mm = ctx->mm = current->mm;
220 atomic_inc(&mm->mm_count);
222 atomic_set(&ctx->users, 1);
223 spin_lock_init(&ctx->ctx_lock);
224 spin_lock_init(&ctx->ring_info.ring_lock);
225 init_waitqueue_head(&ctx->wait);
227 INIT_LIST_HEAD(&ctx->active_reqs);
228 INIT_LIST_HEAD(&ctx->run_list);
229 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
231 if (aio_setup_ring(ctx) < 0)
232 goto out_freectx;
234 /* limit the number of system wide aios */
235 spin_lock(&aio_nr_lock);
236 if (aio_nr + ctx->max_reqs > aio_max_nr ||
237 aio_nr + ctx->max_reqs < aio_nr)
238 ctx->max_reqs = 0;
239 else
240 aio_nr += ctx->max_reqs;
241 spin_unlock(&aio_nr_lock);
242 if (ctx->max_reqs == 0)
243 goto out_cleanup;
245 /* now link into global list. kludge. FIXME */
246 write_lock(&mm->ioctx_list_lock);
247 ctx->next = mm->ioctx_list;
248 mm->ioctx_list = ctx;
249 write_unlock(&mm->ioctx_list_lock);
251 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
252 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
253 return ctx;
255 out_cleanup:
256 __put_ioctx(ctx);
257 return ERR_PTR(-EAGAIN);
259 out_freectx:
260 mmdrop(mm);
261 kmem_cache_free(kioctx_cachep, ctx);
262 ctx = ERR_PTR(-ENOMEM);
264 dprintk("aio: error allocating ioctx %p\n", ctx);
265 return ctx;
268 /* aio_cancel_all
269 * Cancels all outstanding aio requests on an aio context. Used
270 * when the processes owning a context have all exited to encourage
271 * the rapid destruction of the kioctx.
273 static void aio_cancel_all(struct kioctx *ctx)
275 int (*cancel)(struct kiocb *, struct io_event *);
276 struct io_event res;
277 spin_lock_irq(&ctx->ctx_lock);
278 ctx->dead = 1;
279 while (!list_empty(&ctx->active_reqs)) {
280 struct list_head *pos = ctx->active_reqs.next;
281 struct kiocb *iocb = list_kiocb(pos);
282 list_del_init(&iocb->ki_list);
283 cancel = iocb->ki_cancel;
284 kiocbSetCancelled(iocb);
285 if (cancel) {
286 iocb->ki_users++;
287 spin_unlock_irq(&ctx->ctx_lock);
288 cancel(iocb, &res);
289 spin_lock_irq(&ctx->ctx_lock);
292 spin_unlock_irq(&ctx->ctx_lock);
295 static void wait_for_all_aios(struct kioctx *ctx)
297 struct task_struct *tsk = current;
298 DECLARE_WAITQUEUE(wait, tsk);
300 spin_lock_irq(&ctx->ctx_lock);
301 if (!ctx->reqs_active)
302 goto out;
304 add_wait_queue(&ctx->wait, &wait);
305 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
306 while (ctx->reqs_active) {
307 spin_unlock_irq(&ctx->ctx_lock);
308 schedule();
309 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
310 spin_lock_irq(&ctx->ctx_lock);
312 __set_task_state(tsk, TASK_RUNNING);
313 remove_wait_queue(&ctx->wait, &wait);
315 out:
316 spin_unlock_irq(&ctx->ctx_lock);
319 /* wait_on_sync_kiocb:
320 * Waits on the given sync kiocb to complete.
322 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
324 while (iocb->ki_users) {
325 set_current_state(TASK_UNINTERRUPTIBLE);
326 if (!iocb->ki_users)
327 break;
328 schedule();
330 __set_current_state(TASK_RUNNING);
331 return iocb->ki_user_data;
334 /* exit_aio: called when the last user of mm goes away. At this point,
335 * there is no way for any new requests to be submited or any of the
336 * io_* syscalls to be called on the context. However, there may be
337 * outstanding requests which hold references to the context; as they
338 * go away, they will call put_ioctx and release any pinned memory
339 * associated with the request (held via struct page * references).
341 void fastcall exit_aio(struct mm_struct *mm)
343 struct kioctx *ctx = mm->ioctx_list;
344 mm->ioctx_list = NULL;
345 while (ctx) {
346 struct kioctx *next = ctx->next;
347 ctx->next = NULL;
348 aio_cancel_all(ctx);
350 wait_for_all_aios(ctx);
352 * this is an overkill, but ensures we don't leave
353 * the ctx on the aio_wq
355 flush_workqueue(aio_wq);
357 if (1 != atomic_read(&ctx->users))
358 printk(KERN_DEBUG
359 "exit_aio:ioctx still alive: %d %d %d\n",
360 atomic_read(&ctx->users), ctx->dead,
361 ctx->reqs_active);
362 put_ioctx(ctx);
363 ctx = next;
367 /* __put_ioctx
368 * Called when the last user of an aio context has gone away,
369 * and the struct needs to be freed.
371 void fastcall __put_ioctx(struct kioctx *ctx)
373 unsigned nr_events = ctx->max_reqs;
375 BUG_ON(ctx->reqs_active);
377 cancel_delayed_work(&ctx->wq);
378 flush_workqueue(aio_wq);
379 aio_free_ring(ctx);
380 mmdrop(ctx->mm);
381 ctx->mm = NULL;
382 pr_debug("__put_ioctx: freeing %p\n", ctx);
383 kmem_cache_free(kioctx_cachep, ctx);
385 if (nr_events) {
386 spin_lock(&aio_nr_lock);
387 BUG_ON(aio_nr - nr_events > aio_nr);
388 aio_nr -= nr_events;
389 spin_unlock(&aio_nr_lock);
393 /* aio_get_req
394 * Allocate a slot for an aio request. Increments the users count
395 * of the kioctx so that the kioctx stays around until all requests are
396 * complete. Returns NULL if no requests are free.
