4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_alloc_sem (various)
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->dcache_lock (proc_pid_lookup)
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
118 void __remove_from_page_cache(struct page
*page
)
120 struct address_space
*mapping
= page
->mapping
;
122 radix_tree_delete(&mapping
->page_tree
, page
->index
);
123 page
->mapping
= NULL
;
125 __dec_zone_page_state(page
, NR_FILE_PAGES
);
126 if (PageSwapBacked(page
))
127 __dec_zone_page_state(page
, NR_SHMEM
);
128 BUG_ON(page_mapped(page
));
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
137 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
138 dec_zone_page_state(page
, NR_FILE_DIRTY
);
139 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
143 void remove_from_page_cache(struct page
*page
)
145 struct address_space
*mapping
= page
->mapping
;
146 void (*freepage
)(struct page
*);
148 BUG_ON(!PageLocked(page
));
150 freepage
= mapping
->a_ops
->freepage
;
151 spin_lock_irq(&mapping
->tree_lock
);
152 __remove_from_page_cache(page
);
153 spin_unlock_irq(&mapping
->tree_lock
);
154 mem_cgroup_uncharge_cache_page(page
);
159 EXPORT_SYMBOL(remove_from_page_cache
);
161 static int sync_page(void *word
)
163 struct address_space
*mapping
;
166 page
= container_of((unsigned long *)word
, struct page
, flags
);
169 * page_mapping() is being called without PG_locked held.
170 * Some knowledge of the state and use of the page is used to
171 * reduce the requirements down to a memory barrier.
172 * The danger here is of a stale page_mapping() return value
173 * indicating a struct address_space different from the one it's
174 * associated with when it is associated with one.
175 * After smp_mb(), it's either the correct page_mapping() for
176 * the page, or an old page_mapping() and the page's own
177 * page_mapping() has gone NULL.
178 * The ->sync_page() address_space operation must tolerate
179 * page_mapping() going NULL. By an amazing coincidence,
180 * this comes about because none of the users of the page
181 * in the ->sync_page() methods make essential use of the
182 * page_mapping(), merely passing the page down to the backing
183 * device's unplug functions when it's non-NULL, which in turn
184 * ignore it for all cases but swap, where only page_private(page) is
185 * of interest. When page_mapping() does go NULL, the entire
186 * call stack gracefully ignores the page and returns.
190 mapping
= page_mapping(page
);
191 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
192 mapping
->a_ops
->sync_page(page
);
197 static int sync_page_killable(void *word
)
200 return fatal_signal_pending(current
) ? -EINTR
: 0;
204 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
205 * @mapping: address space structure to write
206 * @start: offset in bytes where the range starts
207 * @end: offset in bytes where the range ends (inclusive)
208 * @sync_mode: enable synchronous operation
210 * Start writeback against all of a mapping's dirty pages that lie
211 * within the byte offsets <start, end> inclusive.
213 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
214 * opposed to a regular memory cleansing writeback. The difference between
215 * these two operations is that if a dirty page/buffer is encountered, it must
216 * be waited upon, and not just skipped over.
218 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
219 loff_t end
, int sync_mode
)
222 struct writeback_control wbc
= {
223 .sync_mode
= sync_mode
,
224 .nr_to_write
= LONG_MAX
,
225 .range_start
= start
,
229 if (!mapping_cap_writeback_dirty(mapping
))
232 ret
= do_writepages(mapping
, &wbc
);
236 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
239 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
242 int filemap_fdatawrite(struct address_space
*mapping
)
244 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
246 EXPORT_SYMBOL(filemap_fdatawrite
);
248 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
251 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
253 EXPORT_SYMBOL(filemap_fdatawrite_range
);
256 * filemap_flush - mostly a non-blocking flush
257 * @mapping: target address_space
259 * This is a mostly non-blocking flush. Not suitable for data-integrity
260 * purposes - I/O may not be started against all dirty pages.
262 int filemap_flush(struct address_space
*mapping
)
264 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
266 EXPORT_SYMBOL(filemap_flush
);
269 * filemap_fdatawait_range - wait for writeback to complete
270 * @mapping: address space structure to wait for
271 * @start_byte: offset in bytes where the range starts
272 * @end_byte: offset in bytes where the range ends (inclusive)
274 * Walk the list of under-writeback pages of the given address space
275 * in the given range and wait for all of them.
277 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
280 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
281 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
286 if (end_byte
< start_byte
)
289 pagevec_init(&pvec
, 0);
290 while ((index
<= end
) &&
291 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
292 PAGECACHE_TAG_WRITEBACK
,
293 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
296 for (i
= 0; i
< nr_pages
; i
++) {
297 struct page
*page
= pvec
.pages
[i
];
299 /* until radix tree lookup accepts end_index */
300 if (page
->index
> end
)
303 wait_on_page_writeback(page
);
307 pagevec_release(&pvec
);
311 /* Check for outstanding write errors */
312 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
314 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
319 EXPORT_SYMBOL(filemap_fdatawait_range
);
322 * filemap_fdatawait - wait for all under-writeback pages to complete
323 * @mapping: address space structure to wait for
325 * Walk the list of under-writeback pages of the given address space
326 * and wait for all of them.
328 int filemap_fdatawait(struct address_space
*mapping
)
330 loff_t i_size
= i_size_read(mapping
->host
);
335 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
337 EXPORT_SYMBOL(filemap_fdatawait
);
339 int filemap_write_and_wait(struct address_space
*mapping
)
343 if (mapping
->nrpages
) {
344 err
= filemap_fdatawrite(mapping
);
346 * Even if the above returned error, the pages may be
347 * written partially (e.g. -ENOSPC), so we wait for it.
348 * But the -EIO is special case, it may indicate the worst
349 * thing (e.g. bug) happened, so we avoid waiting for it.
352 int err2
= filemap_fdatawait(mapping
);
359 EXPORT_SYMBOL(filemap_write_and_wait
);
362 * filemap_write_and_wait_range - write out & wait on a file range
363 * @mapping: the address_space for the pages
364 * @lstart: offset in bytes where the range starts
365 * @lend: offset in bytes where the range ends (inclusive)
367 * Write out and wait upon file offsets lstart->lend, inclusive.
369 * Note that `lend' is inclusive (describes the last byte to be written) so
370 * that this function can be used to write to the very end-of-file (end = -1).
372 int filemap_write_and_wait_range(struct address_space
*mapping
,
373 loff_t lstart
, loff_t lend
)
377 if (mapping
->nrpages
) {
378 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
380 /* See comment of filemap_write_and_wait() */
382 int err2
= filemap_fdatawait_range(mapping
,
390 EXPORT_SYMBOL(filemap_write_and_wait_range
);
393 * add_to_page_cache_locked - add a locked page to the pagecache
395 * @mapping: the page's address_space
396 * @offset: page index
397 * @gfp_mask: page allocation mode
399 * This function is used to add a page to the pagecache. It must be locked.
