drm/i915: Hook connector to encoder during load detection (fixes tv/vga detect)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blobb32a51f2a91d7bd1be78f8bb7590fb59989ca2f8
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/i2c.h>
28 #include "drmP.h"
29 #include "intel_drv.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
33 #include "drm_crtc_helper.h"
35 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
37 typedef struct {
38 /* given values */
39 int n;
40 int m1, m2;
41 int p1, p2;
42 /* derived values */
43 int dot;
44 int vco;
45 int m;
46 int p;
47 } intel_clock_t;
49 typedef struct {
50 int min, max;
51 } intel_range_t;
53 typedef struct {
54 int dot_limit;
55 int p2_slow, p2_fast;
56 } intel_p2_t;
58 #define INTEL_P2_NUM 2
59 typedef struct intel_limit intel_limit_t;
60 struct intel_limit {
61 intel_range_t dot, vco, n, m, m1, m2, p, p1;
62 intel_p2_t p2;
63 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
64 int, int, intel_clock_t *);
67 #define I8XX_DOT_MIN 25000
68 #define I8XX_DOT_MAX 350000
69 #define I8XX_VCO_MIN 930000
70 #define I8XX_VCO_MAX 1400000
71 #define I8XX_N_MIN 3
72 #define I8XX_N_MAX 16
73 #define I8XX_M_MIN 96
74 #define I8XX_M_MAX 140
75 #define I8XX_M1_MIN 18
76 #define I8XX_M1_MAX 26
77 #define I8XX_M2_MIN 6
78 #define I8XX_M2_MAX 16
79 #define I8XX_P_MIN 4
80 #define I8XX_P_MAX 128
81 #define I8XX_P1_MIN 2
82 #define I8XX_P1_MAX 33
83 #define I8XX_P1_LVDS_MIN 1
84 #define I8XX_P1_LVDS_MAX 6
85 #define I8XX_P2_SLOW 4
86 #define I8XX_P2_FAST 2
87 #define I8XX_P2_LVDS_SLOW 14
88 #define I8XX_P2_LVDS_FAST 14 /* No fast option */
89 #define I8XX_P2_SLOW_LIMIT 165000
91 #define I9XX_DOT_MIN 20000
92 #define I9XX_DOT_MAX 400000
93 #define I9XX_VCO_MIN 1400000
94 #define I9XX_VCO_MAX 2800000
95 #define IGD_VCO_MIN 1700000
96 #define IGD_VCO_MAX 3500000
97 #define I9XX_N_MIN 1
98 #define I9XX_N_MAX 6
99 /* IGD's Ncounter is a ring counter */
100 #define IGD_N_MIN 3
101 #define IGD_N_MAX 6
102 #define I9XX_M_MIN 70
103 #define I9XX_M_MAX 120
104 #define IGD_M_MIN 2
105 #define IGD_M_MAX 256
106 #define I9XX_M1_MIN 10
107 #define I9XX_M1_MAX 22
108 #define I9XX_M2_MIN 5
109 #define I9XX_M2_MAX 9
110 /* IGD M1 is reserved, and must be 0 */
111 #define IGD_M1_MIN 0
112 #define IGD_M1_MAX 0
113 #define IGD_M2_MIN 0
114 #define IGD_M2_MAX 254
115 #define I9XX_P_SDVO_DAC_MIN 5
116 #define I9XX_P_SDVO_DAC_MAX 80
117 #define I9XX_P_LVDS_MIN 7
118 #define I9XX_P_LVDS_MAX 98
119 #define IGD_P_LVDS_MIN 7
120 #define IGD_P_LVDS_MAX 112
121 #define I9XX_P1_MIN 1
122 #define I9XX_P1_MAX 8
123 #define I9XX_P2_SDVO_DAC_SLOW 10
124 #define I9XX_P2_SDVO_DAC_FAST 5
125 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
126 #define I9XX_P2_LVDS_SLOW 14
127 #define I9XX_P2_LVDS_FAST 7
128 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
130 #define INTEL_LIMIT_I8XX_DVO_DAC 0
131 #define INTEL_LIMIT_I8XX_LVDS 1
132 #define INTEL_LIMIT_I9XX_SDVO_DAC 2
133 #define INTEL_LIMIT_I9XX_LVDS 3
134 #define INTEL_LIMIT_G4X_SDVO 4
135 #define INTEL_LIMIT_G4X_HDMI_DAC 5
136 #define INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS 6
137 #define INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS 7
138 #define INTEL_LIMIT_IGD_SDVO_DAC 8
139 #define INTEL_LIMIT_IGD_LVDS 9
140 #define INTEL_LIMIT_IGDNG_SDVO_DAC 10
141 #define INTEL_LIMIT_IGDNG_LVDS 11
143 /*The parameter is for SDVO on G4x platform*/
144 #define G4X_DOT_SDVO_MIN 25000
145 #define G4X_DOT_SDVO_MAX 270000
146 #define G4X_VCO_MIN 1750000
147 #define G4X_VCO_MAX 3500000
148 #define G4X_N_SDVO_MIN 1
149 #define G4X_N_SDVO_MAX 4
150 #define G4X_M_SDVO_MIN 104
151 #define G4X_M_SDVO_MAX 138
152 #define G4X_M1_SDVO_MIN 17
153 #define G4X_M1_SDVO_MAX 23
154 #define G4X_M2_SDVO_MIN 5
155 #define G4X_M2_SDVO_MAX 11
156 #define G4X_P_SDVO_MIN 10
157 #define G4X_P_SDVO_MAX 30
158 #define G4X_P1_SDVO_MIN 1
159 #define G4X_P1_SDVO_MAX 3
160 #define G4X_P2_SDVO_SLOW 10
161 #define G4X_P2_SDVO_FAST 10
162 #define G4X_P2_SDVO_LIMIT 270000
164 /*The parameter is for HDMI_DAC on G4x platform*/
165 #define G4X_DOT_HDMI_DAC_MIN 22000
166 #define G4X_DOT_HDMI_DAC_MAX 400000
167 #define G4X_N_HDMI_DAC_MIN 1
168 #define G4X_N_HDMI_DAC_MAX 4
169 #define G4X_M_HDMI_DAC_MIN 104
170 #define G4X_M_HDMI_DAC_MAX 138
171 #define G4X_M1_HDMI_DAC_MIN 16
172 #define G4X_M1_HDMI_DAC_MAX 23
173 #define G4X_M2_HDMI_DAC_MIN 5
174 #define G4X_M2_HDMI_DAC_MAX 11
175 #define G4X_P_HDMI_DAC_MIN 5
176 #define G4X_P_HDMI_DAC_MAX 80
177 #define G4X_P1_HDMI_DAC_MIN 1
178 #define G4X_P1_HDMI_DAC_MAX 8
179 #define G4X_P2_HDMI_DAC_SLOW 10
180 #define G4X_P2_HDMI_DAC_FAST 5
181 #define G4X_P2_HDMI_DAC_LIMIT 165000
183 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
185 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
187 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
189 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
191 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
193 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
195 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
197 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
200 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
202 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
204 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
205 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
206 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
207 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
208 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
210 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
212 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
213 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
214 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
216 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
217 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
219 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
221 /* IGDNG */
222 /* as we calculate clock using (register_value + 2) for
223 N/M1/M2, so here the range value for them is (actual_value-2).
225 #define IGDNG_DOT_MIN 25000
226 #define IGDNG_DOT_MAX 350000
227 #define IGDNG_VCO_MIN 1760000
228 #define IGDNG_VCO_MAX 3510000
229 #define IGDNG_N_MIN 1
230 #define IGDNG_N_MAX 5
231 #define IGDNG_M_MIN 79
232 #define IGDNG_M_MAX 118
233 #define IGDNG_M1_MIN 12
234 #define IGDNG_M1_MAX 23
235 #define IGDNG_M2_MIN 5
236 #define IGDNG_M2_MAX 9
237 #define IGDNG_P_SDVO_DAC_MIN 5
238 #define IGDNG_P_SDVO_DAC_MAX 80
239 #define IGDNG_P_LVDS_MIN 28
240 #define IGDNG_P_LVDS_MAX 112
241 #define IGDNG_P1_MIN 1
242 #define IGDNG_P1_MAX 8
243 #define IGDNG_P2_SDVO_DAC_SLOW 10
244 #define IGDNG_P2_SDVO_DAC_FAST 5
245 #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
246 #define IGDNG_P2_LVDS_FAST 7 /* double channel */
247 #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
249 static bool
250 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
251 int target, int refclk, intel_clock_t *best_clock);
252 static bool
253 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
254 int target, int refclk, intel_clock_t *best_clock);
255 static bool
256 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
257 int target, int refclk, intel_clock_t *best_clock);
259 static const intel_limit_t intel_limits[] = {
260 { /* INTEL_LIMIT_I8XX_DVO_DAC */
261 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
262 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
263 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
264 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
265 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
266 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
267 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
268 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
269 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
270 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
271 .find_pll = intel_find_best_PLL,
273 { /* INTEL_LIMIT_I8XX_LVDS */
274 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
275 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
276 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
277 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
278 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
279 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
280 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
281 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
282 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
283 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
284 .find_pll = intel_find_best_PLL,
286 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
287 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
288 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
289 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
290 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
291 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
292 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
293 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
294 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
295 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
296 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
297 .find_pll = intel_find_best_PLL,
299 { /* INTEL_LIMIT_I9XX_LVDS */
300 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
301 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
302 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
303 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
304 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
305 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
306 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
307 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
308 /* The single-channel range is 25-112Mhz, and dual-channel
309 * is 80-224Mhz. Prefer single channel as much as possible.
