2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node
);
63 EXPORT_PER_CPU_SYMBOL(numa_node
);
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
73 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
78 * Array of node states.
80 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
81 [N_POSSIBLE
] = NODE_MASK_ALL
,
82 [N_ONLINE
] = { { [0] = 1UL } },
84 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
86 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
88 [N_CPU
] = { { [0] = 1UL } },
91 EXPORT_SYMBOL(node_states
);
93 unsigned long totalram_pages __read_mostly
;
94 unsigned long totalreserve_pages __read_mostly
;
95 int percpu_pagelist_fraction
;
96 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
98 #ifdef CONFIG_PM_SLEEP
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
108 static gfp_t saved_gfp_mask
;
110 void pm_restore_gfp_mask(void)
112 WARN_ON(!mutex_is_locked(&pm_mutex
));
113 if (saved_gfp_mask
) {
114 gfp_allowed_mask
= saved_gfp_mask
;
119 void pm_restrict_gfp_mask(void)
121 WARN_ON(!mutex_is_locked(&pm_mutex
));
122 WARN_ON(saved_gfp_mask
);
123 saved_gfp_mask
= gfp_allowed_mask
;
124 gfp_allowed_mask
&= ~GFP_IOFS
;
126 #endif /* CONFIG_PM_SLEEP */
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly
;
132 static void __free_pages_ok(struct page
*page
, unsigned int order
);
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
145 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
146 #ifdef CONFIG_ZONE_DMA
149 #ifdef CONFIG_ZONE_DMA32
152 #ifdef CONFIG_HIGHMEM
158 EXPORT_SYMBOL(totalram_pages
);
160 static char * const zone_names
[MAX_NR_ZONES
] = {
161 #ifdef CONFIG_ZONE_DMA
164 #ifdef CONFIG_ZONE_DMA32
168 #ifdef CONFIG_HIGHMEM
174 int min_free_kbytes
= 1024;
176 static unsigned long __meminitdata nr_kernel_pages
;
177 static unsigned long __meminitdata nr_all_pages
;
178 static unsigned long __meminitdata dma_reserve
;
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
201 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
202 static int __meminitdata nr_nodemap_entries
;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
205 static unsigned long __initdata required_kernelcore
;
206 static unsigned long __initdata required_movablecore
;
207 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 EXPORT_SYMBOL(movable_zone
);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
215 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
216 int nr_online_nodes __read_mostly
= 1;
217 EXPORT_SYMBOL(nr_node_ids
);
218 EXPORT_SYMBOL(nr_online_nodes
);
221 int page_group_by_mobility_disabled __read_mostly
;
223 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
226 if (unlikely(page_group_by_mobility_disabled
))
227 migratetype
= MIGRATE_UNMOVABLE
;
229 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
230 PB_migrate
, PB_migrate_end
);
233 bool oom_killer_disabled __read_mostly
;
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
240 unsigned long pfn
= page_to_pfn(page
);
243 seq
= zone_span_seqbegin(zone
);
244 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
246 else if (pfn
< zone
->zone_start_pfn
)
248 } while (zone_span_seqretry(zone
, seq
));
253 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
255 if (!pfn_valid_within(page_to_pfn(page
)))
257 if (zone
!= page_zone(page
))
263 * Temporary debugging check for pages not lying within a given zone.
265 static int bad_range(struct zone
*zone
, struct page
*page
)
267 if (page_outside_zone_boundaries(zone
, page
))
269 if (!page_is_consistent(zone
, page
))
275 static inline int bad_range(struct zone
*zone
, struct page
*page
)
281 static void bad_page(struct page
*page
)
283 static unsigned long resume
;
284 static unsigned long nr_shown
;
285 static unsigned long nr_unshown
;
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page
)) {
289 __ClearPageBuddy(page
);
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
297 if (nr_shown
== 60) {
298 if (time_before(jiffies
, resume
)) {
304 "BUG: Bad page state: %lu messages suppressed\n",
311 resume
= jiffies
+ 60 * HZ
;
313 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
314 current
->comm
, page_to_pfn(page
));
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page
);
321 add_taint(TAINT_BAD_PAGE
);
325 * Higher-order pages are called "compound pages". They are structured thusly:
327 * The first PAGE_SIZE page is called the "head page".
329 * The remaining PAGE_SIZE pages are called "tail pages".
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
339 static void free_compound_page(struct page
*page
)
341 __free_pages_ok(page
, compound_order(page
));
344 void prep_compound_page(struct page
*page
, unsigned long order
)
347 int nr_pages
= 1 << order
;
349 set_compound_page_dtor(page
, free_compound_page
);
350 set_compound_order(page
, order
);
352 for (i
= 1; i
< nr_pages
; i
++) {
353 struct page
*p
= page
+ i
;
356 p
->first_page
= page
;
360 static int destroy_compound_page(struct page
*page
, unsigned long order
)
363 int nr_pages
= 1 << order
;
366 if (unlikely(compound_order(page
) != order
) ||
367 unlikely(!PageHead(page
))) {
372 __ClearPageHead(page
);
374 for (i
= 1; i
< nr_pages
; i
++) {
375 struct page
*p
= page
+ i
;
377 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
387 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
396 for (i
= 0; i
< (1 << order
); i
++)
397 clear_highpage(page
+ i
);
400 static inline void set_page_order(struct page
*page
, int order
)
402 set_page_private(page
, order
);
403 __SetPageBuddy(page
);
406 static inline void rmv_page_order(struct page
*page
)
408 __ClearPageBuddy(page
);
409 set_page_private(page
, 0);
413 * Locate the struct page for both the matching buddy in our
414 * pair (buddy1) and the combined O(n+1) page they form (page).
416 * 1) Any buddy B1 will have an order O twin B2 which satisfies
417 * the following equation:
419 * For example, if the starting buddy (buddy2) is #8 its order
421 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423 * 2) Any buddy B will have an order O+1 parent P which
424 * satisfies the following equation:
427 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
429 static inline struct page
*
430 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
432 unsigned long buddy_idx
= page_idx
^ (1 << order
);
434 return page
+ (buddy_idx
- page_idx
);
437 static inline unsigned long
438 __find_combined_index(unsigned long page_idx
, unsigned int order
)
440 return (page_idx
& ~(1 << order
));
444 * This function checks whether a page is free && is the buddy
445 * we can do coalesce a page and its buddy if
446 * (a) the buddy is not in a hole &&
447 * (b) the buddy is in the buddy system &&
448 * (c) a page and its buddy have the same order &&
449 * (d) a page and its buddy are in the same zone.
451 * For recording whether a page is in the buddy system, we use PG_buddy.
452 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
454 * For recording page's order, we use page_private(page).
456 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
459 if (!pfn_valid_within(page_to_pfn(buddy
)))
462 if (page_zone_id(page
) != page_zone_id(buddy
))
465 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
466 VM_BUG_ON(page_count(buddy
) != 0);
473 * Freeing function for a buddy system allocator.
475 * The concept of a buddy system is to maintain direct-mapped table
476 * (containing bit values) for memory blocks of various "orders".
477 * The bottom level table contains the map for the smallest allocatable
478 * units of memory (here, pages), and each level above it describes
479 * pairs of units from the levels below, hence, "buddies".
480 * At a high level, all that happens here is marking the table entry
481 * at the bottom level available, and propagating the changes upward
482 * as necessary, plus some accounting needed to play nicely with other
483 * parts of the VM system.
484 * At each level, we keep a list of pages, which are heads of continuous
485 * free pages of length of (1 << order) and marked with PG_buddy. Page's
486 * order is recorded in page_private(page) field.
487 * So when we are allocating or freeing one, we can derive the state of the
488 * other. That is, if we allocate a small block, and both were
489 * free, the remainder of the region must be split into blocks.
490 * If a block is freed, and its buddy is also free, then this
491 * triggers coalescing into a block of larger size.
496 static inline void __free_one_page(struct page
*page
,
497 struct zone
*zone
, unsigned int order
,
500 unsigned long page_idx
;
501 unsigned long combined_idx
;
504 if (unlikely(PageCompound(page
)))
505 if (unlikely(destroy_compound_page(page
, order
)))
508 VM_BUG_ON(migratetype
== -1);
510 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
512 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
513 VM_BUG_ON(bad_range(zone
, page
));
515 while (order
< MAX_ORDER
-1) {
516 buddy
= __page_find_buddy(page
, page_idx
, order
);
517 if (!page_is_buddy(page
, buddy
, order
))
520 /* Our buddy is free, merge with it and move up one order. */
521 list_del(&buddy
->lru
);
522 zone
->free_area
[order
].nr_free
--;
523 rmv_page_order(buddy
);
524 combined_idx
= __find_combined_index(page_idx
, order
);
525 page
= page
+ (combined_idx
- page_idx
);
526 page_idx
= combined_idx
;
529 set_page_order(page
, order
);
532 * If this is not the largest possible page, check if the buddy
533 * of the next-highest order is free. If it is, it's possible
534 * that pages are being freed that will coalesce soon. In case,
535 * that is happening, add the free page to the tail of the list
536 * so it's less likely to be used soon and more likely to be merged
537 * as a higher order page
539 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
540 struct page
*higher_page
, *higher_buddy
;
541 combined_idx
= __find_combined_index(page_idx
, order
);
542 higher_page
= page
+ combined_idx
- page_idx
;
543 higher_buddy
= __page_find_buddy(higher_page
, combined_idx
, order
+ 1);
544 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
545 list_add_tail(&page
->lru
,
546 &zone
->free_area
[order
].free_list
[migratetype
]);
551 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
553 zone
->free_area
[order
].nr_free
++;
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
561 static inline void free_page_mlock(struct page
*page
)
563 __dec_zone_page_state(page
, NR_MLOCK
);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
567 static inline int free_pages_check(struct page
*page
)
569 if (unlikely(page_mapcount(page
) |
570 (page
->mapping
!= NULL
) |
571 (atomic_read(&page
->_count
) != 0) |
572 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
576 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
577 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
582 * Frees a number of pages from the PCP lists
583 * Assumes all pages on list are in same zone, and of same order.
584 * count is the number of pages to free.
586 * If the zone was previously in an "all pages pinned" state then look to
587 * see if this freeing clears that state.
589 * And clear the zone's pages_scanned counter, to hold off the "all pages are
590 * pinned" detection logic.
592 static void free_pcppages_bulk(struct zone
*zone
, int count
,
593 struct per_cpu_pages
*pcp
)
599 spin_lock(&zone
->lock
);
600 zone
->all_unreclaimable
= 0;
601 zone
->pages_scanned
= 0;
605 struct list_head
*list
;
608 * Remove pages from lists in a round-robin fashion. A
609 * batch_free count is maintained that is incremented when an
610 * empty list is encountered. This is so more pages are freed
611 * off fuller lists instead of spinning excessively around empty
616 if (++migratetype
== MIGRATE_PCPTYPES
)
618 list
= &pcp
->lists
[migratetype
];
619 } while (list_empty(list
));
622 page
= list_entry(list
->prev
, struct page
, lru
);
623 /* must delete as __free_one_page list manipulates */
624 list_del(&page
->lru
);
625 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
626 __free_one_page(page
, zone
, 0, page_private(page
));
627 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
628 } while (--to_free
&& --batch_free
&& !list_empty(list
));
630 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
631 spin_unlock(&zone
->lock
);
634 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
637 spin_lock(&zone
->lock
);
638 zone
->all_unreclaimable
= 0;
639 zone
->pages_scanned
= 0;
641 __free_one_page(page
, zone
, order
, migratetype
);
642 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
643 spin_unlock(&zone
->lock
);
646 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
651 trace_mm_page_free_direct(page
, order
);
652 kmemcheck_free_shadow(page
, order
);
654 for (i
= 0; i
< (1 << order
); i
++) {
655 struct page
*pg
= page
+ i
;
659 bad
+= free_pages_check(pg
);
664 if (!PageHighMem(page
)) {
665 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
666 debug_check_no_obj_freed(page_address(page
),
669 arch_free_page(page
, order
);
670 kernel_map_pages(page
, 1 << order
, 0);
675 static void __free_pages_ok(struct page
*page
, unsigned int order
)
678 int wasMlocked
= __TestClearPageMlocked(page
);
680 if (!free_pages_prepare(page
, order
))
683 local_irq_save(flags
);
684 if (unlikely(wasMlocked
))
685 free_page_mlock(page
);
686 __count_vm_events(PGFREE
, 1 << order
);
687 free_one_page(page_zone(page
), page
, order
,
688 get_pageblock_migratetype(page
));
689 local_irq_restore(flags
);
693 * permit the bootmem allocator to evade page validation on high-order frees
695 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
698 __ClearPageReserved(page
);
699 set_page_count(page
, 0);
700 set_page_refcounted(page
);
706 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
707 struct page
*p
= &page
[loop
];
709 if (loop
+ 1 < BITS_PER_LONG
)
711 __ClearPageReserved(p
);
712 set_page_count(p
, 0);
715 set_page_refcounted(page
);
716 __free_pages(page
, order
);
722 * The order of subdivision here is critical for the IO subsystem.
723 * Please do not alter this order without good reasons and regression
724 * testing. Specifically, as large blocks of memory are subdivided,
725 * the order in which smaller blocks are delivered depends on the order
726 * they're subdivided in this function. This is the primary factor
727 * influencing the order in which pages are delivered to the IO
728 * subsystem according to empirical testing, and this is also justified
729 * by considering the behavior of a buddy system containing a single
730 * large block of memory acted on by a series of small allocations.
731 * This behavior is a critical factor in sglist merging's success.
735 static inline void expand(struct zone
*zone
, struct page
*page
,
736 int low
, int high
, struct free_area
*area
,
739 unsigned long size
= 1 << high
;
745 VM_BUG_ON(bad_range(zone
, &page
[size
]));
746 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
748 set_page_order(&page
[size
], high
);
753 * This page is about to be returned from the page allocator
755 static inline int check_new_page(struct page
*page
)
757 if (unlikely(page_mapcount(page
) |
758 (page
->mapping
!= NULL
) |
759 (atomic_read(&page
->_count
) != 0) |
760 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
767 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
771 for (i
= 0; i
< (1 << order
); i
++) {
772 struct page
*p
= page
+ i
;
773 if (unlikely(check_new_page(p
)))
777 set_page_private(page
, 0);
778 set_page_refcounted(page
);
780 arch_alloc_page(page
, order
);
781 kernel_map_pages(page
, 1 << order
, 1);
783 if (gfp_flags
& __GFP_ZERO
)
784 prep_zero_page(page
, order
, gfp_flags
);
786 if (order
&& (gfp_flags
& __GFP_COMP
))
787 prep_compound_page(page
, order
);
793 * Go through the free lists for the given migratetype and remove
794 * the smallest available page from the freelists
797 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
800 unsigned int current_order
;
801 struct free_area
* area
;
804 /* Find a page of the appropriate size in the preferred list */
805 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
806 area
= &(zone
->free_area
[current_order
]);
807 if (list_empty(&area
->free_list
[migratetype
]))
810 page
= list_entry(area
->free_list
[migratetype
].next
,
812 list_del(&page
->lru
);
813 rmv_page_order(page
);
815 expand(zone
, page
, order
, current_order
, area
, migratetype
);
824 * This array describes the order lists are fallen back to when
825 * the free lists for the desirable migrate type are depleted
827 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
828 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
829 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
830 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
831 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
835 * Move the free pages in a range to the free lists of the requested type.