400 * This function does not add the page to the LRU. The caller must do that.
402 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
403 pgoff_t offset
, gfp_t gfp_mask
)
407 VM_BUG_ON(!PageLocked(page
));
409 error
= mem_cgroup_cache_charge(page
, current
->mm
,
410 gfp_mask
& GFP_RECLAIM_MASK
);
414 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
416 page_cache_get(page
);
417 page
->mapping
= mapping
;
418 page
->index
= offset
;
420 spin_lock_irq(&mapping
->tree_lock
);
421 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
422 if (likely(!error
)) {
424 __inc_zone_page_state(page
, NR_FILE_PAGES
);
425 if (PageSwapBacked(page
))
426 __inc_zone_page_state(page
, NR_SHMEM
);
427 spin_unlock_irq(&mapping
->tree_lock
);
429 page
->mapping
= NULL
;
430 spin_unlock_irq(&mapping
->tree_lock
);
431 mem_cgroup_uncharge_cache_page(page
);
432 page_cache_release(page
);
434 radix_tree_preload_end();
436 mem_cgroup_uncharge_cache_page(page
);
440 EXPORT_SYMBOL(add_to_page_cache_locked
);
442 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
443 pgoff_t offset
, gfp_t gfp_mask
)
448 * Splice_read and readahead add shmem/tmpfs pages into the page cache
449 * before shmem_readpage has a chance to mark them as SwapBacked: they
450 * need to go on the anon lru below, and mem_cgroup_cache_charge
451 * (called in add_to_page_cache) needs to know where they're going too.
453 if (mapping_cap_swap_backed(mapping
))
454 SetPageSwapBacked(page
);
456 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
458 if (page_is_file_cache(page
))
459 lru_cache_add_file(page
);
461 lru_cache_add_anon(page
);
465 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
468 struct page
*__page_cache_alloc(gfp_t gfp
)
473 if (cpuset_do_page_mem_spread()) {
475 n
= cpuset_mem_spread_node();
476 page
= alloc_pages_exact_node(n
, gfp
, 0);
480 return alloc_pages(gfp
, 0);
482 EXPORT_SYMBOL(__page_cache_alloc
);
485 static int __sleep_on_page_lock(void *word
)
492 * In order to wait for pages to become available there must be
493 * waitqueues associated with pages. By using a hash table of
494 * waitqueues where the bucket discipline is to maintain all
495 * waiters on the same queue and wake all when any of the pages
496 * become available, and for the woken contexts to check to be
497 * sure the appropriate page became available, this saves space
498 * at a cost of "thundering herd" phenomena during rare hash
501 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
503 const struct zone
*zone
= page_zone(page
);
505 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
508 static inline void wake_up_page(struct page
*page
, int bit
)
510 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
513 void wait_on_page_bit(struct page
*page
, int bit_nr
)
515 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
517 if (test_bit(bit_nr
, &page
->flags
))
518 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
519 TASK_UNINTERRUPTIBLE
);
521 EXPORT_SYMBOL(wait_on_page_bit
);
524 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
525 * @page: Page defining the wait queue of interest
526 * @waiter: Waiter to add to the queue
528 * Add an arbitrary @waiter to the wait queue for the nominated @page.
530 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
532 wait_queue_head_t
*q
= page_waitqueue(page
);
535 spin_lock_irqsave(&q
->lock
, flags
);
536 __add_wait_queue(q
, waiter
);
537 spin_unlock_irqrestore(&q
->lock
, flags
);
539 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
542 * unlock_page - unlock a locked page
545 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
546 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
547 * mechananism between PageLocked pages and PageWriteback pages is shared.
548 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
550 * The mb is necessary to enforce ordering between the clear_bit and the read
551 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
553 void unlock_page(struct page
*page
)
555 VM_BUG_ON(!PageLocked(page
));
556 clear_bit_unlock(PG_locked
, &page
->flags
);
557 smp_mb__after_clear_bit();
558 wake_up_page(page
, PG_locked
);
560 EXPORT_SYMBOL(unlock_page
);
563 * end_page_writeback - end writeback against a page
566 void end_page_writeback(struct page
*page
)
568 if (TestClearPageReclaim(page
))
569 rotate_reclaimable_page(page
);
571 if (!test_clear_page_writeback(page
))
574 smp_mb__after_clear_bit();
575 wake_up_page(page
, PG_writeback
);
577 EXPORT_SYMBOL(end_page_writeback
);
580 * __lock_page - get a lock on the page, assuming we need to sleep to get it
581 * @page: the page to lock
583 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
584 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
585 * chances are that on the second loop, the block layer's plug list is empty,
586 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
588 void __lock_page(struct page
*page
)
590 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
592 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
593 TASK_UNINTERRUPTIBLE
);
595 EXPORT_SYMBOL(__lock_page
);
597 int __lock_page_killable(struct page
*page
)
599 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
601 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
602 sync_page_killable
, TASK_KILLABLE
);
604 EXPORT_SYMBOL_GPL(__lock_page_killable
);
607 * __lock_page_nosync - get a lock on the page, without calling sync_page()
608 * @page: the page to lock
610 * Variant of lock_page that does not require the caller to hold a reference
611 * on the page's mapping.
613 void __lock_page_nosync(struct page
*page
)
615 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
616 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
617 TASK_UNINTERRUPTIBLE
);
620 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
623 if (!(flags
& FAULT_FLAG_ALLOW_RETRY
)) {
627 up_read(&mm
->mmap_sem
);
628 wait_on_page_locked(page
);
634 * find_get_page - find and get a page reference
635 * @mapping: the address_space to search
636 * @offset: the page index
638 * Is there a pagecache struct page at the given (mapping, offset) tuple?
639 * If yes, increment its refcount and return it; if no, return NULL.
641 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
649 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
651 page
= radix_tree_deref_slot(pagep
);
654 if (radix_tree_deref_retry(page
))
657 if (!page_cache_get_speculative(page
))
661 * Has the page moved?
662 * This is part of the lockless pagecache protocol. See
663 * include/linux/pagemap.h for details.
665 if (unlikely(page
!= *pagep
)) {
666 page_cache_release(page
);
675 EXPORT_SYMBOL(find_get_page
);
678 * find_lock_page - locate, pin and lock a pagecache page
679 * @mapping: the address_space to search
680 * @offset: the page index
682 * Locates the desired pagecache page, locks it, increments its reference
683 * count and returns its address.
685 * Returns zero if the page was not present. find_lock_page() may sleep.
