tracing: Remove kmemtrace ftrace plugin
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slub.c
bloba61f1aad1070c17cfc9762c441708c8678e2ed8c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
86 * Overloading of page flags that are otherwise used for LRU management.
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
109 #ifdef CONFIG_SLUB_DEBUG
110 #define SLABDEBUG 1
111 #else
112 #define SLABDEBUG 0
113 #endif
116 * Issues still to be resolved:
118 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 * - Variable sizing of the per node arrays
123 /* Enable to test recovery from slab corruption on boot */
124 #undef SLUB_RESILIENCY_TEST
127 * Mininum number of partial slabs. These will be left on the partial
128 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 #define MIN_PARTIAL 5
133 * Maximum number of desirable partial slabs.
134 * The existence of more partial slabs makes kmem_cache_shrink
135 * sort the partial list by the number of objects in the.
137 #define MAX_PARTIAL 10
139 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
140 SLAB_POISON | SLAB_STORE_USER)
143 * Debugging flags that require metadata to be stored in the slab. These get
144 * disabled when slub_debug=O is used and a cache's min order increases with
145 * metadata.
147 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
150 * Set of flags that will prevent slab merging
152 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
153 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
154 SLAB_FAILSLAB)
156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
157 SLAB_CACHE_DMA | SLAB_NOTRACK)
159 #define OO_SHIFT 16
160 #define OO_MASK ((1 << OO_SHIFT) - 1)
161 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
163 /* Internal SLUB flags */
164 #define __OBJECT_POISON 0x80000000 /* Poison object */
165 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
167 static int kmem_size = sizeof(struct kmem_cache);
169 #ifdef CONFIG_SMP
170 static struct notifier_block slab_notifier;
171 #endif
173 static enum {
174 DOWN, /* No slab functionality available */
175 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
176 UP, /* Everything works but does not show up in sysfs */
177 SYSFS /* Sysfs up */
178 } slab_state = DOWN;
180 /* A list of all slab caches on the system */
181 static DECLARE_RWSEM(slub_lock);
182 static LIST_HEAD(slab_caches);
185 * Tracking user of a slab.
187 struct track {
188 unsigned long addr; /* Called from address */
189 int cpu; /* Was running on cpu */
190 int pid; /* Pid context */
191 unsigned long when; /* When did the operation occur */
194 enum track_item { TRACK_ALLOC, TRACK_FREE };
196 #ifdef CONFIG_SLUB_DEBUG
197 static int sysfs_slab_add(struct kmem_cache *);
198 static int sysfs_slab_alias(struct kmem_cache *, const char *);
199 static void sysfs_slab_remove(struct kmem_cache *);
201 #else
202 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
203 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
204 { return 0; }
205 static inline void sysfs_slab_remove(struct kmem_cache *s)
207 kfree(s);
210 #endif
212 static inline void stat(struct kmem_cache *s, enum stat_item si)
214 #ifdef CONFIG_SLUB_STATS
215 __this_cpu_inc(s->cpu_slab->stat[si]);
216 #endif
219 /********************************************************************
220 * Core slab cache functions
221 *******************************************************************/
223 int slab_is_available(void)
225 return slab_state >= UP;
228 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
230 #ifdef CONFIG_NUMA
231 return s->node[node];
232 #else
233 return &s->local_node;
234 #endif
237 /* Verify that a pointer has an address that is valid within a slab page */
238 static inline int check_valid_pointer(struct kmem_cache *s,
239 struct page *page, const void *object)
241 void *base;
243 if (!object)
244 return 1;
246 base = page_address(page);
247 if (object < base || object >= base + page->objects * s->size ||
248 (object - base) % s->size) {
249 return 0;
252 return 1;
255 static inline void *get_freepointer(struct kmem_cache *s, void *object)
257 return *(void **)(object + s->offset);
260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
262 *(void **)(object + s->offset) = fp;
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
268 __p += (__s)->size)
270 /* Scan freelist */
271 #define for_each_free_object(__p, __s, __free) \
272 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
274 /* Determine object index from a given position */
275 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
277 return (p - addr) / s->size;
280 static inline struct kmem_cache_order_objects oo_make(int order,
281 unsigned long size)
283 struct kmem_cache_order_objects x = {
284 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
287 return x;
290 static inline int oo_order(struct kmem_cache_order_objects x)
292 return x.x >> OO_SHIFT;
295 static inline int oo_objects(struct kmem_cache_order_objects x)
297 return x.x & OO_MASK;
300 #ifdef CONFIG_SLUB_DEBUG
302 * Debug settings:
304 #ifdef CONFIG_SLUB_DEBUG_ON
305 static int slub_debug = DEBUG_DEFAULT_FLAGS;
306 #else
307 static int slub_debug;
308 #endif
310 static char *slub_debug_slabs;
311 static int disable_higher_order_debug;
314 * Object debugging
316 static void print_section(char *text, u8 *addr, unsigned int length)
318 int i, offset;
319 int newline = 1;
320 char ascii[17];
322 ascii[16] = 0;
324 for (i = 0; i < length; i++) {
325 if (newline) {
326 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
327 newline = 0;
329 printk(KERN_CONT " %02x", addr[i]);
330 offset = i % 16;
331 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
332 if (offset == 15) {
333 printk(KERN_CONT " %s\n", ascii);
334 newline = 1;
337 if (!newline) {
338 i %= 16;
339 while (i < 16) {
340 printk(KERN_CONT " ");
341 ascii[i] = ' ';
342 i++;
344 printk(KERN_CONT " %s\n", ascii);
348 static struct track *get_track(struct kmem_cache *s, void *object,
349 enum track_item alloc)
351 struct track *p;
353 if (s->offset)
354 p = object + s->offset + sizeof(void *);
355 else
356 p = object + s->inuse;
358 return p + alloc;
361 static void set_track(struct kmem_cache *s, void *object,
362 enum track_item alloc, unsigned long addr)
364 struct track *p = get_track(s, object, alloc);
366 if (addr) {
367 p->addr = addr;
368 p->cpu = smp_processor_id();
369 p->pid = current->pid;
370 p->when = jiffies;
371 } else
372 memset(p, 0, sizeof(struct track));
375 static void init_tracking(struct kmem_cache *s, void *object)
377 if (!(s->flags & SLAB_STORE_USER))
378 return;
380 set_track(s, object, TRACK_FREE, 0UL);
381 set_track(s, object, TRACK_ALLOC, 0UL);
384 static void print_track(const char *s, struct track *t)
386 if (!t->addr)
387 return;
389 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
390 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
393 static void print_tracking(struct kmem_cache *s, void *object)
395 if (!(s->flags & SLAB_STORE_USER))
396 return;
398 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
399 print_track("Freed", get_track(s, object, TRACK_FREE));
402 static void print_page_info(struct page *page)
404 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
405 page, page->objects, page->inuse, page->freelist, page->flags);
409 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
411 va_list args;
412 char buf[100];
414 va_start(args, fmt);
415 vsnprintf(buf, sizeof(buf), fmt, args);
416 va_end(args);
417 printk(KERN_ERR "========================================"
418 "=====================================\n");
419 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
420 printk(KERN_ERR "----------------------------------------"
421 "-------------------------------------\n\n");
424 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
426 va_list args;
427 char buf[100];
429 va_start(args, fmt);
430 vsnprintf(buf, sizeof(buf), fmt, args);
431 va_end(args);
432 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
435 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
437 unsigned int off; /* Offset of last byte */
438 u8 *addr = page_address(page);
440 print_tracking(s, p);
442 print_page_info(page);
444 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
445 p, p - addr, get_freepointer(s, p));
447 if (p > addr + 16)
448 print_section("Bytes b4", p - 16, 16);
450 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
452 if (s->flags & SLAB_RED_ZONE)
453 print_section("Redzone", p + s->objsize,
454 s->inuse - s->objsize);
456 if (s->offset)
457 off = s->offset + sizeof(void *);
458 else
459 off = s->inuse;
461 if (s->flags & SLAB_STORE_USER)
462 off += 2 * sizeof(struct track);
464 if (off != s->size)
465 /* Beginning of the filler is the free pointer */
466 print_section("Padding", p + off, s->size - off);
468 dump_stack();
471 static void object_err(struct kmem_cache *s, struct page *page,
472 u8 *object, char *reason)
474 slab_bug(s, "%s", reason);
475 print_trailer(s, page, object);
478 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
480 va_list args;
481 char buf[100];
483 va_start(args, fmt);
484 vsnprintf(buf, sizeof(buf), fmt, args);
485 va_end(args);
486 slab_bug(s, "%s", buf);
487 print_page_info(page);
488 dump_stack();
491 static void init_object(struct kmem_cache *s, void *object, int active)
493 u8 *p = object;
495 if (s->flags & __OBJECT_POISON) {
496 memset(p, POISON_FREE, s->objsize - 1);
497 p[s->objsize - 1] = POISON_END;
500 if (s->flags & SLAB_RED_ZONE)
501 memset(p + s->objsize,
502 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
503 s->inuse - s->objsize);
506 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
508 while (bytes) {
509 if (*start != (u8)value)
510 return start;
511 start++;
512 bytes--;
514 return NULL;
517 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
518 void *from, void *to)
520 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
521 memset(from, data, to - from);
524 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
525 u8 *object, char *what,
526 u8 *start, unsigned int value, unsigned int bytes)
528 u8 *fault;
529 u8 *end;
531 fault = check_bytes(start, value, bytes);
532 if (!fault)
533 return 1;
535 end = start + bytes;
536 while (end > fault && end[-1] == value)
537 end--;
539 slab_bug(s, "%s overwritten", what);
540 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
541 fault, end - 1, fault[0], value);
542 print_trailer(s, page, object);
544 restore_bytes(s, what, value, fault, end);
545 return 0;
549 * Object layout:
551 * object address
552 * Bytes of the object to be managed.
553 * If the freepointer may overlay the object then the free
554 * pointer is the first word of the object.
556 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
557 * 0xa5 (POISON_END)
559 * object + s->objsize
560 * Padding to reach word boundary. This is also used for Redzoning.
561 * Padding is extended by another word if Redzoning is enabled and
562 * objsize == inuse.
564 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
565 * 0xcc (RED_ACTIVE) for objects in use.
567 * object + s->inuse
568 * Meta data starts here.
570 * A. Free pointer (if we cannot overwrite object on free)
571 * B. Tracking data for SLAB_STORE_USER
572 * C. Padding to reach required alignment boundary or at mininum
573 * one word if debugging is on to be able to detect writes
574 * before the word boundary.
576 * Padding is done using 0x5a (POISON_INUSE)
578 * object + s->size
579 * Nothing is used beyond s->size.
581 * If slabcaches are merged then the objsize and inuse boundaries are mostly
582 * ignored. And therefore no slab options that rely on these boundaries
583 * may be used with merged slabcaches.
586 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
588 unsigned long off = s->inuse; /* The end of info */
590 if (s->offset)
591 /* Freepointer is placed after the object. */
592 off += sizeof(void *);
594 if (s->flags & SLAB_STORE_USER)
595 /* We also have user information there */
596 off += 2 * sizeof(struct track);
598 if (s->size == off)
599 return 1;
601 return check_bytes_and_report(s, page, p, "Object padding",
602 p + off, POISON_INUSE, s->size - off);
605 /* Check the pad bytes at the end of a slab page */
606 static int slab_pad_check(struct kmem_cache *s, struct page *page)
608 u8 *start;
609 u8 *fault;
610 u8 *end;
611 int length;
612 int remainder;
614 if (!(s->flags & SLAB_POISON))
615 return 1;
617 start = page_address(page);
618 length = (PAGE_SIZE << compound_order(page));
619 end = start + length;
620 remainder = length % s->size;
621 if (!remainder)
622 return 1;
624 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
625 if (!fault)
626 return 1;
627 while (end > fault && end[-1] == POISON_INUSE)
628 end--;
630 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
631 print_section("Padding", end - remainder, remainder);
633 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
634 return 0;
637 static int check_object(struct kmem_cache *s, struct page *page,
638 void *object, int active)
640 u8 *p = object;
641 u8 *endobject = object + s->objsize;
643 if (s->flags & SLAB_RED_ZONE) {
644 unsigned int red =
645 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
647 if (!check_bytes_and_report(s, page, object, "Redzone",
648 endobject, red, s->inuse - s->objsize))
649 return 0;
650 } else {
651 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
652 check_bytes_and_report(s, page, p, "Alignment padding",
653 endobject, POISON_INUSE, s->inuse - s->objsize);
657 if (s->flags & SLAB_POISON) {
658 if (!active && (s->flags & __OBJECT_POISON) &&
659 (!check_bytes_and_report(s, page, p, "Poison", p,
660 POISON_FREE, s->objsize - 1) ||
661 !check_bytes_and_report(s, page, p, "Poison",
662 p + s->objsize - 1, POISON_END, 1)))
663 return 0;
665 * check_pad_bytes cleans up on its own.
667 check_pad_bytes(s, page, p);
670 if (!s->offset && active)
672 * Object and freepointer overlap. Cannot check
673 * freepointer while object is allocated.
675 return 1;
677 /* Check free pointer validity */
678 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
679 object_err(s, page, p, "Freepointer corrupt");
681 * No choice but to zap it and thus lose the remainder
682 * of the free objects in this slab. May cause
683 * another error because the object count is now wrong.
685 set_freepointer(s, p, NULL);
686 return 0;
688 return 1;
691 static int check_slab(struct kmem_cache *s, struct page *page)
693 int maxobj;
695 VM_BUG_ON(!irqs_disabled());
697 if (!PageSlab(page)) {
698 slab_err(s, page, "Not a valid slab page");
699 return 0;
702 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
703 if (page->objects > maxobj) {
704 slab_err(s, page, "objects %u > max %u",
705 s->name, page->objects, maxobj);
706 return 0;
708 if (page->inuse > page->objects) {
709 slab_err(s, page, "inuse %u > max %u",
710 s->name, page->inuse, page->objects);
711 return 0;
713 /* Slab_pad_check fixes things up after itself */
714 slab_pad_check(s, page);
715 return 1;
719 * Determine if a certain object on a page is on the freelist. Must hold the
720 * slab lock to guarantee that the chains are in a consistent state.