311 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
312 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
313 .find_pll = intel_find_best_PLL,
315 /* below parameter and function is for G4X Chipset Family*/
316 { /* INTEL_LIMIT_G4X_SDVO */
317 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
318 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
319 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
320 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
321 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
322 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
323 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
324 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
325 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
326 .p2_slow = G4X_P2_SDVO_SLOW,
327 .p2_fast = G4X_P2_SDVO_FAST
329 .find_pll = intel_g4x_find_best_PLL,
331 { /* INTEL_LIMIT_G4X_HDMI_DAC */
332 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
333 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
334 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
335 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
336 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
337 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
338 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
339 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
340 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
341 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
342 .p2_fast = G4X_P2_HDMI_DAC_FAST
344 .find_pll = intel_g4x_find_best_PLL,
346 { /* INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS */
347 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
348 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
349 .vco = { .min = G4X_VCO_MIN,
350 .max = G4X_VCO_MAX },
351 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
352 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
353 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
354 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
355 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
356 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
357 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
358 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
359 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
360 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
361 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
362 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
363 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
364 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
365 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
367 .find_pll = intel_g4x_find_best_PLL,
369 { /* INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS */
370 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
371 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
372 .vco = { .min = G4X_VCO_MIN,
373 .max = G4X_VCO_MAX },
374 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
375 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
376 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
377 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
378 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
379 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
380 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
381 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
382 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
383 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
384 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
385 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
386 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
387 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
388 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
390 .find_pll = intel_g4x_find_best_PLL,
392 { /* INTEL_LIMIT_IGD_SDVO */
393 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
394 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
395 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
396 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
397 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
398 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
399 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
400 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
401 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
402 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
403 .find_pll = intel_find_best_PLL,
405 { /* INTEL_LIMIT_IGD_LVDS */
406 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
407 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
408 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
409 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
410 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
411 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
412 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
413 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
414 /* IGD only supports single-channel mode. */
415 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
416 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
417 .find_pll = intel_find_best_PLL,
419 { /* INTEL_LIMIT_IGDNG_SDVO_DAC */
420 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
421 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
422 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
423 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
424 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
425 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
426 .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
427 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
428 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
429 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
430 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
431 .find_pll = intel_igdng_find_best_PLL,
433 { /* INTEL_LIMIT_IGDNG_LVDS */
434 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
435 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
436 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
437 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
438 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
439 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
440 .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
441 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
442 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
443 .p2_slow = IGDNG_P2_LVDS_SLOW,
444 .p2_fast = IGDNG_P2_LVDS_FAST },
445 .find_pll = intel_igdng_find_best_PLL,
449 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
451 const intel_limit_t *limit;
452 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
453 limit = &intel_limits[INTEL_LIMIT_IGDNG_LVDS];
454 else
455 limit = &intel_limits[INTEL_LIMIT_IGDNG_SDVO_DAC];
457 return limit;
460 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
462 struct drm_device *dev = crtc->dev;
463 struct drm_i915_private *dev_priv = dev->dev_private;
464 const intel_limit_t *limit;
466 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
467 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
468 LVDS_CLKB_POWER_UP)
469 /* LVDS with dual channel */
470 limit = &intel_limits
471 [INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS];
472 else
473 /* LVDS with dual channel */
474 limit = &intel_limits
475 [INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS];
476 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
477 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
478 limit = &intel_limits[INTEL_LIMIT_G4X_HDMI_DAC];
479 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
480 limit = &intel_limits[INTEL_LIMIT_G4X_SDVO];
481 } else /* The option is for other outputs */
482 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
484 return limit;
487 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
489 struct drm_device *dev = crtc->dev;
490 const intel_limit_t *limit;
492 if (IS_IGDNG(dev))
493 limit = intel_igdng_limit(crtc);
494 else if (IS_G4X(dev)) {
495 limit = intel_g4x_limit(crtc);
496 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
497 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
498 limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
499 else
500 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
501 } else if (IS_IGD(dev)) {
502 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
503 limit = &intel_limits[INTEL_LIMIT_IGD_LVDS];
504 else
505 limit = &intel_limits[INTEL_LIMIT_IGD_SDVO_DAC];
506 } else {
507 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
508 limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
509 else
510 limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
512 return limit;
515 /* m1 is reserved as 0 in IGD, n is a ring counter */
516 static void igd_clock(int refclk, intel_clock_t *clock)
518 clock->m = clock->m2 + 2;
519 clock->p = clock->p1 * clock->p2;
520 clock->vco = refclk * clock->m / clock->n;
521 clock->dot = clock->vco / clock->p;
524 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
526 if (IS_IGD(dev)) {
527 igd_clock(refclk, clock);
528 return;
530 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
531 clock->p = clock->p1 * clock->p2;
532 clock->vco = refclk * clock->m / (clock->n + 2);
533 clock->dot = clock->vco / clock->p;
537 * Returns whether any output on the specified pipe is of the specified type
539 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
541 struct drm_device *dev = crtc->dev;
542 struct drm_mode_config *mode_config = &dev->mode_config;
543 struct drm_connector *l_entry;
545 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
546 if (l_entry->encoder &&
547 l_entry->encoder->crtc == crtc) {
548 struct intel_output *intel_output = to_intel_output(l_entry);
549 if (intel_output->type == type)
550 return true;
553 return false;
556 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
558 * Returns whether the given set of divisors are valid for a given refclk with
559 * the given connectors.
562 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
564 const intel_limit_t *limit = intel_limit (crtc);
565 struct drm_device *dev = crtc->dev;
567 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
568 INTELPllInvalid ("p1 out of range\n");
569 if (clock->p < limit->p.min || limit->p.max < clock->p)
570 INTELPllInvalid ("p out of range\n");
571 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
572 INTELPllInvalid ("m2 out of range\n");
573 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
574 INTELPllInvalid ("m1 out of range\n");
575 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
576 INTELPllInvalid ("m1 <= m2\n");
577 if (clock->m < limit->m.min || limit->m.max < clock->m)
578 INTELPllInvalid ("m out of range\n");
579 if (clock->n < limit->n.min || limit->n.max < clock->n)
580 INTELPllInvalid ("n out of range\n");
581 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
582 INTELPllInvalid ("vco out of range\n");
583 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
584 * connector, etc., rather than just a single range.
586 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
587 INTELPllInvalid ("dot out of range\n");
589 return true;
592 static bool
593 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
594 int target, int refclk, intel_clock_t *best_clock)
597 struct drm_device *dev = crtc->dev;
598 struct drm_i915_private *dev_priv = dev->dev_private;
599 intel_clock_t clock;
600 int err = target;
602 if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
603 (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
605 * For LVDS, if the panel is on, just rely on its current
606 * settings for dual-channel. We haven't figured out how to
607 * reliably set up different single/dual channel state, if we
608 * even can.