687 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
692 page
= find_get_page(mapping
, offset
);
695 /* Has the page been truncated? */
696 if (unlikely(page
->mapping
!= mapping
)) {
698 page_cache_release(page
);
701 VM_BUG_ON(page
->index
!= offset
);
705 EXPORT_SYMBOL(find_lock_page
);
708 * find_or_create_page - locate or add a pagecache page
709 * @mapping: the page's address_space
710 * @index: the page's index into the mapping
711 * @gfp_mask: page allocation mode
713 * Locates a page in the pagecache. If the page is not present, a new page
714 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
715 * LRU list. The returned page is locked and has its reference count
718 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
721 * find_or_create_page() returns the desired page's address, or zero on
724 struct page
*find_or_create_page(struct address_space
*mapping
,
725 pgoff_t index
, gfp_t gfp_mask
)
730 page
= find_lock_page(mapping
, index
);
732 page
= __page_cache_alloc(gfp_mask
);
736 * We want a regular kernel memory (not highmem or DMA etc)
737 * allocation for the radix tree nodes, but we need to honour
738 * the context-specific requirements the caller has asked for.
739 * GFP_RECLAIM_MASK collects those requirements.
741 err
= add_to_page_cache_lru(page
, mapping
, index
,
742 (gfp_mask
& GFP_RECLAIM_MASK
));
744 page_cache_release(page
);
752 EXPORT_SYMBOL(find_or_create_page
);
755 * find_get_pages - gang pagecache lookup
756 * @mapping: The address_space to search
757 * @start: The starting page index
758 * @nr_pages: The maximum number of pages
759 * @pages: Where the resulting pages are placed
761 * find_get_pages() will search for and return a group of up to
762 * @nr_pages pages in the mapping. The pages are placed at @pages.
763 * find_get_pages() takes a reference against the returned pages.
765 * The search returns a group of mapping-contiguous pages with ascending
766 * indexes. There may be holes in the indices due to not-present pages.
768 * find_get_pages() returns the number of pages which were found.
770 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
771 unsigned int nr_pages
, struct page
**pages
)
775 unsigned int nr_found
;
779 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
780 (void ***)pages
, start
, nr_pages
);
782 for (i
= 0; i
< nr_found
; i
++) {
785 page
= radix_tree_deref_slot((void **)pages
[i
]);
788 if (radix_tree_deref_retry(page
)) {
790 start
= pages
[ret
-1]->index
;
794 if (!page_cache_get_speculative(page
))
797 /* Has the page moved? */
798 if (unlikely(page
!= *((void **)pages
[i
]))) {
799 page_cache_release(page
);
811 * find_get_pages_contig - gang contiguous pagecache lookup
812 * @mapping: The address_space to search
813 * @index: The starting page index
814 * @nr_pages: The maximum number of pages
815 * @pages: Where the resulting pages are placed
817 * find_get_pages_contig() works exactly like find_get_pages(), except
818 * that the returned number of pages are guaranteed to be contiguous.
820 * find_get_pages_contig() returns the number of pages which were found.
822 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
823 unsigned int nr_pages
, struct page
**pages
)
827 unsigned int nr_found
;
831 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
832 (void ***)pages
, index
, nr_pages
);
834 for (i
= 0; i
< nr_found
; i
++) {
837 page
= radix_tree_deref_slot((void **)pages
[i
]);
840 if (radix_tree_deref_retry(page
))
843 if (page
->mapping
== NULL
|| page
->index
!= index
)
846 if (!page_cache_get_speculative(page
))
849 /* Has the page moved? */
850 if (unlikely(page
!= *((void **)pages
[i
]))) {
851 page_cache_release(page
);
862 EXPORT_SYMBOL(find_get_pages_contig
);
865 * find_get_pages_tag - find and return pages that match @tag
866 * @mapping: the address_space to search
867 * @index: the starting page index
868 * @tag: the tag index
869 * @nr_pages: the maximum number of pages
870 * @pages: where the resulting pages are placed
872 * Like find_get_pages, except we only return pages which are tagged with
873 * @tag. We update @index to index the next page for the traversal.
875 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
876 int tag
, unsigned int nr_pages
, struct page
**pages
)
880 unsigned int nr_found
;
884 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
885 (void ***)pages
, *index
, nr_pages
, tag
);
887 for (i
= 0; i
< nr_found
; i
++) {
890 page
= radix_tree_deref_slot((void **)pages
[i
]);
893 if (radix_tree_deref_retry(page
))
896 if (!page_cache_get_speculative(page
))
899 /* Has the page moved? */
900 if (unlikely(page
!= *((void **)pages
[i
]))) {
901 page_cache_release(page
);
911 *index
= pages
[ret
- 1]->index
+ 1;
915 EXPORT_SYMBOL(find_get_pages_tag
);
918 * grab_cache_page_nowait - returns locked page at given index in given cache
919 * @mapping: target address_space
920 * @index: the page index
922 * Same as grab_cache_page(), but do not wait if the page is unavailable.
923 * This is intended for speculative data generators, where the data can
924 * be regenerated if the page couldn't be grabbed. This routine should
925 * be safe to call while holding the lock for another page.
927 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
928 * and deadlock against the caller's locked page.
931 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
933 struct page
*page
= find_get_page(mapping
, index
);
936 if (trylock_page(page
))
938 page_cache_release(page
);
941 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
942 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
943 page_cache_release(page
);
948 EXPORT_SYMBOL(grab_cache_page_nowait
);
951 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
952 * a _large_ part of the i/o request. Imagine the worst scenario:
954 * ---R__________________________________________B__________
955 * ^ reading here ^ bad block(assume 4k)
957 * read(R) => miss => readahead(R...B) => media error => frustrating retries
958 * => failing the whole request => read(R) => read(R+1) =>
959 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
960 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
961 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
963 * It is going insane. Fix it by quickly scaling down the readahead size.
965 static void shrink_readahead_size_eio(struct file
*filp
,
966 struct file_ra_state
*ra
)
972 * do_generic_file_read - generic file read routine
973 * @filp: the file to read
974 * @ppos: current file position
975 * @desc: read_descriptor
976 * @actor: read method
978 * This is a generic file read routine, and uses the
979 * mapping->a_ops->readpage() function for the actual low-level stuff.
981 * This is really ugly. But the goto's actually try to clarify some
982 * of the logic when it comes to error handling etc.