398 * Returns with kiocb->users set to 2. The io submit code path holds
399 * an extra reference while submitting the i/o.
400 * This prevents races between the aio code path referencing the
401 * req (after submitting it) and aio_complete() freeing the req.
403 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
404 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
406 struct kiocb *req = NULL;
407 struct aio_ring *ring;
408 int okay = 0;
410 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
411 if (unlikely(!req))
412 return NULL;
414 req->ki_flags = 0;
415 req->ki_users = 2;
416 req->ki_key = 0;
417 req->ki_ctx = ctx;
418 req->ki_cancel = NULL;
419 req->ki_retry = NULL;
420 req->ki_dtor = NULL;
421 req->private = NULL;
422 req->ki_iovec = NULL;
423 INIT_LIST_HEAD(&req->ki_run_list);
425 /* Check if the completion queue has enough free space to
426 * accept an event from this io.
428 spin_lock_irq(&ctx->ctx_lock);
429 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
430 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
431 list_add(&req->ki_list, &ctx->active_reqs);
432 ctx->reqs_active++;
433 okay = 1;
435 kunmap_atomic(ring, KM_USER0);
436 spin_unlock_irq(&ctx->ctx_lock);
438 if (!okay) {
439 kmem_cache_free(kiocb_cachep, req);
440 req = NULL;
443 return req;
446 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
448 struct kiocb *req;
449 /* Handle a potential starvation case -- should be exceedingly rare as
450 * requests will be stuck on fput_head only if the aio_fput_routine is
451 * delayed and the requests were the last user of the struct file.
453 req = __aio_get_req(ctx);
454 if (unlikely(NULL == req)) {
455 aio_fput_routine(NULL);
456 req = __aio_get_req(ctx);
458 return req;
461 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
463 assert_spin_locked(&ctx->ctx_lock);
465 if (req->ki_dtor)
466 req->ki_dtor(req);
467 if (req->ki_iovec != &req->ki_inline_vec)
468 kfree(req->ki_iovec);
469 kmem_cache_free(kiocb_cachep, req);
470 ctx->reqs_active--;
472 if (unlikely(!ctx->reqs_active && ctx->dead))
473 wake_up(&ctx->wait);
476 static void aio_fput_routine(struct work_struct *data)
478 spin_lock_irq(&fput_lock);
479 while (likely(!list_empty(&fput_head))) {
480 struct kiocb *req = list_kiocb(fput_head.next);
481 struct kioctx *ctx = req->ki_ctx;
483 list_del(&req->ki_list);
484 spin_unlock_irq(&fput_lock);
486 /* Complete the fput */
487 __fput(req->ki_filp);
489 /* Link the iocb into the context's free list */
490 spin_lock_irq(&ctx->ctx_lock);
491 really_put_req(ctx, req);
492 spin_unlock_irq(&ctx->ctx_lock);
494 put_ioctx(ctx);
495 spin_lock_irq(&fput_lock);
497 spin_unlock_irq(&fput_lock);
500 /* __aio_put_req
501 * Returns true if this put was the last user of the request.
503 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
505 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
506 req, atomic_read(&req->ki_filp->f_count));
508 assert_spin_locked(&ctx->ctx_lock);
510 req->ki_users --;
511 BUG_ON(req->ki_users < 0);
512 if (likely(req->ki_users))
513 return 0;
514 list_del(&req->ki_list); /* remove from active_reqs */
515 req->ki_cancel = NULL;
516 req->ki_retry = NULL;
518 /* Must be done under the lock to serialise against cancellation.
519 * Call this aio_fput as it duplicates fput via the fput_work.
521 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
522 get_ioctx(ctx);
523 spin_lock(&fput_lock);
524 list_add(&req->ki_list, &fput_head);
525 spin_unlock(&fput_lock);
526 queue_work(aio_wq, &fput_work);
527 } else
528 really_put_req(ctx, req);
529 return 1;
532 /* aio_put_req
533 * Returns true if this put was the last user of the kiocb,
534 * false if the request is still in use.
536 int fastcall aio_put_req(struct kiocb *req)
538 struct kioctx *ctx = req->ki_ctx;
539 int ret;
540 spin_lock_irq(&ctx->ctx_lock);
541 ret = __aio_put_req(ctx, req);
542 spin_unlock_irq(&ctx->ctx_lock);
543 return ret;
546 /* Lookup an ioctx id. ioctx_list is lockless for reads.
547 * FIXME: this is O(n) and is only suitable for development.
549 struct kioctx *lookup_ioctx(unsigned long ctx_id)
551 struct kioctx *ioctx;
552 struct mm_struct *mm;
554 mm = current->mm;
555 read_lock(&mm->ioctx_list_lock);
556 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
557 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
558 get_ioctx(ioctx);
559 break;
561 read_unlock(&mm->ioctx_list_lock);
563 return ioctx;
567 * use_mm
568 * Makes the calling kernel thread take on the specified
569 * mm context.
570 * Called by the retry thread execute retries within the
571 * iocb issuer's mm context, so that copy_from/to_user
572 * operations work seamlessly for aio.
