memcg: remove unnecessary return from void-returning mem_cgroup_del_lru_list()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blob1b44ad64f2817a591feb873bb5eecc41aeae5919
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
72 #else
73 #define do_swap_account (0)
74 #endif
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
87 * Statistics for memory cgroup.
89 enum mem_cgroup_stat_index {
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
104 MEM_CGROUP_STAT_NSTATS,
107 struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
112 * per-zone information in memory controller.
114 struct mem_cgroup_per_zone {
116 * spin_lock to protect the per cgroup LRU
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
132 struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
136 struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
145 struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
150 struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
154 struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
160 struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
175 struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
183 struct mem_cgroup_threshold_ary *spare;
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
209 * the counter to account for memory usage
211 struct res_counter res;
213 * the counter to account for mem+swap usage.
215 struct res_counter memsw;
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
220 struct mem_cgroup_lru_info info;
223 protect against reclaim related member.
225 spinlock_t reclaim_param_lock;
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
231 int last_scanned_child;
233 * Should the accounting and control be hierarchical, per subtree?
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
262 unsigned long move_charge_at_immigrate;
264 * percpu counter.
266 struct mem_cgroup_stat_cpu *stat;
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
275 /* Stuffs for move charges at task migration. */
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
280 enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 struct mm_struct *mm;
296 wait_queue_head_t waitq; /* a waitq for other context */
297 } mc = {
298 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
299 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
302 static bool move_anon(void)
304 return test_bit(MOVE_CHARGE_TYPE_ANON,
305 &mc.to->move_charge_at_immigrate);
308 static bool move_file(void)
310 return test_bit(MOVE_CHARGE_TYPE_FILE,
311 &mc.to->move_charge_at_immigrate);
315 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
316 * limit reclaim to prevent infinite loops, if they ever occur.
318 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
319 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
321 enum charge_type {
322 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
323 MEM_CGROUP_CHARGE_TYPE_MAPPED,
324 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
325 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
326 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
327 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
328 NR_CHARGE_TYPE,
331 /* only for here (for easy reading.) */
332 #define PCGF_CACHE (1UL << PCG_CACHE)
333 #define PCGF_USED (1UL << PCG_USED)
334 #define PCGF_LOCK (1UL << PCG_LOCK)
335 /* Not used, but added here for completeness */
336 #define PCGF_ACCT (1UL << PCG_ACCT)
338 /* for encoding cft->private value on file */
339 #define _MEM (0)
340 #define _MEMSWAP (1)
341 #define _OOM_TYPE (2)
342 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
343 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
344 #define MEMFILE_ATTR(val) ((val) & 0xffff)
345 /* Used for OOM nofiier */
346 #define OOM_CONTROL (0)
349 * Reclaim flags for mem_cgroup_hierarchical_reclaim
351 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
352 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
353 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
354 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
355 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
356 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
358 static void mem_cgroup_get(struct mem_cgroup *mem);
359 static void mem_cgroup_put(struct mem_cgroup *mem);
360 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
361 static void drain_all_stock_async(void);
363 static struct mem_cgroup_per_zone *
364 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
366 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
369 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
371 return &mem->css;
374 static struct mem_cgroup_per_zone *
375 page_cgroup_zoneinfo(struct page_cgroup *pc)
377 struct mem_cgroup *mem = pc->mem_cgroup;
378 int nid = page_cgroup_nid(pc);
379 int zid = page_cgroup_zid(pc);
381 if (!mem)
382 return NULL;
384 return mem_cgroup_zoneinfo(mem, nid, zid);
387 static struct mem_cgroup_tree_per_zone *
388 soft_limit_tree_node_zone(int nid, int zid)
390 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
393 static struct mem_cgroup_tree_per_zone *
394 soft_limit_tree_from_page(struct page *page)
396 int nid = page_to_nid(page);
397 int zid = page_zonenum(page);
399 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
402 static void
403 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
404 struct mem_cgroup_per_zone *mz,
405 struct mem_cgroup_tree_per_zone *mctz,
406 unsigned long long new_usage_in_excess)
408 struct rb_node **p = &mctz->rb_root.rb_node;
409 struct rb_node *parent = NULL;
410 struct mem_cgroup_per_zone *mz_node;
412 if (mz->on_tree)
413 return;
415 mz->usage_in_excess = new_usage_in_excess;
416 if (!mz->usage_in_excess)
417 return;
418 while (*p) {
419 parent = *p;
420 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
421 tree_node);
422 if (mz->usage_in_excess < mz_node->usage_in_excess)
423 p = &(*p)->rb_left;
425 * We can't avoid mem cgroups that are over their soft
426 * limit by the same amount
428 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
429 p = &(*p)->rb_right;
431 rb_link_node(&mz->tree_node, parent, p);
432 rb_insert_color(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = true;
436 static void
437 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
438 struct mem_cgroup_per_zone *mz,
439 struct mem_cgroup_tree_per_zone *mctz)
441 if (!mz->on_tree)
442 return;
443 rb_erase(&mz->tree_node, &mctz->rb_root);
444 mz->on_tree = false;
447 static void
448 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
449 struct mem_cgroup_per_zone *mz,
450 struct mem_cgroup_tree_per_zone *mctz)
452 spin_lock(&mctz->lock);
453 __mem_cgroup_remove_exceeded(mem, mz, mctz);
454 spin_unlock(&mctz->lock);
458 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
460 unsigned long long excess;
461 struct mem_cgroup_per_zone *mz;
462 struct mem_cgroup_tree_per_zone *mctz;
463 int nid = page_to_nid(page);
464 int zid = page_zonenum(page);
465 mctz = soft_limit_tree_from_page(page);
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; mem; mem = parent_mem_cgroup(mem)) {
472 mz = mem_cgroup_zoneinfo(mem, nid, zid);
473 excess = res_counter_soft_limit_excess(&mem->res);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess || mz->on_tree) {
479 spin_lock(&mctz->lock);
480 /* if on-tree, remove it */
481 if (mz->on_tree)
482 __mem_cgroup_remove_exceeded(mem, mz, mctz);
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
487 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
488 spin_unlock(&mctz->lock);
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
495 int node, zone;
496 struct mem_cgroup_per_zone *mz;
497 struct mem_cgroup_tree_per_zone *mctz;
499 for_each_node_state(node, N_POSSIBLE) {
500 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
501 mz = mem_cgroup_zoneinfo(mem, node, zone);
502 mctz = soft_limit_tree_node_zone(node, zone);
503 mem_cgroup_remove_exceeded(mem, mz, mctz);
508 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
510 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
513 static struct mem_cgroup_per_zone *
514 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
516 struct rb_node *rightmost = NULL;
517 struct mem_cgroup_per_zone *mz;
519 retry:
520 mz = NULL;
521 rightmost = rb_last(&mctz->rb_root);
522 if (!rightmost)
523 goto done; /* Nothing to reclaim from */
525 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
527 * Remove the node now but someone else can add it back,
528 * we will to add it back at the end of reclaim to its correct
529 * position in the tree.
531 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
532 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
533 !css_tryget(&mz->mem->css))
534 goto retry;
535 done:
536 return mz;
539 static struct mem_cgroup_per_zone *
540 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
542 struct mem_cgroup_per_zone *mz;
544 spin_lock(&mctz->lock);
545 mz = __mem_cgroup_largest_soft_limit_node(mctz);
546 spin_unlock(&mctz->lock);
547 return mz;
551 * Implementation Note: reading percpu statistics for memcg.
553 * Both of vmstat[] and percpu_counter has threshold and do periodic
554 * synchronization to implement "quick" read. There are trade-off between
555 * reading cost and precision of value. Then, we may have a chance to implement
556 * a periodic synchronizion of counter in memcg's counter.
558 * But this _read() function is used for user interface now. The user accounts
559 * memory usage by memory cgroup and he _always_ requires exact value because
560 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
561 * have to visit all online cpus and make sum. So, for now, unnecessary
562 * synchronization is not implemented. (just implemented for cpu hotplug)
564 * If there are kernel internal actions which can make use of some not-exact
565 * value, and reading all cpu value can be performance bottleneck in some
566 * common workload, threashold and synchonization as vmstat[] should be
567 * implemented.
569 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
570 enum mem_cgroup_stat_index idx)
572 int cpu;
573 s64 val = 0;
575 get_online_cpus();
576 for_each_online_cpu(cpu)
577 val += per_cpu(mem->stat->count[idx], cpu);
578 #ifdef CONFIG_HOTPLUG_CPU
579 spin_lock(&mem->pcp_counter_lock);
580 val += mem->nocpu_base.count[idx];
581 spin_unlock(&mem->pcp_counter_lock);
582 #endif
583 put_online_cpus();
584 return val;
587 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
589 s64 ret;
591 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
592 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
593 return ret;
596 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
597 bool charge)
599 int val = (charge) ? 1 : -1;
600 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
603 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
604 struct page_cgroup *pc,
605 bool charge)
607 int val = (charge) ? 1 : -1;
609 preempt_disable();
611 if (PageCgroupCache(pc))
612 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
613 else
614 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
616 if (charge)
617 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
618 else
619 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
620 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
622 preempt_enable();
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626 enum lru_list idx)
628 int nid, zid;
629 struct mem_cgroup_per_zone *mz;
630 u64 total = 0;
632 for_each_online_node(nid)
633 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634 mz = mem_cgroup_zoneinfo(mem, nid, zid);
635 total += MEM_CGROUP_ZSTAT(mz, idx);
637 return total;
640 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
642 s64 val;
644 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
646 return !(val & ((1 << event_mask_shift) - 1));
650 * Check events in order.
653 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
655 /* threshold event is triggered in finer grain than soft limit */
656 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657 mem_cgroup_threshold(mem);
658 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659 mem_cgroup_update_tree(mem, page);
663 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
665 return container_of(cgroup_subsys_state(cont,
666 mem_cgroup_subsys_id), struct mem_cgroup,
667 css);
670 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
673 * mm_update_next_owner() may clear mm->owner to NULL
674 * if it races with swapoff, page migration, etc.
675 * So this can be called with p == NULL.
677 if (unlikely(!p))
678 return NULL;
680 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681 struct mem_cgroup, css);
684 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
686 struct mem_cgroup *mem = NULL;
688 if (!mm)
689 return NULL;
691 * Because we have no locks, mm->owner's may be being moved to other
692 * cgroup. We use css_tryget() here even if this looks
693 * pessimistic (rather than adding locks here).
695 rcu_read_lock();
696 do {
697 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698 if (unlikely(!mem))
699 break;
700 } while (!css_tryget(&mem->css));
701 rcu_read_unlock();
702 return mem;
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
708 struct cgroup_subsys_state *css;
709 int found;
711 if (!mem) /* ROOT cgroup has the smallest ID */
712 return root_mem_cgroup; /*css_put/get against root is ignored*/
713 if (!mem->use_hierarchy) {
714 if (css_tryget(&mem->css))
715 return mem;
716 return NULL;
718 rcu_read_lock();
720 * searching a memory cgroup which has the smallest ID under given
721 * ROOT cgroup. (ID >= 1)
723 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724 if (css && css_tryget(css))
725 mem = container_of(css, struct mem_cgroup, css);
726 else
727 mem = NULL;
728 rcu_read_unlock();
729 return mem;
732 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733 struct mem_cgroup *root,
734 bool cond)
736 int nextid = css_id(&iter->css) + 1;
737 int found;
738 int hierarchy_used;
739 struct cgroup_subsys_state *css;
741 hierarchy_used = iter->use_hierarchy;
743 css_put(&iter->css);
744 /* If no ROOT, walk all, ignore hierarchy */
745 if (!cond || (root && !hierarchy_used))
746 return NULL;
748 if (!root)
749 root = root_mem_cgroup;
751 do {
752 iter = NULL;
753 rcu_read_lock();
755 css = css_get_next(&mem_cgroup_subsys, nextid,
756 &root->css, &found);
757 if (css && css_tryget(css))
758 iter = container_of(css, struct mem_cgroup, css);
759 rcu_read_unlock();
760 /* If css is NULL, no more cgroups will be found */
761 nextid = found + 1;
762 } while (css && !iter);
764 return iter;
767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768 * be careful that "break" loop is not allowed. We have reference count.
769 * Instead of that modify "cond" to be false and "continue" to exit the loop.
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772 for (iter = mem_cgroup_start_loop(root);\
773 iter != NULL;\
774 iter = mem_cgroup_get_next(iter, root, cond))
776 #define for_each_mem_cgroup_tree(iter, root) \
777 for_each_mem_cgroup_tree_cond(iter, root, true)
779 #define for_each_mem_cgroup_all(iter) \
780 for_each_mem_cgroup_tree_cond(iter, NULL, true)
783 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
785 return (mem == root_mem_cgroup);
789 * Following LRU functions are allowed to be used without PCG_LOCK.
790 * Operations are called by routine of global LRU independently from memcg.
791 * What we have to take care of here is validness of pc->mem_cgroup.
793 * Changes to pc->mem_cgroup happens when
794 * 1. charge
795 * 2. moving account
796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797 * It is added to LRU before charge.
798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799 * When moving account, the page is not on LRU. It's isolated.
802 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
804 struct page_cgroup *pc;
805 struct mem_cgroup_per_zone *mz;
807 if (mem_cgroup_disabled())
808 return;
809 pc = lookup_page_cgroup(page);
810 /* can happen while we handle swapcache. */
811 if (!TestClearPageCgroupAcctLRU(pc))
812 return;
813 VM_BUG_ON(!pc->mem_cgroup);
815 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 * removed from global LRU.
818 mz = page_cgroup_zoneinfo(pc);
819 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
820 if (mem_cgroup_is_root(pc->mem_cgroup))
821 return;
822 VM_BUG_ON(list_empty(&pc->lru));
823 list_del_init(&pc->lru);
826 void mem_cgroup_del_lru(struct page *page)
828 mem_cgroup_del_lru_list(page, page_lru(page));
831 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
833 struct mem_cgroup_per_zone *mz;
834 struct page_cgroup *pc;
836 if (mem_cgroup_disabled())
837 return;
839 pc = lookup_page_cgroup(page);
841 * Used bit is set without atomic ops but after smp_wmb().
842 * For making pc->mem_cgroup visible, insert smp_rmb() here.
844 smp_rmb();
845 /* unused or root page is not rotated. */
846 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
847 return;
848 mz = page_cgroup_zoneinfo(pc);
849 list_move(&pc->lru, &mz->lists[lru]);
852 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
854 struct page_cgroup *pc;
855 struct mem_cgroup_per_zone *mz;
857 if (mem_cgroup_disabled())
858 return;
859 pc = lookup_page_cgroup(page);
860 VM_BUG_ON(PageCgroupAcctLRU(pc));
862 * Used bit is set without atomic ops but after smp_wmb().
863 * For making pc->mem_cgroup visible, insert smp_rmb() here.
865 smp_rmb();
866 if (!PageCgroupUsed(pc))
867 return;
869 mz = page_cgroup_zoneinfo(pc);
870 MEM_CGROUP_ZSTAT(mz, lru) += 1;
871 SetPageCgroupAcctLRU(pc);
872 if (mem_cgroup_is_root(pc->mem_cgroup))
873 return;
874 list_add(&pc->lru, &mz->lists[lru]);
878 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
879 * lru because the page may.be reused after it's fully uncharged (because of
880 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
881 * it again. This function is only used to charge SwapCache. It's done under
882 * lock_page and expected that zone->lru_lock is never held.