984 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
985 read_descriptor_t
*desc
, read_actor_t actor
)
987 struct address_space
*mapping
= filp
->f_mapping
;
988 struct inode
*inode
= mapping
->host
;
989 struct file_ra_state
*ra
= &filp
->f_ra
;
993 unsigned long offset
; /* offset into pagecache page */
994 unsigned int prev_offset
;
997 index
= *ppos
>> PAGE_CACHE_SHIFT
;
998 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
999 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1000 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1001 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1007 unsigned long nr
, ret
;
1011 page
= find_get_page(mapping
, index
);
1013 page_cache_sync_readahead(mapping
,
1015 index
, last_index
- index
);
1016 page
= find_get_page(mapping
, index
);
1017 if (unlikely(page
== NULL
))
1018 goto no_cached_page
;
1020 if (PageReadahead(page
)) {
1021 page_cache_async_readahead(mapping
,
1023 index
, last_index
- index
);
1025 if (!PageUptodate(page
)) {
1026 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1027 !mapping
->a_ops
->is_partially_uptodate
)
1028 goto page_not_up_to_date
;
1029 if (!trylock_page(page
))
1030 goto page_not_up_to_date
;
1031 /* Did it get truncated before we got the lock? */
1033 goto page_not_up_to_date_locked
;
1034 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1036 goto page_not_up_to_date_locked
;
1041 * i_size must be checked after we know the page is Uptodate.
1043 * Checking i_size after the check allows us to calculate
1044 * the correct value for "nr", which means the zero-filled
1045 * part of the page is not copied back to userspace (unless
1046 * another truncate extends the file - this is desired though).
1049 isize
= i_size_read(inode
);
1050 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1051 if (unlikely(!isize
|| index
> end_index
)) {
1052 page_cache_release(page
);
1056 /* nr is the maximum number of bytes to copy from this page */
1057 nr
= PAGE_CACHE_SIZE
;
1058 if (index
== end_index
) {
1059 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1061 page_cache_release(page
);
1067 /* If users can be writing to this page using arbitrary
1068 * virtual addresses, take care about potential aliasing
1069 * before reading the page on the kernel side.
1071 if (mapping_writably_mapped(mapping
))
1072 flush_dcache_page(page
);
1075 * When a sequential read accesses a page several times,
1076 * only mark it as accessed the first time.
1078 if (prev_index
!= index
|| offset
!= prev_offset
)
1079 mark_page_accessed(page
);
1083 * Ok, we have the page, and it's up-to-date, so
1084 * now we can copy it to user space...
1086 * The actor routine returns how many bytes were actually used..
1087 * NOTE! This may not be the same as how much of a user buffer
1088 * we filled up (we may be padding etc), so we can only update
1089 * "pos" here (the actor routine has to update the user buffer
1090 * pointers and the remaining count).
1092 ret
= actor(desc
, page
, offset
, nr
);
1094 index
+= offset
>> PAGE_CACHE_SHIFT
;
1095 offset
&= ~PAGE_CACHE_MASK
;
1096 prev_offset
= offset
;
1098 page_cache_release(page
);
1099 if (ret
== nr
&& desc
->count
)
1103 page_not_up_to_date
:
1104 /* Get exclusive access to the page ... */
1105 error
= lock_page_killable(page
);
1106 if (unlikely(error
))
1107 goto readpage_error
;
1109 page_not_up_to_date_locked
:
1110 /* Did it get truncated before we got the lock? */
1111 if (!page
->mapping
) {
1113 page_cache_release(page
);
1117 /* Did somebody else fill it already? */
1118 if (PageUptodate(page
)) {
1125 * A previous I/O error may have been due to temporary
1126 * failures, eg. multipath errors.
1127 * PG_error will be set again if readpage fails.
1129 ClearPageError(page
);
1130 /* Start the actual read. The read will unlock the page. */
1131 error
= mapping
->a_ops
->readpage(filp
, page
);
1133 if (unlikely(error
)) {
1134 if (error
== AOP_TRUNCATED_PAGE
) {
1135 page_cache_release(page
);
1138 goto readpage_error
;
1141 if (!PageUptodate(page
)) {
1142 error
= lock_page_killable(page
);
1143 if (unlikely(error
))
1144 goto readpage_error
;
1145 if (!PageUptodate(page
)) {
1146 if (page
->mapping
== NULL
) {
1148 * invalidate_mapping_pages got it
1151 page_cache_release(page
);
1155 shrink_readahead_size_eio(filp
, ra
);
1157 goto readpage_error
;
1165 /* UHHUH! A synchronous read error occurred. Report it */
1166 desc
->error
= error
;
1167 page_cache_release(page
);
1172 * Ok, it wasn't cached, so we need to create a new
1175 page
= page_cache_alloc_cold(mapping
);
1177 desc
->error
= -ENOMEM
;
1180 error
= add_to_page_cache_lru(page
, mapping
,
1183 page_cache_release(page
);
1184 if (error
== -EEXIST
)
1186 desc
->error
= error
;
1193 ra
->prev_pos
= prev_index
;
1194 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1195 ra
->prev_pos
|= prev_offset
;
1197 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1198 file_accessed(filp
);
1201 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1202 unsigned long offset
, unsigned long size
)
1205 unsigned long left
, count
= desc
->count
;
1211 * Faults on the destination of a read are common, so do it before
1214 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1215 kaddr
= kmap_atomic(page
, KM_USER0
);
1216 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1217 kaddr
+ offset
, size
);
1218 kunmap_atomic(kaddr
, KM_USER0
);
1223 /* Do it the slow way */
1225 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1230 desc
->error
= -EFAULT
;
1233 desc
->count
= count
- size
;
1234 desc
->written
+= size
;
1235 desc
->arg
.buf
+= size
;
1240 * Performs necessary checks before doing a write
1241 * @iov: io vector request
1242 * @nr_segs: number of segments in the iovec
1243 * @count: number of bytes to write
1244 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1246 * Adjust number of segments and amount of bytes to write (nr_segs should be
1247 * properly initialized first). Returns appropriate error code that caller
1248 * should return or zero in case that write should be allowed.
1250 int generic_segment_checks(const struct iovec
*iov
,
1251 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1255 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1256 const struct iovec
*iv
= &iov
[seg
];
1259 * If any segment has a negative length, or the cumulative
1260 * length ever wraps negative then return -EINVAL.
1263 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1265 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1270 cnt
-= iv
->iov_len
; /* This segment is no good */
1276 EXPORT_SYMBOL(generic_segment_checks
);
1279 * generic_file_aio_read - generic filesystem read routine
1280 * @iocb: kernel I/O control block
1281 * @iov: io vector request
1282 * @nr_segs: number of segments in the iovec
1283 * @pos: current file position
1285 * This is the "read()" routine for all filesystems
1286 * that can use the page cache directly.