836 * Note that start_page and end_pages are not aligned on a pageblock
837 * boundary. If alignment is required, use move_freepages_block()
839 static int move_freepages(struct zone
*zone
,
840 struct page
*start_page
, struct page
*end_page
,
847 #ifndef CONFIG_HOLES_IN_ZONE
849 * page_zone is not safe to call in this context when
850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
851 * anyway as we check zone boundaries in move_freepages_block().
852 * Remove at a later date when no bug reports exist related to
853 * grouping pages by mobility
855 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
858 for (page
= start_page
; page
<= end_page
;) {
859 /* Make sure we are not inadvertently changing nodes */
860 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
862 if (!pfn_valid_within(page_to_pfn(page
))) {
867 if (!PageBuddy(page
)) {
872 order
= page_order(page
);
873 list_del(&page
->lru
);
875 &zone
->free_area
[order
].free_list
[migratetype
]);
877 pages_moved
+= 1 << order
;
883 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
886 unsigned long start_pfn
, end_pfn
;
887 struct page
*start_page
, *end_page
;
889 start_pfn
= page_to_pfn(page
);
890 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
891 start_page
= pfn_to_page(start_pfn
);
892 end_page
= start_page
+ pageblock_nr_pages
- 1;
893 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
895 /* Do not cross zone boundaries */
896 if (start_pfn
< zone
->zone_start_pfn
)
898 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
901 return move_freepages(zone
, start_page
, end_page
, migratetype
);
904 static void change_pageblock_range(struct page
*pageblock_page
,
905 int start_order
, int migratetype
)
907 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
909 while (nr_pageblocks
--) {
910 set_pageblock_migratetype(pageblock_page
, migratetype
);
911 pageblock_page
+= pageblock_nr_pages
;
915 /* Remove an element from the buddy allocator from the fallback list */
916 static inline struct page
*
917 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
919 struct free_area
* area
;
924 /* Find the largest possible block of pages in the other list */
925 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
927 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
928 migratetype
= fallbacks
[start_migratetype
][i
];
930 /* MIGRATE_RESERVE handled later if necessary */
931 if (migratetype
== MIGRATE_RESERVE
)
934 area
= &(zone
->free_area
[current_order
]);
935 if (list_empty(&area
->free_list
[migratetype
]))
938 page
= list_entry(area
->free_list
[migratetype
].next
,
943 * If breaking a large block of pages, move all free
944 * pages to the preferred allocation list. If falling
945 * back for a reclaimable kernel allocation, be more
946 * agressive about taking ownership of free pages
948 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
949 start_migratetype
== MIGRATE_RECLAIMABLE
||
950 page_group_by_mobility_disabled
) {
952 pages
= move_freepages_block(zone
, page
,
955 /* Claim the whole block if over half of it is free */
956 if (pages
>= (1 << (pageblock_order
-1)) ||
957 page_group_by_mobility_disabled
)
958 set_pageblock_migratetype(page
,
961 migratetype
= start_migratetype
;
964 /* Remove the page from the freelists */
965 list_del(&page
->lru
);
966 rmv_page_order(page
);
968 /* Take ownership for orders >= pageblock_order */
969 if (current_order
>= pageblock_order
)
970 change_pageblock_range(page
, current_order
,
973 expand(zone
, page
, order
, current_order
, area
, migratetype
);
975 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
976 start_migratetype
, migratetype
);
986 * Do the hard work of removing an element from the buddy allocator.
987 * Call me with the zone->lock already held.
989 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
995 page
= __rmqueue_smallest(zone
, order
, migratetype
);
997 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
998 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1001 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1002 * is used because __rmqueue_smallest is an inline function
1003 * and we want just one call site
1006 migratetype
= MIGRATE_RESERVE
;
1011 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1016 * Obtain a specified number of elements from the buddy allocator, all under
1017 * a single hold of the lock, for efficiency. Add them to the supplied list.
1018 * Returns the number of new pages which were placed at *list.
1020 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1021 unsigned long count
, struct list_head
*list
,
1022 int migratetype
, int cold
)
1026 spin_lock(&zone
->lock
);
1027 for (i
= 0; i
< count
; ++i
) {
1028 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1029 if (unlikely(page
== NULL
))
1033 * Split buddy pages returned by expand() are received here
1034 * in physical page order. The page is added to the callers and
1035 * list and the list head then moves forward. From the callers
1036 * perspective, the linked list is ordered by page number in
1037 * some conditions. This is useful for IO devices that can
1038 * merge IO requests if the physical pages are ordered
1041 if (likely(cold
== 0))
1042 list_add(&page
->lru
, list
);
1044 list_add_tail(&page
->lru
, list
);
1045 set_page_private(page
, migratetype
);
1048 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1049 spin_unlock(&zone
->lock
);
1055 * Called from the vmstat counter updater to drain pagesets of this
1056 * currently executing processor on remote nodes after they have
1059 * Note that this function must be called with the thread pinned to
1060 * a single processor.
1062 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1064 unsigned long flags
;
1067 local_irq_save(flags
);
1068 if (pcp
->count
>= pcp
->batch
)
1069 to_drain
= pcp
->batch
;
1071 to_drain
= pcp
->count
;
1072 free_pcppages_bulk(zone
, to_drain
, pcp
);
1073 pcp
->count
-= to_drain
;
1074 local_irq_restore(flags
);
1079 * Drain pages of the indicated processor.
1081 * The processor must either be the current processor and the
1082 * thread pinned to the current processor or a processor that
1085 static void drain_pages(unsigned int cpu
)
1087 unsigned long flags
;
1090 for_each_populated_zone(zone
) {
1091 struct per_cpu_pageset
*pset
;
1092 struct per_cpu_pages
*pcp
;
1094 local_irq_save(flags
);
1095 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1098 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1100 local_irq_restore(flags
);
1105 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1107 void drain_local_pages(void *arg
)
1109 drain_pages(smp_processor_id());
1113 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1115 void drain_all_pages(void)
1117 on_each_cpu(drain_local_pages
, NULL
, 1);
1120 #ifdef CONFIG_HIBERNATION
1122 void mark_free_pages(struct zone
*zone
)
1124 unsigned long pfn
, max_zone_pfn
;
1125 unsigned long flags
;
1127 struct list_head
*curr
;
1129 if (!zone
->spanned_pages
)
1132 spin_lock_irqsave(&zone
->lock
, flags
);
1134 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1135 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1136 if (pfn_valid(pfn
)) {
1137 struct page
*page
= pfn_to_page(pfn
);
1139 if (!swsusp_page_is_forbidden(page
))
1140 swsusp_unset_page_free(page
);
1143 for_each_migratetype_order(order
, t
) {
1144 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1147 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1148 for (i
= 0; i
< (1UL << order
); i
++)
1149 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1152 spin_unlock_irqrestore(&zone
->lock
, flags
);
1154 #endif /* CONFIG_PM */
1157 * Free a 0-order page
1158 * cold == 1 ? free a cold page : free a hot page
1160 void free_hot_cold_page(struct page
*page
, int cold
)
1162 struct zone
*zone
= page_zone(page
);
1163 struct per_cpu_pages
*pcp
;
1164 unsigned long flags
;
1166 int wasMlocked
= __TestClearPageMlocked(page
);
1168 if (!free_pages_prepare(page
, 0))
1171 migratetype
= get_pageblock_migratetype(page
);
1172 set_page_private(page
, migratetype
);
1173 local_irq_save(flags
);
1174 if (unlikely(wasMlocked
))
1175 free_page_mlock(page
);
1176 __count_vm_event(PGFREE
);
1179 * We only track unmovable, reclaimable and movable on pcp lists.
1180 * Free ISOLATE pages back to the allocator because they are being
1181 * offlined but treat RESERVE as movable pages so we can get those
1182 * areas back if necessary. Otherwise, we may have to free
1183 * excessively into the page allocator
1185 if (migratetype
>= MIGRATE_PCPTYPES
) {
1186 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1187 free_one_page(zone
, page
, 0, migratetype
);
1190 migratetype
= MIGRATE_MOVABLE
;
1193 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1195 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1197 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1199 if (pcp
->count
>= pcp
->high
) {
1200 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1201 pcp
->count
-= pcp
->batch
;
1205 local_irq_restore(flags
);
1209 * split_page takes a non-compound higher-order page, and splits it into
1210 * n (1<<order) sub-pages: page[0..n]
1211 * Each sub-page must be freed individually.
1213 * Note: this is probably too low level an operation for use in drivers.
1214 * Please consult with lkml before using this in your driver.
1216 void split_page(struct page
*page
, unsigned int order
)
1220 VM_BUG_ON(PageCompound(page
));
1221 VM_BUG_ON(!page_count(page
));
1223 #ifdef CONFIG_KMEMCHECK
1225 * Split shadow pages too, because free(page[0]) would
1226 * otherwise free the whole shadow.
1228 if (kmemcheck_page_is_tracked(page
))
1229 split_page(virt_to_page(page
[0].shadow
), order
);
1232 for (i
= 1; i
< (1 << order
); i
++)
1233 set_page_refcounted(page
+ i
);
1237 * Similar to split_page except the page is already free. As this is only
1238 * being used for migration, the migratetype of the block also changes.
1239 * As this is called with interrupts disabled, the caller is responsible
1240 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1243 * Note: this is probably too low level an operation for use in drivers.
1244 * Please consult with lkml before using this in your driver.
1246 int split_free_page(struct page
*page
)
1249 unsigned long watermark
;
1252 BUG_ON(!PageBuddy(page
));
1254 zone
= page_zone(page
);
1255 order
= page_order(page
);
1257 /* Obey watermarks as if the page was being allocated */
1258 watermark
= low_wmark_pages(zone
) + (1 << order
);
1259 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1262 /* Remove page from free list */
1263 list_del(&page
->lru
);
1264 zone
->free_area
[order
].nr_free
--;
1265 rmv_page_order(page
);
1266 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1268 /* Split into individual pages */
1269 set_page_refcounted(page
);
1270 split_page(page
, order
);
1272 if (order
>= pageblock_order
- 1) {
1273 struct page
*endpage
= page
+ (1 << order
) - 1;
1274 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1275 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1282 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1283 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1287 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1288 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1291 unsigned long flags
;
1293 int cold
= !!(gfp_flags
& __GFP_COLD
);
1296 if (likely(order
== 0)) {
1297 struct per_cpu_pages
*pcp
;
1298 struct list_head
*list
;
1300 local_irq_save(flags
);
1301 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1302 list
= &pcp
->lists
[migratetype
];
1303 if (list_empty(list
)) {
1304 pcp
->count
+= rmqueue_bulk(zone
, 0,
1307 if (unlikely(list_empty(list
)))
1312 page
= list_entry(list
->prev
, struct page
, lru
);
1314 page
= list_entry(list
->next
, struct page
, lru
);
1316 list_del(&page
->lru
);
1319 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1321 * __GFP_NOFAIL is not to be used in new code.
1323 * All __GFP_NOFAIL callers should be fixed so that they
1324 * properly detect and handle allocation failures.
1326 * We most definitely don't want callers attempting to
1327 * allocate greater than order-1 page units with
1330 WARN_ON_ONCE(order
> 1);
1332 spin_lock_irqsave(&zone
->lock
, flags
);
1333 page
= __rmqueue(zone
, order
, migratetype
);
1334 spin_unlock(&zone
->lock
);
1337 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1340 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1341 zone_statistics(preferred_zone
, zone
);
1342 local_irq_restore(flags
);
1344 VM_BUG_ON(bad_range(zone
, page
));
1345 if (prep_new_page(page
, order
, gfp_flags
))
1350 local_irq_restore(flags
);
1354 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1355 #define ALLOC_WMARK_MIN WMARK_MIN
1356 #define ALLOC_WMARK_LOW WMARK_LOW
1357 #define ALLOC_WMARK_HIGH WMARK_HIGH
1358 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1360 /* Mask to get the watermark bits */
1361 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1363 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1364 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1365 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1367 #ifdef CONFIG_FAIL_PAGE_ALLOC
1369 static struct fail_page_alloc_attr
{
1370 struct fault_attr attr
;
1372 u32 ignore_gfp_highmem
;
1373 u32 ignore_gfp_wait
;
1376 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1378 struct dentry
*ignore_gfp_highmem_file
;
1379 struct dentry
*ignore_gfp_wait_file
;
1380 struct dentry
*min_order_file
;
1382 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1384 } fail_page_alloc
= {
1385 .attr
= FAULT_ATTR_INITIALIZER
,
1386 .ignore_gfp_wait
= 1,
1387 .ignore_gfp_highmem
= 1,
1391 static int __init
setup_fail_page_alloc(char *str
)
1393 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1395 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1397 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1399 if (order
< fail_page_alloc
.min_order
)
1401 if (gfp_mask
& __GFP_NOFAIL
)
1403 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1405 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1408 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1411 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1413 static int __init
fail_page_alloc_debugfs(void)
1415 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1419 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1423 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1425 fail_page_alloc
.ignore_gfp_wait_file
=
1426 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1427 &fail_page_alloc
.ignore_gfp_wait
);
1429 fail_page_alloc
.ignore_gfp_highmem_file
=
1430 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1431 &fail_page_alloc
.ignore_gfp_highmem
);
1432 fail_page_alloc
.min_order_file
=
1433 debugfs_create_u32("min-order", mode
, dir
,
1434 &fail_page_alloc
.min_order
);
1436 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1437 !fail_page_alloc
.ignore_gfp_highmem_file
||
1438 !fail_page_alloc
.min_order_file
) {
1440 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1441 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1442 debugfs_remove(fail_page_alloc
.min_order_file
);
1443 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1449 late_initcall(fail_page_alloc_debugfs
);
1451 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1453 #else /* CONFIG_FAIL_PAGE_ALLOC */
1455 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1460 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1463 * Return 1 if free pages are above 'mark'. This takes into account the order
1464 * of the allocation.
1466 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1467 int classzone_idx
, int alloc_flags
)
1469 /* free_pages my go negative - that's OK */
1471 long free_pages
= zone_nr_free_pages(z
) - (1 << order
) + 1;
1474 if (alloc_flags
& ALLOC_HIGH
)
1476 if (alloc_flags
& ALLOC_HARDER
)
1479 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1481 for (o
= 0; o
< order
; o
++) {
1482 /* At the next order, this order's pages become unavailable */
1483 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1485 /* Require fewer higher order pages to be free */
1488 if (free_pages
<= min
)
1496 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1497 * skip over zones that are not allowed by the cpuset, or that have
1498 * been recently (in last second) found to be nearly full. See further
1499 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1500 * that have to skip over a lot of full or unallowed zones.
1502 * If the zonelist cache is present in the passed in zonelist, then
1503 * returns a pointer to the allowed node mask (either the current
1504 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1506 * If the zonelist cache is not available for this zonelist, does
1507 * nothing and returns NULL.
1509 * If the fullzones BITMAP in the zonelist cache is stale (more than
1510 * a second since last zap'd) then we zap it out (clear its bits.)
1512 * We hold off even calling zlc_setup, until after we've checked the
1513 * first zone in the zonelist, on the theory that most allocations will
1514 * be satisfied from that first zone, so best to examine that zone as
1515 * quickly as we can.
1517 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1519 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1520 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1522 zlc
= zonelist
->zlcache_ptr
;
1526 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1527 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1528 zlc
->last_full_zap
= jiffies
;
1531 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1532 &cpuset_current_mems_allowed
:
1533 &node_states
[N_HIGH_MEMORY
];
1534 return allowednodes
;
1538 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1539 * if it is worth looking at further for free memory:
1540 * 1) Check that the zone isn't thought to be full (doesn't have its
1541 * bit set in the zonelist_cache fullzones BITMAP).
