2 * sparse memory mappings.
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
17 * Permanent SPARSEMEM data:
19 * 1) mem_section - memory sections, mem_map's for valid memory
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
23 ____cacheline_internodealigned_in_smp
;
25 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
26 ____cacheline_internodealigned_in_smp
;
28 EXPORT_SYMBOL(mem_section
);
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 * If we did not store the node number in the page then we have to
33 * do a lookup in the section_to_node_table in order to find which
34 * node the page belongs to.
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
39 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
42 int page_to_nid(struct page
*page
)
44 return section_to_node_table
[page_to_section(page
)];
46 EXPORT_SYMBOL(page_to_nid
);
48 static void set_section_nid(unsigned long section_nr
, int nid
)
50 section_to_node_table
[section_nr
] = nid
;
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
53 static inline void set_section_nid(unsigned long section_nr
, int nid
)
58 #ifdef CONFIG_SPARSEMEM_EXTREME
59 static struct mem_section noinline __init_refok
*sparse_index_alloc(int nid
)
61 struct mem_section
*section
= NULL
;
62 unsigned long array_size
= SECTIONS_PER_ROOT
*
63 sizeof(struct mem_section
);
65 if (slab_is_available()) {
66 if (node_state(nid
, N_HIGH_MEMORY
))
67 section
= kmalloc_node(array_size
, GFP_KERNEL
, nid
);
69 section
= kmalloc(array_size
, GFP_KERNEL
);
71 section
= alloc_bootmem_node(NODE_DATA(nid
), array_size
);
74 memset(section
, 0, array_size
);
79 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
81 static DEFINE_SPINLOCK(index_init_lock
);
82 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
83 struct mem_section
*section
;
86 if (mem_section
[root
])
89 section
= sparse_index_alloc(nid
);
93 * This lock keeps two different sections from
94 * reallocating for the same index
96 spin_lock(&index_init_lock
);
98 if (mem_section
[root
]) {
103 mem_section
[root
] = section
;
105 spin_unlock(&index_init_lock
);
108 #else /* !SPARSEMEM_EXTREME */
109 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
116 * Although written for the SPARSEMEM_EXTREME case, this happens
117 * to also work for the flat array case because
118 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120 int __section_nr(struct mem_section
* ms
)
122 unsigned long root_nr
;
123 struct mem_section
* root
;
125 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
126 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
130 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
134 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
138 * During early boot, before section_mem_map is used for an actual
139 * mem_map, we use section_mem_map to store the section's NUMA
140 * node. This keeps us from having to use another data structure. The
141 * node information is cleared just before we store the real mem_map.
143 static inline unsigned long sparse_encode_early_nid(int nid
)
145 return (nid
<< SECTION_NID_SHIFT
);
148 static inline int sparse_early_nid(struct mem_section
*section
)
150 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
153 /* Validate the physical addressing limitations of the model */
154 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
155 unsigned long *end_pfn
)
157 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
160 * Sanity checks - do not allow an architecture to pass
161 * in larger pfns than the maximum scope of sparsemem:
163 if (*start_pfn
> max_sparsemem_pfn
) {
164 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
168 *start_pfn
= max_sparsemem_pfn
;
169 *end_pfn
= max_sparsemem_pfn
;
170 } else if (*end_pfn
> max_sparsemem_pfn
) {
171 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
175 *end_pfn
= max_sparsemem_pfn
;
179 /* Record a memory area against a node. */
180 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
184 start
&= PAGE_SECTION_MASK
;
185 mminit_validate_memmodel_limits(&start
, &end
);
186 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
187 unsigned long section
= pfn_to_section_nr(pfn
);
188 struct mem_section
*ms
;
190 sparse_index_init(section
, nid
);
191 set_section_nid(section
, nid
);
193 ms
= __nr_to_section(section
);
194 if (!ms
->section_mem_map
)
195 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
196 SECTION_MARKED_PRESENT
;
201 * Only used by the i386 NUMA architecures, but relatively
204 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
205 unsigned long end_pfn
)
208 unsigned long nr_pages
= 0;
210 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
211 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
212 if (nid
!= early_pfn_to_nid(pfn
))
215 if (pfn_present(pfn
))
216 nr_pages
+= PAGES_PER_SECTION
;
219 return nr_pages
* sizeof(struct page
);
223 * Subtle, we encode the real pfn into the mem_map such that
224 * the identity pfn - section_mem_map will return the actual
225 * physical page frame number.