573 * (Note: this routine is intended to be called only
574 * from a kernel thread context)
576 static void use_mm(struct mm_struct *mm)
578 struct mm_struct *active_mm;
579 struct task_struct *tsk = current;
581 task_lock(tsk);
582 tsk->flags |= PF_BORROWED_MM;
583 active_mm = tsk->active_mm;
584 atomic_inc(&mm->mm_count);
585 tsk->mm = mm;
586 tsk->active_mm = mm;
588 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
589 * it won't work. Update it accordingly if you change it here
591 switch_mm(active_mm, mm, tsk);
592 task_unlock(tsk);
594 mmdrop(active_mm);
598 * unuse_mm
599 * Reverses the effect of use_mm, i.e. releases the
600 * specified mm context which was earlier taken on
601 * by the calling kernel thread
602 * (Note: this routine is intended to be called only
603 * from a kernel thread context)
605 static void unuse_mm(struct mm_struct *mm)
607 struct task_struct *tsk = current;
609 task_lock(tsk);
610 tsk->flags &= ~PF_BORROWED_MM;
611 tsk->mm = NULL;
612 /* active_mm is still 'mm' */
613 enter_lazy_tlb(mm, tsk);
614 task_unlock(tsk);
618 * Queue up a kiocb to be retried. Assumes that the kiocb
619 * has already been marked as kicked, and places it on
620 * the retry run list for the corresponding ioctx, if it
621 * isn't already queued. Returns 1 if it actually queued
622 * the kiocb (to tell the caller to activate the work
623 * queue to process it), or 0, if it found that it was
624 * already queued.
626 static inline int __queue_kicked_iocb(struct kiocb *iocb)
628 struct kioctx *ctx = iocb->ki_ctx;
630 assert_spin_locked(&ctx->ctx_lock);
632 if (list_empty(&iocb->ki_run_list)) {
633 list_add_tail(&iocb->ki_run_list,
634 &ctx->run_list);
635 return 1;
637 return 0;
640 /* aio_run_iocb
641 * This is the core aio execution routine. It is
642 * invoked both for initial i/o submission and
643 * subsequent retries via the aio_kick_handler.
644 * Expects to be invoked with iocb->ki_ctx->lock
645 * already held. The lock is released and reacquired
646 * as needed during processing.
648 * Calls the iocb retry method (already setup for the
649 * iocb on initial submission) for operation specific
650 * handling, but takes care of most of common retry
651 * execution details for a given iocb. The retry method
652 * needs to be non-blocking as far as possible, to avoid
653 * holding up other iocbs waiting to be serviced by the
654 * retry kernel thread.
656 * The trickier parts in this code have to do with
657 * ensuring that only one retry instance is in progress
658 * for a given iocb at any time. Providing that guarantee
659 * simplifies the coding of individual aio operations as
660 * it avoids various potential races.
662 static ssize_t aio_run_iocb(struct kiocb *iocb)
664 struct kioctx *ctx = iocb->ki_ctx;
665 ssize_t (*retry)(struct kiocb *);
666 ssize_t ret;
668 if (!(retry = iocb->ki_retry)) {
669 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
670 return 0;
674 * We don't want the next retry iteration for this
675 * operation to start until this one has returned and
676 * updated the iocb state. However, wait_queue functions
677 * can trigger a kick_iocb from interrupt context in the
678 * meantime, indicating that data is available for the next
679 * iteration. We want to remember that and enable the
680 * next retry iteration _after_ we are through with
681 * this one.
683 * So, in order to be able to register a "kick", but
684 * prevent it from being queued now, we clear the kick
685 * flag, but make the kick code *think* that the iocb is
686 * still on the run list until we are actually done.
687 * When we are done with this iteration, we check if
688 * the iocb was kicked in the meantime and if so, queue
689 * it up afresh.
692 kiocbClearKicked(iocb);
695 * This is so that aio_complete knows it doesn't need to
696 * pull the iocb off the run list (We can't just call
697 * INIT_LIST_HEAD because we don't want a kick_iocb to
698 * queue this on the run list yet)
700 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
701 spin_unlock_irq(&ctx->ctx_lock);
703 /* Quit retrying if the i/o has been cancelled */
704 if (kiocbIsCancelled(iocb)) {
705 ret = -EINTR;
706 aio_complete(iocb, ret, 0);
707 /* must not access the iocb after this */
708 goto out;
712 * Now we are all set to call the retry method in async
713 * context. By setting this thread's io_wait context
714 * to point to the wait queue entry inside the currently
715 * running iocb for the duration of the retry, we ensure
716 * that async notification wakeups are queued by the
717 * operation instead of blocking waits, and when notified,
718 * cause the iocb to be kicked for continuation (through
719 * the aio_wake_function callback).
721 BUG_ON(current->io_wait != NULL);
722 current->io_wait = &iocb->ki_wait;
723 ret = retry(iocb);
724 current->io_wait = NULL;
726 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
727 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
728 aio_complete(iocb, ret, 0);
730 out:
731 spin_lock_irq(&ctx->ctx_lock);
733 if (-EIOCBRETRY == ret) {
735 * OK, now that we are done with this iteration
736 * and know that there is more left to go,
737 * this is where we let go so that a subsequent
738 * "kick" can start the next iteration
741 /* will make __queue_kicked_iocb succeed from here on */
742 INIT_LIST_HEAD(&iocb->ki_run_list);
743 /* we must queue the next iteration ourselves, if it
744 * has already been kicked */
745 if (kiocbIsKicked(iocb)) {
746 __queue_kicked_iocb(iocb);
749 * __queue_kicked_iocb will always return 1 here, because
750 * iocb->ki_run_list is empty at this point so it should
751 * be safe to unconditionally queue the context into the
752 * work queue.
754 aio_queue_work(ctx);
757 return ret;
761 * __aio_run_iocbs:
762 * Process all pending retries queued on the ioctx
763 * run list.
764 * Assumes it is operating within the aio issuer's mm
765 * context.
