tracing: Remove kmemtrace ftrace plugin
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / slub_def.h
blob2345d3a033e6958add9641d9d2f0f90787a13c0e
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
4 /*
5 * SLUB : A Slab allocator without object queues.
7 * (C) 2007 SGI, Christoph Lameter
8 */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/workqueue.h>
12 #include <linux/kobject.h>
13 #include <linux/kmemleak.h>
15 #include <trace/events/kmem.h>
17 enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
28 FREE_SLAB, /* Slab freed to the page allocator */
29 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
30 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
31 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
32 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
33 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
34 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
35 ORDER_FALLBACK, /* Number of times fallback was necessary */
36 NR_SLUB_STAT_ITEMS };
38 struct kmem_cache_cpu {
39 void **freelist; /* Pointer to first free per cpu object */
40 struct page *page; /* The slab from which we are allocating */
41 int node; /* The node of the page (or -1 for debug) */
42 #ifdef CONFIG_SLUB_STATS
43 unsigned stat[NR_SLUB_STAT_ITEMS];
44 #endif
47 struct kmem_cache_node {
48 spinlock_t list_lock; /* Protect partial list and nr_partial */
49 unsigned long nr_partial;
50 struct list_head partial;
51 #ifdef CONFIG_SLUB_DEBUG
52 atomic_long_t nr_slabs;
53 atomic_long_t total_objects;
54 struct list_head full;
55 #endif
59 * Word size structure that can be atomically updated or read and that
60 * contains both the order and the number of objects that a slab of the
61 * given order would contain.
63 struct kmem_cache_order_objects {
64 unsigned long x;
68 * Slab cache management.
70 struct kmem_cache {
71 struct kmem_cache_cpu *cpu_slab;
72 /* Used for retriving partial slabs etc */
73 unsigned long flags;
74 int size; /* The size of an object including meta data */
75 int objsize; /* The size of an object without meta data */
76 int offset; /* Free pointer offset. */
77 struct kmem_cache_order_objects oo;
80 * Avoid an extra cache line for UP, SMP and for the node local to
81 * struct kmem_cache.
83 struct kmem_cache_node local_node;
85 /* Allocation and freeing of slabs */
86 struct kmem_cache_order_objects max;
87 struct kmem_cache_order_objects min;
88 gfp_t allocflags; /* gfp flags to use on each alloc */
89 int refcount; /* Refcount for slab cache destroy */
90 void (*ctor)(void *);
91 int inuse; /* Offset to metadata */
92 int align; /* Alignment */
93 unsigned long min_partial;
94 const char *name; /* Name (only for display!) */
95 struct list_head list; /* List of slab caches */
96 #ifdef CONFIG_SLUB_DEBUG
97 struct kobject kobj; /* For sysfs */
98 #endif
100 #ifdef CONFIG_NUMA
102 * Defragmentation by allocating from a remote node.
104 int remote_node_defrag_ratio;
105 struct kmem_cache_node *node[MAX_NUMNODES];
106 #endif
110 * Kmalloc subsystem.
112 #if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
113 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
114 #else
115 #define KMALLOC_MIN_SIZE 8
116 #endif
118 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
120 #ifndef ARCH_KMALLOC_MINALIGN
121 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
122 #endif
124 #ifndef ARCH_SLAB_MINALIGN
125 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
126 #endif
129 * Maximum kmalloc object size handled by SLUB. Larger object allocations
130 * are passed through to the page allocator. The page allocator "fastpath"
131 * is relatively slow so we need this value sufficiently high so that
132 * performance critical objects are allocated through the SLUB fastpath.
134 * This should be dropped to PAGE_SIZE / 2 once the page allocator
135 * "fastpath" becomes competitive with the slab allocator fastpaths.
137 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
139 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
141 #ifdef CONFIG_ZONE_DMA
142 #define SLUB_DMA __GFP_DMA
143 /* Reserve extra caches for potential DMA use */
144 #define KMALLOC_CACHES (2 * SLUB_PAGE_SHIFT - 6)
145 #else
146 /* Disable DMA functionality */
147 #define SLUB_DMA (__force gfp_t)0
148 #define KMALLOC_CACHES SLUB_PAGE_SHIFT
149 #endif
152 * We keep the general caches in an array of slab caches that are used for
153 * 2^x bytes of allocations.
