4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
65 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
66 unsigned int core_pipe_limit
;
67 int suid_dumpable
= 0;
69 /* The maximal length of core_pattern is also specified in sysctl.c */
71 static LIST_HEAD(formats
);
72 static DEFINE_RWLOCK(binfmt_lock
);
74 int __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
78 write_lock(&binfmt_lock
);
79 insert
? list_add(&fmt
->lh
, &formats
) :
80 list_add_tail(&fmt
->lh
, &formats
);
81 write_unlock(&binfmt_lock
);
85 EXPORT_SYMBOL(__register_binfmt
);
87 void unregister_binfmt(struct linux_binfmt
* fmt
)
89 write_lock(&binfmt_lock
);
91 write_unlock(&binfmt_lock
);
94 EXPORT_SYMBOL(unregister_binfmt
);
96 static inline void put_binfmt(struct linux_binfmt
* fmt
)
98 module_put(fmt
->module
);
102 * Note that a shared library must be both readable and executable due to
105 * Also note that we take the address to load from from the file itself.
107 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
110 char *tmp
= getname(library
);
111 int error
= PTR_ERR(tmp
);
116 file
= do_filp_open(AT_FDCWD
, tmp
,
117 O_LARGEFILE
| O_RDONLY
| FMODE_EXEC
, 0,
118 MAY_READ
| MAY_EXEC
| MAY_OPEN
);
120 error
= PTR_ERR(file
);
125 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
129 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
132 fsnotify_open(file
->f_path
.dentry
);
136 struct linux_binfmt
* fmt
;
138 read_lock(&binfmt_lock
);
139 list_for_each_entry(fmt
, &formats
, lh
) {
140 if (!fmt
->load_shlib
)
142 if (!try_module_get(fmt
->module
))
144 read_unlock(&binfmt_lock
);
145 error
= fmt
->load_shlib(file
);
146 read_lock(&binfmt_lock
);
148 if (error
!= -ENOEXEC
)
151 read_unlock(&binfmt_lock
);
161 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
167 #ifdef CONFIG_STACK_GROWSUP
169 ret
= expand_stack_downwards(bprm
->vma
, pos
);
174 ret
= get_user_pages(current
, bprm
->mm
, pos
,
175 1, write
, 1, &page
, NULL
);
180 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
184 * We've historically supported up to 32 pages (ARG_MAX)
185 * of argument strings even with small stacks
191 * Limit to 1/4-th the stack size for the argv+env strings.
193 * - the remaining binfmt code will not run out of stack space,
194 * - the program will have a reasonable amount of stack left
197 rlim
= current
->signal
->rlim
;
198 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
207 static void put_arg_page(struct page
*page
)
212 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
216 static void free_arg_pages(struct linux_binprm
*bprm
)
220 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
223 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
226 static int __bprm_mm_init(struct linux_binprm
*bprm
)
229 struct vm_area_struct
*vma
= NULL
;
230 struct mm_struct
*mm
= bprm
->mm
;
232 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
236 down_write(&mm
->mmap_sem
);
240 * Place the stack at the largest stack address the architecture
241 * supports. Later, we'll move this to an appropriate place. We don't
242 * use STACK_TOP because that can depend on attributes which aren't
245 vma
->vm_end
= STACK_TOP_MAX
;
246 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
247 vma
->vm_flags
= VM_STACK_FLAGS
;
248 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
249 err
= insert_vm_struct(mm
, vma
);
253 mm
->stack_vm
= mm
->total_vm
= 1;
254 up_write(&mm
->mmap_sem
);
255 bprm
->p
= vma
->vm_end
- sizeof(void *);
258 up_write(&mm
->mmap_sem
);
260 kmem_cache_free(vm_area_cachep
, vma
);
264 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
266 return len
<= MAX_ARG_STRLEN
;
271 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
276 page
= bprm
->page
[pos
/ PAGE_SIZE
];
277 if (!page
&& write
) {
278 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
281 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
287 static void put_arg_page(struct page
*page
)
291 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
294 __free_page(bprm
->page
[i
]);
295 bprm
->page
[i
] = NULL
;
299 static void free_arg_pages(struct linux_binprm
*bprm
)
303 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
304 free_arg_page(bprm
, i
);
307 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
312 static int __bprm_mm_init(struct linux_binprm
*bprm
)
314 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
318 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
320 return len
<= bprm
->p
;
323 #endif /* CONFIG_MMU */
326 * Create a new mm_struct and populate it with a temporary stack
327 * vm_area_struct. We don't have enough context at this point to set the stack
328 * flags, permissions, and offset, so we use temporary values. We'll update
329 * them later in setup_arg_pages().
331 int bprm_mm_init(struct linux_binprm
*bprm
)
334 struct mm_struct
*mm
= NULL
;
336 bprm
->mm
= mm
= mm_alloc();
341 err
= init_new_context(current
, mm
);
345 err
= __bprm_mm_init(bprm
);
361 * count() counts the number of strings in array ARGV.