1289 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1290 unsigned long nr_segs
, loff_t pos
)
1292 struct file
*filp
= iocb
->ki_filp
;
1294 unsigned long seg
= 0;
1296 loff_t
*ppos
= &iocb
->ki_pos
;
1299 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1303 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1304 if (filp
->f_flags
& O_DIRECT
) {
1306 struct address_space
*mapping
;
1307 struct inode
*inode
;
1309 mapping
= filp
->f_mapping
;
1310 inode
= mapping
->host
;
1312 goto out
; /* skip atime */
1313 size
= i_size_read(inode
);
1315 retval
= filemap_write_and_wait_range(mapping
, pos
,
1316 pos
+ iov_length(iov
, nr_segs
) - 1);
1318 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1322 *ppos
= pos
+ retval
;
1327 * Btrfs can have a short DIO read if we encounter
1328 * compressed extents, so if there was an error, or if
1329 * we've already read everything we wanted to, or if
1330 * there was a short read because we hit EOF, go ahead
1331 * and return. Otherwise fallthrough to buffered io for
1332 * the rest of the read.
1334 if (retval
< 0 || !count
|| *ppos
>= size
) {
1335 file_accessed(filp
);
1342 for (seg
= 0; seg
< nr_segs
; seg
++) {
1343 read_descriptor_t desc
;
1347 * If we did a short DIO read we need to skip the section of the
1348 * iov that we've already read data into.
1351 if (count
> iov
[seg
].iov_len
) {
1352 count
-= iov
[seg
].iov_len
;
1360 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1361 desc
.count
= iov
[seg
].iov_len
- offset
;
1362 if (desc
.count
== 0)
1365 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1366 retval
+= desc
.written
;
1368 retval
= retval
?: desc
.error
;
1377 EXPORT_SYMBOL(generic_file_aio_read
);
1380 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1381 pgoff_t index
, unsigned long nr
)
1383 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1386 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1390 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1398 if (file
->f_mode
& FMODE_READ
) {
1399 struct address_space
*mapping
= file
->f_mapping
;
1400 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1401 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1402 unsigned long len
= end
- start
+ 1;
1403 ret
= do_readahead(mapping
, file
, start
, len
);
1409 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1410 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1412 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1414 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1419 * page_cache_read - adds requested page to the page cache if not already there
1420 * @file: file to read
1421 * @offset: page index
1423 * This adds the requested page to the page cache if it isn't already there,
1424 * and schedules an I/O to read in its contents from disk.
1426 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1428 struct address_space
*mapping
= file
->f_mapping
;
1433 page
= page_cache_alloc_cold(mapping
);
1437 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1439 ret
= mapping
->a_ops
->readpage(file
, page
);
1440 else if (ret
== -EEXIST
)
1441 ret
= 0; /* losing race to add is OK */
1443 page_cache_release(page
);
1445 } while (ret
== AOP_TRUNCATED_PAGE
);
1450 #define MMAP_LOTSAMISS (100)
1453 * Synchronous readahead happens when we don't even find
1454 * a page in the page cache at all.
1456 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1457 struct file_ra_state
*ra
,
1461 unsigned long ra_pages
;
1462 struct address_space
*mapping
= file
->f_mapping
;
1464 /* If we don't want any read-ahead, don't bother */
1465 if (VM_RandomReadHint(vma
))
1468 if (VM_SequentialReadHint(vma
) ||
1469 offset
- 1 == (ra
->prev_pos
>> PAGE_CACHE_SHIFT
)) {
1470 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1475 if (ra
->mmap_miss
< INT_MAX
)
1479 * Do we miss much more than hit in this file? If so,
1480 * stop bothering with read-ahead. It will only hurt.
1482 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1488 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1490 ra
->start
= max_t(long, 0, offset
- ra_pages
/2);
1491 ra
->size
= ra_pages
;
1493 ra_submit(ra
, mapping
, file
);
1498 * Asynchronous readahead happens when we find the page and PG_readahead,
1499 * so we want to possibly extend the readahead further..
1501 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1502 struct file_ra_state
*ra
,
1507 struct address_space
*mapping
= file
->f_mapping
;
1509 /* If we don't want any read-ahead, don't bother */
1510 if (VM_RandomReadHint(vma
))
1512 if (ra
->mmap_miss
> 0)
1514 if (PageReadahead(page
))
1515 page_cache_async_readahead(mapping
, ra
, file
,
1516 page
, offset
, ra
->ra_pages
);
1520 * filemap_fault - read in file data for page fault handling
1521 * @vma: vma in which the fault was taken
1522 * @vmf: struct vm_fault containing details of the fault
1524 * filemap_fault() is invoked via the vma operations vector for a
1525 * mapped memory region to read in file data during a page fault.
1527 * The goto's are kind of ugly, but this streamlines the normal case of having
1528 * it in the page cache, and handles the special cases reasonably without
1529 * having a lot of duplicated code.
1531 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1534 struct file
*file
= vma
->vm_file
;
1535 struct address_space
*mapping
= file
->f_mapping
;
1536 struct file_ra_state
*ra
= &file
->f_ra
;
1537 struct inode
*inode
= mapping
->host
;
1538 pgoff_t offset
= vmf
->pgoff
;
1543 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1545 return VM_FAULT_SIGBUS
;
1548 * Do we have something in the page cache already?
1550 page
= find_get_page(mapping
, offset
);
1553 * We found the page, so try async readahead before
1554 * waiting for the lock.
1556 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1558 /* No page in the page cache at all */
1559 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1560 count_vm_event(PGMAJFAULT
);
1561 ret
= VM_FAULT_MAJOR
;
1563 page
= find_get_page(mapping
, offset
);
1565 goto no_cached_page
;
1568 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1569 page_cache_release(page
);
1570 return ret
| VM_FAULT_RETRY
;
1573 /* Did it get truncated? */
1574 if (unlikely(page
->mapping
!= mapping
)) {
1579 VM_BUG_ON(page
->index
!= offset
);
1582 * We have a locked page in the page cache, now we need to check
1583 * that it's up-to-date. If not, it is going to be due to an error.
1585 if (unlikely(!PageUptodate(page
)))
1586 goto page_not_uptodate
;
1589 * Found the page and have a reference on it.
1590 * We must recheck i_size under page lock.
1592 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1593 if (unlikely(offset
>= size
)) {
1595 page_cache_release(page
);
1596 return VM_FAULT_SIGBUS
;
1599 ra
->prev_pos
= (loff_t
)offset
<< PAGE_CACHE_SHIFT
;
1601 return ret
| VM_FAULT_LOCKED
;
1605 * We're only likely to ever get here if MADV_RANDOM is in
1608 error
= page_cache_read(file
, offset
);
1611 * The page we want has now been added to the page cache.
1612 * In the unlikely event that someone removed it in the
1613 * meantime, we'll just come back here and read it again.