722 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
724 int nr = 0;
725 void *fp = page->freelist;
726 void *object = NULL;
727 unsigned long max_objects;
729 while (fp && nr <= page->objects) {
730 if (fp == search)
731 return 1;
732 if (!check_valid_pointer(s, page, fp)) {
733 if (object) {
734 object_err(s, page, object,
735 "Freechain corrupt");
736 set_freepointer(s, object, NULL);
737 break;
738 } else {
739 slab_err(s, page, "Freepointer corrupt");
740 page->freelist = NULL;
741 page->inuse = page->objects;
742 slab_fix(s, "Freelist cleared");
743 return 0;
745 break;
747 object = fp;
748 fp = get_freepointer(s, object);
749 nr++;
752 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
753 if (max_objects > MAX_OBJS_PER_PAGE)
754 max_objects = MAX_OBJS_PER_PAGE;
756 if (page->objects != max_objects) {
757 slab_err(s, page, "Wrong number of objects. Found %d but "
758 "should be %d", page->objects, max_objects);
759 page->objects = max_objects;
760 slab_fix(s, "Number of objects adjusted.");
762 if (page->inuse != page->objects - nr) {
763 slab_err(s, page, "Wrong object count. Counter is %d but "
764 "counted were %d", page->inuse, page->objects - nr);
765 page->inuse = page->objects - nr;
766 slab_fix(s, "Object count adjusted.");
768 return search == NULL;
771 static void trace(struct kmem_cache *s, struct page *page, void *object,
772 int alloc)
774 if (s->flags & SLAB_TRACE) {
775 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
776 s->name,
777 alloc ? "alloc" : "free",
778 object, page->inuse,
779 page->freelist);
781 if (!alloc)
782 print_section("Object", (void *)object, s->objsize);
784 dump_stack();
789 * Tracking of fully allocated slabs for debugging purposes.
791 static void add_full(struct kmem_cache_node *n, struct page *page)
793 spin_lock(&n->list_lock);
794 list_add(&page->lru, &n->full);
795 spin_unlock(&n->list_lock);
798 static void remove_full(struct kmem_cache *s, struct page *page)
800 struct kmem_cache_node *n;
802 if (!(s->flags & SLAB_STORE_USER))
803 return;
805 n = get_node(s, page_to_nid(page));
807 spin_lock(&n->list_lock);
808 list_del(&page->lru);
809 spin_unlock(&n->list_lock);
812 /* Tracking of the number of slabs for debugging purposes */
813 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
815 struct kmem_cache_node *n = get_node(s, node);
817 return atomic_long_read(&n->nr_slabs);
820 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
822 return atomic_long_read(&n->nr_slabs);
825 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
827 struct kmem_cache_node *n = get_node(s, node);
830 * May be called early in order to allocate a slab for the
831 * kmem_cache_node structure. Solve the chicken-egg
832 * dilemma by deferring the increment of the count during
833 * bootstrap (see early_kmem_cache_node_alloc).
835 if (!NUMA_BUILD || n) {
836 atomic_long_inc(&n->nr_slabs);
837 atomic_long_add(objects, &n->total_objects);
840 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
842 struct kmem_cache_node *n = get_node(s, node);
844 atomic_long_dec(&n->nr_slabs);
845 atomic_long_sub(objects, &n->total_objects);
848 /* Object debug checks for alloc/free paths */
849 static void setup_object_debug(struct kmem_cache *s, struct page *page,
850 void *object)
852 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
853 return;
855 init_object(s, object, 0);
856 init_tracking(s, object);
859 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
860 void *object, unsigned long addr)
862 if (!check_slab(s, page))
863 goto bad;
865 if (!on_freelist(s, page, object)) {
866 object_err(s, page, object, "Object already allocated");
867 goto bad;
870 if (!check_valid_pointer(s, page, object)) {
871 object_err(s, page, object, "Freelist Pointer check fails");
872 goto bad;
875 if (!check_object(s, page, object, 0))
876 goto bad;
878 /* Success perform special debug activities for allocs */
879 if (s->flags & SLAB_STORE_USER)
880 set_track(s, object, TRACK_ALLOC, addr);
881 trace(s, page, object, 1);
882 init_object(s, object, 1);
883 return 1;
885 bad:
886 if (PageSlab(page)) {
888 * If this is a slab page then lets do the best we can
889 * to avoid issues in the future. Marking all objects
890 * as used avoids touching the remaining objects.
892 slab_fix(s, "Marking all objects used");
893 page->inuse = page->objects;
894 page->freelist = NULL;
896 return 0;
899 static int free_debug_processing(struct kmem_cache *s, struct page *page,
900 void *object, unsigned long addr)
902 if (!check_slab(s, page))
903 goto fail;
905 if (!check_valid_pointer(s, page, object)) {
906 slab_err(s, page, "Invalid object pointer 0x%p", object);
907 goto fail;
910 if (on_freelist(s, page, object)) {
911 object_err(s, page, object, "Object already free");
912 goto fail;
915 if (!check_object(s, page, object, 1))
916 return 0;
918 if (unlikely(s != page->slab)) {
919 if (!PageSlab(page)) {
920 slab_err(s, page, "Attempt to free object(0x%p) "
921 "outside of slab", object);
922 } else if (!page->slab) {
923 printk(KERN_ERR
924 "SLUB <none>: no slab for object 0x%p.\n",
925 object);
926 dump_stack();
927 } else
928 object_err(s, page, object,
929 "page slab pointer corrupt.");
930 goto fail;
933 /* Special debug activities for freeing objects */
934 if (!PageSlubFrozen(page) && !page->freelist)
935 remove_full(s, page);
936 if (s->flags & SLAB_STORE_USER)
937 set_track(s, object, TRACK_FREE, addr);
938 trace(s, page, object, 0);
939 init_object(s, object, 0);
940 return 1;
942 fail:
943 slab_fix(s, "Object at 0x%p not freed", object);
944 return 0;
947 static int __init setup_slub_debug(char *str)
949 slub_debug = DEBUG_DEFAULT_FLAGS;
950 if (*str++ != '=' || !*str)
952 * No options specified. Switch on full debugging.
954 goto out;
956 if (*str == ',')
958 * No options but restriction on slabs. This means full
959 * debugging for slabs matching a pattern.
961 goto check_slabs;
963 if (tolower(*str) == 'o') {
965 * Avoid enabling debugging on caches if its minimum order
966 * would increase as a result.
968 disable_higher_order_debug = 1;
969 goto out;
972 slub_debug = 0;
973 if (*str == '-')
975 * Switch off all debugging measures.
977 goto out;
980 * Determine which debug features should be switched on
982 for (; *str && *str != ','; str++) {
983 switch (tolower(*str)) {
984 case 'f':
985 slub_debug |= SLAB_DEBUG_FREE;
986 break;
987 case 'z':
988 slub_debug |= SLAB_RED_ZONE;
989 break;
990 case 'p':
991 slub_debug |= SLAB_POISON;
992 break;
993 case 'u':
994 slub_debug |= SLAB_STORE_USER;
995 break;
996 case 't':
997 slub_debug |= SLAB_TRACE;
998 break;
999 case 'a':
1000 slub_debug |= SLAB_FAILSLAB;
1001 break;
1002 default:
1003 printk(KERN_ERR "slub_debug option '%c' "
1004 "unknown. skipped\n", *str);
1008 check_slabs:
1009 if (*str == ',')
1010 slub_debug_slabs = str + 1;
1011 out:
1012 return 1;
1015 __setup("slub_debug", setup_slub_debug);
1017 static unsigned long kmem_cache_flags(unsigned long objsize,
1018 unsigned long flags, const char *name,
1019 void (*ctor)(void *))
1022 * Enable debugging if selected on the kernel commandline.
1024 if (slub_debug && (!slub_debug_slabs ||
1025 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1026 flags |= slub_debug;
1028 return flags;
1030 #else
1031 static inline void setup_object_debug(struct kmem_cache *s,
1032 struct page *page, void *object) {}
1034 static inline int alloc_debug_processing(struct kmem_cache *s,
1035 struct page *page, void *object, unsigned long addr) { return 0; }
1037 static inline int free_debug_processing(struct kmem_cache *s,
1038 struct page *page, void *object, unsigned long addr) { return 0; }
1040 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1041 { return 1; }
1042 static inline int check_object(struct kmem_cache *s, struct page *page,
1043 void *object, int active) { return 1; }
1044 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1045 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1046 unsigned long flags, const char *name,
1047 void (*ctor)(void *))
1049 return flags;
1051 #define slub_debug 0
1053 #define disable_higher_order_debug 0
1055 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1056 { return 0; }
1057 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1058 { return 0; }
1059 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1060 int objects) {}
1061 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1062 int objects) {}
1063 #endif
1066 * Slab allocation and freeing
1068 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1069 struct kmem_cache_order_objects oo)
1071 int order = oo_order(oo);
1073 flags |= __GFP_NOTRACK;
1075 if (node == -1)
1076 return alloc_pages(flags, order);
1077 else
1078 return alloc_pages_exact_node(node, flags, order);
1081 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1083 struct page *page;
1084 struct kmem_cache_order_objects oo = s->oo;
1085 gfp_t alloc_gfp;
1087 flags |= s->allocflags;
1090 * Let the initial higher-order allocation fail under memory pressure
1091 * so we fall-back to the minimum order allocation.
1093 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1095 page = alloc_slab_page(alloc_gfp, node, oo);
1096 if (unlikely(!page)) {
1097 oo = s->min;
1099 * Allocation may have failed due to fragmentation.
1100 * Try a lower order alloc if possible
1102 page = alloc_slab_page(flags, node, oo);
1103 if (!page)
1104 return NULL;
1106 stat(s, ORDER_FALLBACK);
1109 if (kmemcheck_enabled
1110 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1111 int pages = 1 << oo_order(oo);
1113 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1116 * Objects from caches that have a constructor don't get
1117 * cleared when they're allocated, so we need to do it here.
1119 if (s->ctor)
1120 kmemcheck_mark_uninitialized_pages(page, pages);
1121 else
1122 kmemcheck_mark_unallocated_pages(page, pages);
1125 page->objects = oo_objects(oo);
1126 mod_zone_page_state(page_zone(page),
1127 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1128 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1129 1 << oo_order(oo));
1131 return page;
1134 static void setup_object(struct kmem_cache *s, struct page *page,
1135 void *object)
1137 setup_object_debug(s, page, object);
1138 if (unlikely(s->ctor))
1139 s->ctor(object);
1142 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1144 struct page *page;
1145 void *start;
1146 void *last;
1147 void *p;
1149 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1151 page = allocate_slab(s,
1152 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1153 if (!page)
1154 goto out;
1156 inc_slabs_node(s, page_to_nid(page), page->objects);
1157 page->slab = s;
1158 page->flags |= 1 << PG_slab;
1159 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1160 SLAB_STORE_USER | SLAB_TRACE))
1161 __SetPageSlubDebug(page);
1163 start = page_address(page);
1165 if (unlikely(s->flags & SLAB_POISON))
1166 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1168 last = start;
1169 for_each_object(p, s, start, page->objects) {
1170 setup_object(s, page, last);
1171 set_freepointer(s, last, p);
1172 last = p;
1174 setup_object(s, page, last);
1175 set_freepointer(s, last, NULL);
1177 page->freelist = start;
1178 page->inuse = 0;
1179 out:
1180 return page;
1183 static void __free_slab(struct kmem_cache *s, struct page *page)
1185 int order = compound_order(page);
1186 int pages = 1 << order;
1188 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1189 void *p;
1191 slab_pad_check(s, page);
1192 for_each_object(p, s, page_address(page),
1193 page->objects)
1194 check_object(s, page, p, 0);
1195 __ClearPageSlubDebug(page);
1198 kmemcheck_free_shadow(page, compound_order(page));
1200 mod_zone_page_state(page_zone(page),
1201 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1202 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1203 -pages);
1205 __ClearPageSlab(page);
1206 reset_page_mapcount(page);
1207 if (current->reclaim_state)
1208 current->reclaim_state->reclaimed_slab += pages;
1209 __free_pages(page, order);
1212 static void rcu_free_slab(struct rcu_head *h)
1214 struct page *page;
1216 page = container_of((struct list_head *)h, struct page, lru);
1217 __free_slab(page->slab, page);
1220 static void free_slab(struct kmem_cache *s, struct page *page)
1222 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1224 * RCU free overloads the RCU head over the LRU
1226 struct rcu_head *head = (void *)&page->lru;
1228 call_rcu(head, rcu_free_slab);
1229 } else
1230 __free_slab(s, page);
1233 static void discard_slab(struct kmem_cache *s, struct page *page)
1235 dec_slabs_node(s, page_to_nid(page), page->objects);
1236 free_slab(s, page);
1240 * Per slab locking using the pagelock
1242 static __always_inline void slab_lock(struct page *page)
1244 bit_spin_lock(PG_locked, &page->flags);
1247 static __always_inline void slab_unlock(struct page *page)
1249 __bit_spin_unlock(PG_locked, &page->flags);
1252 static __always_inline int slab_trylock(struct page *page)
1254 int rc = 1;
1256 rc = bit_spin_trylock(PG_locked, &page->flags);
1257 return rc;
1261 * Management of partially allocated slabs
1263 static void add_partial(struct kmem_cache_node *n,
1264 struct page *page, int tail)
1266 spin_lock(&n->list_lock);
1267 n->nr_partial++;
1268 if (tail)
1269 list_add_tail(&page->lru, &n->partial);
1270 else
1271 list_add(&page->lru, &n->partial);
1272 spin_unlock(&n->list_lock);
1275 static void remove_partial(struct kmem_cache *s, struct page *page)
1277 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1279 spin_lock(&n->list_lock);
1280 list_del(&page->lru);
1281 n->nr_partial--;
1282 spin_unlock(&n->list_lock);
1286 * Lock slab and remove from the partial list.
1288 * Must hold list_lock.
1290 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1291 struct page *page)
1293 if (slab_trylock(page)) {
1294 list_del(&page->lru);
1295 n->nr_partial--;
1296 __SetPageSlubFrozen(page);
1297 return 1;
1299 return 0;
1303 * Try to allocate a partial slab from a specific node.
1305 static struct page *get_partial_node(struct kmem_cache_node *n)
1307 struct page *page;
1310 * Racy check. If we mistakenly see no partial slabs then we
1311 * just allocate an empty slab. If we mistakenly try to get a
1312 * partial slab and there is none available then get_partials()
1313 * will return NULL.