363 static int count(char __user
* __user
* argv
, int max
)
371 if (get_user(p
, argv
))
385 * 'copy_strings()' copies argument/environment strings from the old
386 * processes's memory to the new process's stack. The call to get_user_pages()
387 * ensures the destination page is created and not swapped out.
389 static int copy_strings(int argc
, char __user
* __user
* argv
,
390 struct linux_binprm
*bprm
)
392 struct page
*kmapped_page
= NULL
;
394 unsigned long kpos
= 0;
402 if (get_user(str
, argv
+argc
) ||
403 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
408 if (!valid_arg_len(bprm
, len
)) {
413 /* We're going to work our way backwords. */
419 int offset
, bytes_to_copy
;
421 offset
= pos
% PAGE_SIZE
;
425 bytes_to_copy
= offset
;
426 if (bytes_to_copy
> len
)
429 offset
-= bytes_to_copy
;
430 pos
-= bytes_to_copy
;
431 str
-= bytes_to_copy
;
432 len
-= bytes_to_copy
;
434 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
437 page
= get_arg_page(bprm
, pos
, 1);
444 flush_kernel_dcache_page(kmapped_page
);
445 kunmap(kmapped_page
);
446 put_arg_page(kmapped_page
);
449 kaddr
= kmap(kmapped_page
);
450 kpos
= pos
& PAGE_MASK
;
451 flush_arg_page(bprm
, kpos
, kmapped_page
);
453 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
462 flush_kernel_dcache_page(kmapped_page
);
463 kunmap(kmapped_page
);
464 put_arg_page(kmapped_page
);
470 * Like copy_strings, but get argv and its values from kernel memory.
472 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
475 mm_segment_t oldfs
= get_fs();
477 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
481 EXPORT_SYMBOL(copy_strings_kernel
);
486 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
487 * the binfmt code determines where the new stack should reside, we shift it to
488 * its final location. The process proceeds as follows:
490 * 1) Use shift to calculate the new vma endpoints.
491 * 2) Extend vma to cover both the old and new ranges. This ensures the
492 * arguments passed to subsequent functions are consistent.
493 * 3) Move vma's page tables to the new range.
494 * 4) Free up any cleared pgd range.
495 * 5) Shrink the vma to cover only the new range.
497 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
499 struct mm_struct
*mm
= vma
->vm_mm
;
500 unsigned long old_start
= vma
->vm_start
;
501 unsigned long old_end
= vma
->vm_end
;
502 unsigned long length
= old_end
- old_start
;
503 unsigned long new_start
= old_start
- shift
;
504 unsigned long new_end
= old_end
- shift
;
505 struct mmu_gather
*tlb
;
507 BUG_ON(new_start
> new_end
);
510 * ensure there are no vmas between where we want to go
513 if (vma
!= find_vma(mm
, new_start
))
517 * cover the whole range: [new_start, old_end)
519 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
522 * move the page tables downwards, on failure we rely on
523 * process cleanup to remove whatever mess we made.
525 if (length
!= move_page_tables(vma
, old_start
,
526 vma
, new_start
, length
))
530 tlb
= tlb_gather_mmu(mm
, 0);
531 if (new_end
> old_start
) {
533 * when the old and new regions overlap clear from new_end.
535 free_pgd_range(tlb
, new_end
, old_end
, new_end
,
536 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
539 * otherwise, clean from old_start; this is done to not touch
540 * the address space in [new_end, old_start) some architectures
541 * have constraints on va-space that make this illegal (IA64) -
542 * for the others its just a little faster.
544 free_pgd_range(tlb
, old_start
, old_end
, new_end
,
545 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
547 tlb_finish_mmu(tlb
, new_end
, old_end
);
550 * shrink the vma to just the new range.
552 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
557 #define EXTRA_STACK_VM_PAGES 20 /* random */
560 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
561 * the stack is optionally relocated, and some extra space is added.
563 int setup_arg_pages(struct linux_binprm
*bprm
,
564 unsigned long stack_top
,
565 int executable_stack
)
568 unsigned long stack_shift
;
569 struct mm_struct
*mm
= current
->mm
;
570 struct vm_area_struct
*vma
= bprm
->vma
;
571 struct vm_area_struct
*prev
= NULL
;
572 unsigned long vm_flags
;
573 unsigned long stack_base
;
575 #ifdef CONFIG_STACK_GROWSUP
576 /* Limit stack size to 1GB */
577 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
578 if (stack_base
> (1 << 30))
579 stack_base
= 1 << 30;
581 /* Make sure we didn't let the argument array grow too large. */
582 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
585 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
587 stack_shift
= vma
->vm_start
- stack_base
;
588 mm
->arg_start
= bprm
->p
- stack_shift
;
589 bprm
->p
= vma
->vm_end
- stack_shift
;
591 stack_top
= arch_align_stack(stack_top
);
592 stack_top
= PAGE_ALIGN(stack_top
);
593 stack_shift
= vma
->vm_end
- stack_top
;
595 bprm
->p
-= stack_shift
;
596 mm
->arg_start
= bprm
->p
;
600 bprm
->loader
-= stack_shift
;
601 bprm
->exec
-= stack_shift
;
603 down_write(&mm
->mmap_sem
);
604 vm_flags
= VM_STACK_FLAGS
;
607 * Adjust stack execute permissions; explicitly enable for
608 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
609 * (arch default) otherwise.