884 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
886 unsigned long flags;
887 struct zone *zone = page_zone(page);
888 struct page_cgroup *pc = lookup_page_cgroup(page);
890 spin_lock_irqsave(&zone->lru_lock, flags);
892 * Forget old LRU when this page_cgroup is *not* used. This Used bit
893 * is guarded by lock_page() because the page is SwapCache.
895 if (!PageCgroupUsed(pc))
896 mem_cgroup_del_lru_list(page, page_lru(page));
897 spin_unlock_irqrestore(&zone->lru_lock, flags);
900 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
902 unsigned long flags;
903 struct zone *zone = page_zone(page);
904 struct page_cgroup *pc = lookup_page_cgroup(page);
906 spin_lock_irqsave(&zone->lru_lock, flags);
907 /* link when the page is linked to LRU but page_cgroup isn't */
908 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
909 mem_cgroup_add_lru_list(page, page_lru(page));
910 spin_unlock_irqrestore(&zone->lru_lock, flags);
914 void mem_cgroup_move_lists(struct page *page,
915 enum lru_list from, enum lru_list to)
917 if (mem_cgroup_disabled())
918 return;
919 mem_cgroup_del_lru_list(page, from);
920 mem_cgroup_add_lru_list(page, to);
923 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
925 int ret;
926 struct mem_cgroup *curr = NULL;
927 struct task_struct *p;
929 p = find_lock_task_mm(task);
930 if (!p)
931 return 0;
932 curr = try_get_mem_cgroup_from_mm(p->mm);
933 task_unlock(p);
934 if (!curr)
935 return 0;
937 * We should check use_hierarchy of "mem" not "curr". Because checking
938 * use_hierarchy of "curr" here make this function true if hierarchy is
939 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
940 * hierarchy(even if use_hierarchy is disabled in "mem").
942 if (mem->use_hierarchy)
943 ret = css_is_ancestor(&curr->css, &mem->css);
944 else
945 ret = (curr == mem);
946 css_put(&curr->css);
947 return ret;
950 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
952 unsigned long active;
953 unsigned long inactive;
954 unsigned long gb;
955 unsigned long inactive_ratio;
957 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
958 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
960 gb = (inactive + active) >> (30 - PAGE_SHIFT);
961 if (gb)
962 inactive_ratio = int_sqrt(10 * gb);
963 else
964 inactive_ratio = 1;
966 if (present_pages) {
967 present_pages[0] = inactive;
968 present_pages[1] = active;
971 return inactive_ratio;
974 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
976 unsigned long active;
977 unsigned long inactive;
978 unsigned long present_pages[2];
979 unsigned long inactive_ratio;
981 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
983 inactive = present_pages[0];
984 active = present_pages[1];
986 if (inactive * inactive_ratio < active)
987 return 1;
989 return 0;
992 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
994 unsigned long active;
995 unsigned long inactive;
997 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
998 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1000 return (active > inactive);
1003 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1004 struct zone *zone,
1005 enum lru_list lru)
1007 int nid = zone_to_nid(zone);
1008 int zid = zone_idx(zone);
1009 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1011 return MEM_CGROUP_ZSTAT(mz, lru);
1014 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1015 struct zone *zone)
1017 int nid = zone_to_nid(zone);
1018 int zid = zone_idx(zone);
1019 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021 return &mz->reclaim_stat;
1024 struct zone_reclaim_stat *
1025 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1027 struct page_cgroup *pc;
1028 struct mem_cgroup_per_zone *mz;
1030 if (mem_cgroup_disabled())
1031 return NULL;
1033 pc = lookup_page_cgroup(page);
1035 * Used bit is set without atomic ops but after smp_wmb().
1036 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1038 smp_rmb();
1039 if (!PageCgroupUsed(pc))
1040 return NULL;
1042 mz = page_cgroup_zoneinfo(pc);
1043 if (!mz)
1044 return NULL;
1046 return &mz->reclaim_stat;
1049 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1050 struct list_head *dst,
1051 unsigned long *scanned, int order,
1052 int mode, struct zone *z,
1053 struct mem_cgroup *mem_cont,
1054 int active, int file)
1056 unsigned long nr_taken = 0;
1057 struct page *page;
1058 unsigned long scan;
1059 LIST_HEAD(pc_list);
1060 struct list_head *src;
1061 struct page_cgroup *pc, *tmp;
1062 int nid = zone_to_nid(z);
1063 int zid = zone_idx(z);
1064 struct mem_cgroup_per_zone *mz;
1065 int lru = LRU_FILE * file + active;
1066 int ret;
1068 BUG_ON(!mem_cont);
1069 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1070 src = &mz->lists[lru];
1072 scan = 0;
1073 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1074 if (scan >= nr_to_scan)
1075 break;
1077 page = pc->page;
1078 if (unlikely(!PageCgroupUsed(pc)))
1079 continue;
1080 if (unlikely(!PageLRU(page)))
1081 continue;
1083 scan++;
1084 ret = __isolate_lru_page(page, mode, file);
1085 switch (ret) {
1086 case 0:
1087 list_move(&page->lru, dst);
1088 mem_cgroup_del_lru(page);
1089 nr_taken += hpage_nr_pages(page);
1090 break;
1091 case -EBUSY:
1092 /* we don't affect global LRU but rotate in our LRU */
1093 mem_cgroup_rotate_lru_list(page, page_lru(page));
1094 break;
1095 default:
1096 break;
1100 *scanned = scan;
1102 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1103 0, 0, 0, mode);
1105 return nr_taken;
1108 #define mem_cgroup_from_res_counter(counter, member) \
1109 container_of(counter, struct mem_cgroup, member)
1111 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1113 if (do_swap_account) {
1114 if (res_counter_check_under_limit(&mem->res) &&
1115 res_counter_check_under_limit(&mem->memsw))
1116 return true;
1117 } else
1118 if (res_counter_check_under_limit(&mem->res))
1119 return true;
1120 return false;
1123 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1125 struct cgroup *cgrp = memcg->css.cgroup;
1126 unsigned int swappiness;
1128 /* root ? */
1129 if (cgrp->parent == NULL)
1130 return vm_swappiness;
1132 spin_lock(&memcg->reclaim_param_lock);
1133 swappiness = memcg->swappiness;
1134 spin_unlock(&memcg->reclaim_param_lock);
1136 return swappiness;
1139 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1141 int cpu;
1143 get_online_cpus();
1144 spin_lock(&mem->pcp_counter_lock);
1145 for_each_online_cpu(cpu)
1146 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1147 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1148 spin_unlock(&mem->pcp_counter_lock);
1149 put_online_cpus();
1151 synchronize_rcu();
1154 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1156 int cpu;
1158 if (!mem)
1159 return;
1160 get_online_cpus();
1161 spin_lock(&mem->pcp_counter_lock);
1162 for_each_online_cpu(cpu)
1163 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1164 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1165 spin_unlock(&mem->pcp_counter_lock);
1166 put_online_cpus();
1169 * 2 routines for checking "mem" is under move_account() or not.
1171 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1172 * for avoiding race in accounting. If true,
1173 * pc->mem_cgroup may be overwritten.
1175 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1176 * under hierarchy of moving cgroups. This is for
1177 * waiting at hith-memory prressure caused by "move".
1180 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1182 VM_BUG_ON(!rcu_read_lock_held());
1183 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1186 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1188 struct mem_cgroup *from;
1189 struct mem_cgroup *to;
1190 bool ret = false;
1192 * Unlike task_move routines, we access mc.to, mc.from not under
1193 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1195 spin_lock(&mc.lock);
1196 from = mc.from;
1197 to = mc.to;
1198 if (!from)
1199 goto unlock;
1200 if (from == mem || to == mem
1201 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1202 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1203 ret = true;
1204 unlock:
1205 spin_unlock(&mc.lock);
1206 return ret;
1209 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1211 if (mc.moving_task && current != mc.moving_task) {
1212 if (mem_cgroup_under_move(mem)) {
1213 DEFINE_WAIT(wait);
1214 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1215 /* moving charge context might have finished. */
1216 if (mc.moving_task)
1217 schedule();
1218 finish_wait(&mc.waitq, &wait);
1219 return true;
1222 return false;
1226 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1227 * @memcg: The memory cgroup that went over limit
1228 * @p: Task that is going to be killed
1230 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1231 * enabled
1233 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1235 struct cgroup *task_cgrp;
1236 struct cgroup *mem_cgrp;
1238 * Need a buffer in BSS, can't rely on allocations. The code relies
1239 * on the assumption that OOM is serialized for memory controller.
1240 * If this assumption is broken, revisit this code.
1242 static char memcg_name[PATH_MAX];
1243 int ret;
1245 if (!memcg || !p)
1246 return;
1249 rcu_read_lock();
1251 mem_cgrp = memcg->css.cgroup;
1252 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1254 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1255 if (ret < 0) {
1257 * Unfortunately, we are unable to convert to a useful name
1258 * But we'll still print out the usage information
1260 rcu_read_unlock();
1261 goto done;
1263 rcu_read_unlock();
1265 printk(KERN_INFO "Task in %s killed", memcg_name);
1267 rcu_read_lock();
1268 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1269 if (ret < 0) {
1270 rcu_read_unlock();
1271 goto done;
1273 rcu_read_unlock();
1276 * Continues from above, so we don't need an KERN_ level
1278 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1279 done:
1281 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1282 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1283 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1284 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1285 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1286 "failcnt %llu\n",
1287 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1288 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1289 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1293 * This function returns the number of memcg under hierarchy tree. Returns
1294 * 1(self count) if no children.
1296 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1298 int num = 0;
1299 struct mem_cgroup *iter;
1301 for_each_mem_cgroup_tree(iter, mem)
1302 num++;
1303 return num;
1307 * Return the memory (and swap, if configured) limit for a memcg.
1309 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1311 u64 limit;
1312 u64 memsw;
1314 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1315 limit += total_swap_pages << PAGE_SHIFT;
1317 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1319 * If memsw is finite and limits the amount of swap space available
1320 * to this memcg, return that limit.
1322 return min(limit, memsw);
1326 * Visit the first child (need not be the first child as per the ordering
1327 * of the cgroup list, since we track last_scanned_child) of @mem and use
1328 * that to reclaim free pages from.
1330 static struct mem_cgroup *
1331 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1333 struct mem_cgroup *ret = NULL;
1334 struct cgroup_subsys_state *css;
1335 int nextid, found;
1337 if (!root_mem->use_hierarchy) {
1338 css_get(&root_mem->css);
1339 ret = root_mem;
1342 while (!ret) {
1343 rcu_read_lock();
1344 nextid = root_mem->last_scanned_child + 1;
1345 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1346 &found);
1347 if (css && css_tryget(css))
1348 ret = container_of(css, struct mem_cgroup, css);
1350 rcu_read_unlock();
1351 /* Updates scanning parameter */
1352 spin_lock(&root_mem->reclaim_param_lock);
1353 if (!css) {
1354 /* this means start scan from ID:1 */
1355 root_mem->last_scanned_child = 0;
1356 } else
1357 root_mem->last_scanned_child = found;
1358 spin_unlock(&root_mem->reclaim_param_lock);
1361 return ret;
1365 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1366 * we reclaimed from, so that we don't end up penalizing one child extensively
1367 * based on its position in the children list.
1369 * root_mem is the original ancestor that we've been reclaim from.
1371 * We give up and return to the caller when we visit root_mem twice.
1372 * (other groups can be removed while we're walking....)
1374 * If shrink==true, for avoiding to free too much, this returns immedieately.
1376 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1377 struct zone *zone,
1378 gfp_t gfp_mask,
1379 unsigned long reclaim_options)
1381 struct mem_cgroup *victim;
1382 int ret, total = 0;
1383 int loop = 0;
1384 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1385 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1386 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1387 unsigned long excess = mem_cgroup_get_excess(root_mem);
1389 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1390 if (root_mem->memsw_is_minimum)
1391 noswap = true;
1393 while (1) {
1394 victim = mem_cgroup_select_victim(root_mem);
1395 if (victim == root_mem) {
1396 loop++;
1397 if (loop >= 1)
1398 drain_all_stock_async();
1399 if (loop >= 2) {
1401 * If we have not been able to reclaim
1402 * anything, it might because there are
1403 * no reclaimable pages under this hierarchy
1405 if (!check_soft || !total) {
1406 css_put(&victim->css);
1407 break;
1410 * We want to do more targetted reclaim.
1411 * excess >> 2 is not to excessive so as to
1412 * reclaim too much, nor too less that we keep
1413 * coming back to reclaim from this cgroup
1415 if (total >= (excess >> 2) ||
1416 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1417 css_put(&victim->css);
1418 break;
1422 if (!mem_cgroup_local_usage(victim)) {
1423 /* this cgroup's local usage == 0 */
1424 css_put(&victim->css);
1425 continue;
1427 /* we use swappiness of local cgroup */
1428 if (check_soft)
1429 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1430 noswap, get_swappiness(victim), zone);
1431 else
1432 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1433 noswap, get_swappiness(victim));
1434 css_put(&victim->css);
1436 * At shrinking usage, we can't check we should stop here or
1437 * reclaim more. It's depends on callers. last_scanned_child
1438 * will work enough for keeping fairness under tree.
1440 if (shrink)
1441 return ret;
1442 total += ret;
1443 if (check_soft) {
1444 if (res_counter_check_under_soft_limit(&root_mem->res))
1445 return total;
1446 } else if (mem_cgroup_check_under_limit(root_mem))
1447 return 1 + total;
1449 return total;
1453 * Check OOM-Killer is already running under our hierarchy.
1454 * If someone is running, return false.
1456 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1458 int x, lock_count = 0;
1459 struct mem_cgroup *iter;
1461 for_each_mem_cgroup_tree(iter, mem) {
1462 x = atomic_inc_return(&iter->oom_lock);
1463 lock_count = max(x, lock_count);
1466 if (lock_count == 1)
1467 return true;
1468 return false;
1471 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1473 struct mem_cgroup *iter;
1476 * When a new child is created while the hierarchy is under oom,
1477 * mem_cgroup_oom_lock() may not be called. We have to use
1478 * atomic_add_unless() here.
1480 for_each_mem_cgroup_tree(iter, mem)
1481 atomic_add_unless(&iter->oom_lock, -1, 0);
1482 return 0;
1486 static DEFINE_MUTEX(memcg_oom_mutex);
1487 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1489 struct oom_wait_info {
1490 struct mem_cgroup *mem;
1491 wait_queue_t wait;
1494 static int memcg_oom_wake_function(wait_queue_t *wait,
1495 unsigned mode, int sync, void *arg)
1497 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1498 struct oom_wait_info *oom_wait_info;
1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1502 if (oom_wait_info->mem == wake_mem)
1503 goto wakeup;
1504 /* if no hierarchy, no match */
1505 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1506 return 0;
1508 * Both of oom_wait_info->mem and wake_mem are stable under us.
1509 * Then we can use css_is_ancestor without taking care of RCU.
1511 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1512 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1513 return 0;
1515 wakeup:
1516 return autoremove_wake_function(wait, mode, sync, arg);
1519 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1521 /* for filtering, pass "mem" as argument. */
1522 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1525 static void memcg_oom_recover(struct mem_cgroup *mem)
1527 if (mem && atomic_read(&mem->oom_lock))
1528 memcg_wakeup_oom(mem);
1532 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1534 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1536 struct oom_wait_info owait;
1537 bool locked, need_to_kill;
1539 owait.mem = mem;
1540 owait.wait.flags = 0;
1541 owait.wait.func = memcg_oom_wake_function;
1542 owait.wait.private = current;
1543 INIT_LIST_HEAD(&owait.wait.task_list);
1544 need_to_kill = true;
1545 /* At first, try to OOM lock hierarchy under mem.*/
1546 mutex_lock(&memcg_oom_mutex);
1547 locked = mem_cgroup_oom_lock(mem);
1549 * Even if signal_pending(), we can't quit charge() loop without
1550 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1551 * under OOM is always welcomed, use TASK_KILLABLE here.