610 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
611 LVDS_CLKB_POWER_UP)
612 clock.p2 = limit->p2.p2_fast;
613 else
614 clock.p2 = limit->p2.p2_slow;
615 } else {
616 if (target < limit->p2.dot_limit)
617 clock.p2 = limit->p2.p2_slow;
618 else
619 clock.p2 = limit->p2.p2_fast;
622 memset (best_clock, 0, sizeof (*best_clock));
624 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
625 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
626 /* m1 is always 0 in IGD */
627 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
628 break;
629 for (clock.n = limit->n.min; clock.n <= limit->n.max;
630 clock.n++) {
631 for (clock.p1 = limit->p1.min;
632 clock.p1 <= limit->p1.max; clock.p1++) {
633 int this_err;
635 intel_clock(dev, refclk, &clock);
637 if (!intel_PLL_is_valid(crtc, &clock))
638 continue;
640 this_err = abs(clock.dot - target);
641 if (this_err < err) {
642 *best_clock = clock;
643 err = this_err;
650 return (err != target);
653 static bool
654 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
655 int target, int refclk, intel_clock_t *best_clock)
657 struct drm_device *dev = crtc->dev;
658 struct drm_i915_private *dev_priv = dev->dev_private;
659 intel_clock_t clock;
660 int max_n;
661 bool found;
662 /* approximately equals target * 0.00488 */
663 int err_most = (target >> 8) + (target >> 10);
664 found = false;
666 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
667 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
668 LVDS_CLKB_POWER_UP)
669 clock.p2 = limit->p2.p2_fast;
670 else
671 clock.p2 = limit->p2.p2_slow;
672 } else {
673 if (target < limit->p2.dot_limit)
674 clock.p2 = limit->p2.p2_slow;
675 else
676 clock.p2 = limit->p2.p2_fast;
679 memset(best_clock, 0, sizeof(*best_clock));
680 max_n = limit->n.max;
681 /* based on hardware requriment prefer smaller n to precision */
682 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
683 /* based on hardware requirment prefere larger m1,m2, p1 */
684 for (clock.m1 = limit->m1.max;
685 clock.m1 >= limit->m1.min; clock.m1--) {
686 for (clock.m2 = limit->m2.max;
687 clock.m2 >= limit->m2.min; clock.m2--) {
688 for (clock.p1 = limit->p1.max;
689 clock.p1 >= limit->p1.min; clock.p1--) {
690 int this_err;
692 intel_clock(dev, refclk, &clock);
693 if (!intel_PLL_is_valid(crtc, &clock))
694 continue;
695 this_err = abs(clock.dot - target) ;
696 if (this_err < err_most) {
697 *best_clock = clock;
698 err_most = this_err;
699 max_n = clock.n;
700 found = true;
706 return found;
709 static bool
710 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
711 int target, int refclk, intel_clock_t *best_clock)
713 struct drm_device *dev = crtc->dev;
714 struct drm_i915_private *dev_priv = dev->dev_private;
715 intel_clock_t clock;
716 int max_n;
717 bool found;
718 int err_most = 47;
719 found = false;
721 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
722 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
723 LVDS_CLKB_POWER_UP)
724 clock.p2 = limit->p2.p2_fast;
725 else
726 clock.p2 = limit->p2.p2_slow;
727 } else {
728 if (target < limit->p2.dot_limit)
729 clock.p2 = limit->p2.p2_slow;
730 else
731 clock.p2 = limit->p2.p2_fast;
734 memset(best_clock, 0, sizeof(*best_clock));
735 max_n = limit->n.max;
736 /* based on hardware requriment prefer smaller n to precision */
737 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
738 /* based on hardware requirment prefere larger m1,m2, p1 */
739 for (clock.m1 = limit->m1.max;
740 clock.m1 >= limit->m1.min; clock.m1--) {
741 for (clock.m2 = limit->m2.max;
742 clock.m2 >= limit->m2.min; clock.m2--) {
743 for (clock.p1 = limit->p1.max;
744 clock.p1 >= limit->p1.min; clock.p1--) {
745 int this_err;
747 intel_clock(dev, refclk, &clock);
748 if (!intel_PLL_is_valid(crtc, &clock))
749 continue;
750 this_err = abs((10000 - (target*10000/clock.dot)));
751 if (this_err < err_most) {
752 *best_clock = clock;
753 err_most = this_err;
754 max_n = clock.n;
755 found = true;
756 /* found on first matching */
757 goto out;
763 out:
764 return found;
767 void
768 intel_wait_for_vblank(struct drm_device *dev)
770 /* Wait for 20ms, i.e. one cycle at 50hz. */
771 mdelay(20);
774 static int
775 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
776 struct drm_framebuffer *old_fb)
778 struct drm_device *dev = crtc->dev;
779 struct drm_i915_private *dev_priv = dev->dev_private;
780 struct drm_i915_master_private *master_priv;
781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
782 struct intel_framebuffer *intel_fb;
783 struct drm_i915_gem_object *obj_priv;
784 struct drm_gem_object *obj;
785 int pipe = intel_crtc->pipe;
786 unsigned long Start, Offset;
787 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
788 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
789 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
790 int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
791 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
792 u32 dspcntr, alignment;
793 int ret;
795 /* no fb bound */
796 if (!crtc->fb) {
797 DRM_DEBUG("No FB bound\n");
798 return 0;
801 switch (pipe) {
802 case 0:
803 case 1:
804 break;
805 default:
806 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
807 return -EINVAL;
810 intel_fb = to_intel_framebuffer(crtc->fb);
811 obj = intel_fb->obj;
812 obj_priv = obj->driver_private;
814 switch (obj_priv->tiling_mode) {
815 case I915_TILING_NONE:
816 alignment = 64 * 1024;
817 break;
818 case I915_TILING_X:
819 /* pin() will align the object as required by fence */
820 alignment = 0;
821 break;
822 case I915_TILING_Y:
823 /* FIXME: Is this true? */
824 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
825 return -EINVAL;
826 default:
827 BUG();
830 mutex_lock(&dev->struct_mutex);
831 ret = i915_gem_object_pin(intel_fb->obj, alignment);
832 if (ret != 0) {
833 mutex_unlock(&dev->struct_mutex);
834 return ret;
837 ret = i915_gem_object_set_to_gtt_domain(intel_fb->obj, 1);
838 if (ret != 0) {
839 i915_gem_object_unpin(intel_fb->obj);
840 mutex_unlock(&dev->struct_mutex);
841 return ret;
844 dspcntr = I915_READ(dspcntr_reg);
845 /* Mask out pixel format bits in case we change it */
846 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
847 switch (crtc->fb->bits_per_pixel) {
848 case 8:
849 dspcntr |= DISPPLANE_8BPP;
850 break;
851 case 16:
852 if (crtc->fb->depth == 15)
853 dspcntr |= DISPPLANE_15_16BPP;
854 else
855 dspcntr |= DISPPLANE_16BPP;
856 break;
857 case 24:
858 case 32:
859 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
860 break;
861 default:
862 DRM_ERROR("Unknown color depth\n");
863 i915_gem_object_unpin(intel_fb->obj);
864 mutex_unlock(&dev->struct_mutex);
865 return -EINVAL;
867 if (IS_I965G(dev)) {
868 if (obj_priv->tiling_mode != I915_TILING_NONE)
869 dspcntr |= DISPPLANE_TILED;
870 else
871 dspcntr &= ~DISPPLANE_TILED;
874 I915_WRITE(dspcntr_reg, dspcntr);
876 Start = obj_priv->gtt_offset;
877 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
879 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
880 I915_WRITE(dspstride, crtc->fb->pitch);
881 if (IS_I965G(dev)) {
882 I915_WRITE(dspbase, Offset);
883 I915_READ(dspbase);
884 I915_WRITE(dspsurf, Start);
885 I915_READ(dspsurf);
886 I915_WRITE(dsptileoff, (y << 16) | x);
887 } else {
888 I915_WRITE(dspbase, Start + Offset);
889 I915_READ(dspbase);
892 intel_wait_for_vblank(dev);
894 if (old_fb) {
895 intel_fb = to_intel_framebuffer(old_fb);
896 i915_gem_object_unpin(intel_fb->obj);
898 mutex_unlock(&dev->struct_mutex);
900 if (!dev->primary->master)
901 return 0;
903 master_priv = dev->primary->master->driver_priv;
904 if (!master_priv->sarea_priv)
905 return 0;
907 if (pipe) {
908 master_priv->sarea_priv->pipeB_x = x;
909 master_priv->sarea_priv->pipeB_y = y;
910 } else {
911 master_priv->sarea_priv->pipeA_x = x;
912 master_priv->sarea_priv->pipeA_y = y;
915 return 0;
918 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
920 struct drm_device *dev = crtc->dev;
921 struct drm_i915_private *dev_priv = dev->dev_private;
922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
923 int pipe = intel_crtc->pipe;
924 int plane = intel_crtc->pipe;
925 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
926 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
927 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
928 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
929 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
930 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
931 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
932 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
933 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
934 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
935 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
936 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
937 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
938 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
939 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
940 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
941 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
942 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
943 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
944 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
945 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
946 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
947 u32 temp;
948 int tries = 5, j;
950 /* XXX: When our outputs are all unaware of DPMS modes other than off
951 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
953 switch (mode) {
954 case DRM_MODE_DPMS_ON:
955 case DRM_MODE_DPMS_STANDBY:
956 case DRM_MODE_DPMS_SUSPEND:
957 DRM_DEBUG("crtc %d dpms on\n", pipe);
958 /* enable PCH DPLL */
959 temp = I915_READ(pch_dpll_reg);
960 if ((temp & DPLL_VCO_ENABLE) == 0) {
961 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
962 I915_READ(pch_dpll_reg);
965 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
966 temp = I915_READ(fdi_rx_reg);
967 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
968 FDI_SEL_PCDCLK |