611 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
613 else if (executable_stack
== EXSTACK_DISABLE_X
)
614 vm_flags
&= ~VM_EXEC
;
615 vm_flags
|= mm
->def_flags
;
617 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
623 /* Move stack pages down in memory. */
625 ret
= shift_arg_pages(vma
, stack_shift
);
630 #ifdef CONFIG_STACK_GROWSUP
631 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
633 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
635 ret
= expand_stack(vma
, stack_base
);
640 up_write(&mm
->mmap_sem
);
643 EXPORT_SYMBOL(setup_arg_pages
);
645 #endif /* CONFIG_MMU */
647 struct file
*open_exec(const char *name
)
652 file
= do_filp_open(AT_FDCWD
, name
,
653 O_LARGEFILE
| O_RDONLY
| FMODE_EXEC
, 0,
654 MAY_EXEC
| MAY_OPEN
);
659 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
662 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
665 fsnotify_open(file
->f_path
.dentry
);
667 err
= deny_write_access(file
);
678 EXPORT_SYMBOL(open_exec
);
680 int kernel_read(struct file
*file
, loff_t offset
,
681 char *addr
, unsigned long count
)
689 /* The cast to a user pointer is valid due to the set_fs() */
690 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
695 EXPORT_SYMBOL(kernel_read
);
697 static int exec_mmap(struct mm_struct
*mm
)
699 struct task_struct
*tsk
;
700 struct mm_struct
* old_mm
, *active_mm
;
702 /* Notify parent that we're no longer interested in the old VM */
704 old_mm
= current
->mm
;
705 mm_release(tsk
, old_mm
);
709 * Make sure that if there is a core dump in progress
710 * for the old mm, we get out and die instead of going
711 * through with the exec. We must hold mmap_sem around
712 * checking core_state and changing tsk->mm.
714 down_read(&old_mm
->mmap_sem
);
715 if (unlikely(old_mm
->core_state
)) {
716 up_read(&old_mm
->mmap_sem
);
721 active_mm
= tsk
->active_mm
;
724 activate_mm(active_mm
, mm
);
726 arch_pick_mmap_layout(mm
);
728 up_read(&old_mm
->mmap_sem
);
729 BUG_ON(active_mm
!= old_mm
);
730 mm_update_next_owner(old_mm
);
739 * This function makes sure the current process has its own signal table,
740 * so that flush_signal_handlers can later reset the handlers without
741 * disturbing other processes. (Other processes might share the signal
742 * table via the CLONE_SIGHAND option to clone().)
744 static int de_thread(struct task_struct
*tsk
)
746 struct signal_struct
*sig
= tsk
->signal
;
747 struct sighand_struct
*oldsighand
= tsk
->sighand
;
748 spinlock_t
*lock
= &oldsighand
->siglock
;
751 if (thread_group_empty(tsk
))
752 goto no_thread_group
;
755 * Kill all other threads in the thread group.
758 if (signal_group_exit(sig
)) {
760 * Another group action in progress, just
761 * return so that the signal is processed.
763 spin_unlock_irq(lock
);
766 sig
->group_exit_task
= tsk
;
767 zap_other_threads(tsk
);
769 /* Account for the thread group leader hanging around: */
770 count
= thread_group_leader(tsk
) ? 1 : 2;
771 sig
->notify_count
= count
;
772 while (atomic_read(&sig
->count
) > count
) {
773 __set_current_state(TASK_UNINTERRUPTIBLE
);
774 spin_unlock_irq(lock
);
778 spin_unlock_irq(lock
);
781 * At this point all other threads have exited, all we have to
782 * do is to wait for the thread group leader to become inactive,
783 * and to assume its PID:
785 if (!thread_group_leader(tsk
)) {
786 struct task_struct
*leader
= tsk
->group_leader
;
788 sig
->notify_count
= -1; /* for exit_notify() */
790 write_lock_irq(&tasklist_lock
);
791 if (likely(leader
->exit_state
))
793 __set_current_state(TASK_UNINTERRUPTIBLE
);
794 write_unlock_irq(&tasklist_lock
);
799 * The only record we have of the real-time age of a
800 * process, regardless of execs it's done, is start_time.
801 * All the past CPU time is accumulated in signal_struct
802 * from sister threads now dead. But in this non-leader
803 * exec, nothing survives from the original leader thread,
804 * whose birth marks the true age of this process now.