1542 * 2) Check that the zones node (obtained from the zonelist_cache
1543 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1544 * Return true (non-zero) if zone is worth looking at further, or
1545 * else return false (zero) if it is not.
1547 * This check -ignores- the distinction between various watermarks,
1548 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1549 * found to be full for any variation of these watermarks, it will
1550 * be considered full for up to one second by all requests, unless
1551 * we are so low on memory on all allowed nodes that we are forced
1552 * into the second scan of the zonelist.
1554 * In the second scan we ignore this zonelist cache and exactly
1555 * apply the watermarks to all zones, even it is slower to do so.
1556 * We are low on memory in the second scan, and should leave no stone
1557 * unturned looking for a free page.
1559 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1560 nodemask_t
*allowednodes
)
1562 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1563 int i
; /* index of *z in zonelist zones */
1564 int n
; /* node that zone *z is on */
1566 zlc
= zonelist
->zlcache_ptr
;
1570 i
= z
- zonelist
->_zonerefs
;
1573 /* This zone is worth trying if it is allowed but not full */
1574 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1578 * Given 'z' scanning a zonelist, set the corresponding bit in
1579 * zlc->fullzones, so that subsequent attempts to allocate a page
1580 * from that zone don't waste time re-examining it.
1582 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1584 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1585 int i
; /* index of *z in zonelist zones */
1587 zlc
= zonelist
->zlcache_ptr
;
1591 i
= z
- zonelist
->_zonerefs
;
1593 set_bit(i
, zlc
->fullzones
);
1596 #else /* CONFIG_NUMA */
1598 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1603 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1604 nodemask_t
*allowednodes
)
1609 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1612 #endif /* CONFIG_NUMA */
1615 * get_page_from_freelist goes through the zonelist trying to allocate
1618 static struct page
*
1619 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1620 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1621 struct zone
*preferred_zone
, int migratetype
)
1624 struct page
*page
= NULL
;
1627 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1628 int zlc_active
= 0; /* set if using zonelist_cache */
1629 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1631 classzone_idx
= zone_idx(preferred_zone
);
1634 * Scan zonelist, looking for a zone with enough free.
1635 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1637 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1638 high_zoneidx
, nodemask
) {
1639 if (NUMA_BUILD
&& zlc_active
&&
1640 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1642 if ((alloc_flags
& ALLOC_CPUSET
) &&
1643 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1646 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1647 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1651 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1652 if (zone_watermark_ok(zone
, order
, mark
,
1653 classzone_idx
, alloc_flags
))
1656 if (zone_reclaim_mode
== 0)
1657 goto this_zone_full
;
1659 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1661 case ZONE_RECLAIM_NOSCAN
:
1664 case ZONE_RECLAIM_FULL
:
1665 /* scanned but unreclaimable */
1666 goto this_zone_full
;
1668 /* did we reclaim enough */
1669 if (!zone_watermark_ok(zone
, order
, mark
,
1670 classzone_idx
, alloc_flags
))
1671 goto this_zone_full
;
1676 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1677 gfp_mask
, migratetype
);
1682 zlc_mark_zone_full(zonelist
, z
);
1684 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1686 * we do zlc_setup after the first zone is tried but only
1687 * if there are multiple nodes make it worthwhile
1689 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1695 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1696 /* Disable zlc cache for second zonelist scan */
1704 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1705 unsigned long pages_reclaimed
)
1707 /* Do not loop if specifically requested */
1708 if (gfp_mask
& __GFP_NORETRY
)
1712 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1713 * means __GFP_NOFAIL, but that may not be true in other
1716 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1720 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1721 * specified, then we retry until we no longer reclaim any pages
1722 * (above), or we've reclaimed an order of pages at least as
1723 * large as the allocation's order. In both cases, if the
1724 * allocation still fails, we stop retrying.
1726 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1730 * Don't let big-order allocations loop unless the caller
1731 * explicitly requests that.
1733 if (gfp_mask
& __GFP_NOFAIL
)
1739 static inline struct page
*
1740 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1741 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1742 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1747 /* Acquire the OOM killer lock for the zones in zonelist */
1748 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1749 schedule_timeout_uninterruptible(1);
1754 * Go through the zonelist yet one more time, keep very high watermark
1755 * here, this is only to catch a parallel oom killing, we must fail if
1756 * we're still under heavy pressure.
1758 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1759 order
, zonelist
, high_zoneidx
,
1760 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1761 preferred_zone
, migratetype
);
1765 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1766 /* The OOM killer will not help higher order allocs */
1767 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1769 /* The OOM killer does not needlessly kill tasks for lowmem */
1770 if (high_zoneidx
< ZONE_NORMAL
)
1773 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1774 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1775 * The caller should handle page allocation failure by itself if
1776 * it specifies __GFP_THISNODE.
1777 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1779 if (gfp_mask
& __GFP_THISNODE
)
1782 /* Exhausted what can be done so it's blamo time */
1783 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1786 clear_zonelist_oom(zonelist
, gfp_mask
);
1790 #ifdef CONFIG_COMPACTION
1791 /* Try memory compaction for high-order allocations before reclaim */
1792 static struct page
*
1793 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1794 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1795 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1796 int migratetype
, unsigned long *did_some_progress
)
1800 if (!order
|| compaction_deferred(preferred_zone
))
1803 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1805 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1807 /* Page migration frees to the PCP lists but we want merging */
1808 drain_pages(get_cpu());
1811 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1812 order
, zonelist
, high_zoneidx
,
1813 alloc_flags
, preferred_zone
,
1816 preferred_zone
->compact_considered
= 0;
1817 preferred_zone
->compact_defer_shift
= 0;
1818 count_vm_event(COMPACTSUCCESS
);
1823 * It's bad if compaction run occurs and fails.
1824 * The most likely reason is that pages exist,
1825 * but not enough to satisfy watermarks.
1827 count_vm_event(COMPACTFAIL
);
1828 defer_compaction(preferred_zone
);
1836 static inline struct page
*
1837 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1838 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1839 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1840 int migratetype
, unsigned long *did_some_progress
)
1844 #endif /* CONFIG_COMPACTION */
1846 /* The really slow allocator path where we enter direct reclaim */
1847 static inline struct page
*
1848 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1849 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1850 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1851 int migratetype
, unsigned long *did_some_progress
)
1853 struct page
*page
= NULL
;
1854 struct reclaim_state reclaim_state
;
1855 struct task_struct
*p
= current
;
1856 bool drained
= false;
1860 /* We now go into synchronous reclaim */
1861 cpuset_memory_pressure_bump();
1862 p
->flags
|= PF_MEMALLOC
;
1863 lockdep_set_current_reclaim_state(gfp_mask
);
1864 reclaim_state
.reclaimed_slab
= 0;
1865 p
->reclaim_state
= &reclaim_state
;
1867 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1869 p
->reclaim_state
= NULL
;
1870 lockdep_clear_current_reclaim_state();
1871 p
->flags
&= ~PF_MEMALLOC
;
1875 if (unlikely(!(*did_some_progress
)))
1879 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1880 zonelist
, high_zoneidx
,
1881 alloc_flags
, preferred_zone
,
1885 * If an allocation failed after direct reclaim, it could be because
1886 * pages are pinned on the per-cpu lists. Drain them and try again
1888 if (!page
&& !drained
) {
1898 * This is called in the allocator slow-path if the allocation request is of
1899 * sufficient urgency to ignore watermarks and take other desperate measures
1901 static inline struct page
*
1902 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1903 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1904 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1910 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1911 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1912 preferred_zone
, migratetype
);
1914 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1915 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
1916 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1922 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1923 enum zone_type high_zoneidx
)
1928 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1929 wakeup_kswapd(zone
, order
);
1933 gfp_to_alloc_flags(gfp_t gfp_mask
)
1935 struct task_struct
*p
= current
;
1936 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1937 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1939 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1940 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
1943 * The caller may dip into page reserves a bit more if the caller
1944 * cannot run direct reclaim, or if the caller has realtime scheduling
1945 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1946 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1948 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
1951 alloc_flags
|= ALLOC_HARDER
;
1953 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1954 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1956 alloc_flags
&= ~ALLOC_CPUSET
;
1957 } else if (unlikely(rt_task(p
)) && !in_interrupt())
1958 alloc_flags
|= ALLOC_HARDER
;
1960 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1961 if (!in_interrupt() &&
1962 ((p
->flags
& PF_MEMALLOC
) ||
1963 unlikely(test_thread_flag(TIF_MEMDIE
))))
1964 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1970 static inline struct page
*
1971 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1972 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1973 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1976 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1977 struct page
*page
= NULL
;
1979 unsigned long pages_reclaimed
= 0;
1980 unsigned long did_some_progress
;
1981 struct task_struct
*p
= current
;
1984 * In the slowpath, we sanity check order to avoid ever trying to
1985 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1986 * be using allocators in order of preference for an area that is
1989 if (order
>= MAX_ORDER
) {
1990 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
1995 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1996 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1997 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1998 * using a larger set of nodes after it has established that the
1999 * allowed per node queues are empty and that nodes are
2002 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2006 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
2009 * OK, we're below the kswapd watermark and have kicked background
2010 * reclaim. Now things get more complex, so set up alloc_flags according
2011 * to how we want to proceed.
2013 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2015 /* This is the last chance, in general, before the goto nopage. */
2016 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2017 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2018 preferred_zone
, migratetype
);
2023 /* Allocate without watermarks if the context allows */
2024 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2025 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2026 zonelist
, high_zoneidx
, nodemask
,
2027 preferred_zone
, migratetype
);
2032 /* Atomic allocations - we can't balance anything */
2036 /* Avoid recursion of direct reclaim */
2037 if (p
->flags
& PF_MEMALLOC
)
2040 /* Avoid allocations with no watermarks from looping endlessly */
2041 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2044 /* Try direct compaction */
2045 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2046 zonelist
, high_zoneidx
,
2048 alloc_flags
, preferred_zone
,
2049 migratetype
, &did_some_progress
);
2053 /* Try direct reclaim and then allocating */
2054 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2055 zonelist
, high_zoneidx
,
2057 alloc_flags
, preferred_zone
,
2058 migratetype
, &did_some_progress
);
2063 * If we failed to make any progress reclaiming, then we are
2064 * running out of options and have to consider going OOM
2066 if (!did_some_progress
) {
2067 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2068 if (oom_killer_disabled
)
2070 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2071 zonelist
, high_zoneidx
,
2072 nodemask
, preferred_zone
,
2077 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2079 * The oom killer is not called for high-order
2080 * allocations that may fail, so if no progress
2081 * is being made, there are no other options and
2082 * retrying is unlikely to help.
2084 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2087 * The oom killer is not called for lowmem
2088 * allocations to prevent needlessly killing
2091 if (high_zoneidx
< ZONE_NORMAL
)
2099 /* Check if we should retry the allocation */
2100 pages_reclaimed
+= did_some_progress
;
2101 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2102 /* Wait for some write requests to complete then retry */
2103 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2108 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
2109 printk(KERN_WARNING
"%s: page allocation failure."
2110 " order:%d, mode:0x%x\n",
2111 p
->comm
, order
, gfp_mask
);
2117 if (kmemcheck_enabled
)
2118 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2124 * This is the 'heart' of the zoned buddy allocator.
2127 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2128 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2130 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2131 struct zone
*preferred_zone
;
2133 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2135 gfp_mask
&= gfp_allowed_mask
;
2137 lockdep_trace_alloc(gfp_mask
);
2139 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2141 if (should_fail_alloc_page(gfp_mask
, order
))
2145 * Check the zones suitable for the gfp_mask contain at least one
2146 * valid zone. It's possible to have an empty zonelist as a result
2147 * of GFP_THISNODE and a memoryless node
2149 if (unlikely(!zonelist
->_zonerefs
->zone
))
2153 /* The preferred zone is used for statistics later */
2154 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
2155 if (!preferred_zone
) {
2160 /* First allocation attempt */
2161 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2162 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2163 preferred_zone
, migratetype
);
2164 if (unlikely(!page
))
2165 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2166 zonelist
, high_zoneidx
, nodemask
,
2167 preferred_zone
, migratetype
);
2170 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2173 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2176 * Common helper functions.
2178 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2183 * __get_free_pages() returns a 32-bit address, which cannot represent
2186 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2188 page
= alloc_pages(gfp_mask
, order
);
2191 return (unsigned long) page_address(page
);
2193 EXPORT_SYMBOL(__get_free_pages
);
2195 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2197 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2199 EXPORT_SYMBOL(get_zeroed_page
);
2201 void __pagevec_free(struct pagevec
*pvec
)
2203 int i
= pagevec_count(pvec
);
2206 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2207 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2211 void __free_pages(struct page
*page
, unsigned int order
)
2213 if (put_page_testzero(page
)) {
2215 free_hot_cold_page(page
, 0);
2217 __free_pages_ok(page
, order
);
2221 EXPORT_SYMBOL(__free_pages
);
2223 void free_pages(unsigned long addr
, unsigned int order
)
2226 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2227 __free_pages(virt_to_page((void *)addr
), order
);
2231 EXPORT_SYMBOL(free_pages
);
2234 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2235 * @size: the number of bytes to allocate
2236 * @gfp_mask: GFP flags for the allocation
2238 * This function is similar to alloc_pages(), except that it allocates the
2239 * minimum number of pages to satisfy the request. alloc_pages() can only
2240 * allocate memory in power-of-two pages.
2242 * This function is also limited by MAX_ORDER.
2244 * Memory allocated by this function must be released by free_pages_exact().
2246 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2248 unsigned int order
= get_order(size
);
2251 addr
= __get_free_pages(gfp_mask
, order
);
2253 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2254 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2256 split_page(virt_to_page((void *)addr
), order
);
2257 while (used
< alloc_end
) {
2263 return (void *)addr
;
2265 EXPORT_SYMBOL(alloc_pages_exact
);
2268 * free_pages_exact - release memory allocated via alloc_pages_exact()
2269 * @virt: the value returned by alloc_pages_exact.
2270 * @size: size of allocation, same value as passed to alloc_pages_exact().
2272 * Release the memory allocated by a previous call to alloc_pages_exact.
2274 void free_pages_exact(void *virt
, size_t size
)
2276 unsigned long addr
= (unsigned long)virt
;
2277 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2279 while (addr
< end
) {
2284 EXPORT_SYMBOL(free_pages_exact
);
2286 static unsigned int nr_free_zone_pages(int offset
)
2291 /* Just pick one node, since fallback list is circular */
2292 unsigned int sum
= 0;
2294 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2296 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2297 unsigned long size
= zone
->present_pages
;
2298 unsigned long high
= high_wmark_pages(zone
);
2307 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2309 unsigned int nr_free_buffer_pages(void)
2311 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2313 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2316 * Amount of free RAM allocatable within all zones
2318 unsigned int nr_free_pagecache_pages(void)
2320 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2323 static inline void show_node(struct zone
*zone
)
2326 printk("Node %d ", zone_to_nid(zone
));
2329 void si_meminfo(struct sysinfo
*val
)
2331 val
->totalram
= totalram_pages
;
2333 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2334 val
->bufferram
= nr_blockdev_pages();
2335 val
->totalhigh
= totalhigh_pages
;
2336 val
->freehigh
= nr_free_highpages();
2337 val
->mem_unit
= PAGE_SIZE
;
2340 EXPORT_SYMBOL(si_meminfo
);
2343 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2345 pg_data_t
*pgdat
= NODE_DATA(nid
);
2347 val
->totalram
= pgdat
->node_present_pages
;
2348 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2349 #ifdef CONFIG_HIGHMEM
2350 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2351 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2357 val
->mem_unit
= PAGE_SIZE
;
2361 #define K(x) ((x) << (PAGE_SHIFT-10))
2364 * Show free area list (used inside shift_scroll-lock stuff)
2365 * We also calculate the percentage fragmentation. We do this by counting the
2366 * memory on each free list with the exception of the first item on the list.