1315 if (!n || !n->nr_partial)
1316 return NULL;
1318 spin_lock(&n->list_lock);
1319 list_for_each_entry(page, &n->partial, lru)
1320 if (lock_and_freeze_slab(n, page))
1321 goto out;
1322 page = NULL;
1323 out:
1324 spin_unlock(&n->list_lock);
1325 return page;
1329 * Get a page from somewhere. Search in increasing NUMA distances.
1331 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1333 #ifdef CONFIG_NUMA
1334 struct zonelist *zonelist;
1335 struct zoneref *z;
1336 struct zone *zone;
1337 enum zone_type high_zoneidx = gfp_zone(flags);
1338 struct page *page;
1341 * The defrag ratio allows a configuration of the tradeoffs between
1342 * inter node defragmentation and node local allocations. A lower
1343 * defrag_ratio increases the tendency to do local allocations
1344 * instead of attempting to obtain partial slabs from other nodes.
1346 * If the defrag_ratio is set to 0 then kmalloc() always
1347 * returns node local objects. If the ratio is higher then kmalloc()
1348 * may return off node objects because partial slabs are obtained
1349 * from other nodes and filled up.
1351 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1352 * defrag_ratio = 1000) then every (well almost) allocation will
1353 * first attempt to defrag slab caches on other nodes. This means
1354 * scanning over all nodes to look for partial slabs which may be
1355 * expensive if we do it every time we are trying to find a slab
1356 * with available objects.
1358 if (!s->remote_node_defrag_ratio ||
1359 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1360 return NULL;
1362 get_mems_allowed();
1363 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1364 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1365 struct kmem_cache_node *n;
1367 n = get_node(s, zone_to_nid(zone));
1369 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1370 n->nr_partial > s->min_partial) {
1371 page = get_partial_node(n);
1372 if (page) {
1373 put_mems_allowed();
1374 return page;
1378 put_mems_allowed();
1379 #endif
1380 return NULL;
1384 * Get a partial page, lock it and return it.
1386 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1388 struct page *page;
1389 int searchnode = (node == -1) ? numa_node_id() : node;
1391 page = get_partial_node(get_node(s, searchnode));
1392 if (page || (flags & __GFP_THISNODE))
1393 return page;
1395 return get_any_partial(s, flags);
1399 * Move a page back to the lists.
1401 * Must be called with the slab lock held.
1403 * On exit the slab lock will have been dropped.
1405 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1407 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1409 __ClearPageSlubFrozen(page);
1410 if (page->inuse) {
1412 if (page->freelist) {
1413 add_partial(n, page, tail);
1414 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1415 } else {
1416 stat(s, DEACTIVATE_FULL);
1417 if (SLABDEBUG && PageSlubDebug(page) &&
1418 (s->flags & SLAB_STORE_USER))
1419 add_full(n, page);
1421 slab_unlock(page);
1422 } else {
1423 stat(s, DEACTIVATE_EMPTY);
1424 if (n->nr_partial < s->min_partial) {
1426 * Adding an empty slab to the partial slabs in order
1427 * to avoid page allocator overhead. This slab needs
1428 * to come after the other slabs with objects in
1429 * so that the others get filled first. That way the
1430 * size of the partial list stays small.
1432 * kmem_cache_shrink can reclaim any empty slabs from
1433 * the partial list.
1435 add_partial(n, page, 1);
1436 slab_unlock(page);
1437 } else {
1438 slab_unlock(page);
1439 stat(s, FREE_SLAB);
1440 discard_slab(s, page);
1446 * Remove the cpu slab
1448 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 struct page *page = c->page;
1451 int tail = 1;
1453 if (page->freelist)
1454 stat(s, DEACTIVATE_REMOTE_FREES);
1456 * Merge cpu freelist into slab freelist. Typically we get here
1457 * because both freelists are empty. So this is unlikely
1458 * to occur.
1460 while (unlikely(c->freelist)) {
1461 void **object;
1463 tail = 0; /* Hot objects. Put the slab first */
1465 /* Retrieve object from cpu_freelist */
1466 object = c->freelist;
1467 c->freelist = get_freepointer(s, c->freelist);
1469 /* And put onto the regular freelist */
1470 set_freepointer(s, object, page->freelist);
1471 page->freelist = object;
1472 page->inuse--;
1474 c->page = NULL;
1475 unfreeze_slab(s, page, tail);
1478 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1480 stat(s, CPUSLAB_FLUSH);
1481 slab_lock(c->page);
1482 deactivate_slab(s, c);
1486 * Flush cpu slab.
1488 * Called from IPI handler with interrupts disabled.
1490 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1492 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1494 if (likely(c && c->page))
1495 flush_slab(s, c);
1498 static void flush_cpu_slab(void *d)
1500 struct kmem_cache *s = d;
1502 __flush_cpu_slab(s, smp_processor_id());
1505 static void flush_all(struct kmem_cache *s)
1507 on_each_cpu(flush_cpu_slab, s, 1);
1511 * Check if the objects in a per cpu structure fit numa
1512 * locality expectations.
1514 static inline int node_match(struct kmem_cache_cpu *c, int node)
1516 #ifdef CONFIG_NUMA
1517 if (node != -1 && c->node != node)
1518 return 0;
1519 #endif
1520 return 1;
1523 static int count_free(struct page *page)
1525 return page->objects - page->inuse;
1528 static unsigned long count_partial(struct kmem_cache_node *n,
1529 int (*get_count)(struct page *))
1531 unsigned long flags;
1532 unsigned long x = 0;
1533 struct page *page;
1535 spin_lock_irqsave(&n->list_lock, flags);
1536 list_for_each_entry(page, &n->partial, lru)
1537 x += get_count(page);
1538 spin_unlock_irqrestore(&n->list_lock, flags);
1539 return x;
1542 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1544 #ifdef CONFIG_SLUB_DEBUG
1545 return atomic_long_read(&n->total_objects);
1546 #else
1547 return 0;
1548 #endif
1551 static noinline void
1552 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1554 int node;
1556 printk(KERN_WARNING
1557 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1558 nid, gfpflags);
1559 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1560 "default order: %d, min order: %d\n", s->name, s->objsize,
1561 s->size, oo_order(s->oo), oo_order(s->min));
1563 if (oo_order(s->min) > get_order(s->objsize))
1564 printk(KERN_WARNING " %s debugging increased min order, use "
1565 "slub_debug=O to disable.\n", s->name);
1567 for_each_online_node(node) {
1568 struct kmem_cache_node *n = get_node(s, node);
1569 unsigned long nr_slabs;
1570 unsigned long nr_objs;
1571 unsigned long nr_free;
1573 if (!n)
1574 continue;
1576 nr_free = count_partial(n, count_free);
1577 nr_slabs = node_nr_slabs(n);
1578 nr_objs = node_nr_objs(n);
1580 printk(KERN_WARNING
1581 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1582 node, nr_slabs, nr_objs, nr_free);
1587 * Slow path. The lockless freelist is empty or we need to perform
1588 * debugging duties.
1590 * Interrupts are disabled.
1592 * Processing is still very fast if new objects have been freed to the
1593 * regular freelist. In that case we simply take over the regular freelist
1594 * as the lockless freelist and zap the regular freelist.
1596 * If that is not working then we fall back to the partial lists. We take the
1597 * first element of the freelist as the object to allocate now and move the
1598 * rest of the freelist to the lockless freelist.
1600 * And if we were unable to get a new slab from the partial slab lists then
1601 * we need to allocate a new slab. This is the slowest path since it involves
1602 * a call to the page allocator and the setup of a new slab.
1604 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1605 unsigned long addr, struct kmem_cache_cpu *c)
1607 void **object;
1608 struct page *new;
1610 /* We handle __GFP_ZERO in the caller */
1611 gfpflags &= ~__GFP_ZERO;
1613 if (!c->page)
1614 goto new_slab;
1616 slab_lock(c->page);
1617 if (unlikely(!node_match(c, node)))
1618 goto another_slab;
1620 stat(s, ALLOC_REFILL);
1622 load_freelist:
1623 object = c->page->freelist;
1624 if (unlikely(!object))
1625 goto another_slab;
1626 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1627 goto debug;
1629 c->freelist = get_freepointer(s, object);
1630 c->page->inuse = c->page->objects;
1631 c->page->freelist = NULL;
1632 c->node = page_to_nid(c->page);
1633 unlock_out:
1634 slab_unlock(c->page);
1635 stat(s, ALLOC_SLOWPATH);
1636 return object;
1638 another_slab:
1639 deactivate_slab(s, c);
1641 new_slab:
1642 new = get_partial(s, gfpflags, node);
1643 if (new) {
1644 c->page = new;
1645 stat(s, ALLOC_FROM_PARTIAL);
1646 goto load_freelist;
1649 if (gfpflags & __GFP_WAIT)
1650 local_irq_enable();
1652 new = new_slab(s, gfpflags, node);
1654 if (gfpflags & __GFP_WAIT)
1655 local_irq_disable();
1657 if (new) {
1658 c = __this_cpu_ptr(s->cpu_slab);
1659 stat(s, ALLOC_SLAB);
1660 if (c->page)
1661 flush_slab(s, c);
1662 slab_lock(new);
1663 __SetPageSlubFrozen(new);
1664 c->page = new;
1665 goto load_freelist;
1667 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1668 slab_out_of_memory(s, gfpflags, node);
1669 return NULL;
1670 debug:
1671 if (!alloc_debug_processing(s, c->page, object, addr))
1672 goto another_slab;
1674 c->page->inuse++;
1675 c->page->freelist = get_freepointer(s, object);
1676 c->node = -1;
1677 goto unlock_out;
1681 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1682 * have the fastpath folded into their functions. So no function call
1683 * overhead for requests that can be satisfied on the fastpath.
1685 * The fastpath works by first checking if the lockless freelist can be used.
1686 * If not then __slab_alloc is called for slow processing.
1688 * Otherwise we can simply pick the next object from the lockless free list.
1690 static __always_inline void *slab_alloc(struct kmem_cache *s,
1691 gfp_t gfpflags, int node, unsigned long addr)
1693 void **object;
1694 struct kmem_cache_cpu *c;
1695 unsigned long flags;
1697 gfpflags &= gfp_allowed_mask;
1699 lockdep_trace_alloc(gfpflags);
1700 might_sleep_if(gfpflags & __GFP_WAIT);
1702 if (should_failslab(s->objsize, gfpflags, s->flags))
1703 return NULL;
1705 local_irq_save(flags);
1706 c = __this_cpu_ptr(s->cpu_slab);
1707 object = c->freelist;
1708 if (unlikely(!object || !node_match(c, node)))
1710 object = __slab_alloc(s, gfpflags, node, addr, c);
1712 else {
1713 c->freelist = get_freepointer(s, object);
1714 stat(s, ALLOC_FASTPATH);
1716 local_irq_restore(flags);
1718 if (unlikely(gfpflags & __GFP_ZERO) && object)
1719 memset(object, 0, s->objsize);
1721 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1722 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1724 return object;
1727 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1729 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1731 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1733 return ret;
1735 EXPORT_SYMBOL(kmem_cache_alloc);
1737 #ifdef CONFIG_TRACING
1738 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1740 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1742 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1743 #endif
1745 #ifdef CONFIG_NUMA
1746 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1748 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1750 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1751 s->objsize, s->size, gfpflags, node);
1753 return ret;
1755 EXPORT_SYMBOL(kmem_cache_alloc_node);
1756 #endif
1758 #ifdef CONFIG_TRACING
1759 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1760 gfp_t gfpflags,
1761 int node)
1763 return slab_alloc(s, gfpflags, node, _RET_IP_);
1765 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1766 #endif
1769 * Slow patch handling. This may still be called frequently since objects
1770 * have a longer lifetime than the cpu slabs in most processing loads.
1772 * So we still attempt to reduce cache line usage. Just take the slab
1773 * lock and free the item. If there is no additional partial page
1774 * handling required then we can return immediately.
1776 static void __slab_free(struct kmem_cache *s, struct page *page,
1777 void *x, unsigned long addr)
1779 void *prior;
1780 void **object = (void *)x;
1782 stat(s, FREE_SLOWPATH);
1783 slab_lock(page);
1785 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1786 goto debug;
1788 checks_ok:
1789 prior = page->freelist;
1790 set_freepointer(s, object, prior);
1791 page->freelist = object;
1792 page->inuse--;
1794 if (unlikely(PageSlubFrozen(page))) {
1795 stat(s, FREE_FROZEN);
1796 goto out_unlock;
1799 if (unlikely(!page->inuse))
1800 goto slab_empty;
1803 * Objects left in the slab. If it was not on the partial list before
1804 * then add it.
1806 if (unlikely(!prior)) {
1807 add_partial(get_node(s, page_to_nid(page)), page, 1);
1808 stat(s, FREE_ADD_PARTIAL);
1811 out_unlock:
1812 slab_unlock(page);
1813 return;
1815 slab_empty:
1816 if (prior) {
1818 * Slab still on the partial list.
1820 remove_partial(s, page);
1821 stat(s, FREE_REMOVE_PARTIAL);
1823 slab_unlock(page);
1824 stat(s, FREE_SLAB);
1825 discard_slab(s, page);
1826 return;
1828 debug:
1829 if (!free_debug_processing(s, page, x, addr))
1830 goto out_unlock;
1831 goto checks_ok;
1835 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1836 * can perform fastpath freeing without additional function calls.
1838 * The fastpath is only possible if we are freeing to the current cpu slab
1839 * of this processor. This typically the case if we have just allocated
1840 * the item before.
1842 * If fastpath is not possible then fall back to __slab_free where we deal
1843 * with all sorts of special processing.
1845 static __always_inline void slab_free(struct kmem_cache *s,
1846 struct page *page, void *x, unsigned long addr)
1848 void **object = (void *)x;
1849 struct kmem_cache_cpu *c;
1850 unsigned long flags;
1852 kmemleak_free_recursive(x, s->flags);
1853 local_irq_save(flags);
1854 c = __this_cpu_ptr(s->cpu_slab);
1855 kmemcheck_slab_free(s, object, s->objsize);
1856 debug_check_no_locks_freed(object, s->objsize);
1857 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1858 debug_check_no_obj_freed(object, s->objsize);
1859 if (likely(page == c->page && c->node >= 0)) {
1860 set_freepointer(s, object, c->freelist);
1861 c->freelist = object;
1862 stat(s, FREE_FASTPATH);
1863 } else
1864 __slab_free(s, page, x, addr);
1866 local_irq_restore(flags);
1869 void kmem_cache_free(struct kmem_cache *s, void *x)
1871 struct page *page;
1873 page = virt_to_head_page(x);
1875 slab_free(s, page, x, _RET_IP_);
1877 trace_kmem_cache_free(_RET_IP_, x);
1879 EXPORT_SYMBOL(kmem_cache_free);
1881 /* Figure out on which slab page the object resides */
1882 static struct page *get_object_page(const void *x)
1884 struct page *page = virt_to_head_page(x);
1886 if (!PageSlab(page))
1887 return NULL;
1889 return page;
1893 * Object placement in a slab is made very easy because we always start at
1894 * offset 0. If we tune the size of the object to the alignment then we can
1895 * get the required alignment by putting one properly sized object after
1896 * another.