805 * When we take on its identity by switching to its PID, we
806 * also take its birthdate (always earlier than our own).
808 tsk
->start_time
= leader
->start_time
;
810 BUG_ON(!same_thread_group(leader
, tsk
));
811 BUG_ON(has_group_leader_pid(tsk
));
813 * An exec() starts a new thread group with the
814 * TGID of the previous thread group. Rehash the
815 * two threads with a switched PID, and release
816 * the former thread group leader:
819 /* Become a process group leader with the old leader's pid.
820 * The old leader becomes a thread of the this thread group.
821 * Note: The old leader also uses this pid until release_task
822 * is called. Odd but simple and correct.
824 detach_pid(tsk
, PIDTYPE_PID
);
825 tsk
->pid
= leader
->pid
;
826 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
827 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
828 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
830 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
831 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
833 tsk
->group_leader
= tsk
;
834 leader
->group_leader
= tsk
;
836 tsk
->exit_signal
= SIGCHLD
;
838 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
839 leader
->exit_state
= EXIT_DEAD
;
840 write_unlock_irq(&tasklist_lock
);
842 release_task(leader
);
845 sig
->group_exit_task
= NULL
;
846 sig
->notify_count
= 0;
850 setmax_mm_hiwater_rss(&sig
->maxrss
, current
->mm
);
853 flush_itimer_signals();
855 if (atomic_read(&oldsighand
->count
) != 1) {
856 struct sighand_struct
*newsighand
;
858 * This ->sighand is shared with the CLONE_SIGHAND
859 * but not CLONE_THREAD task, switch to the new one.
861 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
865 atomic_set(&newsighand
->count
, 1);
866 memcpy(newsighand
->action
, oldsighand
->action
,
867 sizeof(newsighand
->action
));
869 write_lock_irq(&tasklist_lock
);
870 spin_lock(&oldsighand
->siglock
);
871 rcu_assign_pointer(tsk
->sighand
, newsighand
);
872 spin_unlock(&oldsighand
->siglock
);
873 write_unlock_irq(&tasklist_lock
);
875 __cleanup_sighand(oldsighand
);
878 BUG_ON(!thread_group_leader(tsk
));
883 * These functions flushes out all traces of the currently running executable
884 * so that a new one can be started
886 static void flush_old_files(struct files_struct
* files
)
891 spin_lock(&files
->file_lock
);
893 unsigned long set
, i
;
897 fdt
= files_fdtable(files
);
898 if (i
>= fdt
->max_fds
)
900 set
= fdt
->close_on_exec
->fds_bits
[j
];
903 fdt
->close_on_exec
->fds_bits
[j
] = 0;
904 spin_unlock(&files
->file_lock
);
905 for ( ; set
; i
++,set
>>= 1) {
910 spin_lock(&files
->file_lock
);
913 spin_unlock(&files
->file_lock
);
916 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
918 /* buf must be at least sizeof(tsk->comm) in size */
920 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
925 void set_task_comm(struct task_struct
*tsk
, char *buf
)
930 * Threads may access current->comm without holding
931 * the task lock, so write the string carefully.
932 * Readers without a lock may see incomplete new
933 * names but are safe from non-terminating string reads.
935 memset(tsk
->comm
, 0, TASK_COMM_LEN
);
937 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
939 perf_event_comm(tsk
);
942 int flush_old_exec(struct linux_binprm
* bprm
)
947 * Make sure we have a private signal table and that
948 * we are unassociated from the previous thread group.
950 retval
= de_thread(current
);
954 set_mm_exe_file(bprm
->mm
, bprm
->file
);
957 * Release all of the old mmap stuff
959 retval
= exec_mmap(bprm
->mm
);
963 bprm
->mm
= NULL
; /* We're using it now */
969 EXPORT_SYMBOL(flush_old_exec
);
971 void setup_new_exec(struct linux_binprm
* bprm
)
975 char tcomm
[sizeof(current
->comm
)];
977 arch_pick_mmap_layout(current
->mm
);
979 /* This is the point of no return */
980 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
982 if (current_euid() == current_uid() && current_egid() == current_gid())
983 set_dumpable(current
->mm
, 1);
985 set_dumpable(current
->mm
, suid_dumpable
);
987 name
= bprm
->filename
;
989 /* Copies the binary name from after last slash */
990 for (i
=0; (ch
= *(name
++)) != '\0';) {
992 i
= 0; /* overwrite what we wrote */
994 if (i
< (sizeof(tcomm
) - 1))
998 set_task_comm(current
, tcomm
);
1000 current
->flags
&= ~PF_RANDOMIZE
;
1003 /* Set the new mm task size. We have to do that late because it may
1004 * depend on TIF_32BIT which is only updated in flush_thread() on
1005 * some architectures like powerpc
1007 current
->mm
->task_size
= TASK_SIZE
;
1009 /* install the new credentials */
1010 if (bprm
->cred
->uid
!= current_euid() ||
1011 bprm
->cred
->gid
!= current_egid()) {
1012 current
->pdeath_signal
= 0;
1013 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1014 bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
) {
1015 set_dumpable(current
->mm
, suid_dumpable
);
1018 current
->personality
&= ~bprm
->per_clear
;
1021 * Flush performance counters when crossing a
1024 if (!get_dumpable(current
->mm
))
1025 perf_event_exit_task(current
);
1027 /* An exec changes our domain. We are no longer part of the thread
1030 current
->self_exec_id
++;
1032 flush_signal_handlers(current
, 0);
1033 flush_old_files(current
->files
);
1035 EXPORT_SYMBOL(setup_new_exec
);
1038 * Prepare credentials and lock ->cred_guard_mutex.