969 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
970 I915_READ(fdi_rx_reg);
971 udelay(200);
973 /* Enable CPU FDI TX PLL, always on for IGDNG */
974 temp = I915_READ(fdi_tx_reg);
975 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
976 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
977 I915_READ(fdi_tx_reg);
978 udelay(100);
981 /* Enable CPU pipe */
982 temp = I915_READ(pipeconf_reg);
983 if ((temp & PIPEACONF_ENABLE) == 0) {
984 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
985 I915_READ(pipeconf_reg);
986 udelay(100);
989 /* configure and enable CPU plane */
990 temp = I915_READ(dspcntr_reg);
991 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
992 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
993 /* Flush the plane changes */
994 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
997 /* enable CPU FDI TX and PCH FDI RX */
998 temp = I915_READ(fdi_tx_reg);
999 temp |= FDI_TX_ENABLE;
1000 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1001 temp &= ~FDI_LINK_TRAIN_NONE;
1002 temp |= FDI_LINK_TRAIN_PATTERN_1;
1003 I915_WRITE(fdi_tx_reg, temp);
1004 I915_READ(fdi_tx_reg);
1006 temp = I915_READ(fdi_rx_reg);
1007 temp &= ~FDI_LINK_TRAIN_NONE;
1008 temp |= FDI_LINK_TRAIN_PATTERN_1;
1009 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1010 I915_READ(fdi_rx_reg);
1012 udelay(150);
1014 /* Train FDI. */
1015 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1016 for train result */
1017 temp = I915_READ(fdi_rx_imr_reg);
1018 temp &= ~FDI_RX_SYMBOL_LOCK;
1019 temp &= ~FDI_RX_BIT_LOCK;
1020 I915_WRITE(fdi_rx_imr_reg, temp);
1021 I915_READ(fdi_rx_imr_reg);
1022 udelay(150);
1024 temp = I915_READ(fdi_rx_iir_reg);
1025 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1027 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1028 for (j = 0; j < tries; j++) {
1029 temp = I915_READ(fdi_rx_iir_reg);
1030 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1031 if (temp & FDI_RX_BIT_LOCK)
1032 break;
1033 udelay(200);
1035 if (j != tries)
1036 I915_WRITE(fdi_rx_iir_reg,
1037 temp | FDI_RX_BIT_LOCK);
1038 else
1039 DRM_DEBUG("train 1 fail\n");
1040 } else {
1041 I915_WRITE(fdi_rx_iir_reg,
1042 temp | FDI_RX_BIT_LOCK);
1043 DRM_DEBUG("train 1 ok 2!\n");
1045 temp = I915_READ(fdi_tx_reg);
1046 temp &= ~FDI_LINK_TRAIN_NONE;
1047 temp |= FDI_LINK_TRAIN_PATTERN_2;
1048 I915_WRITE(fdi_tx_reg, temp);
1050 temp = I915_READ(fdi_rx_reg);
1051 temp &= ~FDI_LINK_TRAIN_NONE;
1052 temp |= FDI_LINK_TRAIN_PATTERN_2;
1053 I915_WRITE(fdi_rx_reg, temp);
1055 udelay(150);
1057 temp = I915_READ(fdi_rx_iir_reg);
1058 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1060 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1061 for (j = 0; j < tries; j++) {
1062 temp = I915_READ(fdi_rx_iir_reg);
1063 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1064 if (temp & FDI_RX_SYMBOL_LOCK)
1065 break;
1066 udelay(200);
1068 if (j != tries) {
1069 I915_WRITE(fdi_rx_iir_reg,
1070 temp | FDI_RX_SYMBOL_LOCK);
1071 DRM_DEBUG("train 2 ok 1!\n");
1072 } else
1073 DRM_DEBUG("train 2 fail\n");
1074 } else {
1075 I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_SYMBOL_LOCK);
1076 DRM_DEBUG("train 2 ok 2!\n");
1078 DRM_DEBUG("train done\n");
1080 /* set transcoder timing */
1081 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1082 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1083 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1085 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1086 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1087 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1089 /* enable PCH transcoder */
1090 temp = I915_READ(transconf_reg);
1091 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1092 I915_READ(transconf_reg);
1094 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1097 /* enable normal */
1099 temp = I915_READ(fdi_tx_reg);
1100 temp &= ~FDI_LINK_TRAIN_NONE;
1101 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1102 FDI_TX_ENHANCE_FRAME_ENABLE);
1103 I915_READ(fdi_tx_reg);
1105 temp = I915_READ(fdi_rx_reg);
1106 temp &= ~FDI_LINK_TRAIN_NONE;
1107 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1108 FDI_RX_ENHANCE_FRAME_ENABLE);
1109 I915_READ(fdi_rx_reg);
1111 /* wait one idle pattern time */
1112 udelay(100);
1114 intel_crtc_load_lut(crtc);
1116 break;
1117 case DRM_MODE_DPMS_OFF:
1118 DRM_DEBUG("crtc %d dpms off\n", pipe);
1120 /* Disable the VGA plane that we never use */
1121 I915_WRITE(CPU_VGACNTRL, VGA_DISP_DISABLE);
1123 /* Disable display plane */
1124 temp = I915_READ(dspcntr_reg);
1125 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1126 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1127 /* Flush the plane changes */
1128 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1129 I915_READ(dspbase_reg);
1132 /* disable cpu pipe, disable after all planes disabled */
1133 temp = I915_READ(pipeconf_reg);
1134 if ((temp & PIPEACONF_ENABLE) != 0) {
1135 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1136 I915_READ(pipeconf_reg);
1137 /* wait for cpu pipe off, pipe state */
1138 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0)
1140 } else
1141 DRM_DEBUG("crtc %d is disabled\n", pipe);
1143 /* IGDNG-A : disable cpu panel fitter ? */
1144 temp = I915_READ(pf_ctl_reg);
1145 if ((temp & PF_ENABLE) != 0) {
1146 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1147 I915_READ(pf_ctl_reg);
1150 /* disable CPU FDI tx and PCH FDI rx */
1151 temp = I915_READ(fdi_tx_reg);
1152 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1153 I915_READ(fdi_tx_reg);
1155 temp = I915_READ(fdi_rx_reg);
1156 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1157 I915_READ(fdi_rx_reg);
1159 /* still set train pattern 1 */
1160 temp = I915_READ(fdi_tx_reg);
1161 temp &= ~FDI_LINK_TRAIN_NONE;
1162 temp |= FDI_LINK_TRAIN_PATTERN_1;
1163 I915_WRITE(fdi_tx_reg, temp);
1165 temp = I915_READ(fdi_rx_reg);
1166 temp &= ~FDI_LINK_TRAIN_NONE;
1167 temp |= FDI_LINK_TRAIN_PATTERN_1;
1168 I915_WRITE(fdi_rx_reg, temp);
1170 /* disable PCH transcoder */
1171 temp = I915_READ(transconf_reg);
1172 if ((temp & TRANS_ENABLE) != 0) {
1173 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1174 I915_READ(transconf_reg);
1175 /* wait for PCH transcoder off, transcoder state */
1176 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0)
1180 /* disable PCH DPLL */
1181 temp = I915_READ(pch_dpll_reg);
1182 if ((temp & DPLL_VCO_ENABLE) != 0) {
1183 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1184 I915_READ(pch_dpll_reg);
1187 temp = I915_READ(fdi_rx_reg);
1188 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1189 temp &= ~FDI_SEL_PCDCLK;
1190 temp &= ~FDI_RX_PLL_ENABLE;
1191 I915_WRITE(fdi_rx_reg, temp);
1192 I915_READ(fdi_rx_reg);
1195 /* Wait for the clocks to turn off. */
1196 udelay(150);
1197 break;
1201 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1203 struct drm_device *dev = crtc->dev;
1204 struct drm_i915_private *dev_priv = dev->dev_private;
1205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1206 int pipe = intel_crtc->pipe;
1207 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1208 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1209 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
1210 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1211 u32 temp;
1213 /* XXX: When our outputs are all unaware of DPMS modes other than off
1214 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1216 switch (mode) {
1217 case DRM_MODE_DPMS_ON:
1218 case DRM_MODE_DPMS_STANDBY:
1219 case DRM_MODE_DPMS_SUSPEND:
1220 /* Enable the DPLL */
1221 temp = I915_READ(dpll_reg);
1222 if ((temp & DPLL_VCO_ENABLE) == 0) {
1223 I915_WRITE(dpll_reg, temp);
1224 I915_READ(dpll_reg);
1225 /* Wait for the clocks to stabilize. */
1226 udelay(150);
1227 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1228 I915_READ(dpll_reg);
1229 /* Wait for the clocks to stabilize. */
1230 udelay(150);
1231 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1232 I915_READ(dpll_reg);
1233 /* Wait for the clocks to stabilize. */
1234 udelay(150);
1237 /* Enable the pipe */
1238 temp = I915_READ(pipeconf_reg);
1239 if ((temp & PIPEACONF_ENABLE) == 0)
1240 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1242 /* Enable the plane */
1243 temp = I915_READ(dspcntr_reg);
1244 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1245 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1246 /* Flush the plane changes */
1247 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1250 intel_crtc_load_lut(crtc);
1252 /* Give the overlay scaler a chance to enable if it's on this pipe */
1253 //intel_crtc_dpms_video(crtc, true); TODO
1254 break;
1255 case DRM_MODE_DPMS_OFF:
1256 /* Give the overlay scaler a chance to disable if it's on this pipe */
1257 //intel_crtc_dpms_video(crtc, FALSE); TODO
1259 /* Disable the VGA plane that we never use */
1260 I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
1262 /* Disable display plane */
1263 temp = I915_READ(dspcntr_reg);
1264 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1265 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1266 /* Flush the plane changes */
1267 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1268 I915_READ(dspbase_reg);
1271 if (!IS_I9XX(dev)) {
1272 /* Wait for vblank for the disable to take effect */
1273 intel_wait_for_vblank(dev);
1276 /* Next, disable display pipes */
1277 temp = I915_READ(pipeconf_reg);
1278 if ((temp & PIPEACONF_ENABLE) != 0) {
1279 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1280 I915_READ(pipeconf_reg);
1283 /* Wait for vblank for the disable to take effect. */
1284 intel_wait_for_vblank(dev);
1286 temp = I915_READ(dpll_reg);
1287 if ((temp & DPLL_VCO_ENABLE) != 0) {
1288 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1289 I915_READ(dpll_reg);
1292 /* Wait for the clocks to turn off. */
1293 udelay(150);
1294 break;
1299 * Sets the power management mode of the pipe and plane.
1301 * This code should probably grow support for turning the cursor off and back
1302 * on appropriately at the same time as we're turning the pipe off/on.