767 static int __aio_run_iocbs(struct kioctx *ctx)
769 struct kiocb *iocb;
770 struct list_head run_list;
772 assert_spin_locked(&ctx->ctx_lock);
774 list_replace_init(&ctx->run_list, &run_list);
775 while (!list_empty(&run_list)) {
776 iocb = list_entry(run_list.next, struct kiocb,
777 ki_run_list);
778 list_del(&iocb->ki_run_list);
780 * Hold an extra reference while retrying i/o.
782 iocb->ki_users++; /* grab extra reference */
783 aio_run_iocb(iocb);
784 __aio_put_req(ctx, iocb);
786 if (!list_empty(&ctx->run_list))
787 return 1;
788 return 0;
791 static void aio_queue_work(struct kioctx * ctx)
793 unsigned long timeout;
795 * if someone is waiting, get the work started right
796 * away, otherwise, use a longer delay
798 smp_mb();
799 if (waitqueue_active(&ctx->wait))
800 timeout = 1;
801 else
802 timeout = HZ/10;
803 queue_delayed_work(aio_wq, &ctx->wq, timeout);
808 * aio_run_iocbs:
809 * Process all pending retries queued on the ioctx
810 * run list.
811 * Assumes it is operating within the aio issuer's mm
812 * context.
814 static inline void aio_run_iocbs(struct kioctx *ctx)
816 int requeue;
818 spin_lock_irq(&ctx->ctx_lock);
820 requeue = __aio_run_iocbs(ctx);
821 spin_unlock_irq(&ctx->ctx_lock);
822 if (requeue)
823 aio_queue_work(ctx);
827 * just like aio_run_iocbs, but keeps running them until
828 * the list stays empty
830 static inline void aio_run_all_iocbs(struct kioctx *ctx)
832 spin_lock_irq(&ctx->ctx_lock);
833 while (__aio_run_iocbs(ctx))
835 spin_unlock_irq(&ctx->ctx_lock);
839 * aio_kick_handler:
840 * Work queue handler triggered to process pending
841 * retries on an ioctx. Takes on the aio issuer's
842 * mm context before running the iocbs, so that
843 * copy_xxx_user operates on the issuer's address
844 * space.
845 * Run on aiod's context.
847 static void aio_kick_handler(struct work_struct *work)
849 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
850 mm_segment_t oldfs = get_fs();
851 struct mm_struct *mm;
852 int requeue;
854 set_fs(USER_DS);
855 use_mm(ctx->mm);
856 spin_lock_irq(&ctx->ctx_lock);
857 requeue =__aio_run_iocbs(ctx);
858 mm = ctx->mm;
859 spin_unlock_irq(&ctx->ctx_lock);
860 unuse_mm(mm);
861 set_fs(oldfs);
863 * we're in a worker thread already, don't use queue_delayed_work,
865 if (requeue)
866 queue_delayed_work(aio_wq, &ctx->wq, 0);
871 * Called by kick_iocb to queue the kiocb for retry
872 * and if required activate the aio work queue to process
873 * it
875 static void try_queue_kicked_iocb(struct kiocb *iocb)
877 struct kioctx *ctx = iocb->ki_ctx;
878 unsigned long flags;
879 int run = 0;
881 /* We're supposed to be the only path putting the iocb back on the run
882 * list. If we find that the iocb is *back* on a wait queue already
883 * than retry has happened before we could queue the iocb. This also
884 * means that the retry could have completed and freed our iocb, no
885 * good. */
886 BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
888 spin_lock_irqsave(&ctx->ctx_lock, flags);
889 /* set this inside the lock so that we can't race with aio_run_iocb()
890 * testing it and putting the iocb on the run list under the lock */
891 if (!kiocbTryKick(iocb))
892 run = __queue_kicked_iocb(iocb);
893 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
894 if (run)
895 aio_queue_work(ctx);
899 * kick_iocb:
900 * Called typically from a wait queue callback context
901 * (aio_wake_function) to trigger a retry of the iocb.
902 * The retry is usually executed by aio workqueue
903 * threads (See aio_kick_handler).
905 void fastcall kick_iocb(struct kiocb *iocb)
907 /* sync iocbs are easy: they can only ever be executing from a
908 * single context. */
909 if (is_sync_kiocb(iocb)) {
910 kiocbSetKicked(iocb);
911 wake_up_process(iocb->ki_obj.tsk);
912 return;
915 try_queue_kicked_iocb(iocb);
917 EXPORT_SYMBOL(kick_iocb);
919 /* aio_complete
920 * Called when the io request on the given iocb is complete.
921 * Returns true if this is the last user of the request. The
922 * only other user of the request can be the cancellation code.
924 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
926 struct kioctx *ctx = iocb->ki_ctx;
927 struct aio_ring_info *info;
928 struct aio_ring *ring;
929 struct io_event *event;
930 unsigned long flags;
931 unsigned long tail;
932 int ret;
935 * Special case handling for sync iocbs:
936 * - events go directly into the iocb for fast handling
937 * - the sync task with the iocb in its stack holds the single iocb
938 * ref, no other paths have a way to get another ref
939 * - the sync task helpfully left a reference to itself in the iocb
941 if (is_sync_kiocb(iocb)) {
942 BUG_ON(iocb->ki_users != 1);
943 iocb->ki_user_data = res;
944 iocb->ki_users = 0;
945 wake_up_process(iocb->ki_obj.tsk);
946 return 1;
949 info = &ctx->ring_info;
951 /* add a completion event to the ring buffer.
952 * must be done holding ctx->ctx_lock to prevent
953 * other code from messing with the tail
954 * pointer since we might be called from irq
955 * context.
957 spin_lock_irqsave(&ctx->ctx_lock, flags);
959 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
960 list_del_init(&iocb->ki_run_list);
963 * cancelled requests don't get events, userland was given one
964 * when the event got cancelled.