2368 void show_free_areas(void)
2373 for_each_populated_zone(zone
) {
2375 printk("%s per-cpu:\n", zone
->name
);
2377 for_each_online_cpu(cpu
) {
2378 struct per_cpu_pageset
*pageset
;
2380 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2382 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2383 cpu
, pageset
->pcp
.high
,
2384 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2388 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2389 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2391 " dirty:%lu writeback:%lu unstable:%lu\n"
2392 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2393 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2394 global_page_state(NR_ACTIVE_ANON
),
2395 global_page_state(NR_INACTIVE_ANON
),
2396 global_page_state(NR_ISOLATED_ANON
),
2397 global_page_state(NR_ACTIVE_FILE
),
2398 global_page_state(NR_INACTIVE_FILE
),
2399 global_page_state(NR_ISOLATED_FILE
),
2400 global_page_state(NR_UNEVICTABLE
),
2401 global_page_state(NR_FILE_DIRTY
),
2402 global_page_state(NR_WRITEBACK
),
2403 global_page_state(NR_UNSTABLE_NFS
),
2404 global_page_state(NR_FREE_PAGES
),
2405 global_page_state(NR_SLAB_RECLAIMABLE
),
2406 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2407 global_page_state(NR_FILE_MAPPED
),
2408 global_page_state(NR_SHMEM
),
2409 global_page_state(NR_PAGETABLE
),
2410 global_page_state(NR_BOUNCE
));
2412 for_each_populated_zone(zone
) {
2421 " active_anon:%lukB"
2422 " inactive_anon:%lukB"
2423 " active_file:%lukB"
2424 " inactive_file:%lukB"
2425 " unevictable:%lukB"
2426 " isolated(anon):%lukB"
2427 " isolated(file):%lukB"
2434 " slab_reclaimable:%lukB"
2435 " slab_unreclaimable:%lukB"
2436 " kernel_stack:%lukB"
2440 " writeback_tmp:%lukB"
2441 " pages_scanned:%lu"
2442 " all_unreclaimable? %s"
2445 K(zone_nr_free_pages(zone
)),
2446 K(min_wmark_pages(zone
)),
2447 K(low_wmark_pages(zone
)),
2448 K(high_wmark_pages(zone
)),
2449 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2450 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2451 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2452 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2453 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2454 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2455 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2456 K(zone
->present_pages
),
2457 K(zone_page_state(zone
, NR_MLOCK
)),
2458 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2459 K(zone_page_state(zone
, NR_WRITEBACK
)),
2460 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2461 K(zone_page_state(zone
, NR_SHMEM
)),
2462 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2463 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2464 zone_page_state(zone
, NR_KERNEL_STACK
) *
2466 K(zone_page_state(zone
, NR_PAGETABLE
)),
2467 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2468 K(zone_page_state(zone
, NR_BOUNCE
)),
2469 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2470 zone
->pages_scanned
,
2471 (zone
->all_unreclaimable
? "yes" : "no")
2473 printk("lowmem_reserve[]:");
2474 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2475 printk(" %lu", zone
->lowmem_reserve
[i
]);
2479 for_each_populated_zone(zone
) {
2480 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2483 printk("%s: ", zone
->name
);
2485 spin_lock_irqsave(&zone
->lock
, flags
);
2486 for (order
= 0; order
< MAX_ORDER
; order
++) {
2487 nr
[order
] = zone
->free_area
[order
].nr_free
;
2488 total
+= nr
[order
] << order
;
2490 spin_unlock_irqrestore(&zone
->lock
, flags
);
2491 for (order
= 0; order
< MAX_ORDER
; order
++)
2492 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2493 printk("= %lukB\n", K(total
));
2496 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2498 show_swap_cache_info();
2501 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2503 zoneref
->zone
= zone
;
2504 zoneref
->zone_idx
= zone_idx(zone
);
2508 * Builds allocation fallback zone lists.
2510 * Add all populated zones of a node to the zonelist.
2512 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2513 int nr_zones
, enum zone_type zone_type
)
2517 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2522 zone
= pgdat
->node_zones
+ zone_type
;
2523 if (populated_zone(zone
)) {
2524 zoneref_set_zone(zone
,
2525 &zonelist
->_zonerefs
[nr_zones
++]);
2526 check_highest_zone(zone_type
);
2529 } while (zone_type
);
2536 * 0 = automatic detection of better ordering.
2537 * 1 = order by ([node] distance, -zonetype)
2538 * 2 = order by (-zonetype, [node] distance)
2540 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2541 * the same zonelist. So only NUMA can configure this param.
2543 #define ZONELIST_ORDER_DEFAULT 0
2544 #define ZONELIST_ORDER_NODE 1
2545 #define ZONELIST_ORDER_ZONE 2
2547 /* zonelist order in the kernel.
2548 * set_zonelist_order() will set this to NODE or ZONE.
2550 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2551 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2555 /* The value user specified ....changed by config */
2556 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2557 /* string for sysctl */
2558 #define NUMA_ZONELIST_ORDER_LEN 16
2559 char numa_zonelist_order
[16] = "default";
2562 * interface for configure zonelist ordering.
2563 * command line option "numa_zonelist_order"
2564 * = "[dD]efault - default, automatic configuration.
2565 * = "[nN]ode - order by node locality, then by zone within node
2566 * = "[zZ]one - order by zone, then by locality within zone
2569 static int __parse_numa_zonelist_order(char *s
)
2571 if (*s
== 'd' || *s
== 'D') {
2572 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2573 } else if (*s
== 'n' || *s
== 'N') {
2574 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2575 } else if (*s
== 'z' || *s
== 'Z') {
2576 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2579 "Ignoring invalid numa_zonelist_order value: "
2586 static __init
int setup_numa_zonelist_order(char *s
)
2589 return __parse_numa_zonelist_order(s
);
2592 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2595 * sysctl handler for numa_zonelist_order
2597 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2598 void __user
*buffer
, size_t *length
,
2601 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2603 static DEFINE_MUTEX(zl_order_mutex
);
2605 mutex_lock(&zl_order_mutex
);
2607 strcpy(saved_string
, (char*)table
->data
);
2608 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2612 int oldval
= user_zonelist_order
;
2613 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2615 * bogus value. restore saved string
2617 strncpy((char*)table
->data
, saved_string
,
2618 NUMA_ZONELIST_ORDER_LEN
);
2619 user_zonelist_order
= oldval
;
2620 } else if (oldval
!= user_zonelist_order
) {
2621 mutex_lock(&zonelists_mutex
);
2622 build_all_zonelists(NULL
);
2623 mutex_unlock(&zonelists_mutex
);
2627 mutex_unlock(&zl_order_mutex
);
2632 #define MAX_NODE_LOAD (nr_online_nodes)
2633 static int node_load
[MAX_NUMNODES
];
2636 * find_next_best_node - find the next node that should appear in a given node's fallback list
2637 * @node: node whose fallback list we're appending
2638 * @used_node_mask: nodemask_t of already used nodes
2640 * We use a number of factors to determine which is the next node that should
2641 * appear on a given node's fallback list. The node should not have appeared
2642 * already in @node's fallback list, and it should be the next closest node
2643 * according to the distance array (which contains arbitrary distance values
2644 * from each node to each node in the system), and should also prefer nodes
2645 * with no CPUs, since presumably they'll have very little allocation pressure
2646 * on them otherwise.
2647 * It returns -1 if no node is found.
2649 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2652 int min_val
= INT_MAX
;
2654 const struct cpumask
*tmp
= cpumask_of_node(0);
2656 /* Use the local node if we haven't already */
2657 if (!node_isset(node
, *used_node_mask
)) {
2658 node_set(node
, *used_node_mask
);
2662 for_each_node_state(n
, N_HIGH_MEMORY
) {
2664 /* Don't want a node to appear more than once */
2665 if (node_isset(n
, *used_node_mask
))
2668 /* Use the distance array to find the distance */
2669 val
= node_distance(node
, n
);
2671 /* Penalize nodes under us ("prefer the next node") */
2674 /* Give preference to headless and unused nodes */
2675 tmp
= cpumask_of_node(n
);
2676 if (!cpumask_empty(tmp
))
2677 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2679 /* Slight preference for less loaded node */
2680 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2681 val
+= node_load
[n
];
2683 if (val
< min_val
) {
2690 node_set(best_node
, *used_node_mask
);
2697 * Build zonelists ordered by node and zones within node.
2698 * This results in maximum locality--normal zone overflows into local
2699 * DMA zone, if any--but risks exhausting DMA zone.
2701 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2704 struct zonelist
*zonelist
;
2706 zonelist
= &pgdat
->node_zonelists
[0];
2707 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2709 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2711 zonelist
->_zonerefs
[j
].zone
= NULL
;
2712 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2716 * Build gfp_thisnode zonelists
2718 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2721 struct zonelist
*zonelist
;
2723 zonelist
= &pgdat
->node_zonelists
[1];
2724 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2725 zonelist
->_zonerefs
[j
].zone
= NULL
;
2726 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2730 * Build zonelists ordered by zone and nodes within zones.
2731 * This results in conserving DMA zone[s] until all Normal memory is
2732 * exhausted, but results in overflowing to remote node while memory
2733 * may still exist in local DMA zone.
2735 static int node_order
[MAX_NUMNODES
];
2737 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2740 int zone_type
; /* needs to be signed */
2742 struct zonelist
*zonelist
;
2744 zonelist
= &pgdat
->node_zonelists
[0];
2746 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2747 for (j
= 0; j
< nr_nodes
; j
++) {
2748 node
= node_order
[j
];
2749 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2750 if (populated_zone(z
)) {
2752 &zonelist
->_zonerefs
[pos
++]);
2753 check_highest_zone(zone_type
);
2757 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2758 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2761 static int default_zonelist_order(void)
2764 unsigned long low_kmem_size
,total_size
;
2768 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2769 * If they are really small and used heavily, the system can fall
2770 * into OOM very easily.
2771 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2773 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2776 for_each_online_node(nid
) {
2777 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2778 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2779 if (populated_zone(z
)) {
2780 if (zone_type
< ZONE_NORMAL
)
2781 low_kmem_size
+= z
->present_pages
;
2782 total_size
+= z
->present_pages
;
2783 } else if (zone_type
== ZONE_NORMAL
) {
2785 * If any node has only lowmem, then node order
2786 * is preferred to allow kernel allocations
2787 * locally; otherwise, they can easily infringe
2788 * on other nodes when there is an abundance of
2789 * lowmem available to allocate from.
2791 return ZONELIST_ORDER_NODE
;
2795 if (!low_kmem_size
|| /* there are no DMA area. */
2796 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2797 return ZONELIST_ORDER_NODE
;
2799 * look into each node's config.
2800 * If there is a node whose DMA/DMA32 memory is very big area on
2801 * local memory, NODE_ORDER may be suitable.
2803 average_size
= total_size
/
2804 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2805 for_each_online_node(nid
) {
2808 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2809 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2810 if (populated_zone(z
)) {
2811 if (zone_type
< ZONE_NORMAL
)
2812 low_kmem_size
+= z
->present_pages
;
2813 total_size
+= z
->present_pages
;
2816 if (low_kmem_size
&&
2817 total_size
> average_size
&& /* ignore small node */
2818 low_kmem_size
> total_size
* 70/100)
2819 return ZONELIST_ORDER_NODE
;
2821 return ZONELIST_ORDER_ZONE
;
2824 static void set_zonelist_order(void)
2826 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2827 current_zonelist_order
= default_zonelist_order();
2829 current_zonelist_order
= user_zonelist_order
;
2832 static void build_zonelists(pg_data_t
*pgdat
)
2836 nodemask_t used_mask
;
2837 int local_node
, prev_node
;
2838 struct zonelist
*zonelist
;
2839 int order
= current_zonelist_order
;
2841 /* initialize zonelists */
2842 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2843 zonelist
= pgdat
->node_zonelists
+ i
;
2844 zonelist
->_zonerefs
[0].zone
= NULL
;
2845 zonelist
->_zonerefs
[0].zone_idx
= 0;
2848 /* NUMA-aware ordering of nodes */
2849 local_node
= pgdat
->node_id
;
2850 load
= nr_online_nodes
;
2851 prev_node
= local_node
;
2852 nodes_clear(used_mask
);
2854 memset(node_order
, 0, sizeof(node_order
));
2857 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2858 int distance
= node_distance(local_node
, node
);
2861 * If another node is sufficiently far away then it is better
2862 * to reclaim pages in a zone before going off node.
2864 if (distance
> RECLAIM_DISTANCE
)
2865 zone_reclaim_mode
= 1;
2868 * We don't want to pressure a particular node.
2869 * So adding penalty to the first node in same
2870 * distance group to make it round-robin.
2872 if (distance
!= node_distance(local_node
, prev_node
))
2873 node_load
[node
] = load
;
2877 if (order
== ZONELIST_ORDER_NODE
)
2878 build_zonelists_in_node_order(pgdat
, node
);
2880 node_order
[j
++] = node
; /* remember order */
2883 if (order
== ZONELIST_ORDER_ZONE
) {
2884 /* calculate node order -- i.e., DMA last! */
2885 build_zonelists_in_zone_order(pgdat
, j
);
2888 build_thisnode_zonelists(pgdat
);
2891 /* Construct the zonelist performance cache - see further mmzone.h */
2892 static void build_zonelist_cache(pg_data_t
*pgdat
)
2894 struct zonelist
*zonelist
;
2895 struct zonelist_cache
*zlc
;
2898 zonelist
= &pgdat
->node_zonelists
[0];
2899 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2900 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2901 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2902 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2905 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2907 * Return node id of node used for "local" allocations.
2908 * I.e., first node id of first zone in arg node's generic zonelist.
2909 * Used for initializing percpu 'numa_mem', which is used primarily
2910 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2912 int local_memory_node(int node
)
2916 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
2917 gfp_zone(GFP_KERNEL
),
2924 #else /* CONFIG_NUMA */
2926 static void set_zonelist_order(void)
2928 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2931 static void build_zonelists(pg_data_t
*pgdat
)
2933 int node
, local_node
;
2935 struct zonelist
*zonelist
;
2937 local_node
= pgdat
->node_id
;
2939 zonelist
= &pgdat
->node_zonelists
[0];
2940 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2943 * Now we build the zonelist so that it contains the zones
2944 * of all the other nodes.
2945 * We don't want to pressure a particular node, so when
2946 * building the zones for node N, we make sure that the
2947 * zones coming right after the local ones are those from
2948 * node N+1 (modulo N)
2950 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2951 if (!node_online(node
))
2953 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2956 for (node
= 0; node
< local_node
; node
++) {
2957 if (!node_online(node
))
2959 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2963 zonelist
->_zonerefs
[j
].zone
= NULL
;
2964 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2967 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2968 static void build_zonelist_cache(pg_data_t
*pgdat
)
2970 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2973 #endif /* CONFIG_NUMA */
2976 * Boot pageset table. One per cpu which is going to be used for all
2977 * zones and all nodes. The parameters will be set in such a way
2978 * that an item put on a list will immediately be handed over to
2979 * the buddy list. This is safe since pageset manipulation is done
2980 * with interrupts disabled.