1304 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1306 struct drm_device *dev = crtc->dev;
1307 struct drm_i915_master_private *master_priv;
1308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1309 int pipe = intel_crtc->pipe;
1310 bool enabled;
1312 if (IS_IGDNG(dev))
1313 igdng_crtc_dpms(crtc, mode);
1314 else
1315 i9xx_crtc_dpms(crtc, mode);
1317 if (!dev->primary->master)
1318 return;
1320 master_priv = dev->primary->master->driver_priv;
1321 if (!master_priv->sarea_priv)
1322 return;
1324 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1326 switch (pipe) {
1327 case 0:
1328 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1329 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1330 break;
1331 case 1:
1332 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1333 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1334 break;
1335 default:
1336 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1337 break;
1340 intel_crtc->dpms_mode = mode;
1343 static void intel_crtc_prepare (struct drm_crtc *crtc)
1345 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1346 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1349 static void intel_crtc_commit (struct drm_crtc *crtc)
1351 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1352 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1355 void intel_encoder_prepare (struct drm_encoder *encoder)
1357 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1358 /* lvds has its own version of prepare see intel_lvds_prepare */
1359 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1362 void intel_encoder_commit (struct drm_encoder *encoder)
1364 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1365 /* lvds has its own version of commit see intel_lvds_commit */
1366 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1369 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1370 struct drm_display_mode *mode,
1371 struct drm_display_mode *adjusted_mode)
1373 struct drm_device *dev = crtc->dev;
1374 if (IS_IGDNG(dev)) {
1375 /* FDI link clock is fixed at 2.7G */
1376 if (mode->clock * 3 > 27000 * 4)
1377 return MODE_CLOCK_HIGH;
1379 return true;
1383 /** Returns the core display clock speed for i830 - i945 */
1384 static int intel_get_core_clock_speed(struct drm_device *dev)
1387 /* Core clock values taken from the published datasheets.
1388 * The 830 may go up to 166 Mhz, which we should check.
1390 if (IS_I945G(dev))
1391 return 400000;
1392 else if (IS_I915G(dev))
1393 return 333000;
1394 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
1395 return 200000;
1396 else if (IS_I915GM(dev)) {
1397 u16 gcfgc = 0;
1399 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1401 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1402 return 133000;
1403 else {
1404 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1405 case GC_DISPLAY_CLOCK_333_MHZ:
1406 return 333000;
1407 default:
1408 case GC_DISPLAY_CLOCK_190_200_MHZ:
1409 return 190000;
1412 } else if (IS_I865G(dev))
1413 return 266000;
1414 else if (IS_I855(dev)) {
1415 u16 hpllcc = 0;
1416 /* Assume that the hardware is in the high speed state. This
1417 * should be the default.
1419 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1420 case GC_CLOCK_133_200:
1421 case GC_CLOCK_100_200:
1422 return 200000;
1423 case GC_CLOCK_166_250:
1424 return 250000;
1425 case GC_CLOCK_100_133:
1426 return 133000;
1428 } else /* 852, 830 */
1429 return 133000;
1431 return 0; /* Silence gcc warning */
1436 * Return the pipe currently connected to the panel fitter,
1437 * or -1 if the panel fitter is not present or not in use
1439 static int intel_panel_fitter_pipe (struct drm_device *dev)
1441 struct drm_i915_private *dev_priv = dev->dev_private;
1442 u32 pfit_control;
1444 /* i830 doesn't have a panel fitter */
1445 if (IS_I830(dev))
1446 return -1;
1448 pfit_control = I915_READ(PFIT_CONTROL);
1450 /* See if the panel fitter is in use */
1451 if ((pfit_control & PFIT_ENABLE) == 0)
1452 return -1;
1454 /* 965 can place panel fitter on either pipe */
1455 if (IS_I965G(dev))
1456 return (pfit_control >> 29) & 0x3;
1458 /* older chips can only use pipe 1 */
1459 return 1;
1462 struct fdi_m_n {
1463 u32 tu;
1464 u32 gmch_m;
1465 u32 gmch_n;
1466 u32 link_m;
1467 u32 link_n;
1470 static void
1471 fdi_reduce_ratio(u32 *num, u32 *den)
1473 while (*num > 0xffffff || *den > 0xffffff) {
1474 *num >>= 1;
1475 *den >>= 1;
1479 #define DATA_N 0x800000
1480 #define LINK_N 0x80000
1482 static void
1483 igdng_compute_m_n(int bytes_per_pixel, int nlanes,
1484 int pixel_clock, int link_clock,
1485 struct fdi_m_n *m_n)
1487 u64 temp;
1489 m_n->tu = 64; /* default size */
1491 temp = (u64) DATA_N * pixel_clock;
1492 temp = div_u64(temp, link_clock);
1493 m_n->gmch_m = (temp * bytes_per_pixel) / nlanes;
1494 m_n->gmch_n = DATA_N;
1495 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
1497 temp = (u64) LINK_N * pixel_clock;
1498 m_n->link_m = div_u64(temp, link_clock);
1499 m_n->link_n = LINK_N;
1500 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
1504 static int intel_crtc_mode_set(struct drm_crtc *crtc,
1505 struct drm_display_mode *mode,
1506 struct drm_display_mode *adjusted_mode,
1507 int x, int y,
1508 struct drm_framebuffer *old_fb)
1510 struct drm_device *dev = crtc->dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1513 int pipe = intel_crtc->pipe;
1514 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
1515 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1516 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
1517 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1518 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1519 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1520 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1521 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1522 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1523 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1524 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1525 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
1526 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
1527 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
1528 int refclk, num_outputs = 0;
1529 intel_clock_t clock;
1530 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
1531 bool ok, is_sdvo = false, is_dvo = false;
1532 bool is_crt = false, is_lvds = false, is_tv = false;
1533 struct drm_mode_config *mode_config = &dev->mode_config;
1534 struct drm_connector *connector;
1535 const intel_limit_t *limit;
1536 int ret;
1537 struct fdi_m_n m_n = {0};
1538 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
1539 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
1540 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
1541 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
1542 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
1543 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1544 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1545 int lvds_reg = LVDS;
1546 u32 temp;
1547 int sdvo_pixel_multiply;
1549 drm_vblank_pre_modeset(dev, pipe);
1551 list_for_each_entry(connector, &mode_config->connector_list, head) {
1552 struct intel_output *intel_output = to_intel_output(connector);
1554 if (!connector->encoder || connector->encoder->crtc != crtc)
1555 continue;
1557 switch (intel_output->type) {
1558 case INTEL_OUTPUT_LVDS:
1559 is_lvds = true;
1560 break;
1561 case INTEL_OUTPUT_SDVO:
1562 case INTEL_OUTPUT_HDMI:
1563 is_sdvo = true;
1564 if (intel_output->needs_tv_clock)
1565 is_tv = true;
1566 break;
1567 case INTEL_OUTPUT_DVO:
1568 is_dvo = true;
1569 break;
1570 case INTEL_OUTPUT_TVOUT:
1571 is_tv = true;
1572 break;
1573 case INTEL_OUTPUT_ANALOG:
1574 is_crt = true;
1575 break;
1578 num_outputs++;
1581 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
1582 refclk = dev_priv->lvds_ssc_freq * 1000;
1583 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
1584 } else if (IS_I9XX(dev)) {
1585 refclk = 96000;
1586 if (IS_IGDNG(dev))
1587 refclk = 120000; /* 120Mhz refclk */
1588 } else {
1589 refclk = 48000;
1593 * Returns a set of divisors for the desired target clock with the given
1594 * refclk, or FALSE. The returned values represent the clock equation:
1595 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
1597 limit = intel_limit(crtc);
1598 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
1599 if (!ok) {
1600 DRM_ERROR("Couldn't find PLL settings for mode!\n");
1601 drm_vblank_post_modeset(dev, pipe);
1602 return -EINVAL;
1605 /* SDVO TV has fixed PLL values depend on its clock range,
1606 this mirrors vbios setting. */
1607 if (is_sdvo && is_tv) {
1608 if (adjusted_mode->clock >= 100000
1609 && adjusted_mode->clock < 140500) {
1610 clock.p1 = 2;
1611 clock.p2 = 10;
1612 clock.n = 3;
1613 clock.m1 = 16;
1614 clock.m2 = 8;
1615 } else if (adjusted_mode->clock >= 140500
1616 && adjusted_mode->clock <= 200000) {
1617 clock.p1 = 1;
1618 clock.p2 = 10;
1619 clock.n = 6;
1620 clock.m1 = 12;
1621 clock.m2 = 8;
1625 /* FDI link */
1626 if (IS_IGDNG(dev))
1627 igdng_compute_m_n(3, 4, /* lane num 4 */
1628 adjusted_mode->clock,
1629 270000, /* lane clock */
1630 &m_n);
1632 if (IS_IGD(dev))
1633 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
1634 else
1635 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
1637 if (!IS_IGDNG(dev))
1638 dpll = DPLL_VGA_MODE_DIS;
1640 if (IS_I9XX(dev)) {
1641 if (is_lvds)
1642 dpll |= DPLLB_MODE_LVDS;
1643 else
1644 dpll |= DPLLB_MODE_DAC_SERIAL;
1645 if (is_sdvo) {
1646 dpll |= DPLL_DVO_HIGH_SPEED;
1647 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1648 if (IS_I945G(dev) || IS_I945GM(dev))
1649 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
1650 else if (IS_IGDNG(dev))
1651 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1654 /* compute bitmask from p1 value */
1655 if (IS_IGD(dev))
1656 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
1657 else {
1658 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1659 /* also FPA1 */
1660 if (IS_IGDNG(dev))
1661 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1663 switch (clock.p2) {
1664 case 5:
1665 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1666 break;
1667 case 7:
1668 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1669 break;
1670 case 10:
1671 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1672 break;
1673 case 14:
1674 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1675 break;
1677 if (IS_I965G(dev) && !IS_IGDNG(dev))
1678 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1679 } else {
1680 if (is_lvds) {
1681 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1682 } else {
1683 if (clock.p1 == 2)
1684 dpll |= PLL_P1_DIVIDE_BY_TWO;
1685 else
1686 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1687 if (clock.p2 == 4)
1688 dpll |= PLL_P2_DIVIDE_BY_4;
1692 if (is_sdvo && is_tv)
1693 dpll |= PLL_REF_INPUT_TVCLKINBC;
1694 else if (is_tv)
1695 /* XXX: just matching BIOS for now */
1696 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
1697 dpll |= 3;
1698 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
1699 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1700 else
1701 dpll |= PLL_REF_INPUT_DREFCLK;
1703 /* setup pipeconf */
1704 pipeconf = I915_READ(pipeconf_reg);
1706 /* Set up the display plane register */
1707 dspcntr = DISPPLANE_GAMMA_ENABLE;
1709 /* IGDNG's plane is forced to pipe, bit 24 is to
1710 enable color space conversion */
1711 if (!IS_IGDNG(dev)) {
1712 if (pipe == 0)
1713 dspcntr |= DISPPLANE_SEL_PIPE_A;
1714 else
1715 dspcntr |= DISPPLANE_SEL_PIPE_B;
1718 if (pipe == 0 && !IS_I965G(dev)) {
1719 /* Enable pixel doubling when the dot clock is > 90% of the (display)
1720 * core speed.