1553 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1554 if (!locked || mem->oom_kill_disable)
1555 need_to_kill = false;
1556 if (locked)
1557 mem_cgroup_oom_notify(mem);
1558 mutex_unlock(&memcg_oom_mutex);
1560 if (need_to_kill) {
1561 finish_wait(&memcg_oom_waitq, &owait.wait);
1562 mem_cgroup_out_of_memory(mem, mask);
1563 } else {
1564 schedule();
1565 finish_wait(&memcg_oom_waitq, &owait.wait);
1567 mutex_lock(&memcg_oom_mutex);
1568 mem_cgroup_oom_unlock(mem);
1569 memcg_wakeup_oom(mem);
1570 mutex_unlock(&memcg_oom_mutex);
1572 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1573 return false;
1574 /* Give chance to dying process */
1575 schedule_timeout(1);
1576 return true;
1580 * Currently used to update mapped file statistics, but the routine can be
1581 * generalized to update other statistics as well.
1583 * Notes: Race condition
1585 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1586 * it tends to be costly. But considering some conditions, we doesn't need
1587 * to do so _always_.
1589 * Considering "charge", lock_page_cgroup() is not required because all
1590 * file-stat operations happen after a page is attached to radix-tree. There
1591 * are no race with "charge".
1593 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1594 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1595 * if there are race with "uncharge". Statistics itself is properly handled
1596 * by flags.
1598 * Considering "move", this is an only case we see a race. To make the race
1599 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1600 * possibility of race condition. If there is, we take a lock.
1603 void mem_cgroup_update_page_stat(struct page *page,
1604 enum mem_cgroup_page_stat_item idx, int val)
1606 struct mem_cgroup *mem;
1607 struct page_cgroup *pc = lookup_page_cgroup(page);
1608 bool need_unlock = false;
1609 unsigned long uninitialized_var(flags);
1611 if (unlikely(!pc))
1612 return;
1614 rcu_read_lock();
1615 mem = pc->mem_cgroup;
1616 if (unlikely(!mem || !PageCgroupUsed(pc)))
1617 goto out;
1618 /* pc->mem_cgroup is unstable ? */
1619 if (unlikely(mem_cgroup_stealed(mem))) {
1620 /* take a lock against to access pc->mem_cgroup */
1621 move_lock_page_cgroup(pc, &flags);
1622 need_unlock = true;
1623 mem = pc->mem_cgroup;
1624 if (!mem || !PageCgroupUsed(pc))
1625 goto out;
1628 switch (idx) {
1629 case MEMCG_NR_FILE_MAPPED:
1630 if (val > 0)
1631 SetPageCgroupFileMapped(pc);
1632 else if (!page_mapped(page))
1633 ClearPageCgroupFileMapped(pc);
1634 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1635 break;
1636 default:
1637 BUG();
1640 this_cpu_add(mem->stat->count[idx], val);
1642 out:
1643 if (unlikely(need_unlock))
1644 move_unlock_page_cgroup(pc, &flags);
1645 rcu_read_unlock();
1646 return;
1648 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1651 * size of first charge trial. "32" comes from vmscan.c's magic value.
1652 * TODO: maybe necessary to use big numbers in big irons.
1654 #define CHARGE_SIZE (32 * PAGE_SIZE)
1655 struct memcg_stock_pcp {
1656 struct mem_cgroup *cached; /* this never be root cgroup */
1657 int charge;
1658 struct work_struct work;
1660 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1661 static atomic_t memcg_drain_count;
1664 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1665 * from local stock and true is returned. If the stock is 0 or charges from a
1666 * cgroup which is not current target, returns false. This stock will be
1667 * refilled.
1669 static bool consume_stock(struct mem_cgroup *mem)
1671 struct memcg_stock_pcp *stock;
1672 bool ret = true;
1674 stock = &get_cpu_var(memcg_stock);
1675 if (mem == stock->cached && stock->charge)
1676 stock->charge -= PAGE_SIZE;
1677 else /* need to call res_counter_charge */
1678 ret = false;
1679 put_cpu_var(memcg_stock);
1680 return ret;
1684 * Returns stocks cached in percpu to res_counter and reset cached information.
1686 static void drain_stock(struct memcg_stock_pcp *stock)
1688 struct mem_cgroup *old = stock->cached;
1690 if (stock->charge) {
1691 res_counter_uncharge(&old->res, stock->charge);
1692 if (do_swap_account)
1693 res_counter_uncharge(&old->memsw, stock->charge);
1695 stock->cached = NULL;
1696 stock->charge = 0;
1700 * This must be called under preempt disabled or must be called by
1701 * a thread which is pinned to local cpu.
1703 static void drain_local_stock(struct work_struct *dummy)
1705 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1706 drain_stock(stock);
1710 * Cache charges(val) which is from res_counter, to local per_cpu area.
1711 * This will be consumed by consume_stock() function, later.
1713 static void refill_stock(struct mem_cgroup *mem, int val)
1715 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1717 if (stock->cached != mem) { /* reset if necessary */
1718 drain_stock(stock);
1719 stock->cached = mem;
1721 stock->charge += val;
1722 put_cpu_var(memcg_stock);
1726 * Tries to drain stocked charges in other cpus. This function is asynchronous
1727 * and just put a work per cpu for draining localy on each cpu. Caller can
1728 * expects some charges will be back to res_counter later but cannot wait for
1729 * it.
1731 static void drain_all_stock_async(void)
1733 int cpu;
1734 /* This function is for scheduling "drain" in asynchronous way.
1735 * The result of "drain" is not directly handled by callers. Then,
1736 * if someone is calling drain, we don't have to call drain more.
1737 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1738 * there is a race. We just do loose check here.
1740 if (atomic_read(&memcg_drain_count))
1741 return;
1742 /* Notify other cpus that system-wide "drain" is running */
1743 atomic_inc(&memcg_drain_count);
1744 get_online_cpus();
1745 for_each_online_cpu(cpu) {
1746 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1747 schedule_work_on(cpu, &stock->work);
1749 put_online_cpus();
1750 atomic_dec(&memcg_drain_count);
1751 /* We don't wait for flush_work */
1754 /* This is a synchronous drain interface. */
1755 static void drain_all_stock_sync(void)
1757 /* called when force_empty is called */
1758 atomic_inc(&memcg_drain_count);
1759 schedule_on_each_cpu(drain_local_stock);
1760 atomic_dec(&memcg_drain_count);
1764 * This function drains percpu counter value from DEAD cpu and
1765 * move it to local cpu. Note that this function can be preempted.
1767 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1769 int i;
1771 spin_lock(&mem->pcp_counter_lock);
1772 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1773 s64 x = per_cpu(mem->stat->count[i], cpu);
1775 per_cpu(mem->stat->count[i], cpu) = 0;
1776 mem->nocpu_base.count[i] += x;
1778 /* need to clear ON_MOVE value, works as a kind of lock. */
1779 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1780 spin_unlock(&mem->pcp_counter_lock);
1783 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1785 int idx = MEM_CGROUP_ON_MOVE;
1787 spin_lock(&mem->pcp_counter_lock);
1788 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1789 spin_unlock(&mem->pcp_counter_lock);
1792 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1793 unsigned long action,
1794 void *hcpu)
1796 int cpu = (unsigned long)hcpu;
1797 struct memcg_stock_pcp *stock;
1798 struct mem_cgroup *iter;
1800 if ((action == CPU_ONLINE)) {
1801 for_each_mem_cgroup_all(iter)
1802 synchronize_mem_cgroup_on_move(iter, cpu);
1803 return NOTIFY_OK;
1806 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1807 return NOTIFY_OK;
1809 for_each_mem_cgroup_all(iter)
1810 mem_cgroup_drain_pcp_counter(iter, cpu);
1812 stock = &per_cpu(memcg_stock, cpu);
1813 drain_stock(stock);
1814 return NOTIFY_OK;
1818 /* See __mem_cgroup_try_charge() for details */
1819 enum {
1820 CHARGE_OK, /* success */
1821 CHARGE_RETRY, /* need to retry but retry is not bad */
1822 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1823 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1824 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1827 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1828 int csize, bool oom_check)
1830 struct mem_cgroup *mem_over_limit;
1831 struct res_counter *fail_res;
1832 unsigned long flags = 0;
1833 int ret;
1835 ret = res_counter_charge(&mem->res, csize, &fail_res);
1837 if (likely(!ret)) {
1838 if (!do_swap_account)
1839 return CHARGE_OK;
1840 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1841 if (likely(!ret))
1842 return CHARGE_OK;
1844 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1845 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1846 } else
1847 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1849 if (csize > PAGE_SIZE) /* change csize and retry */
1850 return CHARGE_RETRY;
1852 if (!(gfp_mask & __GFP_WAIT))
1853 return CHARGE_WOULDBLOCK;
1855 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1856 gfp_mask, flags);
1858 * try_to_free_mem_cgroup_pages() might not give us a full
1859 * picture of reclaim. Some pages are reclaimed and might be
1860 * moved to swap cache or just unmapped from the cgroup.
1861 * Check the limit again to see if the reclaim reduced the
1862 * current usage of the cgroup before giving up
1864 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1865 return CHARGE_RETRY;
1868 * At task move, charge accounts can be doubly counted. So, it's
1869 * better to wait until the end of task_move if something is going on.
1871 if (mem_cgroup_wait_acct_move(mem_over_limit))
1872 return CHARGE_RETRY;
1874 /* If we don't need to call oom-killer at el, return immediately */
1875 if (!oom_check)
1876 return CHARGE_NOMEM;
1877 /* check OOM */
1878 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1879 return CHARGE_OOM_DIE;
1881 return CHARGE_RETRY;
1885 * Unlike exported interface, "oom" parameter is added. if oom==true,
1886 * oom-killer can be invoked.
1888 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1889 gfp_t gfp_mask,
1890 struct mem_cgroup **memcg, bool oom,
1891 int page_size)
1893 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1894 struct mem_cgroup *mem = NULL;
1895 int ret;
1896 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1899 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1900 * in system level. So, allow to go ahead dying process in addition to
1901 * MEMDIE process.
1903 if (unlikely(test_thread_flag(TIF_MEMDIE)
1904 || fatal_signal_pending(current)))
1905 goto bypass;
1908 * We always charge the cgroup the mm_struct belongs to.
1909 * The mm_struct's mem_cgroup changes on task migration if the
1910 * thread group leader migrates. It's possible that mm is not
1911 * set, if so charge the init_mm (happens for pagecache usage).
1913 if (!*memcg && !mm)
1914 goto bypass;
1915 again:
1916 if (*memcg) { /* css should be a valid one */
1917 mem = *memcg;
1918 VM_BUG_ON(css_is_removed(&mem->css));
1919 if (mem_cgroup_is_root(mem))
1920 goto done;
1921 if (page_size == PAGE_SIZE && consume_stock(mem))
1922 goto done;
1923 css_get(&mem->css);
1924 } else {
1925 struct task_struct *p;
1927 rcu_read_lock();
1928 p = rcu_dereference(mm->owner);
1930 * Because we don't have task_lock(), "p" can exit.
1931 * In that case, "mem" can point to root or p can be NULL with
1932 * race with swapoff. Then, we have small risk of mis-accouning.
1933 * But such kind of mis-account by race always happens because
1934 * we don't have cgroup_mutex(). It's overkill and we allo that
1935 * small race, here.
1936 * (*) swapoff at el will charge against mm-struct not against
1937 * task-struct. So, mm->owner can be NULL.
1939 mem = mem_cgroup_from_task(p);
1940 if (!mem || mem_cgroup_is_root(mem)) {
1941 rcu_read_unlock();
1942 goto done;
1944 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1946 * It seems dagerous to access memcg without css_get().
1947 * But considering how consume_stok works, it's not
1948 * necessary. If consume_stock success, some charges
1949 * from this memcg are cached on this cpu. So, we
1950 * don't need to call css_get()/css_tryget() before
1951 * calling consume_stock().
1953 rcu_read_unlock();
1954 goto done;
1956 /* after here, we may be blocked. we need to get refcnt */
1957 if (!css_tryget(&mem->css)) {
1958 rcu_read_unlock();
1959 goto again;
1961 rcu_read_unlock();
1964 do {
1965 bool oom_check;
1967 /* If killed, bypass charge */
1968 if (fatal_signal_pending(current)) {
1969 css_put(&mem->css);
1970 goto bypass;
1973 oom_check = false;
1974 if (oom && !nr_oom_retries) {
1975 oom_check = true;
1976 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1979 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1981 switch (ret) {
1982 case CHARGE_OK:
1983 break;
1984 case CHARGE_RETRY: /* not in OOM situation but retry */
1985 csize = page_size;
1986 css_put(&mem->css);
1987 mem = NULL;
1988 goto again;
1989 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1990 css_put(&mem->css);
1991 goto nomem;
1992 case CHARGE_NOMEM: /* OOM routine works */
1993 if (!oom) {
1994 css_put(&mem->css);
1995 goto nomem;
1997 /* If oom, we never return -ENOMEM */
1998 nr_oom_retries--;
1999 break;
2000 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2001 css_put(&mem->css);
2002 goto bypass;
2004 } while (ret != CHARGE_OK);
2006 if (csize > page_size)
2007 refill_stock(mem, csize - page_size);
2008 css_put(&mem->css);
2009 done:
2010 *memcg = mem;
2011 return 0;
2012 nomem:
2013 *memcg = NULL;
2014 return -ENOMEM;
2015 bypass:
2016 *memcg = NULL;
2017 return 0;
2021 * Somemtimes we have to undo a charge we got by try_charge().
2022 * This function is for that and do uncharge, put css's refcnt.
2023 * gotten by try_charge().
2025 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2026 unsigned long count)
2028 if (!mem_cgroup_is_root(mem)) {
2029 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2030 if (do_swap_account)
2031 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2035 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2036 int page_size)
2038 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2042 * A helper function to get mem_cgroup from ID. must be called under
2043 * rcu_read_lock(). The caller must check css_is_removed() or some if
2044 * it's concern. (dropping refcnt from swap can be called against removed
2045 * memcg.)
2047 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2049 struct cgroup_subsys_state *css;
2051 /* ID 0 is unused ID */
2052 if (!id)
2053 return NULL;
2054 css = css_lookup(&mem_cgroup_subsys, id);
2055 if (!css)
2056 return NULL;
2057 return container_of(css, struct mem_cgroup, css);
2060 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2062 struct mem_cgroup *mem = NULL;
2063 struct page_cgroup *pc;
2064 unsigned short id;
2065 swp_entry_t ent;
2067 VM_BUG_ON(!PageLocked(page));
2069 pc = lookup_page_cgroup(page);
2070 lock_page_cgroup(pc);
2071 if (PageCgroupUsed(pc)) {
2072 mem = pc->mem_cgroup;
2073 if (mem && !css_tryget(&mem->css))
2074 mem = NULL;
2075 } else if (PageSwapCache(page)) {
2076 ent.val = page_private(page);
2077 id = lookup_swap_cgroup(ent);
2078 rcu_read_lock();
2079 mem = mem_cgroup_lookup(id);
2080 if (mem && !css_tryget(&mem->css))
2081 mem = NULL;
2082 rcu_read_unlock();
2084 unlock_page_cgroup(pc);
2085 return mem;
2089 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2090 * USED state. If already USED, uncharge and return.