1619 * An error return from page_cache_read can result if the
1620 * system is low on memory, or a problem occurs while trying
1623 if (error
== -ENOMEM
)
1624 return VM_FAULT_OOM
;
1625 return VM_FAULT_SIGBUS
;
1629 * Umm, take care of errors if the page isn't up-to-date.
1630 * Try to re-read it _once_. We do this synchronously,
1631 * because there really aren't any performance issues here
1632 * and we need to check for errors.
1634 ClearPageError(page
);
1635 error
= mapping
->a_ops
->readpage(file
, page
);
1637 wait_on_page_locked(page
);
1638 if (!PageUptodate(page
))
1641 page_cache_release(page
);
1643 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1646 /* Things didn't work out. Return zero to tell the mm layer so. */
1647 shrink_readahead_size_eio(file
, ra
);
1648 return VM_FAULT_SIGBUS
;
1650 EXPORT_SYMBOL(filemap_fault
);
1652 const struct vm_operations_struct generic_file_vm_ops
= {
1653 .fault
= filemap_fault
,
1656 /* This is used for a general mmap of a disk file */
1658 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1660 struct address_space
*mapping
= file
->f_mapping
;
1662 if (!mapping
->a_ops
->readpage
)
1664 file_accessed(file
);
1665 vma
->vm_ops
= &generic_file_vm_ops
;
1666 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1671 * This is for filesystems which do not implement ->writepage.
1673 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1675 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1677 return generic_file_mmap(file
, vma
);
1680 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1684 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1688 #endif /* CONFIG_MMU */
1690 EXPORT_SYMBOL(generic_file_mmap
);
1691 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1693 static struct page
*__read_cache_page(struct address_space
*mapping
,
1695 int (*filler
)(void *,struct page
*),
1702 page
= find_get_page(mapping
, index
);
1704 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1706 return ERR_PTR(-ENOMEM
);
1707 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1708 if (unlikely(err
)) {
1709 page_cache_release(page
);
1712 /* Presumably ENOMEM for radix tree node */
1713 return ERR_PTR(err
);
1715 err
= filler(data
, page
);
1717 page_cache_release(page
);
1718 page
= ERR_PTR(err
);
1724 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1726 int (*filler
)(void *,struct page
*),
1735 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1738 if (PageUptodate(page
))
1742 if (!page
->mapping
) {
1744 page_cache_release(page
);
1747 if (PageUptodate(page
)) {
1751 err
= filler(data
, page
);
1753 page_cache_release(page
);
1754 return ERR_PTR(err
);
1757 mark_page_accessed(page
);
1762 * read_cache_page_async - read into page cache, fill it if needed
1763 * @mapping: the page's address_space
1764 * @index: the page index
1765 * @filler: function to perform the read
1766 * @data: destination for read data
1768 * Same as read_cache_page, but don't wait for page to become unlocked
1769 * after submitting it to the filler.
1771 * Read into the page cache. If a page already exists, and PageUptodate() is
1772 * not set, try to fill the page but don't wait for it to become unlocked.
1774 * If the page does not get brought uptodate, return -EIO.
1776 struct page
*read_cache_page_async(struct address_space
*mapping
,
1778 int (*filler
)(void *,struct page
*),
1781 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1783 EXPORT_SYMBOL(read_cache_page_async
);
1785 static struct page
*wait_on_page_read(struct page
*page
)
1787 if (!IS_ERR(page
)) {
1788 wait_on_page_locked(page
);
1789 if (!PageUptodate(page
)) {
1790 page_cache_release(page
);
1791 page
= ERR_PTR(-EIO
);
1798 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1799 * @mapping: the page's address_space
1800 * @index: the page index
1801 * @gfp: the page allocator flags to use if allocating
1803 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1804 * any new page allocations done using the specified allocation flags. Note
1805 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1806 * expect to do this atomically or anything like that - but you can pass in
1807 * other page requirements.
1809 * If the page does not get brought uptodate, return -EIO.
1811 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1815 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1817 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1819 EXPORT_SYMBOL(read_cache_page_gfp
);
1822 * read_cache_page - read into page cache, fill it if needed
1823 * @mapping: the page's address_space
1824 * @index: the page index
1825 * @filler: function to perform the read
1826 * @data: destination for read data
1828 * Read into the page cache. If a page already exists, and PageUptodate() is
1829 * not set, try to fill the page then wait for it to become unlocked.
1831 * If the page does not get brought uptodate, return -EIO.
1833 struct page
*read_cache_page(struct address_space
*mapping
,
1835 int (*filler
)(void *,struct page
*),
1838 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1840 EXPORT_SYMBOL(read_cache_page
);
1843 * The logic we want is
1845 * if suid or (sgid and xgrp)
1848 int should_remove_suid(struct dentry
*dentry
)
1850 mode_t mode
= dentry
->d_inode
->i_mode
;
1853 /* suid always must be killed */
1854 if (unlikely(mode
& S_ISUID
))
1855 kill
= ATTR_KILL_SUID
;
1858 * sgid without any exec bits is just a mandatory locking mark; leave
1859 * it alone. If some exec bits are set, it's a real sgid; kill it.
1861 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1862 kill
|= ATTR_KILL_SGID
;
1864 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1869 EXPORT_SYMBOL(should_remove_suid
);
1871 static int __remove_suid(struct dentry
*dentry
, int kill
)
1873 struct iattr newattrs
;
1875 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1876 return notify_change(dentry
, &newattrs
);
1879 int file_remove_suid(struct file
*file
)
1881 struct dentry
*dentry
= file
->f_path
.dentry
;
1882 int killsuid
= should_remove_suid(dentry
);
1883 int killpriv
= security_inode_need_killpriv(dentry
);
1889 error
= security_inode_killpriv(dentry
);
1890 if (!error
&& killsuid
)
1891 error
= __remove_suid(dentry
, killsuid
);
1895 EXPORT_SYMBOL(file_remove_suid
);
1897 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1898 const struct iovec
*iov
, size_t base
, size_t bytes
)
1900 size_t copied
= 0, left
= 0;
1903 char __user
*buf
= iov
->iov_base
+ base
;
1904 int copy
= min(bytes
, iov
->iov_len
- base
);
1907 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
1916 return copied
- left
;
1920 * Copy as much as we can into the page and return the number of bytes which
1921 * were successfully copied. If a fault is encountered then return the number of
1922 * bytes which were copied.
1924 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1925 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1930 BUG_ON(!in_atomic());
1931 kaddr
= kmap_atomic(page
, KM_USER0
);
1932 if (likely(i
->nr_segs
== 1)) {
1934 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1935 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
1936 copied
= bytes
- left
;
1938 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1939 i
->iov
, i
->iov_offset
, bytes
);
1941 kunmap_atomic(kaddr
, KM_USER0
);
1945 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1948 * This has the same sideeffects and return value as
1949 * iov_iter_copy_from_user_atomic().