1722 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
1723 * pipe == 0 check?
1725 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
1726 pipeconf |= PIPEACONF_DOUBLE_WIDE;
1727 else
1728 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
1731 dspcntr |= DISPLAY_PLANE_ENABLE;
1732 pipeconf |= PIPEACONF_ENABLE;
1733 dpll |= DPLL_VCO_ENABLE;
1736 /* Disable the panel fitter if it was on our pipe */
1737 if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
1738 I915_WRITE(PFIT_CONTROL, 0);
1740 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1741 drm_mode_debug_printmodeline(mode);
1743 /* assign to IGDNG registers */
1744 if (IS_IGDNG(dev)) {
1745 fp_reg = pch_fp_reg;
1746 dpll_reg = pch_dpll_reg;
1749 if (dpll & DPLL_VCO_ENABLE) {
1750 I915_WRITE(fp_reg, fp);
1751 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
1752 I915_READ(dpll_reg);
1753 udelay(150);
1756 if (IS_IGDNG(dev)) {
1757 /* enable PCH clock reference source */
1758 /* XXX need to change the setting for other outputs */
1759 u32 temp;
1760 temp = I915_READ(PCH_DREF_CONTROL);
1761 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
1762 temp |= DREF_NONSPREAD_CK505_ENABLE;
1763 temp &= ~DREF_SSC_SOURCE_MASK;
1764 temp |= DREF_SSC_SOURCE_ENABLE;
1765 temp &= ~DREF_SSC1_ENABLE;
1766 /* if no eDP, disable source output to CPU */
1767 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
1768 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
1769 I915_WRITE(PCH_DREF_CONTROL, temp);
1772 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1773 * This is an exception to the general rule that mode_set doesn't turn
1774 * things on.
1776 if (is_lvds) {
1777 u32 lvds;
1779 if (IS_IGDNG(dev))
1780 lvds_reg = PCH_LVDS;
1782 lvds = I915_READ(lvds_reg);
1783 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
1784 /* Set the B0-B3 data pairs corresponding to whether we're going to
1785 * set the DPLLs for dual-channel mode or not.
1787 if (clock.p2 == 7)
1788 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
1789 else
1790 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
1792 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1793 * appropriately here, but we need to look more thoroughly into how
1794 * panels behave in the two modes.
1797 I915_WRITE(lvds_reg, lvds);
1798 I915_READ(lvds_reg);
1801 I915_WRITE(fp_reg, fp);
1802 I915_WRITE(dpll_reg, dpll);
1803 I915_READ(dpll_reg);
1804 /* Wait for the clocks to stabilize. */
1805 udelay(150);
1807 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
1808 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1809 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
1810 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1811 } else {
1812 /* write it again -- the BIOS does, after all */
1813 I915_WRITE(dpll_reg, dpll);
1815 I915_READ(dpll_reg);
1816 /* Wait for the clocks to stabilize. */
1817 udelay(150);
1819 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
1820 ((adjusted_mode->crtc_htotal - 1) << 16));
1821 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
1822 ((adjusted_mode->crtc_hblank_end - 1) << 16));
1823 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
1824 ((adjusted_mode->crtc_hsync_end - 1) << 16));
1825 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
1826 ((adjusted_mode->crtc_vtotal - 1) << 16));
1827 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
1828 ((adjusted_mode->crtc_vblank_end - 1) << 16));
1829 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
1830 ((adjusted_mode->crtc_vsync_end - 1) << 16));
1831 /* pipesrc and dspsize control the size that is scaled from, which should
1832 * always be the user's requested size.
1834 if (!IS_IGDNG(dev)) {
1835 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
1836 (mode->hdisplay - 1));
1837 I915_WRITE(dsppos_reg, 0);
1839 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
1841 if (IS_IGDNG(dev)) {
1842 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
1843 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
1844 I915_WRITE(link_m1_reg, m_n.link_m);
1845 I915_WRITE(link_n1_reg, m_n.link_n);
1847 /* enable FDI RX PLL too */
1848 temp = I915_READ(fdi_rx_reg);
1849 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1850 udelay(200);
1853 I915_WRITE(pipeconf_reg, pipeconf);
1854 I915_READ(pipeconf_reg);
1856 intel_wait_for_vblank(dev);
1858 I915_WRITE(dspcntr_reg, dspcntr);
1860 /* Flush the plane changes */
1861 ret = intel_pipe_set_base(crtc, x, y, old_fb);
1862 drm_vblank_post_modeset(dev, pipe);
1864 return ret;
1867 /** Loads the palette/gamma unit for the CRTC with the prepared values */
1868 void intel_crtc_load_lut(struct drm_crtc *crtc)
1870 struct drm_device *dev = crtc->dev;
1871 struct drm_i915_private *dev_priv = dev->dev_private;
1872 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1873 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
1874 int i;
1876 /* The clocks have to be on to load the palette. */
1877 if (!crtc->enabled)
1878 return;
1880 /* use legacy palette for IGDNG */
1881 if (IS_IGDNG(dev))
1882 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
1883 LGC_PALETTE_B;
1885 for (i = 0; i < 256; i++) {
1886 I915_WRITE(palreg + 4 * i,
1887 (intel_crtc->lut_r[i] << 16) |
1888 (intel_crtc->lut_g[i] << 8) |
1889 intel_crtc->lut_b[i]);
1893 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
1894 struct drm_file *file_priv,
1895 uint32_t handle,
1896 uint32_t width, uint32_t height)
1898 struct drm_device *dev = crtc->dev;
1899 struct drm_i915_private *dev_priv = dev->dev_private;
1900 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1901 struct drm_gem_object *bo;
1902 struct drm_i915_gem_object *obj_priv;
1903 int pipe = intel_crtc->pipe;
1904 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1905 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1906 uint32_t temp = I915_READ(control);
1907 size_t addr;
1908 int ret;
1910 DRM_DEBUG("\n");
1912 /* if we want to turn off the cursor ignore width and height */
1913 if (!handle) {
1914 DRM_DEBUG("cursor off\n");
1915 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
1916 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
1917 temp |= CURSOR_MODE_DISABLE;
1918 } else {
1919 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
1921 addr = 0;
1922 bo = NULL;
1923 mutex_lock(&dev->struct_mutex);
1924 goto finish;
1927 /* Currently we only support 64x64 cursors */
1928 if (width != 64 || height != 64) {
1929 DRM_ERROR("we currently only support 64x64 cursors\n");
1930 return -EINVAL;
1933 bo = drm_gem_object_lookup(dev, file_priv, handle);
1934 if (!bo)
1935 return -ENOENT;
1937 obj_priv = bo->driver_private;
1939 if (bo->size < width * height * 4) {
1940 DRM_ERROR("buffer is to small\n");
1941 ret = -ENOMEM;
1942 goto fail;
1945 /* we only need to pin inside GTT if cursor is non-phy */
1946 mutex_lock(&dev->struct_mutex);
1947 if (!dev_priv->cursor_needs_physical) {
1948 ret = i915_gem_object_pin(bo, PAGE_SIZE);
1949 if (ret) {
1950 DRM_ERROR("failed to pin cursor bo\n");
1951 goto fail_locked;
1953 addr = obj_priv->gtt_offset;
1954 } else {
1955 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
1956 if (ret) {
1957 DRM_ERROR("failed to attach phys object\n");
1958 goto fail_locked;
1960 addr = obj_priv->phys_obj->handle->busaddr;
1963 if (!IS_I9XX(dev))
1964 I915_WRITE(CURSIZE, (height << 12) | width);
1966 /* Hooray for CUR*CNTR differences */
1967 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
1968 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
1969 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1970 temp |= (pipe << 28); /* Connect to correct pipe */
1971 } else {
1972 temp &= ~(CURSOR_FORMAT_MASK);
1973 temp |= CURSOR_ENABLE;
1974 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
1977 finish:
1978 I915_WRITE(control, temp);
1979 I915_WRITE(base, addr);
1981 if (intel_crtc->cursor_bo) {
1982 if (dev_priv->cursor_needs_physical) {
1983 if (intel_crtc->cursor_bo != bo)
1984 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
1985 } else
1986 i915_gem_object_unpin(intel_crtc->cursor_bo);
1987 drm_gem_object_unreference(intel_crtc->cursor_bo);
1989 mutex_unlock(&dev->struct_mutex);
1991 intel_crtc->cursor_addr = addr;
1992 intel_crtc->cursor_bo = bo;
1994 return 0;
1995 fail:
1996 mutex_lock(&dev->struct_mutex);
1997 fail_locked:
1998 drm_gem_object_unreference(bo);
1999 mutex_unlock(&dev->struct_mutex);
2000 return ret;
2003 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
2005 struct drm_device *dev = crtc->dev;
2006 struct drm_i915_private *dev_priv = dev->dev_private;
2007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2008 int pipe = intel_crtc->pipe;
2009 uint32_t temp = 0;
2010 uint32_t adder;
2012 if (x < 0) {
2013 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
2014 x = -x;
2016 if (y < 0) {
2017 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
2018 y = -y;
2021 temp |= x << CURSOR_X_SHIFT;
2022 temp |= y << CURSOR_Y_SHIFT;
2024 adder = intel_crtc->cursor_addr;
2025 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
2026 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
2028 return 0;
2031 /** Sets the color ramps on behalf of RandR */
2032 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
2033 u16 blue, int regno)
2035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2037 intel_crtc->lut_r[regno] = red >> 8;
2038 intel_crtc->lut_g[regno] = green >> 8;
2039 intel_crtc->lut_b[regno] = blue >> 8;
2042 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
2043 u16 *blue, uint32_t size)
2045 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2046 int i;
2048 if (size != 256)
2049 return;
2051 for (i = 0; i < 256; i++) {
2052 intel_crtc->lut_r[i] = red[i] >> 8;
2053 intel_crtc->lut_g[i] = green[i] >> 8;
2054 intel_crtc->lut_b[i] = blue[i] >> 8;
2057 intel_crtc_load_lut(crtc);
2061 * Get a pipe with a simple mode set on it for doing load-based monitor
2062 * detection.