2982 * The boot_pagesets must be kept even after bootup is complete for
2983 * unused processors and/or zones. They do play a role for bootstrapping
2984 * hotplugged processors.
2986 * zoneinfo_show() and maybe other functions do
2987 * not check if the processor is online before following the pageset pointer.
2988 * Other parts of the kernel may not check if the zone is available.
2990 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
2991 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
2992 static void setup_zone_pageset(struct zone
*zone
);
2995 * Global mutex to protect against size modification of zonelists
2996 * as well as to serialize pageset setup for the new populated zone.
2998 DEFINE_MUTEX(zonelists_mutex
);
3000 /* return values int ....just for stop_machine() */
3001 static __init_refok
int __build_all_zonelists(void *data
)
3007 memset(node_load
, 0, sizeof(node_load
));
3009 for_each_online_node(nid
) {
3010 pg_data_t
*pgdat
= NODE_DATA(nid
);
3012 build_zonelists(pgdat
);
3013 build_zonelist_cache(pgdat
);
3017 * Initialize the boot_pagesets that are going to be used
3018 * for bootstrapping processors. The real pagesets for
3019 * each zone will be allocated later when the per cpu
3020 * allocator is available.
3022 * boot_pagesets are used also for bootstrapping offline
3023 * cpus if the system is already booted because the pagesets
3024 * are needed to initialize allocators on a specific cpu too.
3025 * F.e. the percpu allocator needs the page allocator which
3026 * needs the percpu allocator in order to allocate its pagesets
3027 * (a chicken-egg dilemma).
3029 for_each_possible_cpu(cpu
) {
3030 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3032 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3034 * We now know the "local memory node" for each node--
3035 * i.e., the node of the first zone in the generic zonelist.
3036 * Set up numa_mem percpu variable for on-line cpus. During
3037 * boot, only the boot cpu should be on-line; we'll init the
3038 * secondary cpus' numa_mem as they come on-line. During
3039 * node/memory hotplug, we'll fixup all on-line cpus.
3041 if (cpu_online(cpu
))
3042 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3050 * Called with zonelists_mutex held always
3051 * unless system_state == SYSTEM_BOOTING.
3053 void build_all_zonelists(void *data
)
3055 set_zonelist_order();
3057 if (system_state
== SYSTEM_BOOTING
) {
3058 __build_all_zonelists(NULL
);
3059 mminit_verify_zonelist();
3060 cpuset_init_current_mems_allowed();
3062 /* we have to stop all cpus to guarantee there is no user
3064 #ifdef CONFIG_MEMORY_HOTPLUG
3066 setup_zone_pageset((struct zone
*)data
);
3068 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3069 /* cpuset refresh routine should be here */
3071 vm_total_pages
= nr_free_pagecache_pages();
3073 * Disable grouping by mobility if the number of pages in the
3074 * system is too low to allow the mechanism to work. It would be
3075 * more accurate, but expensive to check per-zone. This check is
3076 * made on memory-hotadd so a system can start with mobility
3077 * disabled and enable it later
3079 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3080 page_group_by_mobility_disabled
= 1;
3082 page_group_by_mobility_disabled
= 0;
3084 printk("Built %i zonelists in %s order, mobility grouping %s. "
3085 "Total pages: %ld\n",
3087 zonelist_order_name
[current_zonelist_order
],
3088 page_group_by_mobility_disabled
? "off" : "on",
3091 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3096 * Helper functions to size the waitqueue hash table.
3097 * Essentially these want to choose hash table sizes sufficiently
3098 * large so that collisions trying to wait on pages are rare.
3099 * But in fact, the number of active page waitqueues on typical
3100 * systems is ridiculously low, less than 200. So this is even
3101 * conservative, even though it seems large.
3103 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3104 * waitqueues, i.e. the size of the waitq table given the number of pages.
3106 #define PAGES_PER_WAITQUEUE 256
3108 #ifndef CONFIG_MEMORY_HOTPLUG
3109 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3111 unsigned long size
= 1;
3113 pages
/= PAGES_PER_WAITQUEUE
;
3115 while (size
< pages
)
3119 * Once we have dozens or even hundreds of threads sleeping
3120 * on IO we've got bigger problems than wait queue collision.
3121 * Limit the size of the wait table to a reasonable size.
3123 size
= min(size
, 4096UL);
3125 return max(size
, 4UL);
3129 * A zone's size might be changed by hot-add, so it is not possible to determine
3130 * a suitable size for its wait_table. So we use the maximum size now.
3132 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3134 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3135 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3136 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3138 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3139 * or more by the traditional way. (See above). It equals:
3141 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3142 * ia64(16K page size) : = ( 8G + 4M)byte.
3143 * powerpc (64K page size) : = (32G +16M)byte.
3145 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3152 * This is an integer logarithm so that shifts can be used later
3153 * to extract the more random high bits from the multiplicative
3154 * hash function before the remainder is taken.
3156 static inline unsigned long wait_table_bits(unsigned long size
)
3161 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3164 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3165 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3166 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3167 * higher will lead to a bigger reserve which will get freed as contiguous
3168 * blocks as reclaim kicks in
3170 static void setup_zone_migrate_reserve(struct zone
*zone
)
3172 unsigned long start_pfn
, pfn
, end_pfn
;
3174 unsigned long block_migratetype
;
3177 /* Get the start pfn, end pfn and the number of blocks to reserve */
3178 start_pfn
= zone
->zone_start_pfn
;
3179 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3180 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3184 * Reserve blocks are generally in place to help high-order atomic
3185 * allocations that are short-lived. A min_free_kbytes value that
3186 * would result in more than 2 reserve blocks for atomic allocations
3187 * is assumed to be in place to help anti-fragmentation for the
3188 * future allocation of hugepages at runtime.
3190 reserve
= min(2, reserve
);
3192 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3193 if (!pfn_valid(pfn
))
3195 page
= pfn_to_page(pfn
);
3197 /* Watch out for overlapping nodes */
3198 if (page_to_nid(page
) != zone_to_nid(zone
))
3201 /* Blocks with reserved pages will never free, skip them. */
3202 if (PageReserved(page
))
3205 block_migratetype
= get_pageblock_migratetype(page
);
3207 /* If this block is reserved, account for it */
3208 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3213 /* Suitable for reserving if this block is movable */
3214 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3215 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3216 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3222 * If the reserve is met and this is a previous reserved block,
3225 if (block_migratetype
== MIGRATE_RESERVE
) {
3226 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3227 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3233 * Initially all pages are reserved - free ones are freed
3234 * up by free_all_bootmem() once the early boot process is
3235 * done. Non-atomic initialization, single-pass.
3237 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3238 unsigned long start_pfn
, enum memmap_context context
)
3241 unsigned long end_pfn
= start_pfn
+ size
;
3245 if (highest_memmap_pfn
< end_pfn
- 1)
3246 highest_memmap_pfn
= end_pfn
- 1;
3248 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3249 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3251 * There can be holes in boot-time mem_map[]s
3252 * handed to this function. They do not
3253 * exist on hotplugged memory.
3255 if (context
== MEMMAP_EARLY
) {
3256 if (!early_pfn_valid(pfn
))
3258 if (!early_pfn_in_nid(pfn
, nid
))
3261 page
= pfn_to_page(pfn
);
3262 set_page_links(page
, zone
, nid
, pfn
);
3263 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3264 init_page_count(page
);
3265 reset_page_mapcount(page
);
3266 SetPageReserved(page
);
3268 * Mark the block movable so that blocks are reserved for
3269 * movable at startup. This will force kernel allocations
3270 * to reserve their blocks rather than leaking throughout
3271 * the address space during boot when many long-lived
3272 * kernel allocations are made. Later some blocks near
3273 * the start are marked MIGRATE_RESERVE by
3274 * setup_zone_migrate_reserve()
3276 * bitmap is created for zone's valid pfn range. but memmap
3277 * can be created for invalid pages (for alignment)
3278 * check here not to call set_pageblock_migratetype() against
3281 if ((z
->zone_start_pfn
<= pfn
)
3282 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3283 && !(pfn
& (pageblock_nr_pages
- 1)))
3284 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3286 INIT_LIST_HEAD(&page
->lru
);
3287 #ifdef WANT_PAGE_VIRTUAL
3288 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3289 if (!is_highmem_idx(zone
))
3290 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3295 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3298 for_each_migratetype_order(order
, t
) {
3299 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3300 zone
->free_area
[order
].nr_free
= 0;
3304 #ifndef __HAVE_ARCH_MEMMAP_INIT
3305 #define memmap_init(size, nid, zone, start_pfn) \
3306 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3309 static int zone_batchsize(struct zone
*zone
)
3315 * The per-cpu-pages pools are set to around 1000th of the
3316 * size of the zone. But no more than 1/2 of a meg.
3318 * OK, so we don't know how big the cache is. So guess.
3320 batch
= zone
->present_pages
/ 1024;
3321 if (batch
* PAGE_SIZE
> 512 * 1024)
3322 batch
= (512 * 1024) / PAGE_SIZE
;
3323 batch
/= 4; /* We effectively *= 4 below */
3328 * Clamp the batch to a 2^n - 1 value. Having a power
3329 * of 2 value was found to be more likely to have
3330 * suboptimal cache aliasing properties in some cases.
3332 * For example if 2 tasks are alternately allocating
3333 * batches of pages, one task can end up with a lot
3334 * of pages of one half of the possible page colors
3335 * and the other with pages of the other colors.
3337 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3342 /* The deferral and batching of frees should be suppressed under NOMMU
3345 * The problem is that NOMMU needs to be able to allocate large chunks
3346 * of contiguous memory as there's no hardware page translation to
3347 * assemble apparent contiguous memory from discontiguous pages.
3349 * Queueing large contiguous runs of pages for batching, however,
3350 * causes the pages to actually be freed in smaller chunks. As there
3351 * can be a significant delay between the individual batches being
3352 * recycled, this leads to the once large chunks of space being
3353 * fragmented and becoming unavailable for high-order allocations.
3359 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3361 struct per_cpu_pages
*pcp
;
3364 memset(p
, 0, sizeof(*p
));
3368 pcp
->high
= 6 * batch
;
3369 pcp
->batch
= max(1UL, 1 * batch
);
3370 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3371 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3375 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3376 * to the value high for the pageset p.
3379 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3382 struct per_cpu_pages
*pcp
;
3386 pcp
->batch
= max(1UL, high
/4);
3387 if ((high
/4) > (PAGE_SHIFT
* 8))
3388 pcp
->batch
= PAGE_SHIFT
* 8;
3391 static __meminit
void setup_zone_pageset(struct zone
*zone
)
3395 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3397 for_each_possible_cpu(cpu
) {
3398 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3400 setup_pageset(pcp
, zone_batchsize(zone
));
3402 if (percpu_pagelist_fraction
)
3403 setup_pagelist_highmark(pcp
,
3404 (zone
->present_pages
/
3405 percpu_pagelist_fraction
));
3410 * Allocate per cpu pagesets and initialize them.
3411 * Before this call only boot pagesets were available.
3413 void __init
setup_per_cpu_pageset(void)
3417 for_each_populated_zone(zone
)
3418 setup_zone_pageset(zone
);
3421 static noinline __init_refok
3422 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3425 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3429 * The per-page waitqueue mechanism uses hashed waitqueues
3432 zone
->wait_table_hash_nr_entries
=
3433 wait_table_hash_nr_entries(zone_size_pages
);
3434 zone
->wait_table_bits
=
3435 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3436 alloc_size
= zone
->wait_table_hash_nr_entries
3437 * sizeof(wait_queue_head_t
);
3439 if (!slab_is_available()) {
3440 zone
->wait_table
= (wait_queue_head_t
*)
3441 alloc_bootmem_node(pgdat
, alloc_size
);
3444 * This case means that a zone whose size was 0 gets new memory
3445 * via memory hot-add.
3446 * But it may be the case that a new node was hot-added. In
3447 * this case vmalloc() will not be able to use this new node's
3448 * memory - this wait_table must be initialized to use this new
3449 * node itself as well.
3450 * To use this new node's memory, further consideration will be
3453 zone
->wait_table
= vmalloc(alloc_size
);
3455 if (!zone
->wait_table
)
3458 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3459 init_waitqueue_head(zone
->wait_table
+ i
);
3464 static int __zone_pcp_update(void *data
)
3466 struct zone
*zone
= data
;
3468 unsigned long batch
= zone_batchsize(zone
), flags
;
3470 for_each_possible_cpu(cpu
) {
3471 struct per_cpu_pageset
*pset
;
3472 struct per_cpu_pages
*pcp
;
3474 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3477 local_irq_save(flags
);
3478 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3479 setup_pageset(pset
, batch
);
3480 local_irq_restore(flags
);
3485 void zone_pcp_update(struct zone
*zone
)
3487 stop_machine(__zone_pcp_update
, zone
, NULL
);
3490 static __meminit
void zone_pcp_init(struct zone
*zone
)
3493 * per cpu subsystem is not up at this point. The following code
3494 * relies on the ability of the linker to provide the
3495 * offset of a (static) per cpu variable into the per cpu area.
3497 zone
->pageset
= &boot_pageset
;
3499 if (zone
->present_pages
)
3500 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3501 zone
->name
, zone
->present_pages
,
3502 zone_batchsize(zone
));
3505 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3506 unsigned long zone_start_pfn
,
3508 enum memmap_context context
)
3510 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3512 ret
= zone_wait_table_init(zone
, size
);
3515 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3517 zone
->zone_start_pfn
= zone_start_pfn
;
3519 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3520 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3522 (unsigned long)zone_idx(zone
),
3523 zone_start_pfn
, (zone_start_pfn
+ size
));
3525 zone_init_free_lists(zone
);
3530 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3532 * Basic iterator support. Return the first range of PFNs for a node
3533 * Note: nid == MAX_NUMNODES returns first region regardless of node
3535 static int __meminit
first_active_region_index_in_nid(int nid
)
3539 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3540 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3547 * Basic iterator support. Return the next active range of PFNs for a node
3548 * Note: nid == MAX_NUMNODES returns next region regardless of node
3550 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3552 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3553 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3559 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3561 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3562 * Architectures may implement their own version but if add_active_range()
3563 * was used and there are no special requirements, this is a convenient
3566 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3570 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3571 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3572 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3574 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3575 return early_node_map
[i
].nid
;
3577 /* This is a memory hole */
3580 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3582 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3586 nid
= __early_pfn_to_nid(pfn
);
3589 /* just returns 0 */
3593 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3594 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3598 nid
= __early_pfn_to_nid(pfn
);
3599 if (nid
>= 0 && nid
!= node
)
3605 /* Basic iterator support to walk early_node_map[] */
3606 #define for_each_active_range_index_in_nid(i, nid) \
3607 for (i = first_active_region_index_in_nid(nid); i != -1; \
3608 i = next_active_region_index_in_nid(i, nid))
3611 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3612 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3613 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3615 * If an architecture guarantees that all ranges registered with
3616 * add_active_ranges() contain no holes and may be freed, this
3617 * this function may be used instead of calling free_bootmem() manually.