1039 * install_exec_creds() commits the new creds and drops the lock.
1040 * Or, if exec fails before, free_bprm() should release ->cred and
1043 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1045 if (mutex_lock_interruptible(¤t
->cred_guard_mutex
))
1046 return -ERESTARTNOINTR
;
1048 bprm
->cred
= prepare_exec_creds();
1049 if (likely(bprm
->cred
))
1052 mutex_unlock(¤t
->cred_guard_mutex
);
1056 void free_bprm(struct linux_binprm
*bprm
)
1058 free_arg_pages(bprm
);
1060 mutex_unlock(¤t
->cred_guard_mutex
);
1061 abort_creds(bprm
->cred
);
1067 * install the new credentials for this executable
1069 void install_exec_creds(struct linux_binprm
*bprm
)
1071 security_bprm_committing_creds(bprm
);
1073 commit_creds(bprm
->cred
);
1076 * cred_guard_mutex must be held at least to this point to prevent
1077 * ptrace_attach() from altering our determination of the task's
1078 * credentials; any time after this it may be unlocked.
1080 security_bprm_committed_creds(bprm
);
1081 mutex_unlock(¤t
->cred_guard_mutex
);
1083 EXPORT_SYMBOL(install_exec_creds
);
1086 * determine how safe it is to execute the proposed program
1087 * - the caller must hold current->cred_guard_mutex to protect against
1090 int check_unsafe_exec(struct linux_binprm
*bprm
)
1092 struct task_struct
*p
= current
, *t
;
1096 bprm
->unsafe
= tracehook_unsafe_exec(p
);
1099 write_lock(&p
->fs
->lock
);
1101 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1107 if (p
->fs
->users
> n_fs
) {
1108 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1111 if (!p
->fs
->in_exec
) {
1116 write_unlock(&p
->fs
->lock
);
1122 * Fill the binprm structure from the inode.
1123 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1125 * This may be called multiple times for binary chains (scripts for example).
1127 int prepare_binprm(struct linux_binprm
*bprm
)
1130 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1133 mode
= inode
->i_mode
;
1134 if (bprm
->file
->f_op
== NULL
)
1137 /* clear any previous set[ug]id data from a previous binary */
1138 bprm
->cred
->euid
= current_euid();
1139 bprm
->cred
->egid
= current_egid();
1141 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1143 if (mode
& S_ISUID
) {
1144 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1145 bprm
->cred
->euid
= inode
->i_uid
;
1150 * If setgid is set but no group execute bit then this
1151 * is a candidate for mandatory locking, not a setgid
1154 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1155 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1156 bprm
->cred
->egid
= inode
->i_gid
;
1160 /* fill in binprm security blob */
1161 retval
= security_bprm_set_creds(bprm
);
1164 bprm
->cred_prepared
= 1;
1166 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1167 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1170 EXPORT_SYMBOL(prepare_binprm
);
1173 * Arguments are '\0' separated strings found at the location bprm->p
1174 * points to; chop off the first by relocating brpm->p to right after
1175 * the first '\0' encountered.
1177 int remove_arg_zero(struct linux_binprm
*bprm
)
1180 unsigned long offset
;
1188 offset
= bprm
->p
& ~PAGE_MASK
;
1189 page
= get_arg_page(bprm
, bprm
->p
, 0);
1194 kaddr
= kmap_atomic(page
, KM_USER0
);
1196 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1197 offset
++, bprm
->p
++)
1200 kunmap_atomic(kaddr
, KM_USER0
);
1203 if (offset
== PAGE_SIZE
)
1204 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1205 } while (offset
== PAGE_SIZE
);
1214 EXPORT_SYMBOL(remove_arg_zero
);
1217 * cycle the list of binary formats handler, until one recognizes the image
1219 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1221 unsigned int depth
= bprm
->recursion_depth
;
1223 struct linux_binfmt
*fmt
;
1225 retval
= security_bprm_check(bprm
);
1229 /* kernel module loader fixup */
1230 /* so we don't try to load run modprobe in kernel space. */
1233 retval
= audit_bprm(bprm
);
1238 for (try=0; try<2; try++) {
1239 read_lock(&binfmt_lock
);
1240 list_for_each_entry(fmt
, &formats
, lh
) {
1241 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1244 if (!try_module_get(fmt
->module
))
1246 read_unlock(&binfmt_lock
);
1247 retval
= fn(bprm
, regs
);
1249 * Restore the depth counter to its starting value
1250 * in this call, so we don't have to rely on every
1251 * load_binary function to restore it on return.