2092 static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
2093 struct page_cgroup *pc,
2094 enum charge_type ctype)
2096 pc->mem_cgroup = mem;
2098 * We access a page_cgroup asynchronously without lock_page_cgroup().
2099 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2100 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2101 * before USED bit, we need memory barrier here.
2102 * See mem_cgroup_add_lru_list(), etc.
2104 smp_wmb();
2105 switch (ctype) {
2106 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2107 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2108 SetPageCgroupCache(pc);
2109 SetPageCgroupUsed(pc);
2110 break;
2111 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2112 ClearPageCgroupCache(pc);
2113 SetPageCgroupUsed(pc);
2114 break;
2115 default:
2116 break;
2119 mem_cgroup_charge_statistics(mem, pc, true);
2122 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2123 struct page_cgroup *pc,
2124 enum charge_type ctype,
2125 int page_size)
2127 int i;
2128 int count = page_size >> PAGE_SHIFT;
2130 /* try_charge() can return NULL to *memcg, taking care of it. */
2131 if (!mem)
2132 return;
2134 lock_page_cgroup(pc);
2135 if (unlikely(PageCgroupUsed(pc))) {
2136 unlock_page_cgroup(pc);
2137 mem_cgroup_cancel_charge(mem, page_size);
2138 return;
2142 * we don't need page_cgroup_lock about tail pages, becase they are not
2143 * accessed by any other context at this point.
2145 for (i = 0; i < count; i++)
2146 ____mem_cgroup_commit_charge(mem, pc + i, ctype);
2148 unlock_page_cgroup(pc);
2150 * "charge_statistics" updated event counter. Then, check it.
2151 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2152 * if they exceeds softlimit.
2154 memcg_check_events(mem, pc->page);
2158 * __mem_cgroup_move_account - move account of the page
2159 * @pc: page_cgroup of the page.
2160 * @from: mem_cgroup which the page is moved from.
2161 * @to: mem_cgroup which the page is moved to. @from != @to.
2162 * @uncharge: whether we should call uncharge and css_put against @from.
2164 * The caller must confirm following.
2165 * - page is not on LRU (isolate_page() is useful.)
2166 * - the pc is locked, used, and ->mem_cgroup points to @from.
2168 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2169 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2170 * true, this function does "uncharge" from old cgroup, but it doesn't if
2171 * @uncharge is false, so a caller should do "uncharge".
2174 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2175 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2177 VM_BUG_ON(from == to);
2178 VM_BUG_ON(PageLRU(pc->page));
2179 VM_BUG_ON(!page_is_cgroup_locked(pc));
2180 VM_BUG_ON(!PageCgroupUsed(pc));
2181 VM_BUG_ON(pc->mem_cgroup != from);
2183 if (PageCgroupFileMapped(pc)) {
2184 /* Update mapped_file data for mem_cgroup */
2185 preempt_disable();
2186 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2187 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2188 preempt_enable();
2190 mem_cgroup_charge_statistics(from, pc, false);
2191 if (uncharge)
2192 /* This is not "cancel", but cancel_charge does all we need. */
2193 mem_cgroup_cancel_charge(from, PAGE_SIZE);
2195 /* caller should have done css_get */
2196 pc->mem_cgroup = to;
2197 mem_cgroup_charge_statistics(to, pc, true);
2199 * We charges against "to" which may not have any tasks. Then, "to"
2200 * can be under rmdir(). But in current implementation, caller of
2201 * this function is just force_empty() and move charge, so it's
2202 * garanteed that "to" is never removed. So, we don't check rmdir
2203 * status here.
2208 * check whether the @pc is valid for moving account and call
2209 * __mem_cgroup_move_account()
2211 static int mem_cgroup_move_account(struct page_cgroup *pc,
2212 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2214 int ret = -EINVAL;
2215 unsigned long flags;
2217 lock_page_cgroup(pc);
2218 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2219 move_lock_page_cgroup(pc, &flags);
2220 __mem_cgroup_move_account(pc, from, to, uncharge);
2221 move_unlock_page_cgroup(pc, &flags);
2222 ret = 0;
2224 unlock_page_cgroup(pc);
2226 * check events
2228 memcg_check_events(to, pc->page);
2229 memcg_check_events(from, pc->page);
2230 return ret;
2234 * move charges to its parent.
2237 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2238 struct mem_cgroup *child,
2239 gfp_t gfp_mask)
2241 struct page *page = pc->page;
2242 struct cgroup *cg = child->css.cgroup;
2243 struct cgroup *pcg = cg->parent;
2244 struct mem_cgroup *parent;
2245 int ret;
2247 /* Is ROOT ? */
2248 if (!pcg)
2249 return -EINVAL;
2251 ret = -EBUSY;
2252 if (!get_page_unless_zero(page))
2253 goto out;
2254 if (isolate_lru_page(page))
2255 goto put;
2257 parent = mem_cgroup_from_cont(pcg);
2258 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2259 PAGE_SIZE);
2260 if (ret || !parent)
2261 goto put_back;
2263 ret = mem_cgroup_move_account(pc, child, parent, true);
2264 if (ret)
2265 mem_cgroup_cancel_charge(parent, PAGE_SIZE);
2266 put_back:
2267 putback_lru_page(page);
2268 put:
2269 put_page(page);
2270 out:
2271 return ret;
2275 * Charge the memory controller for page usage.
2276 * Return
2277 * 0 if the charge was successful
2278 * < 0 if the cgroup is over its limit
2280 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2281 gfp_t gfp_mask, enum charge_type ctype)
2283 struct mem_cgroup *mem = NULL;
2284 struct page_cgroup *pc;
2285 int ret;
2286 int page_size = PAGE_SIZE;
2288 if (PageTransHuge(page)) {
2289 page_size <<= compound_order(page);
2290 VM_BUG_ON(!PageTransHuge(page));
2293 pc = lookup_page_cgroup(page);
2294 /* can happen at boot */
2295 if (unlikely(!pc))
2296 return 0;
2297 prefetchw(pc);
2299 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2300 if (ret || !mem)
2301 return ret;
2303 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2304 return 0;
2307 int mem_cgroup_newpage_charge(struct page *page,
2308 struct mm_struct *mm, gfp_t gfp_mask)
2310 if (mem_cgroup_disabled())
2311 return 0;
2313 * If already mapped, we don't have to account.
2314 * If page cache, page->mapping has address_space.
2315 * But page->mapping may have out-of-use anon_vma pointer,
2316 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2317 * is NULL.
2319 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2320 return 0;
2321 if (unlikely(!mm))
2322 mm = &init_mm;
2323 return mem_cgroup_charge_common(page, mm, gfp_mask,
2324 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2327 static void
2328 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2329 enum charge_type ctype);
2331 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2332 gfp_t gfp_mask)
2334 int ret;
2336 if (mem_cgroup_disabled())
2337 return 0;
2338 if (PageCompound(page))
2339 return 0;
2341 * Corner case handling. This is called from add_to_page_cache()
2342 * in usual. But some FS (shmem) precharges this page before calling it
2343 * and call add_to_page_cache() with GFP_NOWAIT.
2345 * For GFP_NOWAIT case, the page may be pre-charged before calling
2346 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2347 * charge twice. (It works but has to pay a bit larger cost.)
2348 * And when the page is SwapCache, it should take swap information
2349 * into account. This is under lock_page() now.
2351 if (!(gfp_mask & __GFP_WAIT)) {
2352 struct page_cgroup *pc;
2354 pc = lookup_page_cgroup(page);
2355 if (!pc)
2356 return 0;
2357 lock_page_cgroup(pc);
2358 if (PageCgroupUsed(pc)) {
2359 unlock_page_cgroup(pc);
2360 return 0;
2362 unlock_page_cgroup(pc);
2365 if (unlikely(!mm))
2366 mm = &init_mm;
2368 if (page_is_file_cache(page))
2369 return mem_cgroup_charge_common(page, mm, gfp_mask,
2370 MEM_CGROUP_CHARGE_TYPE_CACHE);
2372 /* shmem */
2373 if (PageSwapCache(page)) {
2374 struct mem_cgroup *mem = NULL;
2376 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2377 if (!ret)
2378 __mem_cgroup_commit_charge_swapin(page, mem,
2379 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2380 } else
2381 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2382 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2384 return ret;
2388 * While swap-in, try_charge -> commit or cancel, the page is locked.
2389 * And when try_charge() successfully returns, one refcnt to memcg without
2390 * struct page_cgroup is acquired. This refcnt will be consumed by
2391 * "commit()" or removed by "cancel()"
2393 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2394 struct page *page,
2395 gfp_t mask, struct mem_cgroup **ptr)
2397 struct mem_cgroup *mem;
2398 int ret;
2400 if (mem_cgroup_disabled())
2401 return 0;
2403 if (!do_swap_account)
2404 goto charge_cur_mm;
2406 * A racing thread's fault, or swapoff, may have already updated
2407 * the pte, and even removed page from swap cache: in those cases
2408 * do_swap_page()'s pte_same() test will fail; but there's also a
2409 * KSM case which does need to charge the page.
2411 if (!PageSwapCache(page))
2412 goto charge_cur_mm;
2413 mem = try_get_mem_cgroup_from_page(page);
2414 if (!mem)
2415 goto charge_cur_mm;
2416 *ptr = mem;
2417 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2418 css_put(&mem->css);
2419 return ret;
2420 charge_cur_mm:
2421 if (unlikely(!mm))
2422 mm = &init_mm;
2423 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2426 static void
2427 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2428 enum charge_type ctype)
2430 struct page_cgroup *pc;
2432 if (mem_cgroup_disabled())
2433 return;
2434 if (!ptr)
2435 return;
2436 cgroup_exclude_rmdir(&ptr->css);
2437 pc = lookup_page_cgroup(page);
2438 mem_cgroup_lru_del_before_commit_swapcache(page);
2439 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2440 mem_cgroup_lru_add_after_commit_swapcache(page);
2442 * Now swap is on-memory. This means this page may be
2443 * counted both as mem and swap....double count.
2444 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2445 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2446 * may call delete_from_swap_cache() before reach here.
2448 if (do_swap_account && PageSwapCache(page)) {
2449 swp_entry_t ent = {.val = page_private(page)};
2450 unsigned short id;
2451 struct mem_cgroup *memcg;
2453 id = swap_cgroup_record(ent, 0);
2454 rcu_read_lock();
2455 memcg = mem_cgroup_lookup(id);
2456 if (memcg) {
2458 * This recorded memcg can be obsolete one. So, avoid
2459 * calling css_tryget
2461 if (!mem_cgroup_is_root(memcg))
2462 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2463 mem_cgroup_swap_statistics(memcg, false);
2464 mem_cgroup_put(memcg);
2466 rcu_read_unlock();
2469 * At swapin, we may charge account against cgroup which has no tasks.
2470 * So, rmdir()->pre_destroy() can be called while we do this charge.
2471 * In that case, we need to call pre_destroy() again. check it here.
2473 cgroup_release_and_wakeup_rmdir(&ptr->css);
2476 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2478 __mem_cgroup_commit_charge_swapin(page, ptr,
2479 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2482 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2484 if (mem_cgroup_disabled())
2485 return;
2486 if (!mem)
2487 return;
2488 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2491 static void
2492 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2493 int page_size)
2495 struct memcg_batch_info *batch = NULL;
2496 bool uncharge_memsw = true;
2497 /* If swapout, usage of swap doesn't decrease */
2498 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2499 uncharge_memsw = false;
2501 batch = &current->memcg_batch;
2503 * In usual, we do css_get() when we remember memcg pointer.
2504 * But in this case, we keep res->usage until end of a series of
2505 * uncharges. Then, it's ok to ignore memcg's refcnt.
2507 if (!batch->memcg)
2508 batch->memcg = mem;
2510 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2511 * In those cases, all pages freed continously can be expected to be in
2512 * the same cgroup and we have chance to coalesce uncharges.
2513 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2514 * because we want to do uncharge as soon as possible.
2517 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2518 goto direct_uncharge;
2520 if (page_size != PAGE_SIZE)
2521 goto direct_uncharge;
2524 * In typical case, batch->memcg == mem. This means we can
2525 * merge a series of uncharges to an uncharge of res_counter.
2526 * If not, we uncharge res_counter ony by one.
2528 if (batch->memcg != mem)
2529 goto direct_uncharge;
2530 /* remember freed charge and uncharge it later */
2531 batch->bytes += PAGE_SIZE;
2532 if (uncharge_memsw)
2533 batch->memsw_bytes += PAGE_SIZE;
2534 return;
2535 direct_uncharge:
2536 res_counter_uncharge(&mem->res, page_size);
2537 if (uncharge_memsw)
2538 res_counter_uncharge(&mem->memsw, page_size);
2539 if (unlikely(batch->memcg != mem))
2540 memcg_oom_recover(mem);
2541 return;
2545 * uncharge if !page_mapped(page)
2547 static struct mem_cgroup *
2548 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2550 int i;
2551 int count;
2552 struct page_cgroup *pc;
2553 struct mem_cgroup *mem = NULL;
2554 int page_size = PAGE_SIZE;
2556 if (mem_cgroup_disabled())
2557 return NULL;
2559 if (PageSwapCache(page))
2560 return NULL;
2562 if (PageTransHuge(page)) {
2563 page_size <<= compound_order(page);
2564 VM_BUG_ON(!PageTransHuge(page));
2567 count = page_size >> PAGE_SHIFT;
2569 * Check if our page_cgroup is valid
2571 pc = lookup_page_cgroup(page);
2572 if (unlikely(!pc || !PageCgroupUsed(pc)))
2573 return NULL;
2575 lock_page_cgroup(pc);
2577 mem = pc->mem_cgroup;
2579 if (!PageCgroupUsed(pc))
2580 goto unlock_out;
2582 switch (ctype) {
2583 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2584 case MEM_CGROUP_CHARGE_TYPE_DROP:
2585 /* See mem_cgroup_prepare_migration() */
2586 if (page_mapped(page) || PageCgroupMigration(pc))
2587 goto unlock_out;
2588 break;
2589 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2590 if (!PageAnon(page)) { /* Shared memory */
2591 if (page->mapping && !page_is_file_cache(page))
2592 goto unlock_out;
2593 } else if (page_mapped(page)) /* Anon */
2594 goto unlock_out;
2595 break;
2596 default:
2597 break;
2600 for (i = 0; i < count; i++)
2601 mem_cgroup_charge_statistics(mem, pc + i, false);
2603 ClearPageCgroupUsed(pc);
2605 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2606 * freed from LRU. This is safe because uncharged page is expected not
2607 * to be reused (freed soon). Exception is SwapCache, it's handled by
2608 * special functions.
2611 unlock_page_cgroup(pc);
2613 * even after unlock, we have mem->res.usage here and this memcg
2614 * will never be freed.
2616 memcg_check_events(mem, page);
2617 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2618 mem_cgroup_swap_statistics(mem, true);
2619 mem_cgroup_get(mem);
2621 if (!mem_cgroup_is_root(mem))
2622 __do_uncharge(mem, ctype, page_size);
2624 return mem;
2626 unlock_out:
2627 unlock_page_cgroup(pc);
2628 return NULL;
2631 void mem_cgroup_uncharge_page(struct page *page)
2633 /* early check. */
2634 if (page_mapped(page))
2635 return;
2636 if (page->mapping && !PageAnon(page))
2637 return;
2638 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2641 void mem_cgroup_uncharge_cache_page(struct page *page)
2643 VM_BUG_ON(page_mapped(page));
2644 VM_BUG_ON(page->mapping);
2645 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2649 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2650 * In that cases, pages are freed continuously and we can expect pages
2651 * are in the same memcg. All these calls itself limits the number of
2652 * pages freed at once, then uncharge_start/end() is called properly.