3619 void __init
free_bootmem_with_active_regions(int nid
,
3620 unsigned long max_low_pfn
)
3624 for_each_active_range_index_in_nid(i
, nid
) {
3625 unsigned long size_pages
= 0;
3626 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3628 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3631 if (end_pfn
> max_low_pfn
)
3632 end_pfn
= max_low_pfn
;
3634 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3635 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3636 PFN_PHYS(early_node_map
[i
].start_pfn
),
3637 size_pages
<< PAGE_SHIFT
);
3641 #ifdef CONFIG_HAVE_MEMBLOCK
3642 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3643 u64 goal
, u64 limit
)
3647 /* Need to go over early_node_map to find out good range for node */
3648 for_each_active_range_index_in_nid(i
, nid
) {
3650 u64 ei_start
, ei_last
;
3651 u64 final_start
, final_end
;
3653 ei_last
= early_node_map
[i
].end_pfn
;
3654 ei_last
<<= PAGE_SHIFT
;
3655 ei_start
= early_node_map
[i
].start_pfn
;
3656 ei_start
<<= PAGE_SHIFT
;
3658 final_start
= max(ei_start
, goal
);
3659 final_end
= min(ei_last
, limit
);
3661 if (final_start
>= final_end
)
3664 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3666 if (addr
== MEMBLOCK_ERROR
)
3672 return MEMBLOCK_ERROR
;
3676 int __init
add_from_early_node_map(struct range
*range
, int az
,
3677 int nr_range
, int nid
)
3682 /* need to go over early_node_map to find out good range for node */
3683 for_each_active_range_index_in_nid(i
, nid
) {
3684 start
= early_node_map
[i
].start_pfn
;
3685 end
= early_node_map
[i
].end_pfn
;
3686 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3691 #ifdef CONFIG_NO_BOOTMEM
3692 void * __init
__alloc_memory_core_early(int nid
, u64 size
, u64 align
,
3693 u64 goal
, u64 limit
)
3698 if (limit
> memblock
.current_limit
)
3699 limit
= memblock
.current_limit
;
3701 addr
= find_memory_core_early(nid
, size
, align
, goal
, limit
);
3703 if (addr
== MEMBLOCK_ERROR
)
3706 ptr
= phys_to_virt(addr
);
3707 memset(ptr
, 0, size
);
3708 memblock_x86_reserve_range(addr
, addr
+ size
, "BOOTMEM");
3710 * The min_count is set to 0 so that bootmem allocated blocks
3711 * are never reported as leaks.
3713 kmemleak_alloc(ptr
, size
, 0, 0);
3719 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3724 for_each_active_range_index_in_nid(i
, nid
) {
3725 ret
= work_fn(early_node_map
[i
].start_pfn
,
3726 early_node_map
[i
].end_pfn
, data
);
3732 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3733 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3735 * If an architecture guarantees that all ranges registered with
3736 * add_active_ranges() contain no holes and may be freed, this
3737 * function may be used instead of calling memory_present() manually.
3739 void __init
sparse_memory_present_with_active_regions(int nid
)
3743 for_each_active_range_index_in_nid(i
, nid
)
3744 memory_present(early_node_map
[i
].nid
,
3745 early_node_map
[i
].start_pfn
,
3746 early_node_map
[i
].end_pfn
);
3750 * get_pfn_range_for_nid - Return the start and end page frames for a node
3751 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3752 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3753 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3755 * It returns the start and end page frame of a node based on information
3756 * provided by an arch calling add_active_range(). If called for a node
3757 * with no available memory, a warning is printed and the start and end
3760 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3761 unsigned long *start_pfn
, unsigned long *end_pfn
)
3767 for_each_active_range_index_in_nid(i
, nid
) {
3768 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3769 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3772 if (*start_pfn
== -1UL)
3777 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3778 * assumption is made that zones within a node are ordered in monotonic
3779 * increasing memory addresses so that the "highest" populated zone is used
3781 static void __init
find_usable_zone_for_movable(void)
3784 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3785 if (zone_index
== ZONE_MOVABLE
)
3788 if (arch_zone_highest_possible_pfn
[zone_index
] >
3789 arch_zone_lowest_possible_pfn
[zone_index
])
3793 VM_BUG_ON(zone_index
== -1);
3794 movable_zone
= zone_index
;
3798 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3799 * because it is sized independant of architecture. Unlike the other zones,
3800 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3801 * in each node depending on the size of each node and how evenly kernelcore
3802 * is distributed. This helper function adjusts the zone ranges
3803 * provided by the architecture for a given node by using the end of the
3804 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3805 * zones within a node are in order of monotonic increases memory addresses
3807 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3808 unsigned long zone_type
,
3809 unsigned long node_start_pfn
,
3810 unsigned long node_end_pfn
,
3811 unsigned long *zone_start_pfn
,
3812 unsigned long *zone_end_pfn
)
3814 /* Only adjust if ZONE_MOVABLE is on this node */
3815 if (zone_movable_pfn
[nid
]) {
3816 /* Size ZONE_MOVABLE */
3817 if (zone_type
== ZONE_MOVABLE
) {
3818 *zone_start_pfn
= zone_movable_pfn
[nid
];
3819 *zone_end_pfn
= min(node_end_pfn
,
3820 arch_zone_highest_possible_pfn
[movable_zone
]);
3822 /* Adjust for ZONE_MOVABLE starting within this range */
3823 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3824 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3825 *zone_end_pfn
= zone_movable_pfn
[nid
];
3827 /* Check if this whole range is within ZONE_MOVABLE */
3828 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3829 *zone_start_pfn
= *zone_end_pfn
;
3834 * Return the number of pages a zone spans in a node, including holes
3835 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3837 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3838 unsigned long zone_type
,
3839 unsigned long *ignored
)
3841 unsigned long node_start_pfn
, node_end_pfn
;
3842 unsigned long zone_start_pfn
, zone_end_pfn
;
3844 /* Get the start and end of the node and zone */
3845 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3846 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3847 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3848 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3849 node_start_pfn
, node_end_pfn
,
3850 &zone_start_pfn
, &zone_end_pfn
);
3852 /* Check that this node has pages within the zone's required range */
3853 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3856 /* Move the zone boundaries inside the node if necessary */
3857 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3858 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3860 /* Return the spanned pages */
3861 return zone_end_pfn
- zone_start_pfn
;
3865 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3866 * then all holes in the requested range will be accounted for.
3868 unsigned long __meminit
__absent_pages_in_range(int nid
,
3869 unsigned long range_start_pfn
,
3870 unsigned long range_end_pfn
)
3873 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3874 unsigned long start_pfn
;
3876 /* Find the end_pfn of the first active range of pfns in the node */
3877 i
= first_active_region_index_in_nid(nid
);
3881 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3883 /* Account for ranges before physical memory on this node */
3884 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3885 hole_pages
= prev_end_pfn
- range_start_pfn
;
3887 /* Find all holes for the zone within the node */
3888 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3890 /* No need to continue if prev_end_pfn is outside the zone */
3891 if (prev_end_pfn
>= range_end_pfn
)
3894 /* Make sure the end of the zone is not within the hole */
3895 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3896 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3898 /* Update the hole size cound and move on */
3899 if (start_pfn
> range_start_pfn
) {
3900 BUG_ON(prev_end_pfn
> start_pfn
);
3901 hole_pages
+= start_pfn
- prev_end_pfn
;
3903 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3906 /* Account for ranges past physical memory on this node */
3907 if (range_end_pfn
> prev_end_pfn
)
3908 hole_pages
+= range_end_pfn
-
3909 max(range_start_pfn
, prev_end_pfn
);
3915 * absent_pages_in_range - Return number of page frames in holes within a range
3916 * @start_pfn: The start PFN to start searching for holes
3917 * @end_pfn: The end PFN to stop searching for holes
3919 * It returns the number of pages frames in memory holes within a range.
3921 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3922 unsigned long end_pfn
)
3924 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3927 /* Return the number of page frames in holes in a zone on a node */
3928 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3929 unsigned long zone_type
,
3930 unsigned long *ignored
)
3932 unsigned long node_start_pfn
, node_end_pfn
;
3933 unsigned long zone_start_pfn
, zone_end_pfn
;
3935 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3936 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3938 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3941 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3942 node_start_pfn
, node_end_pfn
,
3943 &zone_start_pfn
, &zone_end_pfn
);
3944 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3948 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3949 unsigned long zone_type
,
3950 unsigned long *zones_size
)
3952 return zones_size
[zone_type
];
3955 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3956 unsigned long zone_type
,
3957 unsigned long *zholes_size
)
3962 return zholes_size
[zone_type
];
3967 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3968 unsigned long *zones_size
, unsigned long *zholes_size
)
3970 unsigned long realtotalpages
, totalpages
= 0;
3973 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3974 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3976 pgdat
->node_spanned_pages
= totalpages
;
3978 realtotalpages
= totalpages
;
3979 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3981 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3983 pgdat
->node_present_pages
= realtotalpages
;
3984 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3988 #ifndef CONFIG_SPARSEMEM
3990 * Calculate the size of the zone->blockflags rounded to an unsigned long
3991 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3992 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3993 * round what is now in bits to nearest long in bits, then return it in
3996 static unsigned long __init
usemap_size(unsigned long zonesize
)
3998 unsigned long usemapsize
;
4000 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4001 usemapsize
= usemapsize
>> pageblock_order
;
4002 usemapsize
*= NR_PAGEBLOCK_BITS
;
4003 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4005 return usemapsize
/ 8;
4008 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4009 struct zone
*zone
, unsigned long zonesize
)
4011 unsigned long usemapsize
= usemap_size(zonesize
);
4012 zone
->pageblock_flags
= NULL
;
4014 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
4017 static void inline setup_usemap(struct pglist_data
*pgdat
,
4018 struct zone
*zone
, unsigned long zonesize
) {}
4019 #endif /* CONFIG_SPARSEMEM */
4021 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4023 /* Return a sensible default order for the pageblock size. */
4024 static inline int pageblock_default_order(void)
4026 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4027 return HUGETLB_PAGE_ORDER
;
4032 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4033 static inline void __init
set_pageblock_order(unsigned int order
)
4035 /* Check that pageblock_nr_pages has not already been setup */
4036 if (pageblock_order
)
4040 * Assume the largest contiguous order of interest is a huge page.
4041 * This value may be variable depending on boot parameters on IA64
4043 pageblock_order
= order
;
4045 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4048 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4049 * and pageblock_default_order() are unused as pageblock_order is set
4050 * at compile-time. See include/linux/pageblock-flags.h for the values of
4051 * pageblock_order based on the kernel config
4053 static inline int pageblock_default_order(unsigned int order
)
4057 #define set_pageblock_order(x) do {} while (0)
4059 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4062 * Set up the zone data structures:
4063 * - mark all pages reserved
4064 * - mark all memory queues empty
4065 * - clear the memory bitmaps
4067 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4068 unsigned long *zones_size
, unsigned long *zholes_size
)
4071 int nid
= pgdat
->node_id
;
4072 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4075 pgdat_resize_init(pgdat
);
4076 pgdat
->nr_zones
= 0;
4077 init_waitqueue_head(&pgdat
->kswapd_wait
);
4078 pgdat
->kswapd_max_order
= 0;
4079 pgdat_page_cgroup_init(pgdat
);
4081 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4082 struct zone
*zone
= pgdat
->node_zones
+ j
;
4083 unsigned long size
, realsize
, memmap_pages
;
4086 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4087 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4091 * Adjust realsize so that it accounts for how much memory
4092 * is used by this zone for memmap. This affects the watermark
4093 * and per-cpu initialisations
4096 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4097 if (realsize
>= memmap_pages
) {
4098 realsize
-= memmap_pages
;
4101 " %s zone: %lu pages used for memmap\n",
4102 zone_names
[j
], memmap_pages
);
4105 " %s zone: %lu pages exceeds realsize %lu\n",
4106 zone_names
[j
], memmap_pages
, realsize
);
4108 /* Account for reserved pages */
4109 if (j
== 0 && realsize
> dma_reserve
) {
4110 realsize
-= dma_reserve
;
4111 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4112 zone_names
[0], dma_reserve
);
4115 if (!is_highmem_idx(j
))
4116 nr_kernel_pages
+= realsize
;
4117 nr_all_pages
+= realsize
;
4119 zone
->spanned_pages
= size
;
4120 zone
->present_pages
= realsize
;
4123 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4125 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4127 zone
->name
= zone_names
[j
];
4128 spin_lock_init(&zone
->lock
);
4129 spin_lock_init(&zone
->lru_lock
);
4130 zone_seqlock_init(zone
);
4131 zone
->zone_pgdat
= pgdat
;
4133 zone_pcp_init(zone
);
4135 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4136 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
4138 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4139 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4140 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4141 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4142 zap_zone_vm_stats(zone
);
4147 set_pageblock_order(pageblock_default_order());
4148 setup_usemap(pgdat
, zone
, size
);
4149 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4150 size
, MEMMAP_EARLY
);
4152 memmap_init(size
, nid
, j
, zone_start_pfn
);
4153 zone_start_pfn
+= size
;
4157 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4159 /* Skip empty nodes */
4160 if (!pgdat
->node_spanned_pages
)
4163 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4164 /* ia64 gets its own node_mem_map, before this, without bootmem */
4165 if (!pgdat
->node_mem_map
) {
4166 unsigned long size
, start
, end
;
4170 * The zone's endpoints aren't required to be MAX_ORDER
4171 * aligned but the node_mem_map endpoints must be in order
4172 * for the buddy allocator to function correctly.
4174 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4175 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4176 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4177 size
= (end
- start
) * sizeof(struct page
);
4178 map
= alloc_remap(pgdat
->node_id
, size
);
4180 map
= alloc_bootmem_node(pgdat
, size
);
4181 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4183 #ifndef CONFIG_NEED_MULTIPLE_NODES
4185 * With no DISCONTIG, the global mem_map is just set as node 0's
4187 if (pgdat
== NODE_DATA(0)) {
4188 mem_map
= NODE_DATA(0)->node_mem_map
;
4189 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4190 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4191 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4192 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4195 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4198 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4199 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4201 pg_data_t
*pgdat
= NODE_DATA(nid
);
4203 pgdat
->node_id
= nid
;
4204 pgdat
->node_start_pfn
= node_start_pfn
;
4205 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4207 alloc_node_mem_map(pgdat
);
4208 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4209 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4210 nid
, (unsigned long)pgdat
,
4211 (unsigned long)pgdat
->node_mem_map
);
4214 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4217 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4219 #if MAX_NUMNODES > 1
4221 * Figure out the number of possible node ids.
4223 static void __init
setup_nr_node_ids(void)
4226 unsigned int highest
= 0;
4228 for_each_node_mask(node
, node_possible_map
)
4230 nr_node_ids
= highest
+ 1;
4233 static inline void setup_nr_node_ids(void)
4239 * add_active_range - Register a range of PFNs backed by physical memory
4240 * @nid: The node ID the range resides on
4241 * @start_pfn: The start PFN of the available physical memory
4242 * @end_pfn: The end PFN of the available physical memory
4244 * These ranges are stored in an early_node_map[] and later used by
4245 * free_area_init_nodes() to calculate zone sizes and holes. If the
4246 * range spans a memory hole, it is up to the architecture to ensure
4247 * the memory is not freed by the bootmem allocator. If possible
4248 * the range being registered will be merged with existing ranges.