1253 bprm
->recursion_depth
= depth
;
1256 tracehook_report_exec(fmt
, bprm
, regs
);
1258 allow_write_access(bprm
->file
);
1262 current
->did_exec
= 1;
1263 proc_exec_connector(current
);
1266 read_lock(&binfmt_lock
);
1268 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1271 read_unlock(&binfmt_lock
);
1275 read_unlock(&binfmt_lock
);
1276 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1278 #ifdef CONFIG_MODULES
1280 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1281 if (printable(bprm
->buf
[0]) &&
1282 printable(bprm
->buf
[1]) &&
1283 printable(bprm
->buf
[2]) &&
1284 printable(bprm
->buf
[3]))
1285 break; /* -ENOEXEC */
1286 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1293 EXPORT_SYMBOL(search_binary_handler
);
1296 * sys_execve() executes a new program.
1298 int do_execve(char * filename
,
1299 char __user
*__user
*argv
,
1300 char __user
*__user
*envp
,
1301 struct pt_regs
* regs
)
1303 struct linux_binprm
*bprm
;
1305 struct files_struct
*displaced
;
1309 retval
= unshare_files(&displaced
);
1314 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1318 retval
= prepare_bprm_creds(bprm
);
1322 retval
= check_unsafe_exec(bprm
);
1325 clear_in_exec
= retval
;
1326 current
->in_execve
= 1;
1328 file
= open_exec(filename
);
1329 retval
= PTR_ERR(file
);
1336 bprm
->filename
= filename
;
1337 bprm
->interp
= filename
;
1339 retval
= bprm_mm_init(bprm
);
1343 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1344 if ((retval
= bprm
->argc
) < 0)
1347 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1348 if ((retval
= bprm
->envc
) < 0)
1351 retval
= prepare_binprm(bprm
);
1355 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1359 bprm
->exec
= bprm
->p
;
1360 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1364 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1368 current
->flags
&= ~PF_KTHREAD
;
1369 retval
= search_binary_handler(bprm
,regs
);
1373 current
->stack_start
= current
->mm
->start_stack
;
1375 /* execve succeeded */
1376 current
->fs
->in_exec
= 0;
1377 current
->in_execve
= 0;
1378 acct_update_integrals(current
);
1381 put_files_struct(displaced
);
1390 allow_write_access(bprm
->file
);
1396 current
->fs
->in_exec
= 0;
1397 current
->in_execve
= 0;
1404 reset_files_struct(displaced
);
1409 void set_binfmt(struct linux_binfmt
*new)
1411 struct mm_struct
*mm
= current
->mm
;
1414 module_put(mm
->binfmt
->module
);
1418 __module_get(new->module
);
1421 EXPORT_SYMBOL(set_binfmt
);
1423 /* format_corename will inspect the pattern parameter, and output a
1424 * name into corename, which must have space for at least
1425 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1427 static int format_corename(char *corename
, long signr
)
1429 const struct cred
*cred
= current_cred();
1430 const char *pat_ptr
= core_pattern
;
1431 int ispipe
= (*pat_ptr
== '|');
1432 char *out_ptr
= corename
;
1433 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1435 int pid_in_pattern
= 0;
1437 /* Repeat as long as we have more pattern to process and more output
1440 if (*pat_ptr
!= '%') {
1441 if (out_ptr
== out_end
)
1443 *out_ptr
++ = *pat_ptr
++;
1445 switch (*++pat_ptr
) {
1448 /* Double percent, output one percent */
1450 if (out_ptr
== out_end
)
1457 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1458 "%d", task_tgid_vnr(current
));
1459 if (rc
> out_end
- out_ptr
)
1465 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1467 if (rc
> out_end
- out_ptr
)
1473 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1475 if (rc
> out_end
- out_ptr
)
1479 /* signal that caused the coredump */
1481 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1483 if (rc
> out_end
- out_ptr
)
1487 /* UNIX time of coredump */
1490 do_gettimeofday(&tv
);
1491 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1493 if (rc
> out_end
- out_ptr
)
1500 down_read(&uts_sem
);
1501 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1502 "%s", utsname()->nodename
);
1504 if (rc
> out_end
- out_ptr
)
1510 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1511 "%s", current
->comm
);
1512 if (rc
> out_end
- out_ptr
)
1516 /* core limit size */
1518 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1519 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1520 if (rc
> out_end
- out_ptr
)
1530 /* Backward compatibility with core_uses_pid:
1532 * If core_pattern does not include a %p (as is the default)
1533 * and core_uses_pid is set, then .%pid will be appended to
1534 * the filename. Do not do this for piped commands. */
1535 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1536 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1537 ".%d", task_tgid_vnr(current
));
1538 if (rc
> out_end
- out_ptr
)
1547 static int zap_process(struct task_struct
*start
)
1549 struct task_struct
*t
;
1552 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1553 start
->signal
->group_stop_count
= 0;
1557 if (t
!= current
&& t
->mm
) {
1558 sigaddset(&t
->pending
.signal
, SIGKILL
);
1559 signal_wake_up(t
, 1);
1562 } while_each_thread(start
, t
);
1567 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1568 struct core_state
*core_state
, int exit_code
)
1570 struct task_struct
*g
, *p
;
1571 unsigned long flags
;
1574 spin_lock_irq(&tsk
->sighand
->siglock
);
1575 if (!signal_group_exit(tsk
->signal
)) {
1576 mm
->core_state
= core_state
;
1577 tsk
->signal
->group_exit_code
= exit_code
;
1578 nr
= zap_process(tsk
);
1580 spin_unlock_irq(&tsk
->sighand
->siglock
);
1581 if (unlikely(nr
< 0))
1584 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1587 * We should find and kill all tasks which use this mm, and we should
1588 * count them correctly into ->nr_threads. We don't take tasklist
1589 * lock, but this is safe wrt:
1592 * None of sub-threads can fork after zap_process(leader). All
1593 * processes which were created before this point should be
1594 * visible to zap_threads() because copy_process() adds the new
1595 * process to the tail of init_task.tasks list, and lock/unlock
1596 * of ->siglock provides a memory barrier.
1599 * The caller holds mm->mmap_sem. This means that the task which
1600 * uses this mm can't pass exit_mm(), so it can't exit or clear
1604 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1605 * we must see either old or new leader, this does not matter.
1606 * However, it can change p->sighand, so lock_task_sighand(p)
1607 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1610 * Note also that "g" can be the old leader with ->mm == NULL
1611 * and already unhashed and thus removed from ->thread_group.
1612 * This is OK, __unhash_process()->list_del_rcu() does not
1613 * clear the ->next pointer, we will find the new leader via
1617 for_each_process(g
) {
1618 if (g
== tsk
->group_leader
)
1620 if (g
->flags
& PF_KTHREAD
)
1625 if (unlikely(p
->mm
== mm
)) {
1626 lock_task_sighand(p
, &flags
);
1627 nr
+= zap_process(p
);
1628 unlock_task_sighand(p
, &flags
);
1632 } while_each_thread(g
, p
);
1636 atomic_set(&core_state
->nr_threads
, nr
);
1640 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1642 struct task_struct
*tsk
= current
;
1643 struct mm_struct
*mm
= tsk
->mm
;
1644 struct completion
*vfork_done
;
1647 init_completion(&core_state
->startup
);
1648 core_state
->dumper
.task
= tsk
;
1649 core_state
->dumper
.next
= NULL
;
1650 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1651 up_write(&mm
->mmap_sem
);
1653 if (unlikely(core_waiters
< 0))
1657 * Make sure nobody is waiting for us to release the VM,
1658 * otherwise we can deadlock when we wait on each other
1660 vfork_done
= tsk
->vfork_done
;
1662 tsk
->vfork_done
= NULL
;
1663 complete(vfork_done
);
1667 wait_for_completion(&core_state
->startup
);
1669 return core_waiters
;
1672 static void coredump_finish(struct mm_struct
*mm
)
1674 struct core_thread
*curr
, *next
;
1675 struct task_struct
*task
;
1677 next
= mm
->core_state
->dumper
.next
;
1678 while ((curr
= next
) != NULL
) {
1682 * see exit_mm(), curr->task must not see
1683 * ->task == NULL before we read ->next.
1687 wake_up_process(task
);
1690 mm
->core_state
= NULL
;
1694 * set_dumpable converts traditional three-value dumpable to two flags and
1695 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1696 * these bits are not changed atomically. So get_dumpable can observe the
1697 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1698 * return either old dumpable or new one by paying attention to the order of
1699 * modifying the bits.
1701 * dumpable | mm->flags (binary)
1702 * old new | initial interim final
1703 * ---------+-----------------------
1711 * (*) get_dumpable regards interim value of 10 as 11.