2653 * This may be called prural(2) times in a context,
2656 void mem_cgroup_uncharge_start(void)
2658 current->memcg_batch.do_batch++;
2659 /* We can do nest. */
2660 if (current->memcg_batch.do_batch == 1) {
2661 current->memcg_batch.memcg = NULL;
2662 current->memcg_batch.bytes = 0;
2663 current->memcg_batch.memsw_bytes = 0;
2667 void mem_cgroup_uncharge_end(void)
2669 struct memcg_batch_info *batch = &current->memcg_batch;
2671 if (!batch->do_batch)
2672 return;
2674 batch->do_batch--;
2675 if (batch->do_batch) /* If stacked, do nothing. */
2676 return;
2678 if (!batch->memcg)
2679 return;
2681 * This "batch->memcg" is valid without any css_get/put etc...
2682 * bacause we hide charges behind us.
2684 if (batch->bytes)
2685 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2686 if (batch->memsw_bytes)
2687 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2688 memcg_oom_recover(batch->memcg);
2689 /* forget this pointer (for sanity check) */
2690 batch->memcg = NULL;
2693 #ifdef CONFIG_SWAP
2695 * called after __delete_from_swap_cache() and drop "page" account.
2696 * memcg information is recorded to swap_cgroup of "ent"
2698 void
2699 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2701 struct mem_cgroup *memcg;
2702 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2704 if (!swapout) /* this was a swap cache but the swap is unused ! */
2705 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2707 memcg = __mem_cgroup_uncharge_common(page, ctype);
2710 * record memcg information, if swapout && memcg != NULL,
2711 * mem_cgroup_get() was called in uncharge().
2713 if (do_swap_account && swapout && memcg)
2714 swap_cgroup_record(ent, css_id(&memcg->css));
2716 #endif
2718 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2720 * called from swap_entry_free(). remove record in swap_cgroup and
2721 * uncharge "memsw" account.
2723 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2725 struct mem_cgroup *memcg;
2726 unsigned short id;
2728 if (!do_swap_account)
2729 return;
2731 id = swap_cgroup_record(ent, 0);
2732 rcu_read_lock();
2733 memcg = mem_cgroup_lookup(id);
2734 if (memcg) {
2736 * We uncharge this because swap is freed.
2737 * This memcg can be obsolete one. We avoid calling css_tryget
2739 if (!mem_cgroup_is_root(memcg))
2740 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2741 mem_cgroup_swap_statistics(memcg, false);
2742 mem_cgroup_put(memcg);
2744 rcu_read_unlock();
2748 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2749 * @entry: swap entry to be moved
2750 * @from: mem_cgroup which the entry is moved from
2751 * @to: mem_cgroup which the entry is moved to
2752 * @need_fixup: whether we should fixup res_counters and refcounts.
2754 * It succeeds only when the swap_cgroup's record for this entry is the same
2755 * as the mem_cgroup's id of @from.
2757 * Returns 0 on success, -EINVAL on failure.
2759 * The caller must have charged to @to, IOW, called res_counter_charge() about
2760 * both res and memsw, and called css_get().
2762 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2763 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2765 unsigned short old_id, new_id;
2767 old_id = css_id(&from->css);
2768 new_id = css_id(&to->css);
2770 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2771 mem_cgroup_swap_statistics(from, false);
2772 mem_cgroup_swap_statistics(to, true);
2774 * This function is only called from task migration context now.
2775 * It postpones res_counter and refcount handling till the end
2776 * of task migration(mem_cgroup_clear_mc()) for performance
2777 * improvement. But we cannot postpone mem_cgroup_get(to)
2778 * because if the process that has been moved to @to does
2779 * swap-in, the refcount of @to might be decreased to 0.
2781 mem_cgroup_get(to);
2782 if (need_fixup) {
2783 if (!mem_cgroup_is_root(from))
2784 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2785 mem_cgroup_put(from);
2787 * we charged both to->res and to->memsw, so we should
2788 * uncharge to->res.
2790 if (!mem_cgroup_is_root(to))
2791 res_counter_uncharge(&to->res, PAGE_SIZE);
2793 return 0;
2795 return -EINVAL;
2797 #else
2798 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2799 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2801 return -EINVAL;
2803 #endif
2806 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2807 * page belongs to.
2809 int mem_cgroup_prepare_migration(struct page *page,
2810 struct page *newpage, struct mem_cgroup **ptr)
2812 struct page_cgroup *pc;
2813 struct mem_cgroup *mem = NULL;
2814 enum charge_type ctype;
2815 int ret = 0;
2817 VM_BUG_ON(PageTransHuge(page));
2818 if (mem_cgroup_disabled())
2819 return 0;
2821 pc = lookup_page_cgroup(page);
2822 lock_page_cgroup(pc);
2823 if (PageCgroupUsed(pc)) {
2824 mem = pc->mem_cgroup;
2825 css_get(&mem->css);
2827 * At migrating an anonymous page, its mapcount goes down
2828 * to 0 and uncharge() will be called. But, even if it's fully
2829 * unmapped, migration may fail and this page has to be
2830 * charged again. We set MIGRATION flag here and delay uncharge
2831 * until end_migration() is called
2833 * Corner Case Thinking
2834 * A)
2835 * When the old page was mapped as Anon and it's unmap-and-freed
2836 * while migration was ongoing.
2837 * If unmap finds the old page, uncharge() of it will be delayed
2838 * until end_migration(). If unmap finds a new page, it's
2839 * uncharged when it make mapcount to be 1->0. If unmap code
2840 * finds swap_migration_entry, the new page will not be mapped
2841 * and end_migration() will find it(mapcount==0).
2843 * B)
2844 * When the old page was mapped but migraion fails, the kernel
2845 * remaps it. A charge for it is kept by MIGRATION flag even
2846 * if mapcount goes down to 0. We can do remap successfully
2847 * without charging it again.
2849 * C)
2850 * The "old" page is under lock_page() until the end of
2851 * migration, so, the old page itself will not be swapped-out.
2852 * If the new page is swapped out before end_migraton, our
2853 * hook to usual swap-out path will catch the event.
2855 if (PageAnon(page))
2856 SetPageCgroupMigration(pc);
2858 unlock_page_cgroup(pc);
2860 * If the page is not charged at this point,
2861 * we return here.
2863 if (!mem)
2864 return 0;
2866 *ptr = mem;
2867 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2868 css_put(&mem->css);/* drop extra refcnt */
2869 if (ret || *ptr == NULL) {
2870 if (PageAnon(page)) {
2871 lock_page_cgroup(pc);
2872 ClearPageCgroupMigration(pc);
2873 unlock_page_cgroup(pc);
2875 * The old page may be fully unmapped while we kept it.
2877 mem_cgroup_uncharge_page(page);
2879 return -ENOMEM;
2882 * We charge new page before it's used/mapped. So, even if unlock_page()
2883 * is called before end_migration, we can catch all events on this new
2884 * page. In the case new page is migrated but not remapped, new page's
2885 * mapcount will be finally 0 and we call uncharge in end_migration().
2887 pc = lookup_page_cgroup(newpage);
2888 if (PageAnon(page))
2889 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2890 else if (page_is_file_cache(page))
2891 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2892 else
2893 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2894 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2895 return ret;
2898 /* remove redundant charge if migration failed*/
2899 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2900 struct page *oldpage, struct page *newpage)
2902 struct page *used, *unused;
2903 struct page_cgroup *pc;
2905 if (!mem)
2906 return;
2907 /* blocks rmdir() */
2908 cgroup_exclude_rmdir(&mem->css);
2909 /* at migration success, oldpage->mapping is NULL. */
2910 if (oldpage->mapping) {
2911 used = oldpage;
2912 unused = newpage;
2913 } else {
2914 used = newpage;
2915 unused = oldpage;
2918 * We disallowed uncharge of pages under migration because mapcount
2919 * of the page goes down to zero, temporarly.
2920 * Clear the flag and check the page should be charged.
2922 pc = lookup_page_cgroup(oldpage);
2923 lock_page_cgroup(pc);
2924 ClearPageCgroupMigration(pc);
2925 unlock_page_cgroup(pc);
2927 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2930 * If a page is a file cache, radix-tree replacement is very atomic
2931 * and we can skip this check. When it was an Anon page, its mapcount
2932 * goes down to 0. But because we added MIGRATION flage, it's not
2933 * uncharged yet. There are several case but page->mapcount check
2934 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2935 * check. (see prepare_charge() also)
2937 if (PageAnon(used))
2938 mem_cgroup_uncharge_page(used);
2940 * At migration, we may charge account against cgroup which has no
2941 * tasks.
2942 * So, rmdir()->pre_destroy() can be called while we do this charge.
2943 * In that case, we need to call pre_destroy() again. check it here.
2945 cgroup_release_and_wakeup_rmdir(&mem->css);
2949 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2950 * Calling hierarchical_reclaim is not enough because we should update
2951 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2952 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2953 * not from the memcg which this page would be charged to.
2954 * try_charge_swapin does all of these works properly.
2956 int mem_cgroup_shmem_charge_fallback(struct page *page,
2957 struct mm_struct *mm,
2958 gfp_t gfp_mask)
2960 struct mem_cgroup *mem = NULL;
2961 int ret;
2963 if (mem_cgroup_disabled())
2964 return 0;
2966 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2967 if (!ret)
2968 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2970 return ret;
2973 static DEFINE_MUTEX(set_limit_mutex);
2975 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2976 unsigned long long val)
2978 int retry_count;
2979 u64 memswlimit, memlimit;
2980 int ret = 0;
2981 int children = mem_cgroup_count_children(memcg);
2982 u64 curusage, oldusage;
2983 int enlarge;
2986 * For keeping hierarchical_reclaim simple, how long we should retry
2987 * is depends on callers. We set our retry-count to be function
2988 * of # of children which we should visit in this loop.
2990 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2992 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2994 enlarge = 0;
2995 while (retry_count) {
2996 if (signal_pending(current)) {
2997 ret = -EINTR;
2998 break;
3001 * Rather than hide all in some function, I do this in
3002 * open coded manner. You see what this really does.
3003 * We have to guarantee mem->res.limit < mem->memsw.limit.
3005 mutex_lock(&set_limit_mutex);
3006 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3007 if (memswlimit < val) {
3008 ret = -EINVAL;
3009 mutex_unlock(&set_limit_mutex);
3010 break;
3013 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3014 if (memlimit < val)
3015 enlarge = 1;
3017 ret = res_counter_set_limit(&memcg->res, val);
3018 if (!ret) {
3019 if (memswlimit == val)
3020 memcg->memsw_is_minimum = true;
3021 else
3022 memcg->memsw_is_minimum = false;
3024 mutex_unlock(&set_limit_mutex);
3026 if (!ret)
3027 break;
3029 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3030 MEM_CGROUP_RECLAIM_SHRINK);
3031 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3032 /* Usage is reduced ? */
3033 if (curusage >= oldusage)
3034 retry_count--;
3035 else
3036 oldusage = curusage;
3038 if (!ret && enlarge)
3039 memcg_oom_recover(memcg);
3041 return ret;
3044 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3045 unsigned long long val)
3047 int retry_count;
3048 u64 memlimit, memswlimit, oldusage, curusage;
3049 int children = mem_cgroup_count_children(memcg);
3050 int ret = -EBUSY;
3051 int enlarge = 0;
3053 /* see mem_cgroup_resize_res_limit */
3054 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3055 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3056 while (retry_count) {
3057 if (signal_pending(current)) {
3058 ret = -EINTR;
3059 break;
3062 * Rather than hide all in some function, I do this in
3063 * open coded manner. You see what this really does.
3064 * We have to guarantee mem->res.limit < mem->memsw.limit.
3066 mutex_lock(&set_limit_mutex);
3067 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3068 if (memlimit > val) {
3069 ret = -EINVAL;
3070 mutex_unlock(&set_limit_mutex);
3071 break;
3073 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3074 if (memswlimit < val)
3075 enlarge = 1;
3076 ret = res_counter_set_limit(&memcg->memsw, val);
3077 if (!ret) {
3078 if (memlimit == val)
3079 memcg->memsw_is_minimum = true;
3080 else
3081 memcg->memsw_is_minimum = false;
3083 mutex_unlock(&set_limit_mutex);
3085 if (!ret)
3086 break;
3088 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3089 MEM_CGROUP_RECLAIM_NOSWAP |
3090 MEM_CGROUP_RECLAIM_SHRINK);
3091 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3092 /* Usage is reduced ? */
3093 if (curusage >= oldusage)
3094 retry_count--;
3095 else
3096 oldusage = curusage;
3098 if (!ret && enlarge)
3099 memcg_oom_recover(memcg);
3100 return ret;
3103 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3104 gfp_t gfp_mask)
3106 unsigned long nr_reclaimed = 0;
3107 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3108 unsigned long reclaimed;
3109 int loop = 0;
3110 struct mem_cgroup_tree_per_zone *mctz;
3111 unsigned long long excess;
3113 if (order > 0)
3114 return 0;
3116 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3118 * This loop can run a while, specially if mem_cgroup's continuously
3119 * keep exceeding their soft limit and putting the system under
3120 * pressure
3122 do {
3123 if (next_mz)
3124 mz = next_mz;
3125 else
3126 mz = mem_cgroup_largest_soft_limit_node(mctz);
3127 if (!mz)
3128 break;
3130 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3131 gfp_mask,
3132 MEM_CGROUP_RECLAIM_SOFT);
3133 nr_reclaimed += reclaimed;
3134 spin_lock(&mctz->lock);
3137 * If we failed to reclaim anything from this memory cgroup
3138 * it is time to move on to the next cgroup
3140 next_mz = NULL;
3141 if (!reclaimed) {
3142 do {
3144 * Loop until we find yet another one.
3146 * By the time we get the soft_limit lock
3147 * again, someone might have aded the
3148 * group back on the RB tree. Iterate to
3149 * make sure we get a different mem.
3150 * mem_cgroup_largest_soft_limit_node returns
3151 * NULL if no other cgroup is present on
3152 * the tree
3154 next_mz =
3155 __mem_cgroup_largest_soft_limit_node(mctz);
3156 if (next_mz == mz) {
3157 css_put(&next_mz->mem->css);
3158 next_mz = NULL;
3159 } else /* next_mz == NULL or other memcg */
3160 break;
3161 } while (1);
3163 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3164 excess = res_counter_soft_limit_excess(&mz->mem->res);
3166 * One school of thought says that we should not add
3167 * back the node to the tree if reclaim returns 0.
3168 * But our reclaim could return 0, simply because due
3169 * to priority we are exposing a smaller subset of
3170 * memory to reclaim from. Consider this as a longer
3171 * term TODO.
3173 /* If excess == 0, no tree ops */
3174 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3175 spin_unlock(&mctz->lock);
3176 css_put(&mz->mem->css);
3177 loop++;
3179 * Could not reclaim anything and there are no more
3180 * mem cgroups to try or we seem to be looping without
3181 * reclaiming anything.
3183 if (!nr_reclaimed &&
3184 (next_mz == NULL ||
3185 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3186 break;
3187 } while (!nr_reclaimed);
3188 if (next_mz)
3189 css_put(&next_mz->mem->css);
3190 return nr_reclaimed;
3194 * This routine traverse page_cgroup in given list and drop them all.