966 if (kiocbIsCancelled(iocb))
967 goto put_rq;
969 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
971 tail = info->tail;
972 event = aio_ring_event(info, tail, KM_IRQ0);
973 if (++tail >= info->nr)
974 tail = 0;
976 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
977 event->data = iocb->ki_user_data;
978 event->res = res;
979 event->res2 = res2;
981 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
982 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
983 res, res2);
985 /* after flagging the request as done, we
986 * must never even look at it again
988 smp_wmb(); /* make event visible before updating tail */
990 info->tail = tail;
991 ring->tail = tail;
993 put_aio_ring_event(event, KM_IRQ0);
994 kunmap_atomic(ring, KM_IRQ1);
996 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
997 put_rq:
998 /* everything turned out well, dispose of the aiocb. */
999 ret = __aio_put_req(ctx, iocb);
1001 if (waitqueue_active(&ctx->wait))
1002 wake_up(&ctx->wait);
1004 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1005 return ret;
1008 /* aio_read_evt
1009 * Pull an event off of the ioctx's event ring. Returns the number of
1010 * events fetched (0 or 1 ;-)
1011 * FIXME: make this use cmpxchg.
1012 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1014 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1016 struct aio_ring_info *info = &ioctx->ring_info;
1017 struct aio_ring *ring;
1018 unsigned long head;
1019 int ret = 0;
1021 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1022 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1023 (unsigned long)ring->head, (unsigned long)ring->tail,
1024 (unsigned long)ring->nr);
1026 if (ring->head == ring->tail)
1027 goto out;
1029 spin_lock(&info->ring_lock);
1031 head = ring->head % info->nr;
1032 if (head != ring->tail) {
1033 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1034 *ent = *evp;
1035 head = (head + 1) % info->nr;
1036 smp_mb(); /* finish reading the event before updatng the head */
1037 ring->head = head;
1038 ret = 1;
1039 put_aio_ring_event(evp, KM_USER1);
1041 spin_unlock(&info->ring_lock);
1043 out:
1044 kunmap_atomic(ring, KM_USER0);
1045 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1046 (unsigned long)ring->head, (unsigned long)ring->tail);
1047 return ret;
1050 struct aio_timeout {
1051 struct timer_list timer;
1052 int timed_out;
1053 struct task_struct *p;
1056 static void timeout_func(unsigned long data)
1058 struct aio_timeout *to = (struct aio_timeout *)data;
1060 to->timed_out = 1;
1061 wake_up_process(to->p);
1064 static inline void init_timeout(struct aio_timeout *to)
1066 init_timer(&to->timer);
1067 to->timer.data = (unsigned long)to;
1068 to->timer.function = timeout_func;
1069 to->timed_out = 0;
1070 to->p = current;
1073 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1074 const struct timespec *ts)
1076 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1077 if (time_after(to->timer.expires, jiffies))
1078 add_timer(&to->timer);
1079 else
1080 to->timed_out = 1;
1083 static inline void clear_timeout(struct aio_timeout *to)
1085 del_singleshot_timer_sync(&to->timer);
1088 static int read_events(struct kioctx *ctx,
1089 long min_nr, long nr,
1090 struct io_event __user *event,
1091 struct timespec __user *timeout)
1093 long start_jiffies = jiffies;
1094 struct task_struct *tsk = current;
1095 DECLARE_WAITQUEUE(wait, tsk);
1096 int ret;
1097 int i = 0;
1098 struct io_event ent;
1099 struct aio_timeout to;
1100 int retry = 0;
1102 /* needed to zero any padding within an entry (there shouldn't be
1103 * any, but C is fun!
1105 memset(&ent, 0, sizeof(ent));
1106 retry:
1107 ret = 0;
1108 while (likely(i < nr)) {
1109 ret = aio_read_evt(ctx, &ent);
1110 if (unlikely(ret <= 0))
1111 break;
1113 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1114 ent.data, ent.obj, ent.res, ent.res2);
1116 /* Could we split the check in two? */
1117 ret = -EFAULT;
1118 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1119 dprintk("aio: lost an event due to EFAULT.\n");
1120 break;
1122 ret = 0;
1124 /* Good, event copied to userland, update counts. */
1125 event ++;
1126 i ++;
1129 if (min_nr <= i)
1130 return i;
1131 if (ret)
1132 return ret;
1134 /* End fast path */
1136 /* racey check, but it gets redone */
1137 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1138 retry = 1;
1139 aio_run_all_iocbs(ctx);
1140 goto retry;
1143 init_timeout(&to);
1144 if (timeout) {
1145 struct timespec ts;
1146 ret = -EFAULT;
1147 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1148 goto out;
1150 set_timeout(start_jiffies, &to, &ts);
1153 while (likely(i < nr)) {
1154 add_wait_queue_exclusive(&ctx->wait, &wait);
1155 do {
1156 set_task_state(tsk, TASK_INTERRUPTIBLE);
1157 ret = aio_read_evt(ctx, &ent);
1158 if (ret)
1159 break;
1160 if (min_nr <= i)
1161 break;
1162 ret = 0;
1163 if (to.timed_out) /* Only check after read evt */
1164 break;
1165 schedule();
1166 if (signal_pending(tsk)) {
1167 ret = -EINTR;
1168 break;
1170 /*ret = aio_read_evt(ctx, &ent);*/
1171 } while (1) ;
1173 set_task_state(tsk, TASK_RUNNING);
1174 remove_wait_queue(&ctx->wait, &wait);
1176 if (unlikely(ret <= 0))
1177 break;
1179 ret = -EFAULT;
1180 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1181 dprintk("aio: lost an event due to EFAULT.\n");
1182 break;
1185 /* Good, event copied to userland, update counts. */
1186 event ++;
1187 i ++;
1190 if (timeout)
1191 clear_timeout(&to);
1192 out:
1193 return i ? i : ret;
1196 /* Take an ioctx and remove it from the list of ioctx's. Protects
1197 * against races with itself via ->dead.