1713 void set_dumpable(struct mm_struct
*mm
, int value
)
1717 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1719 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1722 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1724 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1727 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1729 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1734 int get_dumpable(struct mm_struct
*mm
)
1738 ret
= mm
->flags
& 0x3;
1739 return (ret
>= 2) ? 2 : ret
;
1742 static void wait_for_dump_helpers(struct file
*file
)
1744 struct pipe_inode_info
*pipe
;
1746 pipe
= file
->f_path
.dentry
->d_inode
->i_pipe
;
1752 while ((pipe
->readers
> 1) && (!signal_pending(current
))) {
1753 wake_up_interruptible_sync(&pipe
->wait
);
1754 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
1765 void do_coredump(long signr
, int exit_code
, struct pt_regs
*regs
)
1767 struct core_state core_state
;
1768 char corename
[CORENAME_MAX_SIZE
+ 1];
1769 struct mm_struct
*mm
= current
->mm
;
1770 struct linux_binfmt
* binfmt
;
1771 struct inode
* inode
;
1772 const struct cred
*old_cred
;
1777 char **helper_argv
= NULL
;
1778 int helper_argc
= 0;
1780 static atomic_t core_dump_count
= ATOMIC_INIT(0);
1781 struct coredump_params cprm
= {
1784 .limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
,
1787 audit_core_dumps(signr
);
1789 binfmt
= mm
->binfmt
;
1790 if (!binfmt
|| !binfmt
->core_dump
)
1793 cred
= prepare_creds();
1799 down_write(&mm
->mmap_sem
);
1801 * If another thread got here first, or we are not dumpable, bail out.
1803 if (mm
->core_state
|| !get_dumpable(mm
)) {
1804 up_write(&mm
->mmap_sem
);
1810 * We cannot trust fsuid as being the "true" uid of the
1811 * process nor do we know its entire history. We only know it
1812 * was tainted so we dump it as root in mode 2.
1814 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1815 flag
= O_EXCL
; /* Stop rewrite attacks */
1816 cred
->fsuid
= 0; /* Dump root private */
1819 retval
= coredump_wait(exit_code
, &core_state
);
1825 old_cred
= override_creds(cred
);
1828 * Clear any false indication of pending signals that might
1829 * be seen by the filesystem code called to write the core file.
1831 clear_thread_flag(TIF_SIGPENDING
);
1834 * lock_kernel() because format_corename() is controlled by sysctl, which
1835 * uses lock_kernel()
1838 ispipe
= format_corename(corename
, signr
);
1841 if ((!ispipe
) && (cprm
.limit
< binfmt
->min_coredump
))
1845 if (cprm
.limit
== 0) {
1847 * Normally core limits are irrelevant to pipes, since
1848 * we're not writing to the file system, but we use
1849 * cprm.limit of 0 here as a speacial value. Any
1850 * non-zero limit gets set to RLIM_INFINITY below, but
1851 * a limit of 0 skips the dump. This is a consistent
1852 * way to catch recursive crashes. We can still crash
1853 * if the core_pattern binary sets RLIM_CORE = !0
1854 * but it runs as root, and can do lots of stupid things
1855 * Note that we use task_tgid_vnr here to grab the pid
1856 * of the process group leader. That way we get the
1857 * right pid if a thread in a multi-threaded
1858 * core_pattern process dies.
1861 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1862 task_tgid_vnr(current
), current
->comm
);
1863 printk(KERN_WARNING
"Aborting core\n");
1867 dump_count
= atomic_inc_return(&core_dump_count
);
1868 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
1869 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
1870 task_tgid_vnr(current
), current
->comm
);
1871 printk(KERN_WARNING
"Skipping core dump\n");
1872 goto fail_dropcount
;
1875 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1877 printk(KERN_WARNING
"%s failed to allocate memory\n",
1879 goto fail_dropcount
;
1882 cprm
.limit
= RLIM_INFINITY
;
1884 /* SIGPIPE can happen, but it's just never processed */
1885 if (call_usermodehelper_pipe(helper_argv
[0], helper_argv
, NULL
,
1887 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1889 goto fail_dropcount
;
1892 cprm
.file
= filp_open(corename
,
1893 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1895 if (IS_ERR(cprm
.file
))
1896 goto fail_dropcount
;
1897 inode
= cprm
.file
->f_path
.dentry
->d_inode
;
1898 if (inode
->i_nlink
> 1)
1899 goto close_fail
; /* multiple links - don't dump */
1900 if (!ispipe
&& d_unhashed(cprm
.file
->f_path
.dentry
))
1903 /* AK: actually i see no reason to not allow this for named pipes etc.,
1904 but keep the previous behaviour for now. */
1905 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1908 * Dont allow local users get cute and trick others to coredump
1909 * into their pre-created files:
1911 if (inode
->i_uid
!= current_fsuid())
1913 if (!cprm
.file
->f_op
)
1915 if (!cprm
.file
->f_op
->write
)
1918 do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
) != 0)
1921 retval
= binfmt
->core_dump(&cprm
);
1924 current
->signal
->group_exit_code
|= 0x80;
1926 if (ispipe
&& core_pipe_limit
)
1927 wait_for_dump_helpers(cprm
.file
);
1928 filp_close(cprm
.file
, NULL
);
1931 atomic_dec(&core_dump_count
);
1934 argv_free(helper_argv
);
1936 revert_creds(old_cred
);
1938 coredump_finish(mm
);