3195 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3197 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3198 int node, int zid, enum lru_list lru)
3200 struct zone *zone;
3201 struct mem_cgroup_per_zone *mz;
3202 struct page_cgroup *pc, *busy;
3203 unsigned long flags, loop;
3204 struct list_head *list;
3205 int ret = 0;
3207 zone = &NODE_DATA(node)->node_zones[zid];
3208 mz = mem_cgroup_zoneinfo(mem, node, zid);
3209 list = &mz->lists[lru];
3211 loop = MEM_CGROUP_ZSTAT(mz, lru);
3212 /* give some margin against EBUSY etc...*/
3213 loop += 256;
3214 busy = NULL;
3215 while (loop--) {
3216 ret = 0;
3217 spin_lock_irqsave(&zone->lru_lock, flags);
3218 if (list_empty(list)) {
3219 spin_unlock_irqrestore(&zone->lru_lock, flags);
3220 break;
3222 pc = list_entry(list->prev, struct page_cgroup, lru);
3223 if (busy == pc) {
3224 list_move(&pc->lru, list);
3225 busy = NULL;
3226 spin_unlock_irqrestore(&zone->lru_lock, flags);
3227 continue;
3229 spin_unlock_irqrestore(&zone->lru_lock, flags);
3231 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3232 if (ret == -ENOMEM)
3233 break;
3235 if (ret == -EBUSY || ret == -EINVAL) {
3236 /* found lock contention or "pc" is obsolete. */
3237 busy = pc;
3238 cond_resched();
3239 } else
3240 busy = NULL;
3243 if (!ret && !list_empty(list))
3244 return -EBUSY;
3245 return ret;
3249 * make mem_cgroup's charge to be 0 if there is no task.
3250 * This enables deleting this mem_cgroup.
3252 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3254 int ret;
3255 int node, zid, shrink;
3256 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3257 struct cgroup *cgrp = mem->css.cgroup;
3259 css_get(&mem->css);
3261 shrink = 0;
3262 /* should free all ? */
3263 if (free_all)
3264 goto try_to_free;
3265 move_account:
3266 do {
3267 ret = -EBUSY;
3268 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3269 goto out;
3270 ret = -EINTR;
3271 if (signal_pending(current))
3272 goto out;
3273 /* This is for making all *used* pages to be on LRU. */
3274 lru_add_drain_all();
3275 drain_all_stock_sync();
3276 ret = 0;
3277 mem_cgroup_start_move(mem);
3278 for_each_node_state(node, N_HIGH_MEMORY) {
3279 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3280 enum lru_list l;
3281 for_each_lru(l) {
3282 ret = mem_cgroup_force_empty_list(mem,
3283 node, zid, l);
3284 if (ret)
3285 break;
3288 if (ret)
3289 break;
3291 mem_cgroup_end_move(mem);
3292 memcg_oom_recover(mem);
3293 /* it seems parent cgroup doesn't have enough mem */
3294 if (ret == -ENOMEM)
3295 goto try_to_free;
3296 cond_resched();
3297 /* "ret" should also be checked to ensure all lists are empty. */
3298 } while (mem->res.usage > 0 || ret);
3299 out:
3300 css_put(&mem->css);
3301 return ret;
3303 try_to_free:
3304 /* returns EBUSY if there is a task or if we come here twice. */
3305 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3306 ret = -EBUSY;
3307 goto out;
3309 /* we call try-to-free pages for make this cgroup empty */
3310 lru_add_drain_all();
3311 /* try to free all pages in this cgroup */
3312 shrink = 1;
3313 while (nr_retries && mem->res.usage > 0) {
3314 int progress;
3316 if (signal_pending(current)) {
3317 ret = -EINTR;
3318 goto out;
3320 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3321 false, get_swappiness(mem));
3322 if (!progress) {
3323 nr_retries--;
3324 /* maybe some writeback is necessary */
3325 congestion_wait(BLK_RW_ASYNC, HZ/10);
3329 lru_add_drain();
3330 /* try move_account...there may be some *locked* pages. */
3331 goto move_account;
3334 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3336 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3340 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3342 return mem_cgroup_from_cont(cont)->use_hierarchy;
3345 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3346 u64 val)
3348 int retval = 0;
3349 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3350 struct cgroup *parent = cont->parent;
3351 struct mem_cgroup *parent_mem = NULL;
3353 if (parent)
3354 parent_mem = mem_cgroup_from_cont(parent);
3356 cgroup_lock();
3358 * If parent's use_hierarchy is set, we can't make any modifications
3359 * in the child subtrees. If it is unset, then the change can
3360 * occur, provided the current cgroup has no children.
3362 * For the root cgroup, parent_mem is NULL, we allow value to be
3363 * set if there are no children.
3365 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3366 (val == 1 || val == 0)) {
3367 if (list_empty(&cont->children))
3368 mem->use_hierarchy = val;
3369 else
3370 retval = -EBUSY;
3371 } else
3372 retval = -EINVAL;
3373 cgroup_unlock();
3375 return retval;
3379 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3380 enum mem_cgroup_stat_index idx)
3382 struct mem_cgroup *iter;
3383 s64 val = 0;
3385 /* each per cpu's value can be minus.Then, use s64 */
3386 for_each_mem_cgroup_tree(iter, mem)
3387 val += mem_cgroup_read_stat(iter, idx);
3389 if (val < 0) /* race ? */
3390 val = 0;
3391 return val;
3394 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3396 u64 val;
3398 if (!mem_cgroup_is_root(mem)) {
3399 if (!swap)
3400 return res_counter_read_u64(&mem->res, RES_USAGE);
3401 else
3402 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3405 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3406 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3408 if (swap)
3409 val += mem_cgroup_get_recursive_idx_stat(mem,
3410 MEM_CGROUP_STAT_SWAPOUT);
3412 return val << PAGE_SHIFT;
3415 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3417 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3418 u64 val;
3419 int type, name;
3421 type = MEMFILE_TYPE(cft->private);
3422 name = MEMFILE_ATTR(cft->private);
3423 switch (type) {
3424 case _MEM:
3425 if (name == RES_USAGE)
3426 val = mem_cgroup_usage(mem, false);
3427 else
3428 val = res_counter_read_u64(&mem->res, name);
3429 break;
3430 case _MEMSWAP:
3431 if (name == RES_USAGE)
3432 val = mem_cgroup_usage(mem, true);
3433 else
3434 val = res_counter_read_u64(&mem->memsw, name);
3435 break;
3436 default:
3437 BUG();
3438 break;
3440 return val;
3443 * The user of this function is...
3444 * RES_LIMIT.
3446 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3447 const char *buffer)
3449 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3450 int type, name;
3451 unsigned long long val;
3452 int ret;
3454 type = MEMFILE_TYPE(cft->private);
3455 name = MEMFILE_ATTR(cft->private);
3456 switch (name) {
3457 case RES_LIMIT:
3458 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3459 ret = -EINVAL;
3460 break;
3462 /* This function does all necessary parse...reuse it */
3463 ret = res_counter_memparse_write_strategy(buffer, &val);
3464 if (ret)
3465 break;
3466 if (type == _MEM)
3467 ret = mem_cgroup_resize_limit(memcg, val);
3468 else
3469 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3470 break;
3471 case RES_SOFT_LIMIT:
3472 ret = res_counter_memparse_write_strategy(buffer, &val);
3473 if (ret)
3474 break;
3476 * For memsw, soft limits are hard to implement in terms
3477 * of semantics, for now, we support soft limits for
3478 * control without swap
3480 if (type == _MEM)
3481 ret = res_counter_set_soft_limit(&memcg->res, val);
3482 else
3483 ret = -EINVAL;
3484 break;
3485 default:
3486 ret = -EINVAL; /* should be BUG() ? */
3487 break;
3489 return ret;
3492 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3493 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3495 struct cgroup *cgroup;
3496 unsigned long long min_limit, min_memsw_limit, tmp;
3498 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3499 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3500 cgroup = memcg->css.cgroup;
3501 if (!memcg->use_hierarchy)
3502 goto out;
3504 while (cgroup->parent) {
3505 cgroup = cgroup->parent;
3506 memcg = mem_cgroup_from_cont(cgroup);
3507 if (!memcg->use_hierarchy)
3508 break;
3509 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3510 min_limit = min(min_limit, tmp);
3511 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3512 min_memsw_limit = min(min_memsw_limit, tmp);
3514 out:
3515 *mem_limit = min_limit;
3516 *memsw_limit = min_memsw_limit;
3517 return;
3520 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3522 struct mem_cgroup *mem;
3523 int type, name;
3525 mem = mem_cgroup_from_cont(cont);
3526 type = MEMFILE_TYPE(event);
3527 name = MEMFILE_ATTR(event);
3528 switch (name) {
3529 case RES_MAX_USAGE:
3530 if (type == _MEM)
3531 res_counter_reset_max(&mem->res);
3532 else
3533 res_counter_reset_max(&mem->memsw);
3534 break;
3535 case RES_FAILCNT:
3536 if (type == _MEM)
3537 res_counter_reset_failcnt(&mem->res);
3538 else
3539 res_counter_reset_failcnt(&mem->memsw);
3540 break;
3543 return 0;
3546 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3547 struct cftype *cft)
3549 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3552 #ifdef CONFIG_MMU
3553 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3554 struct cftype *cft, u64 val)
3556 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3558 if (val >= (1 << NR_MOVE_TYPE))
3559 return -EINVAL;
3561 * We check this value several times in both in can_attach() and
3562 * attach(), so we need cgroup lock to prevent this value from being
3563 * inconsistent.
3565 cgroup_lock();
3566 mem->move_charge_at_immigrate = val;
3567 cgroup_unlock();
3569 return 0;
3571 #else
3572 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3573 struct cftype *cft, u64 val)
3575 return -ENOSYS;
3577 #endif
3580 /* For read statistics */
3581 enum {
3582 MCS_CACHE,
3583 MCS_RSS,
3584 MCS_FILE_MAPPED,
3585 MCS_PGPGIN,
3586 MCS_PGPGOUT,
3587 MCS_SWAP,
3588 MCS_INACTIVE_ANON,
3589 MCS_ACTIVE_ANON,
3590 MCS_INACTIVE_FILE,
3591 MCS_ACTIVE_FILE,
3592 MCS_UNEVICTABLE,
3593 NR_MCS_STAT,
3596 struct mcs_total_stat {
3597 s64 stat[NR_MCS_STAT];
3600 struct {
3601 char *local_name;
3602 char *total_name;
3603 } memcg_stat_strings[NR_MCS_STAT] = {
3604 {"cache", "total_cache"},
3605 {"rss", "total_rss"},
3606 {"mapped_file", "total_mapped_file"},
3607 {"pgpgin", "total_pgpgin"},
3608 {"pgpgout", "total_pgpgout"},
3609 {"swap", "total_swap"},
3610 {"inactive_anon", "total_inactive_anon"},
3611 {"active_anon", "total_active_anon"},
3612 {"inactive_file", "total_inactive_file"},
3613 {"active_file", "total_active_file"},
3614 {"unevictable", "total_unevictable"}
3618 static void
3619 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3621 s64 val;
3623 /* per cpu stat */
3624 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3625 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3626 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3627 s->stat[MCS_RSS] += val * PAGE_SIZE;
3628 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3629 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3630 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3631 s->stat[MCS_PGPGIN] += val;
3632 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3633 s->stat[MCS_PGPGOUT] += val;
3634 if (do_swap_account) {
3635 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3636 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3639 /* per zone stat */
3640 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3641 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3642 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3643 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3644 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3645 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3646 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3647 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3648 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3649 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3652 static void
3653 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3655 struct mem_cgroup *iter;
3657 for_each_mem_cgroup_tree(iter, mem)
3658 mem_cgroup_get_local_stat(iter, s);
3661 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3662 struct cgroup_map_cb *cb)
3664 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3665 struct mcs_total_stat mystat;
3666 int i;
3668 memset(&mystat, 0, sizeof(mystat));
3669 mem_cgroup_get_local_stat(mem_cont, &mystat);
3671 for (i = 0; i < NR_MCS_STAT; i++) {
3672 if (i == MCS_SWAP && !do_swap_account)
3673 continue;
3674 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3677 /* Hierarchical information */
3679 unsigned long long limit, memsw_limit;
3680 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3681 cb->fill(cb, "hierarchical_memory_limit", limit);
3682 if (do_swap_account)
3683 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3686 memset(&mystat, 0, sizeof(mystat));
3687 mem_cgroup_get_total_stat(mem_cont, &mystat);
3688 for (i = 0; i < NR_MCS_STAT; i++) {
3689 if (i == MCS_SWAP && !do_swap_account)
3690 continue;
3691 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3694 #ifdef CONFIG_DEBUG_VM
3695 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3698 int nid, zid;
3699 struct mem_cgroup_per_zone *mz;
3700 unsigned long recent_rotated[2] = {0, 0};
3701 unsigned long recent_scanned[2] = {0, 0};
3703 for_each_online_node(nid)
3704 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3705 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3707 recent_rotated[0] +=
3708 mz->reclaim_stat.recent_rotated[0];
3709 recent_rotated[1] +=
3710 mz->reclaim_stat.recent_rotated[1];
3711 recent_scanned[0] +=
3712 mz->reclaim_stat.recent_scanned[0];
3713 recent_scanned[1] +=
3714 mz->reclaim_stat.recent_scanned[1];
3716 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3717 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3718 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3719 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3721 #endif
3723 return 0;
3726 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3728 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3730 return get_swappiness(memcg);
3733 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3734 u64 val)
3736 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3737 struct mem_cgroup *parent;
3739 if (val > 100)
3740 return -EINVAL;
3742 if (cgrp->parent == NULL)
3743 return -EINVAL;
3745 parent = mem_cgroup_from_cont(cgrp->parent);
3747 cgroup_lock();
3749 /* If under hierarchy, only empty-root can set this value */
3750 if ((parent->use_hierarchy) ||
3751 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3752 cgroup_unlock();
3753 return -EINVAL;
3756 spin_lock(&memcg->reclaim_param_lock);
3757 memcg->swappiness = val;
3758 spin_unlock(&memcg->reclaim_param_lock);
3760 cgroup_unlock();
3762 return 0;
3765 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3767 struct mem_cgroup_threshold_ary *t;
3768 u64 usage;
3769 int i;
3771 rcu_read_lock();
3772 if (!swap)
3773 t = rcu_dereference(memcg->thresholds.primary);
3774 else
3775 t = rcu_dereference(memcg->memsw_thresholds.primary);
3777 if (!t)
3778 goto unlock;
3780 usage = mem_cgroup_usage(memcg, swap);
3783 * current_threshold points to threshold just below usage.
3784 * If it's not true, a threshold was crossed after last
3785 * call of __mem_cgroup_threshold().
3787 i = t->current_threshold;
3790 * Iterate backward over array of thresholds starting from
3791 * current_threshold and check if a threshold is crossed.
3792 * If none of thresholds below usage is crossed, we read
3793 * only one element of the array here.
3795 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3796 eventfd_signal(t->entries[i].eventfd, 1);
3798 /* i = current_threshold + 1 */
3799 i++;
3802 * Iterate forward over array of thresholds starting from
3803 * current_threshold+1 and check if a threshold is crossed.
3804 * If none of thresholds above usage is crossed, we read
3805 * only one element of the array here.