1898 * Notice that the allocation order determines the sizes of the per cpu
1899 * caches. Each processor has always one slab available for allocations.
1900 * Increasing the allocation order reduces the number of times that slabs
1901 * must be moved on and off the partial lists and is therefore a factor in
1902 * locking overhead.
1906 * Mininum / Maximum order of slab pages. This influences locking overhead
1907 * and slab fragmentation. A higher order reduces the number of partial slabs
1908 * and increases the number of allocations possible without having to
1909 * take the list_lock.
1911 static int slub_min_order;
1912 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1913 static int slub_min_objects;
1916 * Merge control. If this is set then no merging of slab caches will occur.
1917 * (Could be removed. This was introduced to pacify the merge skeptics.)
1919 static int slub_nomerge;
1922 * Calculate the order of allocation given an slab object size.
1924 * The order of allocation has significant impact on performance and other
1925 * system components. Generally order 0 allocations should be preferred since
1926 * order 0 does not cause fragmentation in the page allocator. Larger objects
1927 * be problematic to put into order 0 slabs because there may be too much
1928 * unused space left. We go to a higher order if more than 1/16th of the slab
1929 * would be wasted.
1931 * In order to reach satisfactory performance we must ensure that a minimum
1932 * number of objects is in one slab. Otherwise we may generate too much
1933 * activity on the partial lists which requires taking the list_lock. This is
1934 * less a concern for large slabs though which are rarely used.
1936 * slub_max_order specifies the order where we begin to stop considering the
1937 * number of objects in a slab as critical. If we reach slub_max_order then
1938 * we try to keep the page order as low as possible. So we accept more waste
1939 * of space in favor of a small page order.
1941 * Higher order allocations also allow the placement of more objects in a
1942 * slab and thereby reduce object handling overhead. If the user has
1943 * requested a higher mininum order then we start with that one instead of
1944 * the smallest order which will fit the object.
1946 static inline int slab_order(int size, int min_objects,
1947 int max_order, int fract_leftover)
1949 int order;
1950 int rem;
1951 int min_order = slub_min_order;
1953 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1954 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1956 for (order = max(min_order,
1957 fls(min_objects * size - 1) - PAGE_SHIFT);
1958 order <= max_order; order++) {
1960 unsigned long slab_size = PAGE_SIZE << order;
1962 if (slab_size < min_objects * size)
1963 continue;
1965 rem = slab_size % size;
1967 if (rem <= slab_size / fract_leftover)
1968 break;
1972 return order;
1975 static inline int calculate_order(int size)
1977 int order;
1978 int min_objects;
1979 int fraction;
1980 int max_objects;
1983 * Attempt to find best configuration for a slab. This
1984 * works by first attempting to generate a layout with
1985 * the best configuration and backing off gradually.
1987 * First we reduce the acceptable waste in a slab. Then
1988 * we reduce the minimum objects required in a slab.
1990 min_objects = slub_min_objects;
1991 if (!min_objects)
1992 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1993 max_objects = (PAGE_SIZE << slub_max_order)/size;
1994 min_objects = min(min_objects, max_objects);
1996 while (min_objects > 1) {
1997 fraction = 16;
1998 while (fraction >= 4) {
1999 order = slab_order(size, min_objects,
2000 slub_max_order, fraction);
2001 if (order <= slub_max_order)
2002 return order;
2003 fraction /= 2;
2005 min_objects--;
2009 * We were unable to place multiple objects in a slab. Now
2010 * lets see if we can place a single object there.
2012 order = slab_order(size, 1, slub_max_order, 1);
2013 if (order <= slub_max_order)
2014 return order;
2017 * Doh this slab cannot be placed using slub_max_order.
2019 order = slab_order(size, 1, MAX_ORDER, 1);
2020 if (order < MAX_ORDER)
2021 return order;
2022 return -ENOSYS;
2026 * Figure out what the alignment of the objects will be.
2028 static unsigned long calculate_alignment(unsigned long flags,
2029 unsigned long align, unsigned long size)
2032 * If the user wants hardware cache aligned objects then follow that
2033 * suggestion if the object is sufficiently large.
2035 * The hardware cache alignment cannot override the specified
2036 * alignment though. If that is greater then use it.
2038 if (flags & SLAB_HWCACHE_ALIGN) {
2039 unsigned long ralign = cache_line_size();
2040 while (size <= ralign / 2)
2041 ralign /= 2;
2042 align = max(align, ralign);
2045 if (align < ARCH_SLAB_MINALIGN)
2046 align = ARCH_SLAB_MINALIGN;
2048 return ALIGN(align, sizeof(void *));
2051 static void
2052 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2054 n->nr_partial = 0;
2055 spin_lock_init(&n->list_lock);
2056 INIT_LIST_HEAD(&n->partial);
2057 #ifdef CONFIG_SLUB_DEBUG
2058 atomic_long_set(&n->nr_slabs, 0);
2059 atomic_long_set(&n->total_objects, 0);
2060 INIT_LIST_HEAD(&n->full);
2061 #endif
2064 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2066 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2068 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2070 * Boot time creation of the kmalloc array. Use static per cpu data
2071 * since the per cpu allocator is not available yet.
2073 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2074 else
2075 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2077 if (!s->cpu_slab)
2078 return 0;
2080 return 1;
2083 #ifdef CONFIG_NUMA
2085 * No kmalloc_node yet so do it by hand. We know that this is the first
2086 * slab on the node for this slabcache. There are no concurrent accesses
2087 * possible.
2089 * Note that this function only works on the kmalloc_node_cache
2090 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2091 * memory on a fresh node that has no slab structures yet.
2093 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2095 struct page *page;
2096 struct kmem_cache_node *n;
2097 unsigned long flags;
2099 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2101 page = new_slab(kmalloc_caches, gfpflags, node);
2103 BUG_ON(!page);
2104 if (page_to_nid(page) != node) {
2105 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2106 "node %d\n", node);
2107 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2108 "in order to be able to continue\n");
2111 n = page->freelist;
2112 BUG_ON(!n);
2113 page->freelist = get_freepointer(kmalloc_caches, n);
2114 page->inuse++;
2115 kmalloc_caches->node[node] = n;
2116 #ifdef CONFIG_SLUB_DEBUG
2117 init_object(kmalloc_caches, n, 1);
2118 init_tracking(kmalloc_caches, n);
2119 #endif
2120 init_kmem_cache_node(n, kmalloc_caches);
2121 inc_slabs_node(kmalloc_caches, node, page->objects);
2124 * lockdep requires consistent irq usage for each lock
2125 * so even though there cannot be a race this early in
2126 * the boot sequence, we still disable irqs.
2128 local_irq_save(flags);
2129 add_partial(n, page, 0);
2130 local_irq_restore(flags);
2133 static void free_kmem_cache_nodes(struct kmem_cache *s)
2135 int node;
2137 for_each_node_state(node, N_NORMAL_MEMORY) {
2138 struct kmem_cache_node *n = s->node[node];
2139 if (n && n != &s->local_node)
2140 kmem_cache_free(kmalloc_caches, n);
2141 s->node[node] = NULL;
2145 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2147 int node;
2148 int local_node;
2150 if (slab_state >= UP && (s < kmalloc_caches ||
2151 s >= kmalloc_caches + KMALLOC_CACHES))
2152 local_node = page_to_nid(virt_to_page(s));
2153 else
2154 local_node = 0;
2156 for_each_node_state(node, N_NORMAL_MEMORY) {
2157 struct kmem_cache_node *n;
2159 if (local_node == node)
2160 n = &s->local_node;
2161 else {
2162 if (slab_state == DOWN) {
2163 early_kmem_cache_node_alloc(gfpflags, node);
2164 continue;
2166 n = kmem_cache_alloc_node(kmalloc_caches,
2167 gfpflags, node);
2169 if (!n) {
2170 free_kmem_cache_nodes(s);
2171 return 0;
2175 s->node[node] = n;
2176 init_kmem_cache_node(n, s);
2178 return 1;
2180 #else
2181 static void free_kmem_cache_nodes(struct kmem_cache *s)
2185 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2187 init_kmem_cache_node(&s->local_node, s);
2188 return 1;
2190 #endif
2192 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2194 if (min < MIN_PARTIAL)
2195 min = MIN_PARTIAL;
2196 else if (min > MAX_PARTIAL)
2197 min = MAX_PARTIAL;
2198 s->min_partial = min;
2202 * calculate_sizes() determines the order and the distribution of data within
2203 * a slab object.
2205 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2207 unsigned long flags = s->flags;
2208 unsigned long size = s->objsize;
2209 unsigned long align = s->align;
2210 int order;
2213 * Round up object size to the next word boundary. We can only
2214 * place the free pointer at word boundaries and this determines
2215 * the possible location of the free pointer.
2217 size = ALIGN(size, sizeof(void *));
2219 #ifdef CONFIG_SLUB_DEBUG
2221 * Determine if we can poison the object itself. If the user of
2222 * the slab may touch the object after free or before allocation
2223 * then we should never poison the object itself.
2225 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2226 !s->ctor)
2227 s->flags |= __OBJECT_POISON;
2228 else
2229 s->flags &= ~__OBJECT_POISON;
2233 * If we are Redzoning then check if there is some space between the
2234 * end of the object and the free pointer. If not then add an
2235 * additional word to have some bytes to store Redzone information.
2237 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2238 size += sizeof(void *);
2239 #endif
2242 * With that we have determined the number of bytes in actual use
2243 * by the object. This is the potential offset to the free pointer.
2245 s->inuse = size;
2247 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2248 s->ctor)) {
2250 * Relocate free pointer after the object if it is not
2251 * permitted to overwrite the first word of the object on
2252 * kmem_cache_free.
2254 * This is the case if we do RCU, have a constructor or
2255 * destructor or are poisoning the objects.
2257 s->offset = size;
2258 size += sizeof(void *);
2261 #ifdef CONFIG_SLUB_DEBUG
2262 if (flags & SLAB_STORE_USER)
2264 * Need to store information about allocs and frees after
2265 * the object.
2267 size += 2 * sizeof(struct track);
2269 if (flags & SLAB_RED_ZONE)
2271 * Add some empty padding so that we can catch
2272 * overwrites from earlier objects rather than let
2273 * tracking information or the free pointer be
2274 * corrupted if a user writes before the start
2275 * of the object.
2277 size += sizeof(void *);
2278 #endif
2281 * Determine the alignment based on various parameters that the
2282 * user specified and the dynamic determination of cache line size
2283 * on bootup.
2285 align = calculate_alignment(flags, align, s->objsize);
2286 s->align = align;
2289 * SLUB stores one object immediately after another beginning from
2290 * offset 0. In order to align the objects we have to simply size
2291 * each object to conform to the alignment.
2293 size = ALIGN(size, align);
2294 s->size = size;
2295 if (forced_order >= 0)
2296 order = forced_order;
2297 else
2298 order = calculate_order(size);
2300 if (order < 0)
2301 return 0;
2303 s->allocflags = 0;
2304 if (order)
2305 s->allocflags |= __GFP_COMP;
2307 if (s->flags & SLAB_CACHE_DMA)
2308 s->allocflags |= SLUB_DMA;
2310 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2311 s->allocflags |= __GFP_RECLAIMABLE;
2314 * Determine the number of objects per slab
2316 s->oo = oo_make(order, size);
2317 s->min = oo_make(get_order(size), size);
2318 if (oo_objects(s->oo) > oo_objects(s->max))
2319 s->max = s->oo;
2321 return !!oo_objects(s->oo);
2325 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2326 const char *name, size_t size,
2327 size_t align, unsigned long flags,
2328 void (*ctor)(void *))
2330 memset(s, 0, kmem_size);
2331 s->name = name;
2332 s->ctor = ctor;
2333 s->objsize = size;
2334 s->align = align;
2335 s->flags = kmem_cache_flags(size, flags, name, ctor);
2337 if (!calculate_sizes(s, -1))
2338 goto error;
2339 if (disable_higher_order_debug) {
2341 * Disable debugging flags that store metadata if the min slab
2342 * order increased.
2344 if (get_order(s->size) > get_order(s->objsize)) {
2345 s->flags &= ~DEBUG_METADATA_FLAGS;
2346 s->offset = 0;
2347 if (!calculate_sizes(s, -1))
2348 goto error;
2353 * The larger the object size is, the more pages we want on the partial
2354 * list to avoid pounding the page allocator excessively.
2356 set_min_partial(s, ilog2(s->size));
2357 s->refcount = 1;
2358 #ifdef CONFIG_NUMA
2359 s->remote_node_defrag_ratio = 1000;
2360 #endif
2361 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2362 goto error;
2364 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2365 return 1;
2367 free_kmem_cache_nodes(s);
2368 error:
2369 if (flags & SLAB_PANIC)
2370 panic("Cannot create slab %s size=%lu realsize=%u "
2371 "order=%u offset=%u flags=%lx\n",
2372 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2373 s->offset, flags);
2374 return 0;
2378 * Check if a given pointer is valid
2380 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2382 struct page *page;
2384 if (!kern_ptr_validate(object, s->size))
2385 return 0;
2387 page = get_object_page(object);
2389 if (!page || s != page->slab)
2390 /* No slab or wrong slab */
2391 return 0;
2393 if (!check_valid_pointer(s, page, object))
2394 return 0;
2397 * We could also check if the object is on the slabs freelist.
2398 * But this would be too expensive and it seems that the main
2399 * purpose of kmem_ptr_valid() is to check if the object belongs
2400 * to a certain slab.