227 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
229 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
233 * Decode mem_map from the coded memmap
235 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
237 /* mask off the extra low bits of information */
238 coded_mem_map
&= SECTION_MAP_MASK
;
239 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
242 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
243 unsigned long pnum
, struct page
*mem_map
,
244 unsigned long *pageblock_bitmap
)
246 if (!present_section(ms
))
249 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
250 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
) |
252 ms
->pageblock_flags
= pageblock_bitmap
;
257 unsigned long usemap_size(void)
259 unsigned long size_bytes
;
260 size_bytes
= roundup(SECTION_BLOCKFLAGS_BITS
, 8) / 8;
261 size_bytes
= roundup(size_bytes
, sizeof(unsigned long));
265 #ifdef CONFIG_MEMORY_HOTPLUG
266 static unsigned long *__kmalloc_section_usemap(void)
268 return kmalloc(usemap_size(), GFP_KERNEL
);
270 #endif /* CONFIG_MEMORY_HOTPLUG */
272 #ifdef CONFIG_MEMORY_HOTREMOVE
273 static unsigned long * __init
274 sparse_early_usemap_alloc_pgdat_section(struct pglist_data
*pgdat
)
276 unsigned long section_nr
;
279 * A page may contain usemaps for other sections preventing the
280 * page being freed and making a section unremovable while
281 * other sections referencing the usemap retmain active. Similarly,
282 * a pgdat can prevent a section being removed. If section A
283 * contains a pgdat and section B contains the usemap, both
284 * sections become inter-dependent. This allocates usemaps
285 * from the same section as the pgdat where possible to avoid
288 section_nr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
289 return alloc_bootmem_section(usemap_size(), section_nr
);
292 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
294 unsigned long usemap_snr
, pgdat_snr
;
295 static unsigned long old_usemap_snr
= NR_MEM_SECTIONS
;
296 static unsigned long old_pgdat_snr
= NR_MEM_SECTIONS
;
297 struct pglist_data
*pgdat
= NODE_DATA(nid
);
300 usemap_snr
= pfn_to_section_nr(__pa(usemap
) >> PAGE_SHIFT
);
301 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
302 if (usemap_snr
== pgdat_snr
)
305 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
306 /* skip redundant message */
309 old_usemap_snr
= usemap_snr
;
310 old_pgdat_snr
= pgdat_snr
;
312 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
313 if (usemap_nid
!= nid
) {
315 "node %d must be removed before remove section %ld\n",
320 * There is a circular dependency.
321 * Some platforms allow un-removable section because they will just
322 * gather other removable sections for dynamic partitioning.
323 * Just notify un-removable section's number here.
325 printk(KERN_INFO
"Section %ld and %ld (node %d)", usemap_snr
,
328 " have a circular dependency on usemap and pgdat allocations\n");
331 static unsigned long * __init
332 sparse_early_usemap_alloc_pgdat_section(struct pglist_data
*pgdat
)
337 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
340 #endif /* CONFIG_MEMORY_HOTREMOVE */
342 static unsigned long *__init
sparse_early_usemap_alloc(unsigned long pnum
)
344 unsigned long *usemap
;
345 struct mem_section
*ms
= __nr_to_section(pnum
);
346 int nid
= sparse_early_nid(ms
);
348 usemap
= sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid
));
352 usemap
= alloc_bootmem_node(NODE_DATA(nid
), usemap_size());
354 check_usemap_section_nr(nid
, usemap
);
358 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
361 printk(KERN_WARNING
"%s: allocation failed\n", __func__
);
365 #ifndef CONFIG_SPARSEMEM_VMEMMAP
366 struct page __init
*sparse_mem_map_populate(unsigned long pnum
, int nid
)
370 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
374 map
= alloc_bootmem_pages_node(NODE_DATA(nid
),
375 PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
));
378 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
380 static struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
383 struct mem_section
*ms
= __nr_to_section(pnum
);
384 int nid
= sparse_early_nid(ms
);
386 map
= sparse_mem_map_populate(pnum
, nid
);
390 printk(KERN_ERR
"%s: sparsemem memory map backing failed "
391 "some memory will not be available.\n", __func__
);
392 ms
->section_mem_map
= 0;
396 void __attribute__((weak
)) __meminit
vmemmap_populate_print_last(void)
400 * Allocate the accumulated non-linear sections, allocate a mem_map
401 * for each and record the physical to section mapping.
403 void __init
sparse_init(void)
407 unsigned long *usemap
;
408 unsigned long **usemap_map
;
412 * map is using big page (aka 2M in x86 64 bit)
413 * usemap is less one page (aka 24 bytes)
414 * so alloc 2M (with 2M align) and 24 bytes in turn will
415 * make next 2M slip to one more 2M later.
416 * then in big system, the memory will have a lot of holes...
417 * here try to allocate 2M pages continously.