1199 static void io_destroy(struct kioctx *ioctx)
1201 struct mm_struct *mm = current->mm;
1202 struct kioctx **tmp;
1203 int was_dead;
1205 /* delete the entry from the list is someone else hasn't already */
1206 write_lock(&mm->ioctx_list_lock);
1207 was_dead = ioctx->dead;
1208 ioctx->dead = 1;
1209 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1210 tmp = &(*tmp)->next)
1212 if (*tmp)
1213 *tmp = ioctx->next;
1214 write_unlock(&mm->ioctx_list_lock);
1216 dprintk("aio_release(%p)\n", ioctx);
1217 if (likely(!was_dead))
1218 put_ioctx(ioctx); /* twice for the list */
1220 aio_cancel_all(ioctx);
1221 wait_for_all_aios(ioctx);
1222 put_ioctx(ioctx); /* once for the lookup */
1225 /* sys_io_setup:
1226 * Create an aio_context capable of receiving at least nr_events.
1227 * ctxp must not point to an aio_context that already exists, and
1228 * must be initialized to 0 prior to the call. On successful
1229 * creation of the aio_context, *ctxp is filled in with the resulting
1230 * handle. May fail with -EINVAL if *ctxp is not initialized,
1231 * if the specified nr_events exceeds internal limits. May fail
1232 * with -EAGAIN if the specified nr_events exceeds the user's limit
1233 * of available events. May fail with -ENOMEM if insufficient kernel
1234 * resources are available. May fail with -EFAULT if an invalid
1235 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1236 * implemented.
1238 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1240 struct kioctx *ioctx = NULL;
1241 unsigned long ctx;
1242 long ret;
1244 ret = get_user(ctx, ctxp);
1245 if (unlikely(ret))
1246 goto out;
1248 ret = -EINVAL;
1249 if (unlikely(ctx || nr_events == 0)) {
1250 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1251 ctx, nr_events);
1252 goto out;
1255 ioctx = ioctx_alloc(nr_events);
1256 ret = PTR_ERR(ioctx);
1257 if (!IS_ERR(ioctx)) {
1258 ret = put_user(ioctx->user_id, ctxp);
1259 if (!ret)
1260 return 0;
1262 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1263 io_destroy(ioctx);
1266 out:
1267 return ret;
1270 /* sys_io_destroy:
1271 * Destroy the aio_context specified. May cancel any outstanding
1272 * AIOs and block on completion. Will fail with -ENOSYS if not
1273 * implemented. May fail with -EFAULT if the context pointed to
1274 * is invalid.
1276 asmlinkage long sys_io_destroy(aio_context_t ctx)
1278 struct kioctx *ioctx = lookup_ioctx(ctx);
1279 if (likely(NULL != ioctx)) {
1280 io_destroy(ioctx);
1281 return 0;
1283 pr_debug("EINVAL: io_destroy: invalid context id\n");
1284 return -EINVAL;
1287 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1289 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1291 BUG_ON(ret <= 0);
1293 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1294 ssize_t this = min((ssize_t)iov->iov_len, ret);
1295 iov->iov_base += this;
1296 iov->iov_len -= this;
1297 iocb->ki_left -= this;
1298 ret -= this;
1299 if (iov->iov_len == 0) {
1300 iocb->ki_cur_seg++;
1301 iov++;
1305 /* the caller should not have done more io than what fit in
1306 * the remaining iovecs */
1307 BUG_ON(ret > 0 && iocb->ki_left == 0);
1310 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1312 struct file *file = iocb->ki_filp;
1313 struct address_space *mapping = file->f_mapping;
1314 struct inode *inode = mapping->host;
1315 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1316 unsigned long, loff_t);
1317 ssize_t ret = 0;
1318 unsigned short opcode;
1320 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1321 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1322 rw_op = file->f_op->aio_read;
1323 opcode = IOCB_CMD_PREADV;
1324 } else {
1325 rw_op = file->f_op->aio_write;
1326 opcode = IOCB_CMD_PWRITEV;
1329 do {
1330 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1331 iocb->ki_nr_segs - iocb->ki_cur_seg,
1332 iocb->ki_pos);
1333 if (ret > 0)
1334 aio_advance_iovec(iocb, ret);
1336 /* retry all partial writes. retry partial reads as long as its a
1337 * regular file. */
1338 } while (ret > 0 && iocb->ki_left > 0 &&
1339 (opcode == IOCB_CMD_PWRITEV ||
1340 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1342 /* This means we must have transferred all that we could */
1343 /* No need to retry anymore */
1344 if ((ret == 0) || (iocb->ki_left == 0))
1345 ret = iocb->ki_nbytes - iocb->ki_left;
1347 return ret;
1350 static ssize_t aio_fdsync(struct kiocb *iocb)
1352 struct file *file = iocb->ki_filp;
1353 ssize_t ret = -EINVAL;
1355 if (file->f_op->aio_fsync)
1356 ret = file->f_op->aio_fsync(iocb, 1);
1357 return ret;
1360 static ssize_t aio_fsync(struct kiocb *iocb)
1362 struct file *file = iocb->ki_filp;
1363 ssize_t ret = -EINVAL;
1365 if (file->f_op->aio_fsync)
1366 ret = file->f_op->aio_fsync(iocb, 0);
1367 return ret;
1370 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1372 ssize_t ret;
1374 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1375 kiocb->ki_nbytes, 1,
1376 &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1377 if (ret < 0)
1378 goto out;
1380 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1381 kiocb->ki_cur_seg = 0;
1382 /* ki_nbytes/left now reflect bytes instead of segs */
1383 kiocb->ki_nbytes = ret;
1384 kiocb->ki_left = ret;
1386 ret = 0;
1387 out:
1388 return ret;
1391 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1393 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1394 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1395 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1396 kiocb->ki_nr_segs = 1;
1397 kiocb->ki_cur_seg = 0;
1398 return 0;
1402 * aio_setup_iocb:
1403 * Performs the initial checks and aio retry method
1404 * setup for the kiocb at the time of io submission.