2402 return 1;
2404 EXPORT_SYMBOL(kmem_ptr_validate);
2407 * Determine the size of a slab object
2409 unsigned int kmem_cache_size(struct kmem_cache *s)
2411 return s->objsize;
2413 EXPORT_SYMBOL(kmem_cache_size);
2415 const char *kmem_cache_name(struct kmem_cache *s)
2417 return s->name;
2419 EXPORT_SYMBOL(kmem_cache_name);
2421 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2422 const char *text)
2424 #ifdef CONFIG_SLUB_DEBUG
2425 void *addr = page_address(page);
2426 void *p;
2427 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2428 GFP_ATOMIC);
2430 if (!map)
2431 return;
2432 slab_err(s, page, "%s", text);
2433 slab_lock(page);
2434 for_each_free_object(p, s, page->freelist)
2435 set_bit(slab_index(p, s, addr), map);
2437 for_each_object(p, s, addr, page->objects) {
2439 if (!test_bit(slab_index(p, s, addr), map)) {
2440 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2441 p, p - addr);
2442 print_tracking(s, p);
2445 slab_unlock(page);
2446 kfree(map);
2447 #endif
2451 * Attempt to free all partial slabs on a node.
2453 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2455 unsigned long flags;
2456 struct page *page, *h;
2458 spin_lock_irqsave(&n->list_lock, flags);
2459 list_for_each_entry_safe(page, h, &n->partial, lru) {
2460 if (!page->inuse) {
2461 list_del(&page->lru);
2462 discard_slab(s, page);
2463 n->nr_partial--;
2464 } else {
2465 list_slab_objects(s, page,
2466 "Objects remaining on kmem_cache_close()");
2469 spin_unlock_irqrestore(&n->list_lock, flags);
2473 * Release all resources used by a slab cache.
2475 static inline int kmem_cache_close(struct kmem_cache *s)
2477 int node;
2479 flush_all(s);
2480 free_percpu(s->cpu_slab);
2481 /* Attempt to free all objects */
2482 for_each_node_state(node, N_NORMAL_MEMORY) {
2483 struct kmem_cache_node *n = get_node(s, node);
2485 free_partial(s, n);
2486 if (n->nr_partial || slabs_node(s, node))
2487 return 1;
2489 free_kmem_cache_nodes(s);
2490 return 0;
2494 * Close a cache and release the kmem_cache structure
2495 * (must be used for caches created using kmem_cache_create)
2497 void kmem_cache_destroy(struct kmem_cache *s)
2499 down_write(&slub_lock);
2500 s->refcount--;
2501 if (!s->refcount) {
2502 list_del(&s->list);
2503 up_write(&slub_lock);
2504 if (kmem_cache_close(s)) {
2505 printk(KERN_ERR "SLUB %s: %s called for cache that "
2506 "still has objects.\n", s->name, __func__);
2507 dump_stack();
2509 if (s->flags & SLAB_DESTROY_BY_RCU)
2510 rcu_barrier();
2511 sysfs_slab_remove(s);
2512 } else
2513 up_write(&slub_lock);
2515 EXPORT_SYMBOL(kmem_cache_destroy);
2517 /********************************************************************
2518 * Kmalloc subsystem
2519 *******************************************************************/
2521 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2522 EXPORT_SYMBOL(kmalloc_caches);
2524 static int __init setup_slub_min_order(char *str)
2526 get_option(&str, &slub_min_order);
2528 return 1;
2531 __setup("slub_min_order=", setup_slub_min_order);
2533 static int __init setup_slub_max_order(char *str)
2535 get_option(&str, &slub_max_order);
2536 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2538 return 1;
2541 __setup("slub_max_order=", setup_slub_max_order);
2543 static int __init setup_slub_min_objects(char *str)
2545 get_option(&str, &slub_min_objects);
2547 return 1;
2550 __setup("slub_min_objects=", setup_slub_min_objects);
2552 static int __init setup_slub_nomerge(char *str)
2554 slub_nomerge = 1;
2555 return 1;
2558 __setup("slub_nomerge", setup_slub_nomerge);
2560 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2561 const char *name, int size, gfp_t gfp_flags)
2563 unsigned int flags = 0;
2565 if (gfp_flags & SLUB_DMA)
2566 flags = SLAB_CACHE_DMA;
2569 * This function is called with IRQs disabled during early-boot on
2570 * single CPU so there's no need to take slub_lock here.
2572 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2573 flags, NULL))
2574 goto panic;
2576 list_add(&s->list, &slab_caches);
2578 if (sysfs_slab_add(s))
2579 goto panic;
2580 return s;
2582 panic:
2583 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2586 #ifdef CONFIG_ZONE_DMA
2587 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2589 static void sysfs_add_func(struct work_struct *w)
2591 struct kmem_cache *s;
2593 down_write(&slub_lock);
2594 list_for_each_entry(s, &slab_caches, list) {
2595 if (s->flags & __SYSFS_ADD_DEFERRED) {
2596 s->flags &= ~__SYSFS_ADD_DEFERRED;
2597 sysfs_slab_add(s);
2600 up_write(&slub_lock);
2603 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2605 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2607 struct kmem_cache *s;
2608 char *text;
2609 size_t realsize;
2610 unsigned long slabflags;
2611 int i;
2613 s = kmalloc_caches_dma[index];
2614 if (s)
2615 return s;
2617 /* Dynamically create dma cache */
2618 if (flags & __GFP_WAIT)
2619 down_write(&slub_lock);
2620 else {
2621 if (!down_write_trylock(&slub_lock))
2622 goto out;
2625 if (kmalloc_caches_dma[index])
2626 goto unlock_out;
2628 realsize = kmalloc_caches[index].objsize;
2629 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2630 (unsigned int)realsize);
2632 s = NULL;
2633 for (i = 0; i < KMALLOC_CACHES; i++)
2634 if (!kmalloc_caches[i].size)
2635 break;
2637 BUG_ON(i >= KMALLOC_CACHES);
2638 s = kmalloc_caches + i;
2641 * Must defer sysfs creation to a workqueue because we don't know
2642 * what context we are called from. Before sysfs comes up, we don't
2643 * need to do anything because our sysfs initcall will start by
2644 * adding all existing slabs to sysfs.
2646 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2647 if (slab_state >= SYSFS)
2648 slabflags |= __SYSFS_ADD_DEFERRED;
2650 if (!text || !kmem_cache_open(s, flags, text,
2651 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2652 s->size = 0;
2653 kfree(text);
2654 goto unlock_out;
2657 list_add(&s->list, &slab_caches);
2658 kmalloc_caches_dma[index] = s;
2660 if (slab_state >= SYSFS)
2661 schedule_work(&sysfs_add_work);
2663 unlock_out:
2664 up_write(&slub_lock);
2665 out:
2666 return kmalloc_caches_dma[index];
2668 #endif
2671 * Conversion table for small slabs sizes / 8 to the index in the
2672 * kmalloc array. This is necessary for slabs < 192 since we have non power
2673 * of two cache sizes there. The size of larger slabs can be determined using
2674 * fls.
2676 static s8 size_index[24] = {
2677 3, /* 8 */
2678 4, /* 16 */
2679 5, /* 24 */
2680 5, /* 32 */
2681 6, /* 40 */
2682 6, /* 48 */
2683 6, /* 56 */
2684 6, /* 64 */
2685 1, /* 72 */
2686 1, /* 80 */
2687 1, /* 88 */
2688 1, /* 96 */
2689 7, /* 104 */
2690 7, /* 112 */
2691 7, /* 120 */
2692 7, /* 128 */
2693 2, /* 136 */
2694 2, /* 144 */
2695 2, /* 152 */
2696 2, /* 160 */
2697 2, /* 168 */
2698 2, /* 176 */
2699 2, /* 184 */
2700 2 /* 192 */
2703 static inline int size_index_elem(size_t bytes)
2705 return (bytes - 1) / 8;
2708 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2710 int index;
2712 if (size <= 192) {
2713 if (!size)
2714 return ZERO_SIZE_PTR;
2716 index = size_index[size_index_elem(size)];
2717 } else
2718 index = fls(size - 1);
2720 #ifdef CONFIG_ZONE_DMA
2721 if (unlikely((flags & SLUB_DMA)))
2722 return dma_kmalloc_cache(index, flags);
2724 #endif
2725 return &kmalloc_caches[index];
2728 void *__kmalloc(size_t size, gfp_t flags)
2730 struct kmem_cache *s;
2731 void *ret;
2733 if (unlikely(size > SLUB_MAX_SIZE))
2734 return kmalloc_large(size, flags);
2736 s = get_slab(size, flags);
2738 if (unlikely(ZERO_OR_NULL_PTR(s)))
2739 return s;
2741 ret = slab_alloc(s, flags, -1, _RET_IP_);
2743 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2745 return ret;
2747 EXPORT_SYMBOL(__kmalloc);
2749 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2751 struct page *page;
2752 void *ptr = NULL;
2754 flags |= __GFP_COMP | __GFP_NOTRACK;
2755 page = alloc_pages_node(node, flags, get_order(size));
2756 if (page)
2757 ptr = page_address(page);
2759 kmemleak_alloc(ptr, size, 1, flags);
2760 return ptr;
2763 #ifdef CONFIG_NUMA
2764 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2766 struct kmem_cache *s;
2767 void *ret;
2769 if (unlikely(size > SLUB_MAX_SIZE)) {
2770 ret = kmalloc_large_node(size, flags, node);
2772 trace_kmalloc_node(_RET_IP_, ret,
2773 size, PAGE_SIZE << get_order(size),
2774 flags, node);
2776 return ret;
2779 s = get_slab(size, flags);
2781 if (unlikely(ZERO_OR_NULL_PTR(s)))
2782 return s;
2784 ret = slab_alloc(s, flags, node, _RET_IP_);
2786 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2788 return ret;
2790 EXPORT_SYMBOL(__kmalloc_node);
2791 #endif
2793 size_t ksize(const void *object)
2795 struct page *page;
2796 struct kmem_cache *s;
2798 if (unlikely(object == ZERO_SIZE_PTR))
2799 return 0;
2801 page = virt_to_head_page(object);
2803 if (unlikely(!PageSlab(page))) {
2804 WARN_ON(!PageCompound(page));
2805 return PAGE_SIZE << compound_order(page);
2807 s = page->slab;
2809 #ifdef CONFIG_SLUB_DEBUG
2811 * Debugging requires use of the padding between object
2812 * and whatever may come after it.
2814 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2815 return s->objsize;
2817 #endif
2819 * If we have the need to store the freelist pointer
2820 * back there or track user information then we can
2821 * only use the space before that information.
2823 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2824 return s->inuse;
2826 * Else we can use all the padding etc for the allocation
2828 return s->size;
2830 EXPORT_SYMBOL(ksize);
2832 void kfree(const void *x)
2834 struct page *page;
2835 void *object = (void *)x;
2837 trace_kfree(_RET_IP_, x);
2839 if (unlikely(ZERO_OR_NULL_PTR(x)))
2840 return;
2842 page = virt_to_head_page(x);
2843 if (unlikely(!PageSlab(page))) {
2844 BUG_ON(!PageCompound(page));
2845 kmemleak_free(x);
2846 put_page(page);
2847 return;
2849 slab_free(page->slab, page, object, _RET_IP_);
2851 EXPORT_SYMBOL(kfree);
2854 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2855 * the remaining slabs by the number of items in use. The slabs with the
2856 * most items in use come first. New allocations will then fill those up
2857 * and thus they can be removed from the partial lists.
2859 * The slabs with the least items are placed last. This results in them
2860 * being allocated from last increasing the chance that the last objects
2861 * are freed in them.
2863 int kmem_cache_shrink(struct kmem_cache *s)
2865 int node;
2866 int i;
2867 struct kmem_cache_node *n;
2868 struct page *page;
2869 struct page *t;
2870 int objects = oo_objects(s->max);
2871 struct list_head *slabs_by_inuse =
2872 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2873 unsigned long flags;
2875 if (!slabs_by_inuse)
2876 return -ENOMEM;
2878 flush_all(s);
2879 for_each_node_state(node, N_NORMAL_MEMORY) {
2880 n = get_node(s, node);
2882 if (!n->nr_partial)
2883 continue;
2885 for (i = 0; i < objects; i++)
2886 INIT_LIST_HEAD(slabs_by_inuse + i);
2888 spin_lock_irqsave(&n->list_lock, flags);
2891 * Build lists indexed by the items in use in each slab.
2893 * Note that concurrent frees may occur while we hold the
2894 * list_lock. page->inuse here is the upper limit.
2896 list_for_each_entry_safe(page, t, &n->partial, lru) {
2897 if (!page->inuse && slab_trylock(page)) {
2899 * Must hold slab lock here because slab_free
2900 * may have freed the last object and be
2901 * waiting to release the slab.
2903 list_del(&page->lru);
2904 n->nr_partial--;
2905 slab_unlock(page);
2906 discard_slab(s, page);
2907 } else {
2908 list_move(&page->lru,
2909 slabs_by_inuse + page->inuse);
2914 * Rebuild the partial list with the slabs filled up most
2915 * first and the least used slabs at the end.
2917 for (i = objects - 1; i >= 0; i--)
2918 list_splice(slabs_by_inuse + i, n->partial.prev);
2920 spin_unlock_irqrestore(&n->list_lock, flags);
2923 kfree(slabs_by_inuse);
2924 return 0;
2926 EXPORT_SYMBOL(kmem_cache_shrink);
2928 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2929 static int slab_mem_going_offline_callback(void *arg)
2931 struct kmem_cache *s;
2933 down_read(&slub_lock);
2934 list_for_each_entry(s, &slab_caches, list)
2935 kmem_cache_shrink(s);
2936 up_read(&slub_lock);
2938 return 0;
2941 static void slab_mem_offline_callback(void *arg)
2943 struct kmem_cache_node *n;
2944 struct kmem_cache *s;
2945 struct memory_notify *marg = arg;
2946 int offline_node;
2948 offline_node = marg->status_change_nid;
2951 * If the node still has available memory. we need kmem_cache_node
2952 * for it yet.
2954 if (offline_node < 0)
2955 return;
2957 down_read(&slub_lock);
2958 list_for_each_entry(s, &slab_caches, list) {
2959 n = get_node(s, offline_node);
2960 if (n) {
2962 * if n->nr_slabs > 0, slabs still exist on the node
2963 * that is going down. We were unable to free them,
2964 * and offline_pages() function shouldn't call this
2965 * callback. So, we must fail.