4250 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4251 unsigned long end_pfn
)
4255 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4256 "Entering add_active_range(%d, %#lx, %#lx) "
4257 "%d entries of %d used\n",
4258 nid
, start_pfn
, end_pfn
,
4259 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4261 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4263 /* Merge with existing active regions if possible */
4264 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4265 if (early_node_map
[i
].nid
!= nid
)
4268 /* Skip if an existing region covers this new one */
4269 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4270 end_pfn
<= early_node_map
[i
].end_pfn
)
4273 /* Merge forward if suitable */
4274 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4275 end_pfn
> early_node_map
[i
].end_pfn
) {
4276 early_node_map
[i
].end_pfn
= end_pfn
;
4280 /* Merge backward if suitable */
4281 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4282 end_pfn
>= early_node_map
[i
].start_pfn
) {
4283 early_node_map
[i
].start_pfn
= start_pfn
;
4288 /* Check that early_node_map is large enough */
4289 if (i
>= MAX_ACTIVE_REGIONS
) {
4290 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4291 MAX_ACTIVE_REGIONS
);
4295 early_node_map
[i
].nid
= nid
;
4296 early_node_map
[i
].start_pfn
= start_pfn
;
4297 early_node_map
[i
].end_pfn
= end_pfn
;
4298 nr_nodemap_entries
= i
+ 1;
4302 * remove_active_range - Shrink an existing registered range of PFNs
4303 * @nid: The node id the range is on that should be shrunk
4304 * @start_pfn: The new PFN of the range
4305 * @end_pfn: The new PFN of the range
4307 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4308 * The map is kept near the end physical page range that has already been
4309 * registered. This function allows an arch to shrink an existing registered
4312 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4313 unsigned long end_pfn
)
4318 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4319 nid
, start_pfn
, end_pfn
);
4321 /* Find the old active region end and shrink */
4322 for_each_active_range_index_in_nid(i
, nid
) {
4323 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4324 early_node_map
[i
].end_pfn
<= end_pfn
) {
4326 early_node_map
[i
].start_pfn
= 0;
4327 early_node_map
[i
].end_pfn
= 0;
4331 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4332 early_node_map
[i
].end_pfn
> start_pfn
) {
4333 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4334 early_node_map
[i
].end_pfn
= start_pfn
;
4335 if (temp_end_pfn
> end_pfn
)
4336 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4339 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4340 early_node_map
[i
].end_pfn
> end_pfn
&&
4341 early_node_map
[i
].start_pfn
< end_pfn
) {
4342 early_node_map
[i
].start_pfn
= end_pfn
;
4350 /* remove the blank ones */
4351 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4352 if (early_node_map
[i
].nid
!= nid
)
4354 if (early_node_map
[i
].end_pfn
)
4356 /* we found it, get rid of it */
4357 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4358 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4359 sizeof(early_node_map
[j
]));
4360 j
= nr_nodemap_entries
- 1;
4361 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4362 nr_nodemap_entries
--;
4367 * remove_all_active_ranges - Remove all currently registered regions
4369 * During discovery, it may be found that a table like SRAT is invalid
4370 * and an alternative discovery method must be used. This function removes
4371 * all currently registered regions.
4373 void __init
remove_all_active_ranges(void)
4375 memset(early_node_map
, 0, sizeof(early_node_map
));
4376 nr_nodemap_entries
= 0;
4379 /* Compare two active node_active_regions */
4380 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4382 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4383 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4385 /* Done this way to avoid overflows */
4386 if (arange
->start_pfn
> brange
->start_pfn
)
4388 if (arange
->start_pfn
< brange
->start_pfn
)
4394 /* sort the node_map by start_pfn */
4395 void __init
sort_node_map(void)
4397 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4398 sizeof(struct node_active_region
),
4399 cmp_node_active_region
, NULL
);
4402 /* Find the lowest pfn for a node */
4403 static unsigned long __init
find_min_pfn_for_node(int nid
)
4406 unsigned long min_pfn
= ULONG_MAX
;
4408 /* Assuming a sorted map, the first range found has the starting pfn */
4409 for_each_active_range_index_in_nid(i
, nid
)
4410 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4412 if (min_pfn
== ULONG_MAX
) {
4414 "Could not find start_pfn for node %d\n", nid
);
4422 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4424 * It returns the minimum PFN based on information provided via
4425 * add_active_range().
4427 unsigned long __init
find_min_pfn_with_active_regions(void)
4429 return find_min_pfn_for_node(MAX_NUMNODES
);
4433 * early_calculate_totalpages()
4434 * Sum pages in active regions for movable zone.
4435 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4437 static unsigned long __init
early_calculate_totalpages(void)
4440 unsigned long totalpages
= 0;
4442 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4443 unsigned long pages
= early_node_map
[i
].end_pfn
-
4444 early_node_map
[i
].start_pfn
;
4445 totalpages
+= pages
;
4447 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4453 * Find the PFN the Movable zone begins in each node. Kernel memory
4454 * is spread evenly between nodes as long as the nodes have enough
4455 * memory. When they don't, some nodes will have more kernelcore than
4458 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4461 unsigned long usable_startpfn
;
4462 unsigned long kernelcore_node
, kernelcore_remaining
;
4463 /* save the state before borrow the nodemask */
4464 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4465 unsigned long totalpages
= early_calculate_totalpages();
4466 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4469 * If movablecore was specified, calculate what size of
4470 * kernelcore that corresponds so that memory usable for
4471 * any allocation type is evenly spread. If both kernelcore
4472 * and movablecore are specified, then the value of kernelcore
4473 * will be used for required_kernelcore if it's greater than
4474 * what movablecore would have allowed.
4476 if (required_movablecore
) {
4477 unsigned long corepages
;
4480 * Round-up so that ZONE_MOVABLE is at least as large as what
4481 * was requested by the user
4483 required_movablecore
=
4484 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4485 corepages
= totalpages
- required_movablecore
;
4487 required_kernelcore
= max(required_kernelcore
, corepages
);
4490 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4491 if (!required_kernelcore
)
4494 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4495 find_usable_zone_for_movable();
4496 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4499 /* Spread kernelcore memory as evenly as possible throughout nodes */
4500 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4501 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4503 * Recalculate kernelcore_node if the division per node
4504 * now exceeds what is necessary to satisfy the requested
4505 * amount of memory for the kernel
4507 if (required_kernelcore
< kernelcore_node
)
4508 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4511 * As the map is walked, we track how much memory is usable
4512 * by the kernel using kernelcore_remaining. When it is
4513 * 0, the rest of the node is usable by ZONE_MOVABLE
4515 kernelcore_remaining
= kernelcore_node
;
4517 /* Go through each range of PFNs within this node */
4518 for_each_active_range_index_in_nid(i
, nid
) {
4519 unsigned long start_pfn
, end_pfn
;
4520 unsigned long size_pages
;
4522 start_pfn
= max(early_node_map
[i
].start_pfn
,
4523 zone_movable_pfn
[nid
]);
4524 end_pfn
= early_node_map
[i
].end_pfn
;
4525 if (start_pfn
>= end_pfn
)
4528 /* Account for what is only usable for kernelcore */
4529 if (start_pfn
< usable_startpfn
) {
4530 unsigned long kernel_pages
;
4531 kernel_pages
= min(end_pfn
, usable_startpfn
)
4534 kernelcore_remaining
-= min(kernel_pages
,
4535 kernelcore_remaining
);
4536 required_kernelcore
-= min(kernel_pages
,
4537 required_kernelcore
);
4539 /* Continue if range is now fully accounted */
4540 if (end_pfn
<= usable_startpfn
) {
4543 * Push zone_movable_pfn to the end so
4544 * that if we have to rebalance
4545 * kernelcore across nodes, we will
4546 * not double account here
4548 zone_movable_pfn
[nid
] = end_pfn
;
4551 start_pfn
= usable_startpfn
;
4555 * The usable PFN range for ZONE_MOVABLE is from
4556 * start_pfn->end_pfn. Calculate size_pages as the
4557 * number of pages used as kernelcore
4559 size_pages
= end_pfn
- start_pfn
;
4560 if (size_pages
> kernelcore_remaining
)
4561 size_pages
= kernelcore_remaining
;
4562 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4565 * Some kernelcore has been met, update counts and
4566 * break if the kernelcore for this node has been
4569 required_kernelcore
-= min(required_kernelcore
,
4571 kernelcore_remaining
-= size_pages
;
4572 if (!kernelcore_remaining
)
4578 * If there is still required_kernelcore, we do another pass with one
4579 * less node in the count. This will push zone_movable_pfn[nid] further
4580 * along on the nodes that still have memory until kernelcore is
4584 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4587 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4588 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4589 zone_movable_pfn
[nid
] =
4590 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4593 /* restore the node_state */
4594 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4597 /* Any regular memory on that node ? */
4598 static void check_for_regular_memory(pg_data_t
*pgdat
)
4600 #ifdef CONFIG_HIGHMEM
4601 enum zone_type zone_type
;
4603 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4604 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4605 if (zone
->present_pages
)
4606 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4612 * free_area_init_nodes - Initialise all pg_data_t and zone data
4613 * @max_zone_pfn: an array of max PFNs for each zone
4615 * This will call free_area_init_node() for each active node in the system.
4616 * Using the page ranges provided by add_active_range(), the size of each
4617 * zone in each node and their holes is calculated. If the maximum PFN
4618 * between two adjacent zones match, it is assumed that the zone is empty.
4619 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4620 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4621 * starts where the previous one ended. For example, ZONE_DMA32 starts
4622 * at arch_max_dma_pfn.
4624 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4629 /* Sort early_node_map as initialisation assumes it is sorted */
4632 /* Record where the zone boundaries are */
4633 memset(arch_zone_lowest_possible_pfn
, 0,
4634 sizeof(arch_zone_lowest_possible_pfn
));
4635 memset(arch_zone_highest_possible_pfn
, 0,
4636 sizeof(arch_zone_highest_possible_pfn
));
4637 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4638 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4639 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4640 if (i
== ZONE_MOVABLE
)
4642 arch_zone_lowest_possible_pfn
[i
] =
4643 arch_zone_highest_possible_pfn
[i
-1];
4644 arch_zone_highest_possible_pfn
[i
] =
4645 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4647 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4648 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4650 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4651 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4652 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4654 /* Print out the zone ranges */
4655 printk("Zone PFN ranges:\n");
4656 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4657 if (i
== ZONE_MOVABLE
)
4659 printk(" %-8s ", zone_names
[i
]);
4660 if (arch_zone_lowest_possible_pfn
[i
] ==
4661 arch_zone_highest_possible_pfn
[i
])
4664 printk("%0#10lx -> %0#10lx\n",
4665 arch_zone_lowest_possible_pfn
[i
],
4666 arch_zone_highest_possible_pfn
[i
]);
4669 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4670 printk("Movable zone start PFN for each node\n");
4671 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4672 if (zone_movable_pfn
[i
])
4673 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4676 /* Print out the early_node_map[] */
4677 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4678 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4679 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4680 early_node_map
[i
].start_pfn
,
4681 early_node_map
[i
].end_pfn
);
4683 /* Initialise every node */
4684 mminit_verify_pageflags_layout();
4685 setup_nr_node_ids();
4686 for_each_online_node(nid
) {
4687 pg_data_t
*pgdat
= NODE_DATA(nid
);
4688 free_area_init_node(nid
, NULL
,
4689 find_min_pfn_for_node(nid
), NULL
);
4691 /* Any memory on that node */
4692 if (pgdat
->node_present_pages
)
4693 node_set_state(nid
, N_HIGH_MEMORY
);
4694 check_for_regular_memory(pgdat
);
4698 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4700 unsigned long long coremem
;
4704 coremem
= memparse(p
, &p
);
4705 *core
= coremem
>> PAGE_SHIFT
;
4707 /* Paranoid check that UL is enough for the coremem value */
4708 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4714 * kernelcore=size sets the amount of memory for use for allocations that
4715 * cannot be reclaimed or migrated.
4717 static int __init
cmdline_parse_kernelcore(char *p
)
4719 return cmdline_parse_core(p
, &required_kernelcore
);
4723 * movablecore=size sets the amount of memory for use for allocations that
4724 * can be reclaimed or migrated.
4726 static int __init
cmdline_parse_movablecore(char *p
)
4728 return cmdline_parse_core(p
, &required_movablecore
);
4731 early_param("kernelcore", cmdline_parse_kernelcore
);
4732 early_param("movablecore", cmdline_parse_movablecore
);
4734 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4737 * set_dma_reserve - set the specified number of pages reserved in the first zone
4738 * @new_dma_reserve: The number of pages to mark reserved
4740 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4741 * In the DMA zone, a significant percentage may be consumed by kernel image
4742 * and other unfreeable allocations which can skew the watermarks badly. This
4743 * function may optionally be used to account for unfreeable pages in the
4744 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4745 * smaller per-cpu batchsize.
4747 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4749 dma_reserve
= new_dma_reserve
;
4752 #ifndef CONFIG_NEED_MULTIPLE_NODES
4753 struct pglist_data __refdata contig_page_data
= {
4754 #ifndef CONFIG_NO_BOOTMEM
4755 .bdata
= &bootmem_node_data
[0]
4758 EXPORT_SYMBOL(contig_page_data
);
4761 void __init
free_area_init(unsigned long *zones_size
)
4763 free_area_init_node(0, zones_size
,
4764 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4767 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4768 unsigned long action
, void *hcpu
)
4770 int cpu
= (unsigned long)hcpu
;
4772 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4776 * Spill the event counters of the dead processor
4777 * into the current processors event counters.
4778 * This artificially elevates the count of the current
4781 vm_events_fold_cpu(cpu
);
4784 * Zero the differential counters of the dead processor
4785 * so that the vm statistics are consistent.
4787 * This is only okay since the processor is dead and cannot
4788 * race with what we are doing.
4790 refresh_cpu_vm_stats(cpu
);
4795 void __init
page_alloc_init(void)
4797 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4801 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4802 * or min_free_kbytes changes.
4804 static void calculate_totalreserve_pages(void)
4806 struct pglist_data
*pgdat
;
4807 unsigned long reserve_pages
= 0;
4808 enum zone_type i
, j
;
4810 for_each_online_pgdat(pgdat
) {
4811 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4812 struct zone
*zone
= pgdat
->node_zones
+ i
;
4813 unsigned long max
= 0;
4815 /* Find valid and maximum lowmem_reserve in the zone */
4816 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4817 if (zone
->lowmem_reserve
[j
] > max
)
4818 max
= zone
->lowmem_reserve
[j
];
4821 /* we treat the high watermark as reserved pages. */
4822 max
+= high_wmark_pages(zone
);
4824 if (max
> zone
->present_pages
)
4825 max
= zone
->present_pages
;
4826 reserve_pages
+= max
;
4829 totalreserve_pages
= reserve_pages
;
4833 * setup_per_zone_lowmem_reserve - called whenever
4834 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4835 * has a correct pages reserved value, so an adequate number of
4836 * pages are left in the zone after a successful __alloc_pages().
4838 static void setup_per_zone_lowmem_reserve(void)
4840 struct pglist_data
*pgdat
;
4841 enum zone_type j
, idx
;
4843 for_each_online_pgdat(pgdat
) {
4844 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4845 struct zone
*zone
= pgdat
->node_zones
+ j
;
4846 unsigned long present_pages
= zone
->present_pages
;
4848 zone
->lowmem_reserve
[j
] = 0;
4852 struct zone
*lower_zone
;
4856 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4857 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4859 lower_zone
= pgdat
->node_zones
+ idx
;
4860 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4861 sysctl_lowmem_reserve_ratio
[idx
];
4862 present_pages
+= lower_zone
->present_pages
;
4867 /* update totalreserve_pages */
4868 calculate_totalreserve_pages();
4872 * setup_per_zone_wmarks - called when min_free_kbytes changes
4873 * or when memory is hot-{added|removed}
4875 * Ensures that the watermark[min,low,high] values for each zone are set
4876 * correctly with respect to min_free_kbytes.