3807 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3808 eventfd_signal(t->entries[i].eventfd, 1);
3810 /* Update current_threshold */
3811 t->current_threshold = i - 1;
3812 unlock:
3813 rcu_read_unlock();
3816 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3818 while (memcg) {
3819 __mem_cgroup_threshold(memcg, false);
3820 if (do_swap_account)
3821 __mem_cgroup_threshold(memcg, true);
3823 memcg = parent_mem_cgroup(memcg);
3827 static int compare_thresholds(const void *a, const void *b)
3829 const struct mem_cgroup_threshold *_a = a;
3830 const struct mem_cgroup_threshold *_b = b;
3832 return _a->threshold - _b->threshold;
3835 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3837 struct mem_cgroup_eventfd_list *ev;
3839 list_for_each_entry(ev, &mem->oom_notify, list)
3840 eventfd_signal(ev->eventfd, 1);
3841 return 0;
3844 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3846 struct mem_cgroup *iter;
3848 for_each_mem_cgroup_tree(iter, mem)
3849 mem_cgroup_oom_notify_cb(iter);
3852 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3853 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3855 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3856 struct mem_cgroup_thresholds *thresholds;
3857 struct mem_cgroup_threshold_ary *new;
3858 int type = MEMFILE_TYPE(cft->private);
3859 u64 threshold, usage;
3860 int i, size, ret;
3862 ret = res_counter_memparse_write_strategy(args, &threshold);
3863 if (ret)
3864 return ret;
3866 mutex_lock(&memcg->thresholds_lock);
3868 if (type == _MEM)
3869 thresholds = &memcg->thresholds;
3870 else if (type == _MEMSWAP)
3871 thresholds = &memcg->memsw_thresholds;
3872 else
3873 BUG();
3875 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3877 /* Check if a threshold crossed before adding a new one */
3878 if (thresholds->primary)
3879 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3881 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3883 /* Allocate memory for new array of thresholds */
3884 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3885 GFP_KERNEL);
3886 if (!new) {
3887 ret = -ENOMEM;
3888 goto unlock;
3890 new->size = size;
3892 /* Copy thresholds (if any) to new array */
3893 if (thresholds->primary) {
3894 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3895 sizeof(struct mem_cgroup_threshold));
3898 /* Add new threshold */
3899 new->entries[size - 1].eventfd = eventfd;
3900 new->entries[size - 1].threshold = threshold;
3902 /* Sort thresholds. Registering of new threshold isn't time-critical */
3903 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3904 compare_thresholds, NULL);
3906 /* Find current threshold */
3907 new->current_threshold = -1;
3908 for (i = 0; i < size; i++) {
3909 if (new->entries[i].threshold < usage) {
3911 * new->current_threshold will not be used until
3912 * rcu_assign_pointer(), so it's safe to increment
3913 * it here.
3915 ++new->current_threshold;
3919 /* Free old spare buffer and save old primary buffer as spare */
3920 kfree(thresholds->spare);
3921 thresholds->spare = thresholds->primary;
3923 rcu_assign_pointer(thresholds->primary, new);
3925 /* To be sure that nobody uses thresholds */
3926 synchronize_rcu();
3928 unlock:
3929 mutex_unlock(&memcg->thresholds_lock);
3931 return ret;
3934 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3935 struct cftype *cft, struct eventfd_ctx *eventfd)
3937 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3938 struct mem_cgroup_thresholds *thresholds;
3939 struct mem_cgroup_threshold_ary *new;
3940 int type = MEMFILE_TYPE(cft->private);
3941 u64 usage;
3942 int i, j, size;
3944 mutex_lock(&memcg->thresholds_lock);
3945 if (type == _MEM)
3946 thresholds = &memcg->thresholds;
3947 else if (type == _MEMSWAP)
3948 thresholds = &memcg->memsw_thresholds;
3949 else
3950 BUG();
3953 * Something went wrong if we trying to unregister a threshold
3954 * if we don't have thresholds
3956 BUG_ON(!thresholds);
3958 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3960 /* Check if a threshold crossed before removing */
3961 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3963 /* Calculate new number of threshold */
3964 size = 0;
3965 for (i = 0; i < thresholds->primary->size; i++) {
3966 if (thresholds->primary->entries[i].eventfd != eventfd)
3967 size++;
3970 new = thresholds->spare;
3972 /* Set thresholds array to NULL if we don't have thresholds */
3973 if (!size) {
3974 kfree(new);
3975 new = NULL;
3976 goto swap_buffers;
3979 new->size = size;
3981 /* Copy thresholds and find current threshold */
3982 new->current_threshold = -1;
3983 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3984 if (thresholds->primary->entries[i].eventfd == eventfd)
3985 continue;
3987 new->entries[j] = thresholds->primary->entries[i];
3988 if (new->entries[j].threshold < usage) {
3990 * new->current_threshold will not be used
3991 * until rcu_assign_pointer(), so it's safe to increment
3992 * it here.
3994 ++new->current_threshold;
3996 j++;
3999 swap_buffers:
4000 /* Swap primary and spare array */
4001 thresholds->spare = thresholds->primary;
4002 rcu_assign_pointer(thresholds->primary, new);
4004 /* To be sure that nobody uses thresholds */
4005 synchronize_rcu();
4007 mutex_unlock(&memcg->thresholds_lock);
4010 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4011 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4013 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4014 struct mem_cgroup_eventfd_list *event;
4015 int type = MEMFILE_TYPE(cft->private);
4017 BUG_ON(type != _OOM_TYPE);
4018 event = kmalloc(sizeof(*event), GFP_KERNEL);
4019 if (!event)
4020 return -ENOMEM;
4022 mutex_lock(&memcg_oom_mutex);
4024 event->eventfd = eventfd;
4025 list_add(&event->list, &memcg->oom_notify);
4027 /* already in OOM ? */
4028 if (atomic_read(&memcg->oom_lock))
4029 eventfd_signal(eventfd, 1);
4030 mutex_unlock(&memcg_oom_mutex);
4032 return 0;
4035 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4036 struct cftype *cft, struct eventfd_ctx *eventfd)
4038 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4039 struct mem_cgroup_eventfd_list *ev, *tmp;
4040 int type = MEMFILE_TYPE(cft->private);
4042 BUG_ON(type != _OOM_TYPE);
4044 mutex_lock(&memcg_oom_mutex);
4046 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4047 if (ev->eventfd == eventfd) {
4048 list_del(&ev->list);
4049 kfree(ev);
4053 mutex_unlock(&memcg_oom_mutex);
4056 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4057 struct cftype *cft, struct cgroup_map_cb *cb)
4059 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4061 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4063 if (atomic_read(&mem->oom_lock))
4064 cb->fill(cb, "under_oom", 1);
4065 else
4066 cb->fill(cb, "under_oom", 0);
4067 return 0;
4070 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4071 struct cftype *cft, u64 val)
4073 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4074 struct mem_cgroup *parent;
4076 /* cannot set to root cgroup and only 0 and 1 are allowed */
4077 if (!cgrp->parent || !((val == 0) || (val == 1)))
4078 return -EINVAL;
4080 parent = mem_cgroup_from_cont(cgrp->parent);
4082 cgroup_lock();
4083 /* oom-kill-disable is a flag for subhierarchy. */
4084 if ((parent->use_hierarchy) ||
4085 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4086 cgroup_unlock();
4087 return -EINVAL;
4089 mem->oom_kill_disable = val;
4090 if (!val)
4091 memcg_oom_recover(mem);
4092 cgroup_unlock();
4093 return 0;
4096 static struct cftype mem_cgroup_files[] = {
4098 .name = "usage_in_bytes",
4099 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4100 .read_u64 = mem_cgroup_read,
4101 .register_event = mem_cgroup_usage_register_event,
4102 .unregister_event = mem_cgroup_usage_unregister_event,
4105 .name = "max_usage_in_bytes",
4106 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4107 .trigger = mem_cgroup_reset,
4108 .read_u64 = mem_cgroup_read,
4111 .name = "limit_in_bytes",
4112 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4113 .write_string = mem_cgroup_write,
4114 .read_u64 = mem_cgroup_read,
4117 .name = "soft_limit_in_bytes",
4118 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4119 .write_string = mem_cgroup_write,
4120 .read_u64 = mem_cgroup_read,
4123 .name = "failcnt",
4124 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4125 .trigger = mem_cgroup_reset,
4126 .read_u64 = mem_cgroup_read,
4129 .name = "stat",
4130 .read_map = mem_control_stat_show,
4133 .name = "force_empty",
4134 .trigger = mem_cgroup_force_empty_write,
4137 .name = "use_hierarchy",
4138 .write_u64 = mem_cgroup_hierarchy_write,
4139 .read_u64 = mem_cgroup_hierarchy_read,
4142 .name = "swappiness",
4143 .read_u64 = mem_cgroup_swappiness_read,
4144 .write_u64 = mem_cgroup_swappiness_write,
4147 .name = "move_charge_at_immigrate",
4148 .read_u64 = mem_cgroup_move_charge_read,
4149 .write_u64 = mem_cgroup_move_charge_write,
4152 .name = "oom_control",
4153 .read_map = mem_cgroup_oom_control_read,
4154 .write_u64 = mem_cgroup_oom_control_write,
4155 .register_event = mem_cgroup_oom_register_event,
4156 .unregister_event = mem_cgroup_oom_unregister_event,
4157 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4161 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4162 static struct cftype memsw_cgroup_files[] = {
4164 .name = "memsw.usage_in_bytes",
4165 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4166 .read_u64 = mem_cgroup_read,
4167 .register_event = mem_cgroup_usage_register_event,
4168 .unregister_event = mem_cgroup_usage_unregister_event,
4171 .name = "memsw.max_usage_in_bytes",
4172 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4173 .trigger = mem_cgroup_reset,
4174 .read_u64 = mem_cgroup_read,
4177 .name = "memsw.limit_in_bytes",
4178 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4179 .write_string = mem_cgroup_write,
4180 .read_u64 = mem_cgroup_read,
4183 .name = "memsw.failcnt",
4184 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4185 .trigger = mem_cgroup_reset,
4186 .read_u64 = mem_cgroup_read,
4190 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4192 if (!do_swap_account)
4193 return 0;
4194 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4195 ARRAY_SIZE(memsw_cgroup_files));
4197 #else
4198 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4200 return 0;
4202 #endif
4204 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4206 struct mem_cgroup_per_node *pn;
4207 struct mem_cgroup_per_zone *mz;
4208 enum lru_list l;
4209 int zone, tmp = node;
4211 * This routine is called against possible nodes.
4212 * But it's BUG to call kmalloc() against offline node.
4214 * TODO: this routine can waste much memory for nodes which will
4215 * never be onlined. It's better to use memory hotplug callback
4216 * function.
4218 if (!node_state(node, N_NORMAL_MEMORY))
4219 tmp = -1;
4220 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4221 if (!pn)
4222 return 1;
4224 mem->info.nodeinfo[node] = pn;
4225 memset(pn, 0, sizeof(*pn));
4227 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4228 mz = &pn->zoneinfo[zone];
4229 for_each_lru(l)
4230 INIT_LIST_HEAD(&mz->lists[l]);
4231 mz->usage_in_excess = 0;
4232 mz->on_tree = false;
4233 mz->mem = mem;
4235 return 0;
4238 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4240 kfree(mem->info.nodeinfo[node]);
4243 static struct mem_cgroup *mem_cgroup_alloc(void)
4245 struct mem_cgroup *mem;
4246 int size = sizeof(struct mem_cgroup);
4248 /* Can be very big if MAX_NUMNODES is very big */
4249 if (size < PAGE_SIZE)
4250 mem = kmalloc(size, GFP_KERNEL);
4251 else
4252 mem = vmalloc(size);
4254 if (!mem)
4255 return NULL;
4257 memset(mem, 0, size);
4258 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4259 if (!mem->stat)
4260 goto out_free;
4261 spin_lock_init(&mem->pcp_counter_lock);
4262 return mem;
4264 out_free:
4265 if (size < PAGE_SIZE)
4266 kfree(mem);
4267 else
4268 vfree(mem);
4269 return NULL;
4273 * At destroying mem_cgroup, references from swap_cgroup can remain.
4274 * (scanning all at force_empty is too costly...)
4276 * Instead of clearing all references at force_empty, we remember
4277 * the number of reference from swap_cgroup and free mem_cgroup when
4278 * it goes down to 0.
4280 * Removal of cgroup itself succeeds regardless of refs from swap.
4283 static void __mem_cgroup_free(struct mem_cgroup *mem)
4285 int node;
4287 mem_cgroup_remove_from_trees(mem);
4288 free_css_id(&mem_cgroup_subsys, &mem->css);
4290 for_each_node_state(node, N_POSSIBLE)
4291 free_mem_cgroup_per_zone_info(mem, node);
4293 free_percpu(mem->stat);
4294 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4295 kfree(mem);
4296 else
4297 vfree(mem);
4300 static void mem_cgroup_get(struct mem_cgroup *mem)
4302 atomic_inc(&mem->refcnt);
4305 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4307 if (atomic_sub_and_test(count, &mem->refcnt)) {
4308 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4309 __mem_cgroup_free(mem);
4310 if (parent)
4311 mem_cgroup_put(parent);
4315 static void mem_cgroup_put(struct mem_cgroup *mem)
4317 __mem_cgroup_put(mem, 1);
4321 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4323 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4325 if (!mem->res.parent)
4326 return NULL;
4327 return mem_cgroup_from_res_counter(mem->res.parent, res);
4330 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4331 static void __init enable_swap_cgroup(void)
4333 if (!mem_cgroup_disabled() && really_do_swap_account)
4334 do_swap_account = 1;
4336 #else
4337 static void __init enable_swap_cgroup(void)
4340 #endif
4342 static int mem_cgroup_soft_limit_tree_init(void)
4344 struct mem_cgroup_tree_per_node *rtpn;
4345 struct mem_cgroup_tree_per_zone *rtpz;
4346 int tmp, node, zone;
4348 for_each_node_state(node, N_POSSIBLE) {
4349 tmp = node;
4350 if (!node_state(node, N_NORMAL_MEMORY))
4351 tmp = -1;
4352 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4353 if (!rtpn)
4354 return 1;
4356 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4358 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4359 rtpz = &rtpn->rb_tree_per_zone[zone];
4360 rtpz->rb_root = RB_ROOT;
4361 spin_lock_init(&rtpz->lock);
4364 return 0;
4367 static struct cgroup_subsys_state * __ref
4368 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4370 struct mem_cgroup *mem, *parent;
4371 long error = -ENOMEM;
4372 int node;
4374 mem = mem_cgroup_alloc();
4375 if (!mem)
4376 return ERR_PTR(error);
4378 for_each_node_state(node, N_POSSIBLE)
4379 if (alloc_mem_cgroup_per_zone_info(mem, node))
4380 goto free_out;
4382 /* root ? */
4383 if (cont->parent == NULL) {
4384 int cpu;
4385 enable_swap_cgroup();
4386 parent = NULL;
4387 root_mem_cgroup = mem;
4388 if (mem_cgroup_soft_limit_tree_init())
4389 goto free_out;
4390 for_each_possible_cpu(cpu) {
4391 struct memcg_stock_pcp *stock =
4392 &per_cpu(memcg_stock, cpu);
4393 INIT_WORK(&stock->work, drain_local_stock);
4395 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4396 } else {
4397 parent = mem_cgroup_from_cont(cont->parent);
4398 mem->use_hierarchy = parent->use_hierarchy;
4399 mem->oom_kill_disable = parent->oom_kill_disable;
4402 if (parent && parent->use_hierarchy) {
4403 res_counter_init(&mem->res, &parent->res);
4404 res_counter_init(&mem->memsw, &parent->memsw);
4406 * We increment refcnt of the parent to ensure that we can
4407 * safely access it on res_counter_charge/uncharge.
4408 * This refcnt will be decremented when freeing this
4409 * mem_cgroup(see mem_cgroup_put).