2967 BUG_ON(slabs_node(s, offline_node));
2969 s->node[offline_node] = NULL;
2970 kmem_cache_free(kmalloc_caches, n);
2973 up_read(&slub_lock);
2976 static int slab_mem_going_online_callback(void *arg)
2978 struct kmem_cache_node *n;
2979 struct kmem_cache *s;
2980 struct memory_notify *marg = arg;
2981 int nid = marg->status_change_nid;
2982 int ret = 0;
2985 * If the node's memory is already available, then kmem_cache_node is
2986 * already created. Nothing to do.
2988 if (nid < 0)
2989 return 0;
2992 * We are bringing a node online. No memory is available yet. We must
2993 * allocate a kmem_cache_node structure in order to bring the node
2994 * online.
2996 down_read(&slub_lock);
2997 list_for_each_entry(s, &slab_caches, list) {
2999 * XXX: kmem_cache_alloc_node will fallback to other nodes
3000 * since memory is not yet available from the node that
3001 * is brought up.
3003 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3004 if (!n) {
3005 ret = -ENOMEM;
3006 goto out;
3008 init_kmem_cache_node(n, s);
3009 s->node[nid] = n;
3011 out:
3012 up_read(&slub_lock);
3013 return ret;
3016 static int slab_memory_callback(struct notifier_block *self,
3017 unsigned long action, void *arg)
3019 int ret = 0;
3021 switch (action) {
3022 case MEM_GOING_ONLINE:
3023 ret = slab_mem_going_online_callback(arg);
3024 break;
3025 case MEM_GOING_OFFLINE:
3026 ret = slab_mem_going_offline_callback(arg);
3027 break;
3028 case MEM_OFFLINE:
3029 case MEM_CANCEL_ONLINE:
3030 slab_mem_offline_callback(arg);
3031 break;
3032 case MEM_ONLINE:
3033 case MEM_CANCEL_OFFLINE:
3034 break;
3036 if (ret)
3037 ret = notifier_from_errno(ret);
3038 else
3039 ret = NOTIFY_OK;
3040 return ret;
3043 #endif /* CONFIG_MEMORY_HOTPLUG */
3045 /********************************************************************
3046 * Basic setup of slabs
3047 *******************************************************************/
3049 void __init kmem_cache_init(void)
3051 int i;
3052 int caches = 0;
3054 #ifdef CONFIG_NUMA
3056 * Must first have the slab cache available for the allocations of the
3057 * struct kmem_cache_node's. There is special bootstrap code in
3058 * kmem_cache_open for slab_state == DOWN.
3060 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3061 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3062 kmalloc_caches[0].refcount = -1;
3063 caches++;
3065 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3066 #endif
3068 /* Able to allocate the per node structures */
3069 slab_state = PARTIAL;
3071 /* Caches that are not of the two-to-the-power-of size */
3072 if (KMALLOC_MIN_SIZE <= 32) {
3073 create_kmalloc_cache(&kmalloc_caches[1],
3074 "kmalloc-96", 96, GFP_NOWAIT);
3075 caches++;
3077 if (KMALLOC_MIN_SIZE <= 64) {
3078 create_kmalloc_cache(&kmalloc_caches[2],
3079 "kmalloc-192", 192, GFP_NOWAIT);
3080 caches++;
3083 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3084 create_kmalloc_cache(&kmalloc_caches[i],
3085 "kmalloc", 1 << i, GFP_NOWAIT);
3086 caches++;
3091 * Patch up the size_index table if we have strange large alignment
3092 * requirements for the kmalloc array. This is only the case for
3093 * MIPS it seems. The standard arches will not generate any code here.
3095 * Largest permitted alignment is 256 bytes due to the way we
3096 * handle the index determination for the smaller caches.
3098 * Make sure that nothing crazy happens if someone starts tinkering
3099 * around with ARCH_KMALLOC_MINALIGN
3101 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3102 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3104 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3105 int elem = size_index_elem(i);
3106 if (elem >= ARRAY_SIZE(size_index))
3107 break;
3108 size_index[elem] = KMALLOC_SHIFT_LOW;
3111 if (KMALLOC_MIN_SIZE == 64) {
3113 * The 96 byte size cache is not used if the alignment
3114 * is 64 byte.
3116 for (i = 64 + 8; i <= 96; i += 8)
3117 size_index[size_index_elem(i)] = 7;
3118 } else if (KMALLOC_MIN_SIZE == 128) {
3120 * The 192 byte sized cache is not used if the alignment
3121 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3122 * instead.
3124 for (i = 128 + 8; i <= 192; i += 8)
3125 size_index[size_index_elem(i)] = 8;
3128 slab_state = UP;
3130 /* Provide the correct kmalloc names now that the caches are up */
3131 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3132 kmalloc_caches[i]. name =
3133 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3135 #ifdef CONFIG_SMP
3136 register_cpu_notifier(&slab_notifier);
3137 #endif
3138 #ifdef CONFIG_NUMA
3139 kmem_size = offsetof(struct kmem_cache, node) +
3140 nr_node_ids * sizeof(struct kmem_cache_node *);
3141 #else
3142 kmem_size = sizeof(struct kmem_cache);
3143 #endif
3145 printk(KERN_INFO
3146 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3147 " CPUs=%d, Nodes=%d\n",
3148 caches, cache_line_size(),
3149 slub_min_order, slub_max_order, slub_min_objects,
3150 nr_cpu_ids, nr_node_ids);
3153 void __init kmem_cache_init_late(void)
3158 * Find a mergeable slab cache
3160 static int slab_unmergeable(struct kmem_cache *s)
3162 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3163 return 1;
3165 if (s->ctor)
3166 return 1;
3169 * We may have set a slab to be unmergeable during bootstrap.
3171 if (s->refcount < 0)
3172 return 1;
3174 return 0;
3177 static struct kmem_cache *find_mergeable(size_t size,
3178 size_t align, unsigned long flags, const char *name,
3179 void (*ctor)(void *))
3181 struct kmem_cache *s;
3183 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3184 return NULL;
3186 if (ctor)
3187 return NULL;
3189 size = ALIGN(size, sizeof(void *));
3190 align = calculate_alignment(flags, align, size);
3191 size = ALIGN(size, align);
3192 flags = kmem_cache_flags(size, flags, name, NULL);
3194 list_for_each_entry(s, &slab_caches, list) {
3195 if (slab_unmergeable(s))
3196 continue;
3198 if (size > s->size)
3199 continue;
3201 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3202 continue;
3204 * Check if alignment is compatible.
3205 * Courtesy of Adrian Drzewiecki
3207 if ((s->size & ~(align - 1)) != s->size)
3208 continue;
3210 if (s->size - size >= sizeof(void *))
3211 continue;
3213 return s;
3215 return NULL;
3218 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3219 size_t align, unsigned long flags, void (*ctor)(void *))
3221 struct kmem_cache *s;
3223 if (WARN_ON(!name))
3224 return NULL;
3226 down_write(&slub_lock);
3227 s = find_mergeable(size, align, flags, name, ctor);
3228 if (s) {
3229 s->refcount++;
3231 * Adjust the object sizes so that we clear
3232 * the complete object on kzalloc.
3234 s->objsize = max(s->objsize, (int)size);
3235 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3236 up_write(&slub_lock);
3238 if (sysfs_slab_alias(s, name)) {
3239 down_write(&slub_lock);
3240 s->refcount--;
3241 up_write(&slub_lock);
3242 goto err;
3244 return s;
3247 s = kmalloc(kmem_size, GFP_KERNEL);
3248 if (s) {
3249 if (kmem_cache_open(s, GFP_KERNEL, name,
3250 size, align, flags, ctor)) {
3251 list_add(&s->list, &slab_caches);
3252 up_write(&slub_lock);
3253 if (sysfs_slab_add(s)) {
3254 down_write(&slub_lock);
3255 list_del(&s->list);
3256 up_write(&slub_lock);
3257 kfree(s);
3258 goto err;
3260 return s;
3262 kfree(s);
3264 up_write(&slub_lock);
3266 err:
3267 if (flags & SLAB_PANIC)
3268 panic("Cannot create slabcache %s\n", name);
3269 else
3270 s = NULL;
3271 return s;
3273 EXPORT_SYMBOL(kmem_cache_create);
3275 #ifdef CONFIG_SMP
3277 * Use the cpu notifier to insure that the cpu slabs are flushed when
3278 * necessary.
3280 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3281 unsigned long action, void *hcpu)
3283 long cpu = (long)hcpu;
3284 struct kmem_cache *s;
3285 unsigned long flags;
3287 switch (action) {
3288 case CPU_UP_CANCELED:
3289 case CPU_UP_CANCELED_FROZEN:
3290 case CPU_DEAD:
3291 case CPU_DEAD_FROZEN:
3292 down_read(&slub_lock);
3293 list_for_each_entry(s, &slab_caches, list) {
3294 local_irq_save(flags);
3295 __flush_cpu_slab(s, cpu);
3296 local_irq_restore(flags);
3298 up_read(&slub_lock);
3299 break;
3300 default:
3301 break;
3303 return NOTIFY_OK;
3306 static struct notifier_block __cpuinitdata slab_notifier = {
3307 .notifier_call = slab_cpuup_callback
3310 #endif
3312 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3314 struct kmem_cache *s;
3315 void *ret;
3317 if (unlikely(size > SLUB_MAX_SIZE))
3318 return kmalloc_large(size, gfpflags);
3320 s = get_slab(size, gfpflags);
3322 if (unlikely(ZERO_OR_NULL_PTR(s)))
3323 return s;
3325 ret = slab_alloc(s, gfpflags, -1, caller);
3327 /* Honor the call site pointer we recieved. */
3328 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3330 return ret;
3333 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3334 int node, unsigned long caller)
3336 struct kmem_cache *s;
3337 void *ret;
3339 if (unlikely(size > SLUB_MAX_SIZE)) {
3340 ret = kmalloc_large_node(size, gfpflags, node);
3342 trace_kmalloc_node(caller, ret,
3343 size, PAGE_SIZE << get_order(size),
3344 gfpflags, node);
3346 return ret;
3349 s = get_slab(size, gfpflags);
3351 if (unlikely(ZERO_OR_NULL_PTR(s)))
3352 return s;
3354 ret = slab_alloc(s, gfpflags, node, caller);
3356 /* Honor the call site pointer we recieved. */
3357 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3359 return ret;
3362 #ifdef CONFIG_SLUB_DEBUG
3363 static int count_inuse(struct page *page)
3365 return page->inuse;
3368 static int count_total(struct page *page)
3370 return page->objects;
3373 static int validate_slab(struct kmem_cache *s, struct page *page,
3374 unsigned long *map)
3376 void *p;
3377 void *addr = page_address(page);
3379 if (!check_slab(s, page) ||
3380 !on_freelist(s, page, NULL))
3381 return 0;
3383 /* Now we know that a valid freelist exists */
3384 bitmap_zero(map, page->objects);
3386 for_each_free_object(p, s, page->freelist) {
3387 set_bit(slab_index(p, s, addr), map);
3388 if (!check_object(s, page, p, 0))
3389 return 0;
3392 for_each_object(p, s, addr, page->objects)
3393 if (!test_bit(slab_index(p, s, addr), map))
3394 if (!check_object(s, page, p, 1))
3395 return 0;
3396 return 1;
3399 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3400 unsigned long *map)
3402 if (slab_trylock(page)) {
3403 validate_slab(s, page, map);
3404 slab_unlock(page);
3405 } else
3406 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3407 s->name, page);
3409 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3410 if (!PageSlubDebug(page))
3411 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3412 "on slab 0x%p\n", s->name, page);
3413 } else {
3414 if (PageSlubDebug(page))
3415 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3416 "slab 0x%p\n", s->name, page);
3420 static int validate_slab_node(struct kmem_cache *s,
3421 struct kmem_cache_node *n, unsigned long *map)
3423 unsigned long count = 0;
3424 struct page *page;
3425 unsigned long flags;
3427 spin_lock_irqsave(&n->list_lock, flags);
3429 list_for_each_entry(page, &n->partial, lru) {
3430 validate_slab_slab(s, page, map);
3431 count++;
3433 if (count != n->nr_partial)
3434 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3435 "counter=%ld\n", s->name, count, n->nr_partial);
3437 if (!(s->flags & SLAB_STORE_USER))
3438 goto out;
3440 list_for_each_entry(page, &n->full, lru) {
3441 validate_slab_slab(s, page, map);
3442 count++;
3444 if (count != atomic_long_read(&n->nr_slabs))
3445 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3446 "counter=%ld\n", s->name, count,
3447 atomic_long_read(&n->nr_slabs));
3449 out:
3450 spin_unlock_irqrestore(&n->list_lock, flags);
3451 return count;
3454 static long validate_slab_cache(struct kmem_cache *s)
3456 int node;
3457 unsigned long count = 0;
3458 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3459 sizeof(unsigned long), GFP_KERNEL);
3461 if (!map)
3462 return -ENOMEM;
3464 flush_all(s);
3465 for_each_node_state(node, N_NORMAL_MEMORY) {
3466 struct kmem_cache_node *n = get_node(s, node);
3468 count += validate_slab_node(s, n, map);
3470 kfree(map);
3471 return count;
3474 #ifdef SLUB_RESILIENCY_TEST
3475 static void resiliency_test(void)
3477 u8 *p;
3479 printk(KERN_ERR "SLUB resiliency testing\n");
3480 printk(KERN_ERR "-----------------------\n");
3481 printk(KERN_ERR "A. Corruption after allocation\n");
3483 p = kzalloc(16, GFP_KERNEL);
3484 p[16] = 0x12;
3485 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3486 " 0x12->0x%p\n\n", p + 16);
3488 validate_slab_cache(kmalloc_caches + 4);
3490 /* Hmmm... The next two are dangerous */
3491 p = kzalloc(32, GFP_KERNEL);
3492 p[32 + sizeof(void *)] = 0x34;
3493 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3494 " 0x34 -> -0x%p\n", p);
3495 printk(KERN_ERR
3496 "If allocated object is overwritten then not detectable\n\n");
3498 validate_slab_cache(kmalloc_caches + 5);
3499 p = kzalloc(64, GFP_KERNEL);
3500 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3501 *p = 0x56;
3502 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3504 printk(KERN_ERR
3505 "If allocated object is overwritten then not detectable\n\n");
3506 validate_slab_cache(kmalloc_caches + 6);
3508 printk(KERN_ERR "\nB. Corruption after free\n");
3509 p = kzalloc(128, GFP_KERNEL);
3510 kfree(p);
3511 *p = 0x78;
3512 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3513 validate_slab_cache(kmalloc_caches + 7);
3515 p = kzalloc(256, GFP_KERNEL);
3516 kfree(p);
3517 p[50] = 0x9a;
3518 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3520 validate_slab_cache(kmalloc_caches + 8);
3522 p = kzalloc(512, GFP_KERNEL);
3523 kfree(p);
3524 p[512] = 0xab;
3525 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3526 validate_slab_cache(kmalloc_caches + 9);
3528 #else
3529 static void resiliency_test(void) {};
3530 #endif
3533 * Generate lists of code addresses where slabcache objects are allocated
3534 * and freed.