1406 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1408 struct file *file = kiocb->ki_filp;
1409 ssize_t ret = 0;
1411 switch (kiocb->ki_opcode) {
1412 case IOCB_CMD_PREAD:
1413 ret = -EBADF;
1414 if (unlikely(!(file->f_mode & FMODE_READ)))
1415 break;
1416 ret = -EFAULT;
1417 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1418 kiocb->ki_left)))
1419 break;
1420 ret = security_file_permission(file, MAY_READ);
1421 if (unlikely(ret))
1422 break;
1423 ret = aio_setup_single_vector(kiocb);
1424 if (ret)
1425 break;
1426 ret = -EINVAL;
1427 if (file->f_op->aio_read)
1428 kiocb->ki_retry = aio_rw_vect_retry;
1429 break;
1430 case IOCB_CMD_PWRITE:
1431 ret = -EBADF;
1432 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1433 break;
1434 ret = -EFAULT;
1435 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1436 kiocb->ki_left)))
1437 break;
1438 ret = security_file_permission(file, MAY_WRITE);
1439 if (unlikely(ret))
1440 break;
1441 ret = aio_setup_single_vector(kiocb);
1442 if (ret)
1443 break;
1444 ret = -EINVAL;
1445 if (file->f_op->aio_write)
1446 kiocb->ki_retry = aio_rw_vect_retry;
1447 break;
1448 case IOCB_CMD_PREADV:
1449 ret = -EBADF;
1450 if (unlikely(!(file->f_mode & FMODE_READ)))
1451 break;
1452 ret = security_file_permission(file, MAY_READ);
1453 if (unlikely(ret))
1454 break;
1455 ret = aio_setup_vectored_rw(READ, kiocb);
1456 if (ret)
1457 break;
1458 ret = -EINVAL;
1459 if (file->f_op->aio_read)
1460 kiocb->ki_retry = aio_rw_vect_retry;
1461 break;
1462 case IOCB_CMD_PWRITEV:
1463 ret = -EBADF;
1464 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1465 break;
1466 ret = security_file_permission(file, MAY_WRITE);
1467 if (unlikely(ret))
1468 break;
1469 ret = aio_setup_vectored_rw(WRITE, kiocb);
1470 if (ret)
1471 break;
1472 ret = -EINVAL;
1473 if (file->f_op->aio_write)
1474 kiocb->ki_retry = aio_rw_vect_retry;
1475 break;
1476 case IOCB_CMD_FDSYNC:
1477 ret = -EINVAL;
1478 if (file->f_op->aio_fsync)
1479 kiocb->ki_retry = aio_fdsync;
1480 break;
1481 case IOCB_CMD_FSYNC:
1482 ret = -EINVAL;
1483 if (file->f_op->aio_fsync)
1484 kiocb->ki_retry = aio_fsync;
1485 break;
1486 default:
1487 dprintk("EINVAL: io_submit: no operation provided\n");
1488 ret = -EINVAL;
1491 if (!kiocb->ki_retry)
1492 return ret;
1494 return 0;
1498 * aio_wake_function:
1499 * wait queue callback function for aio notification,
1500 * Simply triggers a retry of the operation via kick_iocb.
1502 * This callback is specified in the wait queue entry in
1503 * a kiocb (current->io_wait points to this wait queue
1504 * entry when an aio operation executes; it is used
1505 * instead of a synchronous wait when an i/o blocking
1506 * condition is encountered during aio).
1508 * Note:
1509 * This routine is executed with the wait queue lock held.
1510 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1511 * the ioctx lock inside the wait queue lock. This is safe
1512 * because this callback isn't used for wait queues which
1513 * are nested inside ioctx lock (i.e. ctx->wait)
1515 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1516 int sync, void *key)
1518 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1520 list_del_init(&wait->task_list);
1521 kick_iocb(iocb);
1522 return 1;
1525 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1526 struct iocb *iocb)
1528 struct kiocb *req;
1529 struct file *file;
1530 ssize_t ret;
1532 /* enforce forwards compatibility on users */
1533 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1534 iocb->aio_reserved3)) {
1535 pr_debug("EINVAL: io_submit: reserve field set\n");
1536 return -EINVAL;
1539 /* prevent overflows */
1540 if (unlikely(
1541 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1542 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1543 ((ssize_t)iocb->aio_nbytes < 0)
1544 )) {
1545 pr_debug("EINVAL: io_submit: overflow check\n");
1546 return -EINVAL;
1549 file = fget(iocb->aio_fildes);
1550 if (unlikely(!file))
1551 return -EBADF;
1553 req = aio_get_req(ctx); /* returns with 2 references to req */
1554 if (unlikely(!req)) {
1555 fput(file);
1556 return -EAGAIN;
1559 req->ki_filp = file;
1560 ret = put_user(req->ki_key, &user_iocb->aio_key);
1561 if (unlikely(ret)) {
1562 dprintk("EFAULT: aio_key\n");
1563 goto out_put_req;
1566 req->ki_obj.user = user_iocb;
1567 req->ki_user_data = iocb->aio_data;
1568 req->ki_pos = iocb->aio_offset;
1570 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1571 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1572 req->ki_opcode = iocb->aio_lio_opcode;
1573 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1574 INIT_LIST_HEAD(&req->ki_wait.task_list);
1576 ret = aio_setup_iocb(req);
1578 if (ret)
1579 goto out_put_req;
1581 spin_lock_irq(&ctx->ctx_lock);
1582 aio_run_iocb(req);
1583 if (!list_empty(&ctx->run_list)) {
1584 /* drain the run list */
1585 while (__aio_run_iocbs(ctx))
1588 spin_unlock_irq(&ctx->ctx_lock);
1589 aio_put_req(req); /* drop extra ref to req */
1590 return 0;
1592 out_put_req:
1593 aio_put_req(req); /* drop extra ref to req */
1594 aio_put_req(req); /* drop i/o ref to req */
1595 return ret;
1598 /* sys_io_submit:
1599 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1600 * the number of iocbs queued. May return -EINVAL if the aio_context
1601 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1602 * *iocbpp[0] is not properly initialized, if the operation specified
1603 * is invalid for the file descriptor in the iocb. May fail with
1604 * -EFAULT if any of the data structures point to invalid data. May
1605 * fail with -EBADF if the file descriptor specified in the first
1606 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1607 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1608 * fail with -ENOSYS if not implemented.