2064 * It will be up to the load-detect code to adjust the pipe as appropriate for
2065 * its requirements. The pipe will be connected to no other outputs.
2067 * Currently this code will only succeed if there is a pipe with no outputs
2068 * configured for it. In the future, it could choose to temporarily disable
2069 * some outputs to free up a pipe for its use.
2071 * \return crtc, or NULL if no pipes are available.
2074 /* VESA 640x480x72Hz mode to set on the pipe */
2075 static struct drm_display_mode load_detect_mode = {
2076 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
2077 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
2080 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
2081 struct drm_display_mode *mode,
2082 int *dpms_mode)
2084 struct intel_crtc *intel_crtc;
2085 struct drm_crtc *possible_crtc;
2086 struct drm_crtc *supported_crtc =NULL;
2087 struct drm_encoder *encoder = &intel_output->enc;
2088 struct drm_crtc *crtc = NULL;
2089 struct drm_device *dev = encoder->dev;
2090 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2091 struct drm_crtc_helper_funcs *crtc_funcs;
2092 int i = -1;
2095 * Algorithm gets a little messy:
2096 * - if the connector already has an assigned crtc, use it (but make
2097 * sure it's on first)
2098 * - try to find the first unused crtc that can drive this connector,
2099 * and use that if we find one
2100 * - if there are no unused crtcs available, try to use the first
2101 * one we found that supports the connector
2104 /* See if we already have a CRTC for this connector */
2105 if (encoder->crtc) {
2106 crtc = encoder->crtc;
2107 /* Make sure the crtc and connector are running */
2108 intel_crtc = to_intel_crtc(crtc);
2109 *dpms_mode = intel_crtc->dpms_mode;
2110 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2111 crtc_funcs = crtc->helper_private;
2112 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2113 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2115 return crtc;
2118 /* Find an unused one (if possible) */
2119 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
2120 i++;
2121 if (!(encoder->possible_crtcs & (1 << i)))
2122 continue;
2123 if (!possible_crtc->enabled) {
2124 crtc = possible_crtc;
2125 break;
2127 if (!supported_crtc)
2128 supported_crtc = possible_crtc;
2132 * If we didn't find an unused CRTC, don't use any.
2134 if (!crtc) {
2135 return NULL;
2138 encoder->crtc = crtc;
2139 intel_output->base.encoder = encoder;
2140 intel_output->load_detect_temp = true;
2142 intel_crtc = to_intel_crtc(crtc);
2143 *dpms_mode = intel_crtc->dpms_mode;
2145 if (!crtc->enabled) {
2146 if (!mode)
2147 mode = &load_detect_mode;
2148 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
2149 } else {
2150 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2151 crtc_funcs = crtc->helper_private;
2152 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2155 /* Add this connector to the crtc */
2156 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
2157 encoder_funcs->commit(encoder);
2159 /* let the connector get through one full cycle before testing */
2160 intel_wait_for_vblank(dev);
2162 return crtc;
2165 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
2167 struct drm_encoder *encoder = &intel_output->enc;
2168 struct drm_device *dev = encoder->dev;
2169 struct drm_crtc *crtc = encoder->crtc;
2170 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2171 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2173 if (intel_output->load_detect_temp) {
2174 encoder->crtc = NULL;
2175 intel_output->base.encoder = NULL;
2176 intel_output->load_detect_temp = false;
2177 crtc->enabled = drm_helper_crtc_in_use(crtc);
2178 drm_helper_disable_unused_functions(dev);
2181 /* Switch crtc and output back off if necessary */
2182 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
2183 if (encoder->crtc == crtc)
2184 encoder_funcs->dpms(encoder, dpms_mode);
2185 crtc_funcs->dpms(crtc, dpms_mode);
2189 /* Returns the clock of the currently programmed mode of the given pipe. */
2190 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
2192 struct drm_i915_private *dev_priv = dev->dev_private;
2193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2194 int pipe = intel_crtc->pipe;
2195 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
2196 u32 fp;
2197 intel_clock_t clock;
2199 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
2200 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
2201 else
2202 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
2204 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
2205 if (IS_IGD(dev)) {
2206 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
2207 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
2208 } else {
2209 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
2210 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
2213 if (IS_I9XX(dev)) {
2214 if (IS_IGD(dev))
2215 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
2216 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
2217 else
2218 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
2219 DPLL_FPA01_P1_POST_DIV_SHIFT);
2221 switch (dpll & DPLL_MODE_MASK) {
2222 case DPLLB_MODE_DAC_SERIAL:
2223 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
2224 5 : 10;
2225 break;
2226 case DPLLB_MODE_LVDS:
2227 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
2228 7 : 14;
2229 break;
2230 default:
2231 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
2232 "mode\n", (int)(dpll & DPLL_MODE_MASK));
2233 return 0;
2236 /* XXX: Handle the 100Mhz refclk */
2237 intel_clock(dev, 96000, &clock);
2238 } else {
2239 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2241 if (is_lvds) {
2242 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
2243 DPLL_FPA01_P1_POST_DIV_SHIFT);
2244 clock.p2 = 14;
2246 if ((dpll & PLL_REF_INPUT_MASK) ==
2247 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
2248 /* XXX: might not be 66MHz */
2249 intel_clock(dev, 66000, &clock);
2250 } else
2251 intel_clock(dev, 48000, &clock);
2252 } else {
2253 if (dpll & PLL_P1_DIVIDE_BY_TWO)
2254 clock.p1 = 2;
2255 else {
2256 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
2257 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
2259 if (dpll & PLL_P2_DIVIDE_BY_4)
2260 clock.p2 = 4;
2261 else
2262 clock.p2 = 2;
2264 intel_clock(dev, 48000, &clock);
2268 /* XXX: It would be nice to validate the clocks, but we can't reuse
2269 * i830PllIsValid() because it relies on the xf86_config connector
2270 * configuration being accurate, which it isn't necessarily.