3537 struct location {
3538 unsigned long count;
3539 unsigned long addr;
3540 long long sum_time;
3541 long min_time;
3542 long max_time;
3543 long min_pid;
3544 long max_pid;
3545 DECLARE_BITMAP(cpus, NR_CPUS);
3546 nodemask_t nodes;
3549 struct loc_track {
3550 unsigned long max;
3551 unsigned long count;
3552 struct location *loc;
3555 static void free_loc_track(struct loc_track *t)
3557 if (t->max)
3558 free_pages((unsigned long)t->loc,
3559 get_order(sizeof(struct location) * t->max));
3562 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3564 struct location *l;
3565 int order;
3567 order = get_order(sizeof(struct location) * max);
3569 l = (void *)__get_free_pages(flags, order);
3570 if (!l)
3571 return 0;
3573 if (t->count) {
3574 memcpy(l, t->loc, sizeof(struct location) * t->count);
3575 free_loc_track(t);
3577 t->max = max;
3578 t->loc = l;
3579 return 1;
3582 static int add_location(struct loc_track *t, struct kmem_cache *s,
3583 const struct track *track)
3585 long start, end, pos;
3586 struct location *l;
3587 unsigned long caddr;
3588 unsigned long age = jiffies - track->when;
3590 start = -1;
3591 end = t->count;
3593 for ( ; ; ) {
3594 pos = start + (end - start + 1) / 2;
3597 * There is nothing at "end". If we end up there
3598 * we need to add something to before end.
3600 if (pos == end)
3601 break;
3603 caddr = t->loc[pos].addr;
3604 if (track->addr == caddr) {
3606 l = &t->loc[pos];
3607 l->count++;
3608 if (track->when) {
3609 l->sum_time += age;
3610 if (age < l->min_time)
3611 l->min_time = age;
3612 if (age > l->max_time)
3613 l->max_time = age;
3615 if (track->pid < l->min_pid)
3616 l->min_pid = track->pid;
3617 if (track->pid > l->max_pid)
3618 l->max_pid = track->pid;
3620 cpumask_set_cpu(track->cpu,
3621 to_cpumask(l->cpus));
3623 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3624 return 1;
3627 if (track->addr < caddr)
3628 end = pos;
3629 else
3630 start = pos;
3634 * Not found. Insert new tracking element.
3636 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3637 return 0;
3639 l = t->loc + pos;
3640 if (pos < t->count)
3641 memmove(l + 1, l,
3642 (t->count - pos) * sizeof(struct location));
3643 t->count++;
3644 l->count = 1;
3645 l->addr = track->addr;
3646 l->sum_time = age;
3647 l->min_time = age;
3648 l->max_time = age;
3649 l->min_pid = track->pid;
3650 l->max_pid = track->pid;
3651 cpumask_clear(to_cpumask(l->cpus));
3652 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3653 nodes_clear(l->nodes);
3654 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3655 return 1;
3658 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3659 struct page *page, enum track_item alloc,
3660 long *map)
3662 void *addr = page_address(page);
3663 void *p;
3665 bitmap_zero(map, page->objects);
3666 for_each_free_object(p, s, page->freelist)
3667 set_bit(slab_index(p, s, addr), map);
3669 for_each_object(p, s, addr, page->objects)
3670 if (!test_bit(slab_index(p, s, addr), map))
3671 add_location(t, s, get_track(s, p, alloc));
3674 static int list_locations(struct kmem_cache *s, char *buf,
3675 enum track_item alloc)
3677 int len = 0;
3678 unsigned long i;
3679 struct loc_track t = { 0, 0, NULL };
3680 int node;
3681 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3682 sizeof(unsigned long), GFP_KERNEL);
3684 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3685 GFP_TEMPORARY)) {
3686 kfree(map);
3687 return sprintf(buf, "Out of memory\n");
3689 /* Push back cpu slabs */
3690 flush_all(s);
3692 for_each_node_state(node, N_NORMAL_MEMORY) {
3693 struct kmem_cache_node *n = get_node(s, node);
3694 unsigned long flags;
3695 struct page *page;
3697 if (!atomic_long_read(&n->nr_slabs))
3698 continue;
3700 spin_lock_irqsave(&n->list_lock, flags);
3701 list_for_each_entry(page, &n->partial, lru)
3702 process_slab(&t, s, page, alloc, map);
3703 list_for_each_entry(page, &n->full, lru)
3704 process_slab(&t, s, page, alloc, map);
3705 spin_unlock_irqrestore(&n->list_lock, flags);
3708 for (i = 0; i < t.count; i++) {
3709 struct location *l = &t.loc[i];
3711 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3712 break;
3713 len += sprintf(buf + len, "%7ld ", l->count);
3715 if (l->addr)
3716 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3717 else
3718 len += sprintf(buf + len, "<not-available>");
3720 if (l->sum_time != l->min_time) {
3721 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3722 l->min_time,
3723 (long)div_u64(l->sum_time, l->count),
3724 l->max_time);
3725 } else
3726 len += sprintf(buf + len, " age=%ld",
3727 l->min_time);
3729 if (l->min_pid != l->max_pid)
3730 len += sprintf(buf + len, " pid=%ld-%ld",
3731 l->min_pid, l->max_pid);
3732 else
3733 len += sprintf(buf + len, " pid=%ld",
3734 l->min_pid);
3736 if (num_online_cpus() > 1 &&
3737 !cpumask_empty(to_cpumask(l->cpus)) &&
3738 len < PAGE_SIZE - 60) {
3739 len += sprintf(buf + len, " cpus=");
3740 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3741 to_cpumask(l->cpus));
3744 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3745 len < PAGE_SIZE - 60) {
3746 len += sprintf(buf + len, " nodes=");
3747 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3748 l->nodes);
3751 len += sprintf(buf + len, "\n");
3754 free_loc_track(&t);
3755 kfree(map);
3756 if (!t.count)
3757 len += sprintf(buf, "No data\n");
3758 return len;
3761 enum slab_stat_type {
3762 SL_ALL, /* All slabs */
3763 SL_PARTIAL, /* Only partially allocated slabs */
3764 SL_CPU, /* Only slabs used for cpu caches */
3765 SL_OBJECTS, /* Determine allocated objects not slabs */
3766 SL_TOTAL /* Determine object capacity not slabs */
3769 #define SO_ALL (1 << SL_ALL)
3770 #define SO_PARTIAL (1 << SL_PARTIAL)
3771 #define SO_CPU (1 << SL_CPU)
3772 #define SO_OBJECTS (1 << SL_OBJECTS)
3773 #define SO_TOTAL (1 << SL_TOTAL)
3775 static ssize_t show_slab_objects(struct kmem_cache *s,
3776 char *buf, unsigned long flags)
3778 unsigned long total = 0;
3779 int node;
3780 int x;
3781 unsigned long *nodes;
3782 unsigned long *per_cpu;
3784 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3785 if (!nodes)
3786 return -ENOMEM;
3787 per_cpu = nodes + nr_node_ids;
3789 if (flags & SO_CPU) {
3790 int cpu;
3792 for_each_possible_cpu(cpu) {
3793 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3795 if (!c || c->node < 0)
3796 continue;
3798 if (c->page) {
3799 if (flags & SO_TOTAL)
3800 x = c->page->objects;
3801 else if (flags & SO_OBJECTS)
3802 x = c->page->inuse;
3803 else
3804 x = 1;
3806 total += x;
3807 nodes[c->node] += x;
3809 per_cpu[c->node]++;
3813 if (flags & SO_ALL) {
3814 for_each_node_state(node, N_NORMAL_MEMORY) {
3815 struct kmem_cache_node *n = get_node(s, node);
3817 if (flags & SO_TOTAL)
3818 x = atomic_long_read(&n->total_objects);
3819 else if (flags & SO_OBJECTS)
3820 x = atomic_long_read(&n->total_objects) -
3821 count_partial(n, count_free);
3823 else
3824 x = atomic_long_read(&n->nr_slabs);
3825 total += x;
3826 nodes[node] += x;
3829 } else if (flags & SO_PARTIAL) {
3830 for_each_node_state(node, N_NORMAL_MEMORY) {
3831 struct kmem_cache_node *n = get_node(s, node);
3833 if (flags & SO_TOTAL)
3834 x = count_partial(n, count_total);
3835 else if (flags & SO_OBJECTS)
3836 x = count_partial(n, count_inuse);
3837 else
3838 x = n->nr_partial;
3839 total += x;
3840 nodes[node] += x;
3843 x = sprintf(buf, "%lu", total);
3844 #ifdef CONFIG_NUMA
3845 for_each_node_state(node, N_NORMAL_MEMORY)
3846 if (nodes[node])
3847 x += sprintf(buf + x, " N%d=%lu",
3848 node, nodes[node]);
3849 #endif
3850 kfree(nodes);
3851 return x + sprintf(buf + x, "\n");
3854 static int any_slab_objects(struct kmem_cache *s)
3856 int node;
3858 for_each_online_node(node) {
3859 struct kmem_cache_node *n = get_node(s, node);
3861 if (!n)
3862 continue;
3864 if (atomic_long_read(&n->total_objects))
3865 return 1;
3867 return 0;
3870 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3871 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3873 struct slab_attribute {
3874 struct attribute attr;
3875 ssize_t (*show)(struct kmem_cache *s, char *buf);
3876 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3879 #define SLAB_ATTR_RO(_name) \
3880 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3882 #define SLAB_ATTR(_name) \
3883 static struct slab_attribute _name##_attr = \
3884 __ATTR(_name, 0644, _name##_show, _name##_store)
3886 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3888 return sprintf(buf, "%d\n", s->size);
3890 SLAB_ATTR_RO(slab_size);
3892 static ssize_t align_show(struct kmem_cache *s, char *buf)
3894 return sprintf(buf, "%d\n", s->align);
3896 SLAB_ATTR_RO(align);
3898 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3900 return sprintf(buf, "%d\n", s->objsize);
3902 SLAB_ATTR_RO(object_size);
3904 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3906 return sprintf(buf, "%d\n", oo_objects(s->oo));
3908 SLAB_ATTR_RO(objs_per_slab);
3910 static ssize_t order_store(struct kmem_cache *s,
3911 const char *buf, size_t length)
3913 unsigned long order;
3914 int err;
3916 err = strict_strtoul(buf, 10, &order);
3917 if (err)
3918 return err;
3920 if (order > slub_max_order || order < slub_min_order)
3921 return -EINVAL;
3923 calculate_sizes(s, order);
3924 return length;
3927 static ssize_t order_show(struct kmem_cache *s, char *buf)
3929 return sprintf(buf, "%d\n", oo_order(s->oo));
3931 SLAB_ATTR(order);
3933 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3935 return sprintf(buf, "%lu\n", s->min_partial);
3938 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3939 size_t length)
3941 unsigned long min;
3942 int err;
3944 err = strict_strtoul(buf, 10, &min);
3945 if (err)
3946 return err;
3948 set_min_partial(s, min);
3949 return length;
3951 SLAB_ATTR(min_partial);
3953 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3955 if (s->ctor) {
3956 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3958 return n + sprintf(buf + n, "\n");
3960 return 0;
3962 SLAB_ATTR_RO(ctor);
3964 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3966 return sprintf(buf, "%d\n", s->refcount - 1);
3968 SLAB_ATTR_RO(aliases);
3970 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3972 return show_slab_objects(s, buf, SO_ALL);
3974 SLAB_ATTR_RO(slabs);
3976 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3978 return show_slab_objects(s, buf, SO_PARTIAL);
3980 SLAB_ATTR_RO(partial);
3982 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3984 return show_slab_objects(s, buf, SO_CPU);
3986 SLAB_ATTR_RO(cpu_slabs);
3988 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3990 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3992 SLAB_ATTR_RO(objects);
3994 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3996 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3998 SLAB_ATTR_RO(objects_partial);
4000 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4002 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4004 SLAB_ATTR_RO(total_objects);
4006 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4008 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4011 static ssize_t sanity_checks_store(struct kmem_cache *s,
4012 const char *buf, size_t length)
4014 s->flags &= ~SLAB_DEBUG_FREE;
4015 if (buf[0] == '1')
4016 s->flags |= SLAB_DEBUG_FREE;
4017 return length;
4019 SLAB_ATTR(sanity_checks);
4021 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4023 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4026 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4027 size_t length)
4029 s->flags &= ~SLAB_TRACE;
4030 if (buf[0] == '1')
4031 s->flags |= SLAB_TRACE;
4032 return length;
4034 SLAB_ATTR(trace);
4036 #ifdef CONFIG_FAILSLAB
4037 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4039 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4042 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4043 size_t length)
4045 s->flags &= ~SLAB_FAILSLAB;
4046 if (buf[0] == '1')
4047 s->flags |= SLAB_FAILSLAB;
4048 return length;
4050 SLAB_ATTR(failslab);
4051 #endif
4053 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4058 static ssize_t reclaim_account_store(struct kmem_cache *s,
4059 const char *buf, size_t length)
4061 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4062 if (buf[0] == '1')
4063 s->flags |= SLAB_RECLAIM_ACCOUNT;
4064 return length;
4066 SLAB_ATTR(reclaim_account);
4068 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4072 SLAB_ATTR_RO(hwcache_align);
4074 #ifdef CONFIG_ZONE_DMA
4075 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4079 SLAB_ATTR_RO(cache_dma);
4080 #endif
4082 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4084 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4086 SLAB_ATTR_RO(destroy_by_rcu);
4088 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4093 static ssize_t red_zone_store(struct kmem_cache *s,
4094 const char *buf, size_t length)
4096 if (any_slab_objects(s))
4097 return -EBUSY;
4099 s->flags &= ~SLAB_RED_ZONE;
4100 if (buf[0] == '1')
4101 s->flags |= SLAB_RED_ZONE;
4102 calculate_sizes(s, -1);
4103 return length;
4105 SLAB_ATTR(red_zone);
4107 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4109 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4112 static ssize_t poison_store(struct kmem_cache *s,
4113 const char *buf, size_t length)
4115 if (any_slab_objects(s))
4116 return -EBUSY;
4118 s->flags &= ~SLAB_POISON;