419 * powerpc need to call sparse_init_one_section right after each
420 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
422 size
= sizeof(unsigned long *) * NR_MEM_SECTIONS
;
423 usemap_map
= alloc_bootmem(size
);
425 panic("can not allocate usemap_map\n");
427 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
428 if (!present_section_nr(pnum
))
430 usemap_map
[pnum
] = sparse_early_usemap_alloc(pnum
);
433 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
434 if (!present_section_nr(pnum
))
437 usemap
= usemap_map
[pnum
];
441 map
= sparse_early_mem_map_alloc(pnum
);
445 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
,
449 vmemmap_populate_print_last();
451 free_bootmem(__pa(usemap_map
), size
);
454 #ifdef CONFIG_MEMORY_HOTPLUG
455 #ifdef CONFIG_SPARSEMEM_VMEMMAP
456 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
457 unsigned long nr_pages
)
459 /* This will make the necessary allocations eventually. */
460 return sparse_mem_map_populate(pnum
, nid
);
462 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
464 return; /* XXX: Not implemented yet */
466 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
470 static struct page
*__kmalloc_section_memmap(unsigned long nr_pages
)
472 struct page
*page
, *ret
;
473 unsigned long memmap_size
= sizeof(struct page
) * nr_pages
;
475 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
479 ret
= vmalloc(memmap_size
);
485 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
487 memset(ret
, 0, memmap_size
);
492 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
,
493 unsigned long nr_pages
)
495 return __kmalloc_section_memmap(nr_pages
);
498 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
500 if (is_vmalloc_addr(memmap
))
503 free_pages((unsigned long)memmap
,
504 get_order(sizeof(struct page
) * nr_pages
));
507 static void free_map_bootmem(struct page
*page
, unsigned long nr_pages
)
509 unsigned long maps_section_nr
, removing_section_nr
, i
;
512 for (i
= 0; i
< nr_pages
; i
++, page
++) {
513 magic
= atomic_read(&page
->_mapcount
);
515 BUG_ON(magic
== NODE_INFO
);
517 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
518 removing_section_nr
= page
->private;
521 * When this function is called, the removing section is
522 * logical offlined state. This means all pages are isolated
523 * from page allocator. If removing section's memmap is placed
524 * on the same section, it must not be freed.
525 * If it is freed, page allocator may allocate it which will
526 * be removed physically soon.
528 if (maps_section_nr
!= removing_section_nr
)
529 put_page_bootmem(page
);
532 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
534 static void free_section_usemap(struct page
*memmap
, unsigned long *usemap
)
536 struct page
*usemap_page
;
537 unsigned long nr_pages
;
542 usemap_page
= virt_to_page(usemap
);
544 * Check to see if allocation came from hot-plug-add
546 if (PageSlab(usemap_page
)) {
549 __kfree_section_memmap(memmap
, PAGES_PER_SECTION
);
554 * The usemap came from bootmem. This is packed with other usemaps
555 * on the section which has pgdat at boot time. Just keep it as is now.
559 struct page
*memmap_page
;
560 memmap_page
= virt_to_page(memmap
);
562 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
565 free_map_bootmem(memmap_page
, nr_pages
);
570 * returns the number of sections whose mem_maps were properly
571 * set. If this is <=0, then that means that the passed-in
572 * map was not consumed and must be freed.
574 int __meminit
sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
,
577 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
578 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
579 struct mem_section
*ms
;
581 unsigned long *usemap
;
586 * no locking for this, because it does its own
587 * plus, it does a kmalloc
589 ret
= sparse_index_init(section_nr
, pgdat
->node_id
);
590 if (ret
< 0 && ret
!= -EEXIST
)
592 memmap
= kmalloc_section_memmap(section_nr
, pgdat
->node_id
, nr_pages
);
595 usemap
= __kmalloc_section_usemap();
597 __kfree_section_memmap(memmap
, nr_pages
);
601 pgdat_resize_lock(pgdat
, &flags
);
603 ms
= __pfn_to_section(start_pfn
);
604 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
609 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
611 ret
= sparse_init_one_section(ms
, section_nr
, memmap
, usemap
);
614 pgdat_resize_unlock(pgdat
, &flags
);
617 __kfree_section_memmap(memmap
, nr_pages
);
622 void sparse_remove_one_section(struct zone
*zone
, struct mem_section
*ms
)
624 struct page
*memmap
= NULL
;
625 unsigned long *usemap
= NULL
;
627 if (ms
->section_mem_map
) {
628 usemap
= ms
->pageblock_flags
;
629 memmap
= sparse_decode_mem_map(ms
->section_mem_map
,
631 ms
->section_mem_map
= 0;
632 ms
->pageblock_flags
= NULL
;
635 free_section_usemap(memmap
, usemap
);