4878 void setup_per_zone_wmarks(void)
4880 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4881 unsigned long lowmem_pages
= 0;
4883 unsigned long flags
;
4885 /* Calculate total number of !ZONE_HIGHMEM pages */
4886 for_each_zone(zone
) {
4887 if (!is_highmem(zone
))
4888 lowmem_pages
+= zone
->present_pages
;
4891 for_each_zone(zone
) {
4894 spin_lock_irqsave(&zone
->lock
, flags
);
4895 tmp
= (u64
)pages_min
* zone
->present_pages
;
4896 do_div(tmp
, lowmem_pages
);
4897 if (is_highmem(zone
)) {
4899 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4900 * need highmem pages, so cap pages_min to a small
4903 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4904 * deltas controls asynch page reclaim, and so should
4905 * not be capped for highmem.
4909 min_pages
= zone
->present_pages
/ 1024;
4910 if (min_pages
< SWAP_CLUSTER_MAX
)
4911 min_pages
= SWAP_CLUSTER_MAX
;
4912 if (min_pages
> 128)
4914 zone
->watermark
[WMARK_MIN
] = min_pages
;
4917 * If it's a lowmem zone, reserve a number of pages
4918 * proportionate to the zone's size.
4920 zone
->watermark
[WMARK_MIN
] = tmp
;
4923 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4924 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4925 setup_zone_migrate_reserve(zone
);
4926 spin_unlock_irqrestore(&zone
->lock
, flags
);
4929 /* update totalreserve_pages */
4930 calculate_totalreserve_pages();
4934 * The inactive anon list should be small enough that the VM never has to
4935 * do too much work, but large enough that each inactive page has a chance
4936 * to be referenced again before it is swapped out.
4938 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4939 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4940 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4941 * the anonymous pages are kept on the inactive list.
4944 * memory ratio inactive anon
4945 * -------------------------------------
4954 void calculate_zone_inactive_ratio(struct zone
*zone
)
4956 unsigned int gb
, ratio
;
4958 /* Zone size in gigabytes */
4959 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4961 ratio
= int_sqrt(10 * gb
);
4965 zone
->inactive_ratio
= ratio
;
4968 static void __init
setup_per_zone_inactive_ratio(void)
4973 calculate_zone_inactive_ratio(zone
);
4977 * Initialise min_free_kbytes.
4979 * For small machines we want it small (128k min). For large machines
4980 * we want it large (64MB max). But it is not linear, because network
4981 * bandwidth does not increase linearly with machine size. We use
4983 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4984 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5000 static int __init
init_per_zone_wmark_min(void)
5002 unsigned long lowmem_kbytes
;
5004 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5006 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5007 if (min_free_kbytes
< 128)
5008 min_free_kbytes
= 128;
5009 if (min_free_kbytes
> 65536)
5010 min_free_kbytes
= 65536;
5011 setup_per_zone_wmarks();
5012 setup_per_zone_lowmem_reserve();
5013 setup_per_zone_inactive_ratio();
5016 module_init(init_per_zone_wmark_min
)
5019 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5020 * that we can call two helper functions whenever min_free_kbytes
5023 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5024 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5026 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5028 setup_per_zone_wmarks();
5033 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5034 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5039 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5044 zone
->min_unmapped_pages
= (zone
->present_pages
*
5045 sysctl_min_unmapped_ratio
) / 100;
5049 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5050 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5055 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5060 zone
->min_slab_pages
= (zone
->present_pages
*
5061 sysctl_min_slab_ratio
) / 100;
5067 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5068 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5069 * whenever sysctl_lowmem_reserve_ratio changes.
5071 * The reserve ratio obviously has absolutely no relation with the
5072 * minimum watermarks. The lowmem reserve ratio can only make sense
5073 * if in function of the boot time zone sizes.
5075 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5076 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5078 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5079 setup_per_zone_lowmem_reserve();
5084 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5085 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5086 * can have before it gets flushed back to buddy allocator.
5089 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5090 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5096 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5097 if (!write
|| (ret
== -EINVAL
))
5099 for_each_populated_zone(zone
) {
5100 for_each_possible_cpu(cpu
) {
5102 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5103 setup_pagelist_highmark(
5104 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5110 int hashdist
= HASHDIST_DEFAULT
;
5113 static int __init
set_hashdist(char *str
)
5117 hashdist
= simple_strtoul(str
, &str
, 0);
5120 __setup("hashdist=", set_hashdist
);
5124 * allocate a large system hash table from bootmem
5125 * - it is assumed that the hash table must contain an exact power-of-2
5126 * quantity of entries
5127 * - limit is the number of hash buckets, not the total allocation size
5129 void *__init
alloc_large_system_hash(const char *tablename
,
5130 unsigned long bucketsize
,
5131 unsigned long numentries
,
5134 unsigned int *_hash_shift
,
5135 unsigned int *_hash_mask
,
5136 unsigned long limit
)
5138 unsigned long long max
= limit
;
5139 unsigned long log2qty
, size
;
5142 /* allow the kernel cmdline to have a say */
5144 /* round applicable memory size up to nearest megabyte */
5145 numentries
= nr_kernel_pages
;
5146 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5147 numentries
>>= 20 - PAGE_SHIFT
;
5148 numentries
<<= 20 - PAGE_SHIFT
;
5150 /* limit to 1 bucket per 2^scale bytes of low memory */
5151 if (scale
> PAGE_SHIFT
)
5152 numentries
>>= (scale
- PAGE_SHIFT
);
5154 numentries
<<= (PAGE_SHIFT
- scale
);
5156 /* Make sure we've got at least a 0-order allocation.. */
5157 if (unlikely(flags
& HASH_SMALL
)) {
5158 /* Makes no sense without HASH_EARLY */
5159 WARN_ON(!(flags
& HASH_EARLY
));
5160 if (!(numentries
>> *_hash_shift
)) {
5161 numentries
= 1UL << *_hash_shift
;
5162 BUG_ON(!numentries
);
5164 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5165 numentries
= PAGE_SIZE
/ bucketsize
;
5167 numentries
= roundup_pow_of_two(numentries
);
5169 /* limit allocation size to 1/16 total memory by default */
5171 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5172 do_div(max
, bucketsize
);
5175 if (numentries
> max
)
5178 log2qty
= ilog2(numentries
);
5181 size
= bucketsize
<< log2qty
;
5182 if (flags
& HASH_EARLY
)
5183 table
= alloc_bootmem_nopanic(size
);
5185 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5188 * If bucketsize is not a power-of-two, we may free
5189 * some pages at the end of hash table which
5190 * alloc_pages_exact() automatically does
5192 if (get_order(size
) < MAX_ORDER
) {
5193 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5194 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5197 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5200 panic("Failed to allocate %s hash table\n", tablename
);
5202 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5205 ilog2(size
) - PAGE_SHIFT
,
5209 *_hash_shift
= log2qty
;
5211 *_hash_mask
= (1 << log2qty
) - 1;
5216 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5217 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5220 #ifdef CONFIG_SPARSEMEM
5221 return __pfn_to_section(pfn
)->pageblock_flags
;
5223 return zone
->pageblock_flags
;
5224 #endif /* CONFIG_SPARSEMEM */
5227 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5229 #ifdef CONFIG_SPARSEMEM
5230 pfn
&= (PAGES_PER_SECTION
-1);
5231 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5233 pfn
= pfn
- zone
->zone_start_pfn
;
5234 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5235 #endif /* CONFIG_SPARSEMEM */
5239 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5240 * @page: The page within the block of interest
5241 * @start_bitidx: The first bit of interest to retrieve
5242 * @end_bitidx: The last bit of interest
5243 * returns pageblock_bits flags
5245 unsigned long get_pageblock_flags_group(struct page
*page
,
5246 int start_bitidx
, int end_bitidx
)
5249 unsigned long *bitmap
;
5250 unsigned long pfn
, bitidx
;
5251 unsigned long flags
= 0;
5252 unsigned long value
= 1;
5254 zone
= page_zone(page
);
5255 pfn
= page_to_pfn(page
);
5256 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5257 bitidx
= pfn_to_bitidx(zone
, pfn
);
5259 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5260 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5267 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5268 * @page: The page within the block of interest
5269 * @start_bitidx: The first bit of interest
5270 * @end_bitidx: The last bit of interest
5271 * @flags: The flags to set
5273 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5274 int start_bitidx
, int end_bitidx
)
5277 unsigned long *bitmap
;
5278 unsigned long pfn
, bitidx
;
5279 unsigned long value
= 1;
5281 zone
= page_zone(page
);
5282 pfn
= page_to_pfn(page
);
5283 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5284 bitidx
= pfn_to_bitidx(zone
, pfn
);
5285 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5286 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5288 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5290 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5292 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5296 * This is designed as sub function...plz see page_isolation.c also.
5297 * set/clear page block's type to be ISOLATE.
5298 * page allocater never alloc memory from ISOLATE block.
5302 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5304 unsigned long pfn
, iter
, found
;
5306 * For avoiding noise data, lru_add_drain_all() should be called
5307 * If ZONE_MOVABLE, the zone never contains immobile pages
5309 if (zone_idx(zone
) == ZONE_MOVABLE
)
5312 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5315 pfn
= page_to_pfn(page
);
5316 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5317 unsigned long check
= pfn
+ iter
;
5319 if (!pfn_valid_within(check
)) {
5323 page
= pfn_to_page(check
);
5324 if (!page_count(page
)) {
5325 if (PageBuddy(page
))
5326 iter
+= (1 << page_order(page
)) - 1;
5332 * If there are RECLAIMABLE pages, we need to check it.
5333 * But now, memory offline itself doesn't call shrink_slab()
5334 * and it still to be fixed.
5337 * If the page is not RAM, page_count()should be 0.
5338 * we don't need more check. This is an _used_ not-movable page.
5340 * The problematic thing here is PG_reserved pages. PG_reserved
5341 * is set to both of a memory hole page and a _used_ kernel
5350 bool is_pageblock_removable_nolock(struct page
*page
)
5352 struct zone
*zone
= page_zone(page
);
5353 return __count_immobile_pages(zone
, page
, 0);
5356 int set_migratetype_isolate(struct page
*page
)
5359 unsigned long flags
, pfn
;
5360 struct memory_isolate_notify arg
;
5365 zone
= page_zone(page
);
5366 zone_idx
= zone_idx(zone
);
5368 spin_lock_irqsave(&zone
->lock
, flags
);
5370 pfn
= page_to_pfn(page
);
5371 arg
.start_pfn
= pfn
;
5372 arg
.nr_pages
= pageblock_nr_pages
;
5373 arg
.pages_found
= 0;
5376 * It may be possible to isolate a pageblock even if the
5377 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5378 * notifier chain is used by balloon drivers to return the
5379 * number of pages in a range that are held by the balloon
5380 * driver to shrink memory. If all the pages are accounted for
5381 * by balloons, are free, or on the LRU, isolation can continue.
5382 * Later, for example, when memory hotplug notifier runs, these
5383 * pages reported as "can be isolated" should be isolated(freed)
5384 * by the balloon driver through the memory notifier chain.
5386 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5387 notifier_ret
= notifier_to_errno(notifier_ret
);
5391 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5392 * We just check MOVABLE pages.
5394 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5398 * immobile means "not-on-lru" paes. If immobile is larger than
5399 * removable-by-driver pages reported by notifier, we'll fail.
5404 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5405 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5408 spin_unlock_irqrestore(&zone
->lock
, flags
);
5414 void unset_migratetype_isolate(struct page
*page
)
5417 unsigned long flags
;
5418 zone
= page_zone(page
);
5419 spin_lock_irqsave(&zone
->lock
, flags
);
5420 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5422 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5423 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5425 spin_unlock_irqrestore(&zone
->lock
, flags
);
5428 #ifdef CONFIG_MEMORY_HOTREMOVE
5430 * All pages in the range must be isolated before calling this.
5433 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5439 unsigned long flags
;
5440 /* find the first valid pfn */
5441 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5446 zone
= page_zone(pfn_to_page(pfn
));
5447 spin_lock_irqsave(&zone
->lock
, flags
);
5449 while (pfn
< end_pfn
) {
5450 if (!pfn_valid(pfn
)) {
5454 page
= pfn_to_page(pfn
);
5455 BUG_ON(page_count(page
));
5456 BUG_ON(!PageBuddy(page
));
5457 order
= page_order(page
);
5458 #ifdef CONFIG_DEBUG_VM
5459 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5460 pfn
, 1 << order
, end_pfn
);
5462 list_del(&page
->lru
);
5463 rmv_page_order(page
);
5464 zone
->free_area
[order
].nr_free
--;
5465 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5467 for (i
= 0; i
< (1 << order
); i
++)
5468 SetPageReserved((page
+i
));
5469 pfn
+= (1 << order
);
5471 spin_unlock_irqrestore(&zone
->lock
, flags
);
5475 #ifdef CONFIG_MEMORY_FAILURE
5476 bool is_free_buddy_page(struct page
*page
)
5478 struct zone
*zone
= page_zone(page
);
5479 unsigned long pfn
= page_to_pfn(page
);
5480 unsigned long flags
;
5483 spin_lock_irqsave(&zone
->lock
, flags
);
5484 for (order
= 0; order
< MAX_ORDER
; order
++) {
5485 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5487 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5490 spin_unlock_irqrestore(&zone
->lock
, flags
);
5492 return order
< MAX_ORDER
;
5496 static struct trace_print_flags pageflag_names
[] = {
5497 {1UL << PG_locked
, "locked" },
5498 {1UL << PG_error
, "error" },
5499 {1UL << PG_referenced
, "referenced" },
5500 {1UL << PG_uptodate
, "uptodate" },
5501 {1UL << PG_dirty
, "dirty" },
5502 {1UL << PG_lru
, "lru" },
5503 {1UL << PG_active
, "active" },
5504 {1UL << PG_slab
, "slab" },
5505 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5506 {1UL << PG_arch_1
, "arch_1" },
5507 {1UL << PG_reserved
, "reserved" },
5508 {1UL << PG_private
, "private" },
5509 {1UL << PG_private_2
, "private_2" },
5510 {1UL << PG_writeback
, "writeback" },
5511 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5512 {1UL << PG_head
, "head" },
5513 {1UL << PG_tail
, "tail" },
5515 {1UL << PG_compound
, "compound" },
5517 {1UL << PG_swapcache
, "swapcache" },
5518 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5519 {1UL << PG_reclaim
, "reclaim" },
5520 {1UL << PG_buddy
, "buddy" },
5521 {1UL << PG_swapbacked
, "swapbacked" },
5522 {1UL << PG_unevictable
, "unevictable" },
5524 {1UL << PG_mlocked
, "mlocked" },
5526 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5527 {1UL << PG_uncached
, "uncached" },
5529 #ifdef CONFIG_MEMORY_FAILURE
5530 {1UL << PG_hwpoison
, "hwpoison" },
5535 static void dump_page_flags(unsigned long flags
)
5537 const char *delim
= "";
5541 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5543 /* remove zone id */
5544 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5546 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5548 mask
= pageflag_names
[i
].mask
;
5549 if ((flags
& mask
) != mask
)
5553 printk("%s%s", delim
, pageflag_names
[i
].name
);
5557 /* check for left over flags */
5559 printk("%s%#lx", delim
, flags
);
5564 void dump_page(struct page
*page
)
5567 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5568 page
, page_count(page
), page_mapcount(page
),
5569 page
->mapping
, page
->index
);
5570 dump_page_flags(page
->flags
);