2273 return clock.dot;
2276 /** Returns the currently programmed mode of the given pipe. */
2277 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
2278 struct drm_crtc *crtc)
2280 struct drm_i915_private *dev_priv = dev->dev_private;
2281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2282 int pipe = intel_crtc->pipe;
2283 struct drm_display_mode *mode;
2284 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
2285 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
2286 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
2287 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
2289 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
2290 if (!mode)
2291 return NULL;
2293 mode->clock = intel_crtc_clock_get(dev, crtc);
2294 mode->hdisplay = (htot & 0xffff) + 1;
2295 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
2296 mode->hsync_start = (hsync & 0xffff) + 1;
2297 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
2298 mode->vdisplay = (vtot & 0xffff) + 1;
2299 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
2300 mode->vsync_start = (vsync & 0xffff) + 1;
2301 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
2303 drm_mode_set_name(mode);
2304 drm_mode_set_crtcinfo(mode, 0);
2306 return mode;
2309 static void intel_crtc_destroy(struct drm_crtc *crtc)
2311 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2313 drm_crtc_cleanup(crtc);
2314 kfree(intel_crtc);
2317 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
2318 .dpms = intel_crtc_dpms,
2319 .mode_fixup = intel_crtc_mode_fixup,
2320 .mode_set = intel_crtc_mode_set,
2321 .mode_set_base = intel_pipe_set_base,
2322 .prepare = intel_crtc_prepare,
2323 .commit = intel_crtc_commit,
2326 static const struct drm_crtc_funcs intel_crtc_funcs = {
2327 .cursor_set = intel_crtc_cursor_set,
2328 .cursor_move = intel_crtc_cursor_move,
2329 .gamma_set = intel_crtc_gamma_set,
2330 .set_config = drm_crtc_helper_set_config,
2331 .destroy = intel_crtc_destroy,
2335 static void intel_crtc_init(struct drm_device *dev, int pipe)
2337 struct intel_crtc *intel_crtc;
2338 int i;
2340 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
2341 if (intel_crtc == NULL)
2342 return;
2344 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
2346 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
2347 intel_crtc->pipe = pipe;
2348 for (i = 0; i < 256; i++) {
2349 intel_crtc->lut_r[i] = i;
2350 intel_crtc->lut_g[i] = i;
2351 intel_crtc->lut_b[i] = i;
2354 intel_crtc->cursor_addr = 0;
2355 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
2356 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
2358 intel_crtc->mode_set.crtc = &intel_crtc->base;
2359 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
2360 intel_crtc->mode_set.num_connectors = 0;
2362 if (i915_fbpercrtc) {
2369 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
2370 struct drm_file *file_priv)
2372 drm_i915_private_t *dev_priv = dev->dev_private;
2373 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
2374 struct drm_crtc *crtc = NULL;
2375 int pipe = -1;
2377 if (!dev_priv) {
2378 DRM_ERROR("called with no initialization\n");
2379 return -EINVAL;
2382 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2384 if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
2385 pipe = intel_crtc->pipe;
2386 break;
2390 if (pipe == -1) {
2391 DRM_ERROR("no such CRTC id\n");
2392 return -EINVAL;
2395 pipe_from_crtc_id->pipe = pipe;
2397 return 0;
2400 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
2402 struct drm_crtc *crtc = NULL;
2404 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2406 if (intel_crtc->pipe == pipe)
2407 break;
2409 return crtc;
2412 static int intel_connector_clones(struct drm_device *dev, int type_mask)
2414 int index_mask = 0;
2415 struct drm_connector *connector;
2416 int entry = 0;
2418 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2419 struct intel_output *intel_output = to_intel_output(connector);
2420 if (type_mask & (1 << intel_output->type))
2421 index_mask |= (1 << entry);
2422 entry++;
2424 return index_mask;
2428 static void intel_setup_outputs(struct drm_device *dev)
2430 struct drm_i915_private *dev_priv = dev->dev_private;
2431 struct drm_connector *connector;
2433 intel_crt_init(dev);
2435 /* Set up integrated LVDS */
2436 if (IS_MOBILE(dev) && !IS_I830(dev))
2437 intel_lvds_init(dev);
2439 if (IS_IGDNG(dev)) {
2440 int found;
2442 if (I915_READ(HDMIB) & PORT_DETECTED) {
2443 /* check SDVOB */
2444 /* found = intel_sdvo_init(dev, HDMIB); */
2445 found = 0;
2446 if (!found)
2447 intel_hdmi_init(dev, HDMIB);
2450 if (I915_READ(HDMIC) & PORT_DETECTED)
2451 intel_hdmi_init(dev, HDMIC);
2453 if (I915_READ(HDMID) & PORT_DETECTED)
2454 intel_hdmi_init(dev, HDMID);
2456 } else if (IS_I9XX(dev)) {
2457 int found;
2458 u32 reg;
2460 if (I915_READ(SDVOB) & SDVO_DETECTED) {
2461 found = intel_sdvo_init(dev, SDVOB);
2462 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
2463 intel_hdmi_init(dev, SDVOB);
2466 /* Before G4X SDVOC doesn't have its own detect register */
2467 if (IS_G4X(dev))
2468 reg = SDVOC;
2469 else
2470 reg = SDVOB;
2472 if (I915_READ(reg) & SDVO_DETECTED) {
2473 found = intel_sdvo_init(dev, SDVOC);
2474 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
2475 intel_hdmi_init(dev, SDVOC);
2477 } else
2478 intel_dvo_init(dev);
2480 if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
2481 intel_tv_init(dev);
2483 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2484 struct intel_output *intel_output = to_intel_output(connector);
2485 struct drm_encoder *encoder = &intel_output->enc;
2486 int crtc_mask = 0, clone_mask = 0;
2488 /* valid crtcs */
2489 switch(intel_output->type) {
2490 case INTEL_OUTPUT_HDMI:
2491 crtc_mask = ((1 << 0)|
2492 (1 << 1));
2493 clone_mask = ((1 << INTEL_OUTPUT_HDMI));
2494 break;
2495 case INTEL_OUTPUT_DVO:
2496 case INTEL_OUTPUT_SDVO:
2497 crtc_mask = ((1 << 0)|
2498 (1 << 1));
2499 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
2500 (1 << INTEL_OUTPUT_DVO) |
2501 (1 << INTEL_OUTPUT_SDVO));
2502 break;
2503 case INTEL_OUTPUT_ANALOG:
2504 crtc_mask = ((1 << 0)|
2505 (1 << 1));
2506 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
2507 (1 << INTEL_OUTPUT_DVO) |
2508 (1 << INTEL_OUTPUT_SDVO));
2509 break;
2510 case INTEL_OUTPUT_LVDS:
2511 crtc_mask = (1 << 1);
2512 clone_mask = (1 << INTEL_OUTPUT_LVDS);
2513 break;
2514 case INTEL_OUTPUT_TVOUT:
2515 crtc_mask = ((1 << 0) |
2516 (1 << 1));
2517 clone_mask = (1 << INTEL_OUTPUT_TVOUT);
2518 break;
2520 encoder->possible_crtcs = crtc_mask;
2521 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
2525 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
2527 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2528 struct drm_device *dev = fb->dev;
2530 if (fb->fbdev)
2531 intelfb_remove(dev, fb);
2533 drm_framebuffer_cleanup(fb);
2534 mutex_lock(&dev->struct_mutex);
2535 drm_gem_object_unreference(intel_fb->obj);
2536 mutex_unlock(&dev->struct_mutex);
2538 kfree(intel_fb);
2541 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
2542 struct drm_file *file_priv,
2543 unsigned int *handle)
2545 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2546 struct drm_gem_object *object = intel_fb->obj;
2548 return drm_gem_handle_create(file_priv, object, handle);
2551 static const struct drm_framebuffer_funcs intel_fb_funcs = {
2552 .destroy = intel_user_framebuffer_destroy,
2553 .create_handle = intel_user_framebuffer_create_handle,
2556 int intel_framebuffer_create(struct drm_device *dev,
2557 struct drm_mode_fb_cmd *mode_cmd,
2558 struct drm_framebuffer **fb,
2559 struct drm_gem_object *obj)
2561 struct intel_framebuffer *intel_fb;
2562 int ret;
2564 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
2565 if (!intel_fb)
2566 return -ENOMEM;
2568 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
2569 if (ret) {
2570 DRM_ERROR("framebuffer init failed %d\n", ret);
2571 return ret;
2574 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
2576 intel_fb->obj = obj;
2578 *fb = &intel_fb->base;
2580 return 0;
2584 static struct drm_framebuffer *
2585 intel_user_framebuffer_create(struct drm_device *dev,
2586 struct drm_file *filp,
2587 struct drm_mode_fb_cmd *mode_cmd)
2589 struct drm_gem_object *obj;
2590 struct drm_framebuffer *fb;
2591 int ret;
2593 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
2594 if (!obj)
2595 return NULL;
2597 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
2598 if (ret) {
2599 mutex_lock(&dev->struct_mutex);
2600 drm_gem_object_unreference(obj);
2601 mutex_unlock(&dev->struct_mutex);
2602 return NULL;
2605 return fb;
2608 static const struct drm_mode_config_funcs intel_mode_funcs = {
2609 .fb_create = intel_user_framebuffer_create,
2610 .fb_changed = intelfb_probe,
2613 void intel_modeset_init(struct drm_device *dev)
2615 int num_pipe;
2616 int i;
2618 drm_mode_config_init(dev);
2620 dev->mode_config.min_width = 0;
2621 dev->mode_config.min_height = 0;
2623 dev->mode_config.funcs = (void *)&intel_mode_funcs;
2625 if (IS_I965G(dev)) {
2626 dev->mode_config.max_width = 8192;
2627 dev->mode_config.max_height = 8192;
2628 } else {
2629 dev->mode_config.max_width = 2048;
2630 dev->mode_config.max_height = 2048;
2633 /* set memory base */
2634 if (IS_I9XX(dev))
2635 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
2636 else
2637 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
2639 if (IS_MOBILE(dev) || IS_I9XX(dev))
2640 num_pipe = 2;
2641 else
2642 num_pipe = 1;
2643 DRM_DEBUG("%d display pipe%s available.\n",
2644 num_pipe, num_pipe > 1 ? "s" : "");
2646 for (i = 0; i < num_pipe; i++) {
2647 intel_crtc_init(dev, i);
2650 intel_setup_outputs(dev);
2653 void intel_modeset_cleanup(struct drm_device *dev)
2655 drm_mode_config_cleanup(dev);
2659 /* current intel driver doesn't take advantage of encoders
2660 always give back the encoder for the connector
2662 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
2664 struct intel_output *intel_output = to_intel_output(connector);
2666 return &intel_output->enc;