4411 mem_cgroup_get(parent);
4412 } else {
4413 res_counter_init(&mem->res, NULL);
4414 res_counter_init(&mem->memsw, NULL);
4416 mem->last_scanned_child = 0;
4417 spin_lock_init(&mem->reclaim_param_lock);
4418 INIT_LIST_HEAD(&mem->oom_notify);
4420 if (parent)
4421 mem->swappiness = get_swappiness(parent);
4422 atomic_set(&mem->refcnt, 1);
4423 mem->move_charge_at_immigrate = 0;
4424 mutex_init(&mem->thresholds_lock);
4425 return &mem->css;
4426 free_out:
4427 __mem_cgroup_free(mem);
4428 root_mem_cgroup = NULL;
4429 return ERR_PTR(error);
4432 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4433 struct cgroup *cont)
4435 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4437 return mem_cgroup_force_empty(mem, false);
4440 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4441 struct cgroup *cont)
4443 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4445 mem_cgroup_put(mem);
4448 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4449 struct cgroup *cont)
4451 int ret;
4453 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4454 ARRAY_SIZE(mem_cgroup_files));
4456 if (!ret)
4457 ret = register_memsw_files(cont, ss);
4458 return ret;
4461 #ifdef CONFIG_MMU
4462 /* Handlers for move charge at task migration. */
4463 #define PRECHARGE_COUNT_AT_ONCE 256
4464 static int mem_cgroup_do_precharge(unsigned long count)
4466 int ret = 0;
4467 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4468 struct mem_cgroup *mem = mc.to;
4470 if (mem_cgroup_is_root(mem)) {
4471 mc.precharge += count;
4472 /* we don't need css_get for root */
4473 return ret;
4475 /* try to charge at once */
4476 if (count > 1) {
4477 struct res_counter *dummy;
4479 * "mem" cannot be under rmdir() because we've already checked
4480 * by cgroup_lock_live_cgroup() that it is not removed and we
4481 * are still under the same cgroup_mutex. So we can postpone
4482 * css_get().
4484 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4485 goto one_by_one;
4486 if (do_swap_account && res_counter_charge(&mem->memsw,
4487 PAGE_SIZE * count, &dummy)) {
4488 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4489 goto one_by_one;
4491 mc.precharge += count;
4492 return ret;
4494 one_by_one:
4495 /* fall back to one by one charge */
4496 while (count--) {
4497 if (signal_pending(current)) {
4498 ret = -EINTR;
4499 break;
4501 if (!batch_count--) {
4502 batch_count = PRECHARGE_COUNT_AT_ONCE;
4503 cond_resched();
4505 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4506 PAGE_SIZE);
4507 if (ret || !mem)
4508 /* mem_cgroup_clear_mc() will do uncharge later */
4509 return -ENOMEM;
4510 mc.precharge++;
4512 return ret;
4516 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4517 * @vma: the vma the pte to be checked belongs
4518 * @addr: the address corresponding to the pte to be checked
4519 * @ptent: the pte to be checked
4520 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4522 * Returns
4523 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4524 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4525 * move charge. if @target is not NULL, the page is stored in target->page
4526 * with extra refcnt got(Callers should handle it).
4527 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4528 * target for charge migration. if @target is not NULL, the entry is stored
4529 * in target->ent.
4531 * Called with pte lock held.
4533 union mc_target {
4534 struct page *page;
4535 swp_entry_t ent;
4538 enum mc_target_type {
4539 MC_TARGET_NONE, /* not used */
4540 MC_TARGET_PAGE,
4541 MC_TARGET_SWAP,
4544 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4545 unsigned long addr, pte_t ptent)
4547 struct page *page = vm_normal_page(vma, addr, ptent);
4549 if (!page || !page_mapped(page))
4550 return NULL;
4551 if (PageAnon(page)) {
4552 /* we don't move shared anon */
4553 if (!move_anon() || page_mapcount(page) > 2)
4554 return NULL;
4555 } else if (!move_file())
4556 /* we ignore mapcount for file pages */
4557 return NULL;
4558 if (!get_page_unless_zero(page))
4559 return NULL;
4561 return page;
4564 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4565 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4567 int usage_count;
4568 struct page *page = NULL;
4569 swp_entry_t ent = pte_to_swp_entry(ptent);
4571 if (!move_anon() || non_swap_entry(ent))
4572 return NULL;
4573 usage_count = mem_cgroup_count_swap_user(ent, &page);
4574 if (usage_count > 1) { /* we don't move shared anon */
4575 if (page)
4576 put_page(page);
4577 return NULL;
4579 if (do_swap_account)
4580 entry->val = ent.val;
4582 return page;
4585 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4586 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4588 struct page *page = NULL;
4589 struct inode *inode;
4590 struct address_space *mapping;
4591 pgoff_t pgoff;
4593 if (!vma->vm_file) /* anonymous vma */
4594 return NULL;
4595 if (!move_file())
4596 return NULL;
4598 inode = vma->vm_file->f_path.dentry->d_inode;
4599 mapping = vma->vm_file->f_mapping;
4600 if (pte_none(ptent))
4601 pgoff = linear_page_index(vma, addr);
4602 else /* pte_file(ptent) is true */
4603 pgoff = pte_to_pgoff(ptent);
4605 /* page is moved even if it's not RSS of this task(page-faulted). */
4606 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4607 page = find_get_page(mapping, pgoff);
4608 } else { /* shmem/tmpfs file. we should take account of swap too. */
4609 swp_entry_t ent;
4610 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4611 if (do_swap_account)
4612 entry->val = ent.val;
4615 return page;
4618 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4619 unsigned long addr, pte_t ptent, union mc_target *target)
4621 struct page *page = NULL;
4622 struct page_cgroup *pc;
4623 int ret = 0;
4624 swp_entry_t ent = { .val = 0 };
4626 if (pte_present(ptent))
4627 page = mc_handle_present_pte(vma, addr, ptent);
4628 else if (is_swap_pte(ptent))
4629 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4630 else if (pte_none(ptent) || pte_file(ptent))
4631 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4633 if (!page && !ent.val)
4634 return 0;
4635 if (page) {
4636 pc = lookup_page_cgroup(page);
4638 * Do only loose check w/o page_cgroup lock.
4639 * mem_cgroup_move_account() checks the pc is valid or not under
4640 * the lock.
4642 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4643 ret = MC_TARGET_PAGE;
4644 if (target)
4645 target->page = page;
4647 if (!ret || !target)
4648 put_page(page);
4650 /* There is a swap entry and a page doesn't exist or isn't charged */
4651 if (ent.val && !ret &&
4652 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4653 ret = MC_TARGET_SWAP;
4654 if (target)
4655 target->ent = ent;
4657 return ret;
4660 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4661 unsigned long addr, unsigned long end,
4662 struct mm_walk *walk)
4664 struct vm_area_struct *vma = walk->private;
4665 pte_t *pte;
4666 spinlock_t *ptl;
4668 VM_BUG_ON(pmd_trans_huge(*pmd));
4669 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4670 for (; addr != end; pte++, addr += PAGE_SIZE)
4671 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4672 mc.precharge++; /* increment precharge temporarily */
4673 pte_unmap_unlock(pte - 1, ptl);
4674 cond_resched();
4676 return 0;
4679 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4681 unsigned long precharge;
4682 struct vm_area_struct *vma;
4684 /* We've already held the mmap_sem */
4685 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4686 struct mm_walk mem_cgroup_count_precharge_walk = {
4687 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4688 .mm = mm,
4689 .private = vma,
4691 if (is_vm_hugetlb_page(vma))
4692 continue;
4693 walk_page_range(vma->vm_start, vma->vm_end,
4694 &mem_cgroup_count_precharge_walk);
4697 precharge = mc.precharge;
4698 mc.precharge = 0;
4700 return precharge;
4703 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4705 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4708 static void mem_cgroup_clear_mc(void)
4710 struct mem_cgroup *from = mc.from;
4711 struct mem_cgroup *to = mc.to;
4713 /* we must uncharge all the leftover precharges from mc.to */
4714 if (mc.precharge) {
4715 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4716 mc.precharge = 0;
4719 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4720 * we must uncharge here.
4722 if (mc.moved_charge) {
4723 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4724 mc.moved_charge = 0;
4726 /* we must fixup refcnts and charges */
4727 if (mc.moved_swap) {
4728 /* uncharge swap account from the old cgroup */
4729 if (!mem_cgroup_is_root(mc.from))
4730 res_counter_uncharge(&mc.from->memsw,
4731 PAGE_SIZE * mc.moved_swap);
4732 __mem_cgroup_put(mc.from, mc.moved_swap);
4734 if (!mem_cgroup_is_root(mc.to)) {
4736 * we charged both to->res and to->memsw, so we should
4737 * uncharge to->res.
4739 res_counter_uncharge(&mc.to->res,
4740 PAGE_SIZE * mc.moved_swap);
4742 /* we've already done mem_cgroup_get(mc.to) */
4744 mc.moved_swap = 0;
4746 if (mc.mm) {
4747 up_read(&mc.mm->mmap_sem);
4748 mmput(mc.mm);
4750 spin_lock(&mc.lock);
4751 mc.from = NULL;
4752 mc.to = NULL;
4753 spin_unlock(&mc.lock);
4754 mc.moving_task = NULL;
4755 mc.mm = NULL;
4756 mem_cgroup_end_move(from);
4757 memcg_oom_recover(from);
4758 memcg_oom_recover(to);
4759 wake_up_all(&mc.waitq);
4762 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4763 struct cgroup *cgroup,
4764 struct task_struct *p,
4765 bool threadgroup)
4767 int ret = 0;
4768 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4770 if (mem->move_charge_at_immigrate) {
4771 struct mm_struct *mm;
4772 struct mem_cgroup *from = mem_cgroup_from_task(p);
4774 VM_BUG_ON(from == mem);
4776 mm = get_task_mm(p);
4777 if (!mm)
4778 return 0;
4779 /* We move charges only when we move a owner of the mm */
4780 if (mm->owner == p) {
4782 * We do all the move charge works under one mmap_sem to
4783 * avoid deadlock with down_write(&mmap_sem)
4784 * -> try_charge() -> if (mc.moving_task) -> sleep.
4786 down_read(&mm->mmap_sem);
4788 VM_BUG_ON(mc.from);
4789 VM_BUG_ON(mc.to);
4790 VM_BUG_ON(mc.precharge);
4791 VM_BUG_ON(mc.moved_charge);
4792 VM_BUG_ON(mc.moved_swap);
4793 VM_BUG_ON(mc.moving_task);
4794 VM_BUG_ON(mc.mm);
4796 mem_cgroup_start_move(from);
4797 spin_lock(&mc.lock);
4798 mc.from = from;
4799 mc.to = mem;
4800 mc.precharge = 0;
4801 mc.moved_charge = 0;
4802 mc.moved_swap = 0;
4803 spin_unlock(&mc.lock);
4804 mc.moving_task = current;
4805 mc.mm = mm;
4807 ret = mem_cgroup_precharge_mc(mm);
4808 if (ret)
4809 mem_cgroup_clear_mc();
4810 /* We call up_read() and mmput() in clear_mc(). */
4811 } else
4812 mmput(mm);
4814 return ret;
4817 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4818 struct cgroup *cgroup,
4819 struct task_struct *p,
4820 bool threadgroup)
4822 mem_cgroup_clear_mc();
4825 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4826 unsigned long addr, unsigned long end,
4827 struct mm_walk *walk)
4829 int ret = 0;
4830 struct vm_area_struct *vma = walk->private;
4831 pte_t *pte;
4832 spinlock_t *ptl;
4834 retry:
4835 VM_BUG_ON(pmd_trans_huge(*pmd));
4836 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4837 for (; addr != end; addr += PAGE_SIZE) {
4838 pte_t ptent = *(pte++);
4839 union mc_target target;
4840 int type;
4841 struct page *page;
4842 struct page_cgroup *pc;
4843 swp_entry_t ent;
4845 if (!mc.precharge)
4846 break;
4848 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4849 switch (type) {
4850 case MC_TARGET_PAGE:
4851 page = target.page;
4852 if (isolate_lru_page(page))
4853 goto put;
4854 pc = lookup_page_cgroup(page);
4855 if (!mem_cgroup_move_account(pc,
4856 mc.from, mc.to, false)) {
4857 mc.precharge--;
4858 /* we uncharge from mc.from later. */
4859 mc.moved_charge++;
4861 putback_lru_page(page);
4862 put: /* is_target_pte_for_mc() gets the page */
4863 put_page(page);
4864 break;
4865 case MC_TARGET_SWAP:
4866 ent = target.ent;
4867 if (!mem_cgroup_move_swap_account(ent,
4868 mc.from, mc.to, false)) {
4869 mc.precharge--;
4870 /* we fixup refcnts and charges later. */
4871 mc.moved_swap++;
4873 break;
4874 default:
4875 break;
4878 pte_unmap_unlock(pte - 1, ptl);
4879 cond_resched();
4881 if (addr != end) {
4883 * We have consumed all precharges we got in can_attach().
4884 * We try charge one by one, but don't do any additional
4885 * charges to mc.to if we have failed in charge once in attach()
4886 * phase.
4888 ret = mem_cgroup_do_precharge(1);
4889 if (!ret)
4890 goto retry;
4893 return ret;
4896 static void mem_cgroup_move_charge(struct mm_struct *mm)
4898 struct vm_area_struct *vma;
4900 lru_add_drain_all();
4901 /* We've already held the mmap_sem */
4902 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4903 int ret;
4904 struct mm_walk mem_cgroup_move_charge_walk = {
4905 .pmd_entry = mem_cgroup_move_charge_pte_range,
4906 .mm = mm,
4907 .private = vma,
4909 if (is_vm_hugetlb_page(vma))
4910 continue;
4911 ret = walk_page_range(vma->vm_start, vma->vm_end,
4912 &mem_cgroup_move_charge_walk);
4913 if (ret)
4915 * means we have consumed all precharges and failed in
4916 * doing additional charge. Just abandon here.
4918 break;
4922 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4923 struct cgroup *cont,
4924 struct cgroup *old_cont,
4925 struct task_struct *p,
4926 bool threadgroup)
4928 if (!mc.mm)
4929 /* no need to move charge */
4930 return;
4932 mem_cgroup_move_charge(mc.mm);
4933 mem_cgroup_clear_mc();
4935 #else /* !CONFIG_MMU */
4936 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4937 struct cgroup *cgroup,
4938 struct task_struct *p,
4939 bool threadgroup)
4941 return 0;
4943 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4944 struct cgroup *cgroup,
4945 struct task_struct *p,
4946 bool threadgroup)
4949 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4950 struct cgroup *cont,
4951 struct cgroup *old_cont,
4952 struct task_struct *p,
4953 bool threadgroup)
4956 #endif
4958 struct cgroup_subsys mem_cgroup_subsys = {
4959 .name = "memory",
4960 .subsys_id = mem_cgroup_subsys_id,
4961 .create = mem_cgroup_create,
4962 .pre_destroy = mem_cgroup_pre_destroy,
4963 .destroy = mem_cgroup_destroy,
4964 .populate = mem_cgroup_populate,
4965 .can_attach = mem_cgroup_can_attach,
4966 .cancel_attach = mem_cgroup_cancel_attach,
4967 .attach = mem_cgroup_move_task,
4968 .early_init = 0,
4969 .use_id = 1,
4972 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4973 static int __init enable_swap_account(char *s)
4975 /* consider enabled if no parameter or 1 is given */
4976 if (!s || !strcmp(s, "1"))
4977 really_do_swap_account = 1;
4978 else if (!strcmp(s, "0"))
4979 really_do_swap_account = 0;
4980 return 1;
4982 __setup("swapaccount", enable_swap_account);
4984 static int __init disable_swap_account(char *s)
4986 enable_swap_account("0");
4987 return 1;
4989 __setup("noswapaccount", disable_swap_account);
4990 #endif