4119 if (buf[0] == '1')
4120 s->flags |= SLAB_POISON;
4121 calculate_sizes(s, -1);
4122 return length;
4124 SLAB_ATTR(poison);
4126 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4128 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4131 static ssize_t store_user_store(struct kmem_cache *s,
4132 const char *buf, size_t length)
4134 if (any_slab_objects(s))
4135 return -EBUSY;
4137 s->flags &= ~SLAB_STORE_USER;
4138 if (buf[0] == '1')
4139 s->flags |= SLAB_STORE_USER;
4140 calculate_sizes(s, -1);
4141 return length;
4143 SLAB_ATTR(store_user);
4145 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4147 return 0;
4150 static ssize_t validate_store(struct kmem_cache *s,
4151 const char *buf, size_t length)
4153 int ret = -EINVAL;
4155 if (buf[0] == '1') {
4156 ret = validate_slab_cache(s);
4157 if (ret >= 0)
4158 ret = length;
4160 return ret;
4162 SLAB_ATTR(validate);
4164 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4166 return 0;
4169 static ssize_t shrink_store(struct kmem_cache *s,
4170 const char *buf, size_t length)
4172 if (buf[0] == '1') {
4173 int rc = kmem_cache_shrink(s);
4175 if (rc)
4176 return rc;
4177 } else
4178 return -EINVAL;
4179 return length;
4181 SLAB_ATTR(shrink);
4183 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4185 if (!(s->flags & SLAB_STORE_USER))
4186 return -ENOSYS;
4187 return list_locations(s, buf, TRACK_ALLOC);
4189 SLAB_ATTR_RO(alloc_calls);
4191 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4193 if (!(s->flags & SLAB_STORE_USER))
4194 return -ENOSYS;
4195 return list_locations(s, buf, TRACK_FREE);
4197 SLAB_ATTR_RO(free_calls);
4199 #ifdef CONFIG_NUMA
4200 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4202 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4205 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4206 const char *buf, size_t length)
4208 unsigned long ratio;
4209 int err;
4211 err = strict_strtoul(buf, 10, &ratio);
4212 if (err)
4213 return err;
4215 if (ratio <= 100)
4216 s->remote_node_defrag_ratio = ratio * 10;
4218 return length;
4220 SLAB_ATTR(remote_node_defrag_ratio);
4221 #endif
4223 #ifdef CONFIG_SLUB_STATS
4224 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4226 unsigned long sum = 0;
4227 int cpu;
4228 int len;
4229 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4231 if (!data)
4232 return -ENOMEM;
4234 for_each_online_cpu(cpu) {
4235 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4237 data[cpu] = x;
4238 sum += x;
4241 len = sprintf(buf, "%lu", sum);
4243 #ifdef CONFIG_SMP
4244 for_each_online_cpu(cpu) {
4245 if (data[cpu] && len < PAGE_SIZE - 20)
4246 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4248 #endif
4249 kfree(data);
4250 return len + sprintf(buf + len, "\n");
4253 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4255 int cpu;
4257 for_each_online_cpu(cpu)
4258 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4261 #define STAT_ATTR(si, text) \
4262 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4264 return show_stat(s, buf, si); \
4266 static ssize_t text##_store(struct kmem_cache *s, \
4267 const char *buf, size_t length) \
4269 if (buf[0] != '0') \
4270 return -EINVAL; \
4271 clear_stat(s, si); \
4272 return length; \
4274 SLAB_ATTR(text); \
4276 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4277 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4278 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4279 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4280 STAT_ATTR(FREE_FROZEN, free_frozen);
4281 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4282 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4283 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4284 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4285 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4286 STAT_ATTR(FREE_SLAB, free_slab);
4287 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4288 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4289 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4290 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4291 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4292 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4293 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4294 #endif
4296 static struct attribute *slab_attrs[] = {
4297 &slab_size_attr.attr,
4298 &object_size_attr.attr,
4299 &objs_per_slab_attr.attr,
4300 &order_attr.attr,
4301 &min_partial_attr.attr,
4302 &objects_attr.attr,
4303 &objects_partial_attr.attr,
4304 &total_objects_attr.attr,
4305 &slabs_attr.attr,
4306 &partial_attr.attr,
4307 &cpu_slabs_attr.attr,
4308 &ctor_attr.attr,
4309 &aliases_attr.attr,
4310 &align_attr.attr,
4311 &sanity_checks_attr.attr,
4312 &trace_attr.attr,
4313 &hwcache_align_attr.attr,
4314 &reclaim_account_attr.attr,
4315 &destroy_by_rcu_attr.attr,
4316 &red_zone_attr.attr,
4317 &poison_attr.attr,
4318 &store_user_attr.attr,
4319 &validate_attr.attr,
4320 &shrink_attr.attr,
4321 &alloc_calls_attr.attr,
4322 &free_calls_attr.attr,
4323 #ifdef CONFIG_ZONE_DMA
4324 &cache_dma_attr.attr,
4325 #endif
4326 #ifdef CONFIG_NUMA
4327 &remote_node_defrag_ratio_attr.attr,
4328 #endif
4329 #ifdef CONFIG_SLUB_STATS
4330 &alloc_fastpath_attr.attr,
4331 &alloc_slowpath_attr.attr,
4332 &free_fastpath_attr.attr,
4333 &free_slowpath_attr.attr,
4334 &free_frozen_attr.attr,
4335 &free_add_partial_attr.attr,
4336 &free_remove_partial_attr.attr,
4337 &alloc_from_partial_attr.attr,
4338 &alloc_slab_attr.attr,
4339 &alloc_refill_attr.attr,
4340 &free_slab_attr.attr,
4341 &cpuslab_flush_attr.attr,
4342 &deactivate_full_attr.attr,
4343 &deactivate_empty_attr.attr,
4344 &deactivate_to_head_attr.attr,
4345 &deactivate_to_tail_attr.attr,
4346 &deactivate_remote_frees_attr.attr,
4347 &order_fallback_attr.attr,
4348 #endif
4349 #ifdef CONFIG_FAILSLAB
4350 &failslab_attr.attr,
4351 #endif
4353 NULL
4356 static struct attribute_group slab_attr_group = {
4357 .attrs = slab_attrs,
4360 static ssize_t slab_attr_show(struct kobject *kobj,
4361 struct attribute *attr,
4362 char *buf)
4364 struct slab_attribute *attribute;
4365 struct kmem_cache *s;
4366 int err;
4368 attribute = to_slab_attr(attr);
4369 s = to_slab(kobj);
4371 if (!attribute->show)
4372 return -EIO;
4374 err = attribute->show(s, buf);
4376 return err;
4379 static ssize_t slab_attr_store(struct kobject *kobj,
4380 struct attribute *attr,
4381 const char *buf, size_t len)
4383 struct slab_attribute *attribute;
4384 struct kmem_cache *s;
4385 int err;
4387 attribute = to_slab_attr(attr);
4388 s = to_slab(kobj);
4390 if (!attribute->store)
4391 return -EIO;
4393 err = attribute->store(s, buf, len);
4395 return err;
4398 static void kmem_cache_release(struct kobject *kobj)
4400 struct kmem_cache *s = to_slab(kobj);
4402 kfree(s);
4405 static const struct sysfs_ops slab_sysfs_ops = {
4406 .show = slab_attr_show,
4407 .store = slab_attr_store,
4410 static struct kobj_type slab_ktype = {
4411 .sysfs_ops = &slab_sysfs_ops,
4412 .release = kmem_cache_release
4415 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4417 struct kobj_type *ktype = get_ktype(kobj);
4419 if (ktype == &slab_ktype)
4420 return 1;
4421 return 0;
4424 static const struct kset_uevent_ops slab_uevent_ops = {
4425 .filter = uevent_filter,
4428 static struct kset *slab_kset;
4430 #define ID_STR_LENGTH 64
4432 /* Create a unique string id for a slab cache:
4434 * Format :[flags-]size
4436 static char *create_unique_id(struct kmem_cache *s)
4438 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4439 char *p = name;
4441 BUG_ON(!name);
4443 *p++ = ':';
4445 * First flags affecting slabcache operations. We will only
4446 * get here for aliasable slabs so we do not need to support
4447 * too many flags. The flags here must cover all flags that
4448 * are matched during merging to guarantee that the id is
4449 * unique.
4451 if (s->flags & SLAB_CACHE_DMA)
4452 *p++ = 'd';
4453 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4454 *p++ = 'a';
4455 if (s->flags & SLAB_DEBUG_FREE)
4456 *p++ = 'F';
4457 if (!(s->flags & SLAB_NOTRACK))
4458 *p++ = 't';
4459 if (p != name + 1)
4460 *p++ = '-';
4461 p += sprintf(p, "%07d", s->size);
4462 BUG_ON(p > name + ID_STR_LENGTH - 1);
4463 return name;
4466 static int sysfs_slab_add(struct kmem_cache *s)
4468 int err;
4469 const char *name;
4470 int unmergeable;
4472 if (slab_state < SYSFS)
4473 /* Defer until later */
4474 return 0;
4476 unmergeable = slab_unmergeable(s);
4477 if (unmergeable) {
4479 * Slabcache can never be merged so we can use the name proper.
4480 * This is typically the case for debug situations. In that
4481 * case we can catch duplicate names easily.
4483 sysfs_remove_link(&slab_kset->kobj, s->name);
4484 name = s->name;
4485 } else {
4487 * Create a unique name for the slab as a target
4488 * for the symlinks.
4490 name = create_unique_id(s);
4493 s->kobj.kset = slab_kset;
4494 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4495 if (err) {
4496 kobject_put(&s->kobj);
4497 return err;
4500 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4501 if (err) {
4502 kobject_del(&s->kobj);
4503 kobject_put(&s->kobj);
4504 return err;
4506 kobject_uevent(&s->kobj, KOBJ_ADD);
4507 if (!unmergeable) {
4508 /* Setup first alias */
4509 sysfs_slab_alias(s, s->name);
4510 kfree(name);
4512 return 0;
4515 static void sysfs_slab_remove(struct kmem_cache *s)
4517 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4518 kobject_del(&s->kobj);
4519 kobject_put(&s->kobj);
4523 * Need to buffer aliases during bootup until sysfs becomes
4524 * available lest we lose that information.
4526 struct saved_alias {
4527 struct kmem_cache *s;
4528 const char *name;
4529 struct saved_alias *next;
4532 static struct saved_alias *alias_list;
4534 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4536 struct saved_alias *al;
4538 if (slab_state == SYSFS) {
4540 * If we have a leftover link then remove it.
4542 sysfs_remove_link(&slab_kset->kobj, name);
4543 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4546 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4547 if (!al)
4548 return -ENOMEM;
4550 al->s = s;
4551 al->name = name;
4552 al->next = alias_list;
4553 alias_list = al;
4554 return 0;
4557 static int __init slab_sysfs_init(void)
4559 struct kmem_cache *s;
4560 int err;
4562 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4563 if (!slab_kset) {
4564 printk(KERN_ERR "Cannot register slab subsystem.\n");
4565 return -ENOSYS;
4568 slab_state = SYSFS;
4570 list_for_each_entry(s, &slab_caches, list) {
4571 err = sysfs_slab_add(s);
4572 if (err)
4573 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4574 " to sysfs\n", s->name);
4577 while (alias_list) {
4578 struct saved_alias *al = alias_list;
4580 alias_list = alias_list->next;
4581 err = sysfs_slab_alias(al->s, al->name);
4582 if (err)
4583 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4584 " %s to sysfs\n", s->name);
4585 kfree(al);
4588 resiliency_test();
4589 return 0;
4592 __initcall(slab_sysfs_init);
4593 #endif
4596 * The /proc/slabinfo ABI
4598 #ifdef CONFIG_SLABINFO
4599 static void print_slabinfo_header(struct seq_file *m)
4601 seq_puts(m, "slabinfo - version: 2.1\n");
4602 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4603 "<objperslab> <pagesperslab>");
4604 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4605 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4606 seq_putc(m, '\n');
4609 static void *s_start(struct seq_file *m, loff_t *pos)
4611 loff_t n = *pos;
4613 down_read(&slub_lock);
4614 if (!n)
4615 print_slabinfo_header(m);
4617 return seq_list_start(&slab_caches, *pos);
4620 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4622 return seq_list_next(p, &slab_caches, pos);
4625 static void s_stop(struct seq_file *m, void *p)
4627 up_read(&slub_lock);
4630 static int s_show(struct seq_file *m, void *p)
4632 unsigned long nr_partials = 0;
4633 unsigned long nr_slabs = 0;
4634 unsigned long nr_inuse = 0;
4635 unsigned long nr_objs = 0;
4636 unsigned long nr_free = 0;
4637 struct kmem_cache *s;
4638 int node;
4640 s = list_entry(p, struct kmem_cache, list);
4642 for_each_online_node(node) {
4643 struct kmem_cache_node *n = get_node(s, node);
4645 if (!n)
4646 continue;
4648 nr_partials += n->nr_partial;
4649 nr_slabs += atomic_long_read(&n->nr_slabs);
4650 nr_objs += atomic_long_read(&n->total_objects);
4651 nr_free += count_partial(n, count_free);
4654 nr_inuse = nr_objs - nr_free;
4656 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4657 nr_objs, s->size, oo_objects(s->oo),
4658 (1 << oo_order(s->oo)));
4659 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4660 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4661 0UL);
4662 seq_putc(m, '\n');
4663 return 0;
4666 static const struct seq_operations slabinfo_op = {
4667 .start = s_start,
4668 .next = s_next,
4669 .stop = s_stop,
4670 .show = s_show,
4673 static int slabinfo_open(struct inode *inode, struct file *file)
4675 return seq_open(file, &slabinfo_op);
4678 static const struct file_operations proc_slabinfo_operations = {
4679 .open = slabinfo_open,
4680 .read = seq_read,
4681 .llseek = seq_lseek,
4682 .release = seq_release,
4685 static int __init slab_proc_init(void)
4687 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4688 return 0;
4690 module_init(slab_proc_init);
4691 #endif /* CONFIG_SLABINFO */