1950 * The difference is that it attempts to resolve faults.
1951 * Page must not be locked.
1953 size_t iov_iter_copy_from_user(struct page
*page
,
1954 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1960 if (likely(i
->nr_segs
== 1)) {
1962 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1963 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
1964 copied
= bytes
- left
;
1966 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1967 i
->iov
, i
->iov_offset
, bytes
);
1972 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1974 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1976 BUG_ON(i
->count
< bytes
);
1978 if (likely(i
->nr_segs
== 1)) {
1979 i
->iov_offset
+= bytes
;
1982 const struct iovec
*iov
= i
->iov
;
1983 size_t base
= i
->iov_offset
;
1986 * The !iov->iov_len check ensures we skip over unlikely
1987 * zero-length segments (without overruning the iovec).
1989 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
1992 copy
= min(bytes
, iov
->iov_len
- base
);
1993 BUG_ON(!i
->count
|| i
->count
< copy
);
1997 if (iov
->iov_len
== base
) {
2003 i
->iov_offset
= base
;
2006 EXPORT_SYMBOL(iov_iter_advance
);
2009 * Fault in the first iovec of the given iov_iter, to a maximum length
2010 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2011 * accessed (ie. because it is an invalid address).
2013 * writev-intensive code may want this to prefault several iovecs -- that
2014 * would be possible (callers must not rely on the fact that _only_ the
2015 * first iovec will be faulted with the current implementation).
2017 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2019 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2020 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2021 return fault_in_pages_readable(buf
, bytes
);
2023 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2026 * Return the count of just the current iov_iter segment.
2028 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2030 const struct iovec
*iov
= i
->iov
;
2031 if (i
->nr_segs
== 1)
2034 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2036 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2039 * Performs necessary checks before doing a write
2041 * Can adjust writing position or amount of bytes to write.
2042 * Returns appropriate error code that caller should return or
2043 * zero in case that write should be allowed.
2045 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2047 struct inode
*inode
= file
->f_mapping
->host
;
2048 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2050 if (unlikely(*pos
< 0))
2054 /* FIXME: this is for backwards compatibility with 2.4 */
2055 if (file
->f_flags
& O_APPEND
)
2056 *pos
= i_size_read(inode
);
2058 if (limit
!= RLIM_INFINITY
) {
2059 if (*pos
>= limit
) {
2060 send_sig(SIGXFSZ
, current
, 0);
2063 if (*count
> limit
- (typeof(limit
))*pos
) {
2064 *count
= limit
- (typeof(limit
))*pos
;
2072 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2073 !(file
->f_flags
& O_LARGEFILE
))) {
2074 if (*pos
>= MAX_NON_LFS
) {
2077 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2078 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2083 * Are we about to exceed the fs block limit ?
2085 * If we have written data it becomes a short write. If we have
2086 * exceeded without writing data we send a signal and return EFBIG.
2087 * Linus frestrict idea will clean these up nicely..
2089 if (likely(!isblk
)) {
2090 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2091 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2094 /* zero-length writes at ->s_maxbytes are OK */
2097 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2098 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2102 if (bdev_read_only(I_BDEV(inode
)))
2104 isize
= i_size_read(inode
);
2105 if (*pos
>= isize
) {
2106 if (*count
|| *pos
> isize
)
2110 if (*pos
+ *count
> isize
)
2111 *count
= isize
- *pos
;
2118 EXPORT_SYMBOL(generic_write_checks
);
2120 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2121 loff_t pos
, unsigned len
, unsigned flags
,
2122 struct page
**pagep
, void **fsdata
)
2124 const struct address_space_operations
*aops
= mapping
->a_ops
;
2126 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2129 EXPORT_SYMBOL(pagecache_write_begin
);
2131 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2132 loff_t pos
, unsigned len
, unsigned copied
,
2133 struct page
*page
, void *fsdata
)
2135 const struct address_space_operations
*aops
= mapping
->a_ops
;
2137 mark_page_accessed(page
);
2138 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2140 EXPORT_SYMBOL(pagecache_write_end
);
2143 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2144 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2145 size_t count
, size_t ocount
)
2147 struct file
*file
= iocb
->ki_filp
;
2148 struct address_space
*mapping
= file
->f_mapping
;
2149 struct inode
*inode
= mapping
->host
;
2154 if (count
!= ocount
)
2155 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2157 write_len
= iov_length(iov
, *nr_segs
);
2158 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2160 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2165 * After a write we want buffered reads to be sure to go to disk to get
2166 * the new data. We invalidate clean cached page from the region we're
2167 * about to write. We do this *before* the write so that we can return
2168 * without clobbering -EIOCBQUEUED from ->direct_IO().
2170 if (mapping
->nrpages
) {
2171 written
= invalidate_inode_pages2_range(mapping
,
2172 pos
>> PAGE_CACHE_SHIFT
, end
);
2174 * If a page can not be invalidated, return 0 to fall back
2175 * to buffered write.
2178 if (written
== -EBUSY
)
2184 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2187 * Finally, try again to invalidate clean pages which might have been
2188 * cached by non-direct readahead, or faulted in by get_user_pages()
2189 * if the source of the write was an mmap'ed region of the file
2190 * we're writing. Either one is a pretty crazy thing to do,
2191 * so we don't support it 100%. If this invalidation
2192 * fails, tough, the write still worked...
2194 if (mapping
->nrpages
) {
2195 invalidate_inode_pages2_range(mapping
,
2196 pos
>> PAGE_CACHE_SHIFT
, end
);
2201 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2202 i_size_write(inode
, pos
);
2203 mark_inode_dirty(inode
);
2210 EXPORT_SYMBOL(generic_file_direct_write
);
2213 * Find or create a page at the given pagecache position. Return the locked
2214 * page. This function is specifically for buffered writes.
2216 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2217 pgoff_t index
, unsigned flags
)
2221 gfp_t gfp_notmask
= 0;
2222 if (flags
& AOP_FLAG_NOFS
)
2223 gfp_notmask
= __GFP_FS
;
2225 page
= find_lock_page(mapping
, index
);
2229 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2232 status
= add_to_page_cache_lru(page
, mapping
, index
,
2233 GFP_KERNEL
& ~gfp_notmask
);
2234 if (unlikely(status
)) {
2235 page_cache_release(page
);
2236 if (status
== -EEXIST
)
2242 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2244 static ssize_t
generic_perform_write(struct file
*file
,
2245 struct iov_iter
*i
, loff_t pos
)
2247 struct address_space
*mapping
= file
->f_mapping
;
2248 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2250 ssize_t written
= 0;
2251 unsigned int flags
= 0;
2254 * Copies from kernel address space cannot fail (NFSD is a big user).