155 extern struct kmem_cache kmalloc_caches[KMALLOC_CACHES];
158 * Sorry that the following has to be that ugly but some versions of GCC
159 * have trouble with constant propagation and loops.
161 static __always_inline int kmalloc_index(size_t size)
163 if (!size)
164 return 0;
166 if (size <= KMALLOC_MIN_SIZE)
167 return KMALLOC_SHIFT_LOW;
169 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
170 return 1;
171 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
172 return 2;
173 if (size <= 8) return 3;
174 if (size <= 16) return 4;
175 if (size <= 32) return 5;
176 if (size <= 64) return 6;
177 if (size <= 128) return 7;
178 if (size <= 256) return 8;
179 if (size <= 512) return 9;
180 if (size <= 1024) return 10;
181 if (size <= 2 * 1024) return 11;
182 if (size <= 4 * 1024) return 12;
184 * The following is only needed to support architectures with a larger page
185 * size than 4k.
187 if (size <= 8 * 1024) return 13;
188 if (size <= 16 * 1024) return 14;
189 if (size <= 32 * 1024) return 15;
190 if (size <= 64 * 1024) return 16;
191 if (size <= 128 * 1024) return 17;
192 if (size <= 256 * 1024) return 18;
193 if (size <= 512 * 1024) return 19;
194 if (size <= 1024 * 1024) return 20;
195 if (size <= 2 * 1024 * 1024) return 21;
196 return -1;
199 * What we really wanted to do and cannot do because of compiler issues is:
200 * int i;
201 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
202 * if (size <= (1 << i))
203 * return i;
208 * Find the slab cache for a given combination of allocation flags and size.
210 * This ought to end up with a global pointer to the right cache
211 * in kmalloc_caches.
213 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
215 int index = kmalloc_index(size);
217 if (index == 0)
218 return NULL;
220 return &kmalloc_caches[index];
223 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
224 void *__kmalloc(size_t size, gfp_t flags);
226 #ifdef CONFIG_TRACING
227 extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
228 #else
229 static __always_inline void *
230 kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
232 return kmem_cache_alloc(s, gfpflags);
234 #endif
236 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
238 unsigned int order = get_order(size);
239 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
241 kmemleak_alloc(ret, size, 1, flags);
242 trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
244 return ret;
247 static __always_inline void *kmalloc(size_t size, gfp_t flags)
249 void *ret;
251 if (__builtin_constant_p(size)) {
252 if (size > SLUB_MAX_SIZE)
253 return kmalloc_large(size, flags);
255 if (!(flags & SLUB_DMA)) {
256 struct kmem_cache *s = kmalloc_slab(size);
258 if (!s)
259 return ZERO_SIZE_PTR;
261 ret = kmem_cache_alloc_notrace(s, flags);
263 trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
265 return ret;
268 return __kmalloc(size, flags);
271 #ifdef CONFIG_NUMA
272 void *__kmalloc_node(size_t size, gfp_t flags, int node);
273 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
275 #ifdef CONFIG_TRACING
276 extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
277 gfp_t gfpflags,
278 int node);
279 #else
280 static __always_inline void *
281 kmem_cache_alloc_node_notrace(struct kmem_cache *s,
282 gfp_t gfpflags,
283 int node)
285 return kmem_cache_alloc_node(s, gfpflags, node);
287 #endif
289 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
291 void *ret;
293 if (__builtin_constant_p(size) &&
294 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
295 struct kmem_cache *s = kmalloc_slab(size);
297 if (!s)
298 return ZERO_SIZE_PTR;
300 ret = kmem_cache_alloc_node_notrace(s, flags, node);
302 trace_kmalloc_node(_THIS_IP_, ret,
303 size, s->size, flags, node);
305 return ret;
307 return __kmalloc_node(size, flags, node);
309 #endif
311 #endif /* _LINUX_SLUB_DEF_H */