1610 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1611 struct iocb __user * __user *iocbpp)
1613 struct kioctx *ctx;
1614 long ret = 0;
1615 int i;
1617 if (unlikely(nr < 0))
1618 return -EINVAL;
1620 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1621 return -EFAULT;
1623 ctx = lookup_ioctx(ctx_id);
1624 if (unlikely(!ctx)) {
1625 pr_debug("EINVAL: io_submit: invalid context id\n");
1626 return -EINVAL;
1630 * AKPM: should this return a partial result if some of the IOs were
1631 * successfully submitted?
1633 for (i=0; i<nr; i++) {
1634 struct iocb __user *user_iocb;
1635 struct iocb tmp;
1637 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1638 ret = -EFAULT;
1639 break;
1642 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1643 ret = -EFAULT;
1644 break;
1647 ret = io_submit_one(ctx, user_iocb, &tmp);
1648 if (ret)
1649 break;
1652 put_ioctx(ctx);
1653 return i ? i : ret;
1656 /* lookup_kiocb
1657 * Finds a given iocb for cancellation.
1659 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1660 u32 key)
1662 struct list_head *pos;
1664 assert_spin_locked(&ctx->ctx_lock);
1666 /* TODO: use a hash or array, this sucks. */
1667 list_for_each(pos, &ctx->active_reqs) {
1668 struct kiocb *kiocb = list_kiocb(pos);
1669 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1670 return kiocb;
1672 return NULL;
1675 /* sys_io_cancel:
1676 * Attempts to cancel an iocb previously passed to io_submit. If
1677 * the operation is successfully cancelled, the resulting event is
1678 * copied into the memory pointed to by result without being placed
1679 * into the completion queue and 0 is returned. May fail with
1680 * -EFAULT if any of the data structures pointed to are invalid.
1681 * May fail with -EINVAL if aio_context specified by ctx_id is
1682 * invalid. May fail with -EAGAIN if the iocb specified was not
1683 * cancelled. Will fail with -ENOSYS if not implemented.
1685 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1686 struct io_event __user *result)
1688 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1689 struct kioctx *ctx;
1690 struct kiocb *kiocb;
1691 u32 key;
1692 int ret;
1694 ret = get_user(key, &iocb->aio_key);
1695 if (unlikely(ret))
1696 return -EFAULT;
1698 ctx = lookup_ioctx(ctx_id);
1699 if (unlikely(!ctx))
1700 return -EINVAL;
1702 spin_lock_irq(&ctx->ctx_lock);
1703 ret = -EAGAIN;
1704 kiocb = lookup_kiocb(ctx, iocb, key);
1705 if (kiocb && kiocb->ki_cancel) {
1706 cancel = kiocb->ki_cancel;
1707 kiocb->ki_users ++;
1708 kiocbSetCancelled(kiocb);
1709 } else
1710 cancel = NULL;
1711 spin_unlock_irq(&ctx->ctx_lock);
1713 if (NULL != cancel) {
1714 struct io_event tmp;
1715 pr_debug("calling cancel\n");
1716 memset(&tmp, 0, sizeof(tmp));
1717 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1718 tmp.data = kiocb->ki_user_data;
1719 ret = cancel(kiocb, &tmp);
1720 if (!ret) {
1721 /* Cancellation succeeded -- copy the result
1722 * into the user's buffer.
1724 if (copy_to_user(result, &tmp, sizeof(tmp)))
1725 ret = -EFAULT;
1727 } else
1728 ret = -EINVAL;
1730 put_ioctx(ctx);
1732 return ret;
1735 /* io_getevents:
1736 * Attempts to read at least min_nr events and up to nr events from
1737 * the completion queue for the aio_context specified by ctx_id. May
1738 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1739 * if nr is out of range, if when is out of range. May fail with
1740 * -EFAULT if any of the memory specified to is invalid. May return
1741 * 0 or < min_nr if no events are available and the timeout specified
1742 * by when has elapsed, where when == NULL specifies an infinite
1743 * timeout. Note that the timeout pointed to by when is relative and
1744 * will be updated if not NULL and the operation blocks. Will fail
1745 * with -ENOSYS if not implemented.
1747 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1748 long min_nr,
1749 long nr,
1750 struct io_event __user *events,
1751 struct timespec __user *timeout)
1753 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1754 long ret = -EINVAL;
1756 if (likely(ioctx)) {
1757 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1758 ret = read_events(ioctx, min_nr, nr, events, timeout);
1759 put_ioctx(ioctx);
1762 return ret;
1765 __initcall(aio_setup);
1767 EXPORT_SYMBOL(aio_complete);
1768 EXPORT_SYMBOL(aio_put_req);
1769 EXPORT_SYMBOL(wait_on_sync_kiocb);