2256 if (segment_eq(get_fs(), KERNEL_DS
))
2257 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2261 unsigned long offset
; /* Offset into pagecache page */
2262 unsigned long bytes
; /* Bytes to write to page */
2263 size_t copied
; /* Bytes copied from user */
2266 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2267 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2273 * Bring in the user page that we will copy from _first_.
2274 * Otherwise there's a nasty deadlock on copying from the
2275 * same page as we're writing to, without it being marked
2278 * Not only is this an optimisation, but it is also required
2279 * to check that the address is actually valid, when atomic
2280 * usercopies are used, below.
2282 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2287 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2289 if (unlikely(status
))
2292 if (mapping_writably_mapped(mapping
))
2293 flush_dcache_page(page
);
2295 pagefault_disable();
2296 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2298 flush_dcache_page(page
);
2300 mark_page_accessed(page
);
2301 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2303 if (unlikely(status
< 0))
2309 iov_iter_advance(i
, copied
);
2310 if (unlikely(copied
== 0)) {
2312 * If we were unable to copy any data at all, we must
2313 * fall back to a single segment length write.
2315 * If we didn't fallback here, we could livelock
2316 * because not all segments in the iov can be copied at
2317 * once without a pagefault.
2319 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2320 iov_iter_single_seg_count(i
));
2326 balance_dirty_pages_ratelimited(mapping
);
2328 } while (iov_iter_count(i
));
2330 return written
? written
: status
;
2334 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2335 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2336 size_t count
, ssize_t written
)
2338 struct file
*file
= iocb
->ki_filp
;
2342 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2343 status
= generic_perform_write(file
, &i
, pos
);
2345 if (likely(status
>= 0)) {
2347 *ppos
= pos
+ status
;
2350 return written
? written
: status
;
2352 EXPORT_SYMBOL(generic_file_buffered_write
);
2355 * __generic_file_aio_write - write data to a file
2356 * @iocb: IO state structure (file, offset, etc.)
2357 * @iov: vector with data to write
2358 * @nr_segs: number of segments in the vector
2359 * @ppos: position where to write
2361 * This function does all the work needed for actually writing data to a
2362 * file. It does all basic checks, removes SUID from the file, updates
2363 * modification times and calls proper subroutines depending on whether we
2364 * do direct IO or a standard buffered write.
2366 * It expects i_mutex to be grabbed unless we work on a block device or similar
2367 * object which does not need locking at all.
2369 * This function does *not* take care of syncing data in case of O_SYNC write.
2370 * A caller has to handle it. This is mainly due to the fact that we want to
2371 * avoid syncing under i_mutex.
2373 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2374 unsigned long nr_segs
, loff_t
*ppos
)
2376 struct file
*file
= iocb
->ki_filp
;
2377 struct address_space
* mapping
= file
->f_mapping
;
2378 size_t ocount
; /* original count */
2379 size_t count
; /* after file limit checks */
2380 struct inode
*inode
= mapping
->host
;
2386 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2393 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2395 /* We can write back this queue in page reclaim */
2396 current
->backing_dev_info
= mapping
->backing_dev_info
;
2399 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2406 err
= file_remove_suid(file
);
2410 file_update_time(file
);
2412 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2413 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2415 ssize_t written_buffered
;
2417 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2418 ppos
, count
, ocount
);
2419 if (written
< 0 || written
== count
)
2422 * direct-io write to a hole: fall through to buffered I/O
2423 * for completing the rest of the request.
2427 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2428 nr_segs
, pos
, ppos
, count
,
2431 * If generic_file_buffered_write() retuned a synchronous error
2432 * then we want to return the number of bytes which were
2433 * direct-written, or the error code if that was zero. Note
2434 * that this differs from normal direct-io semantics, which
2435 * will return -EFOO even if some bytes were written.
2437 if (written_buffered
< 0) {
2438 err
= written_buffered
;
2443 * We need to ensure that the page cache pages are written to
2444 * disk and invalidated to preserve the expected O_DIRECT
2447 endbyte
= pos
+ written_buffered
- written
- 1;
2448 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2450 written
= written_buffered
;
2451 invalidate_mapping_pages(mapping
,
2452 pos
>> PAGE_CACHE_SHIFT
,
2453 endbyte
>> PAGE_CACHE_SHIFT
);
2456 * We don't know how much we wrote, so just return
2457 * the number of bytes which were direct-written
2461 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2462 pos
, ppos
, count
, written
);
2465 current
->backing_dev_info
= NULL
;
2466 return written
? written
: err
;
2468 EXPORT_SYMBOL(__generic_file_aio_write
);
2471 * generic_file_aio_write - write data to a file
2472 * @iocb: IO state structure
2473 * @iov: vector with data to write
2474 * @nr_segs: number of segments in the vector
2475 * @pos: position in file where to write
2477 * This is a wrapper around __generic_file_aio_write() to be used by most
2478 * filesystems. It takes care of syncing the file in case of O_SYNC file
2479 * and acquires i_mutex as needed.
2481 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2482 unsigned long nr_segs
, loff_t pos
)
2484 struct file
*file
= iocb
->ki_filp
;
2485 struct inode
*inode
= file
->f_mapping
->host
;
2488 BUG_ON(iocb
->ki_pos
!= pos
);
2490 mutex_lock(&inode
->i_mutex
);
2491 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2492 mutex_unlock(&inode
->i_mutex
);
2494 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2497 err
= generic_write_sync(file
, pos
, ret
);
2498 if (err
< 0 && ret
> 0)
2503 EXPORT_SYMBOL(generic_file_aio_write
);
2506 * try_to_release_page() - release old fs-specific metadata on a page
2508 * @page: the page which the kernel is trying to free
2509 * @gfp_mask: memory allocation flags (and I/O mode)
2511 * The address_space is to try to release any data against the page
2512 * (presumably at page->private). If the release was successful, return `1'.
2513 * Otherwise return zero.
2515 * This may also be called if PG_fscache is set on a page, indicating that the
2516 * page is known to the local caching routines.
2518 * The @gfp_mask argument specifies whether I/O may be performed to release
2519 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2522 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2524 struct address_space
* const mapping
= page
->mapping
;
2526 BUG_ON(!PageLocked(page
));
2527 if (PageWriteback(page
))
2530 if (mapping
&& mapping
->a_ops
->releasepage
)
2531 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2532 return try_to_free_buffers(page
);
2535 EXPORT_SYMBOL(try_to_release_page
);