Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / mac80211 / tx.c
blobac210b58670223bdee80d46b8a9792a2a9115d80
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 * Transmit and frame generation functions.
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
40 /* misc utils */
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
98 return 0;
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
124 if (r->bitrate > txrate->bitrate)
125 break;
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
173 return cpu_to_le16(dur);
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
179 return local == wdev_priv(dev->ieee80211_ptr);
182 /* tx handlers */
184 static ieee80211_tx_result debug_noinline
185 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
188 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
189 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
190 u32 sta_flags;
192 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
193 return TX_CONTINUE;
195 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
196 !ieee80211_is_probe_req(hdr->frame_control) &&
197 !ieee80211_is_nullfunc(hdr->frame_control))
199 * When software scanning only nullfunc frames (to notify
200 * the sleep state to the AP) and probe requests (for the
201 * active scan) are allowed, all other frames should not be
202 * sent and we should not get here, but if we do
203 * nonetheless, drop them to avoid sending them
204 * off-channel. See the link below and
205 * ieee80211_start_scan() for more.
207 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
209 return TX_DROP;
211 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
212 return TX_CONTINUE;
214 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
215 return TX_CONTINUE;
217 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
219 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
220 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
221 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
222 ieee80211_is_data(hdr->frame_control))) {
223 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
224 printk(KERN_DEBUG "%s: dropped data frame to not "
225 "associated station %pM\n",
226 tx->dev->name, hdr->addr1);
227 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
228 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
229 return TX_DROP;
231 } else {
232 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
233 tx->local->num_sta == 0 &&
234 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
236 * No associated STAs - no need to send multicast
237 * frames.
239 return TX_DROP;
241 return TX_CONTINUE;
244 return TX_CONTINUE;
247 /* This function is called whenever the AP is about to exceed the maximum limit
248 * of buffered frames for power saving STAs. This situation should not really
249 * happen often during normal operation, so dropping the oldest buffered packet
250 * from each queue should be OK to make some room for new frames. */
251 static void purge_old_ps_buffers(struct ieee80211_local *local)
253 int total = 0, purged = 0;
254 struct sk_buff *skb;
255 struct ieee80211_sub_if_data *sdata;
256 struct sta_info *sta;
259 * virtual interfaces are protected by RCU
261 rcu_read_lock();
263 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
264 struct ieee80211_if_ap *ap;
265 if (sdata->vif.type != NL80211_IFTYPE_AP)
266 continue;
267 ap = &sdata->u.ap;
268 skb = skb_dequeue(&ap->ps_bc_buf);
269 if (skb) {
270 purged++;
271 dev_kfree_skb(skb);
273 total += skb_queue_len(&ap->ps_bc_buf);
276 list_for_each_entry_rcu(sta, &local->sta_list, list) {
277 skb = skb_dequeue(&sta->ps_tx_buf);
278 if (skb) {
279 purged++;
280 dev_kfree_skb(skb);
282 total += skb_queue_len(&sta->ps_tx_buf);
285 rcu_read_unlock();
287 local->total_ps_buffered = total;
288 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
289 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
290 wiphy_name(local->hw.wiphy), purged);
291 #endif
294 static ieee80211_tx_result
295 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
297 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
298 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
301 * broadcast/multicast frame
303 * If any of the associated stations is in power save mode,
304 * the frame is buffered to be sent after DTIM beacon frame.
305 * This is done either by the hardware or us.
308 /* powersaving STAs only in AP/VLAN mode */
309 if (!tx->sdata->bss)
310 return TX_CONTINUE;
312 /* no buffering for ordered frames */
313 if (ieee80211_has_order(hdr->frame_control))
314 return TX_CONTINUE;
316 /* no stations in PS mode */
317 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
318 return TX_CONTINUE;
320 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
322 /* device releases frame after DTIM beacon */
323 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
324 return TX_CONTINUE;
326 /* buffered in mac80211 */
327 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
328 purge_old_ps_buffers(tx->local);
330 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
331 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
332 if (net_ratelimit())
333 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
334 tx->dev->name);
335 #endif
336 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
337 } else
338 tx->local->total_ps_buffered++;
340 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
342 return TX_QUEUED;
345 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
346 struct sk_buff *skb)
348 if (!ieee80211_is_mgmt(fc))
349 return 0;
351 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
352 return 0;
354 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
355 skb->data))
356 return 0;
358 return 1;
361 static ieee80211_tx_result
362 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
364 struct sta_info *sta = tx->sta;
365 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
366 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
367 u32 staflags;
369 if (unlikely(!sta ||
370 ieee80211_is_probe_resp(hdr->frame_control) ||
371 ieee80211_is_auth(hdr->frame_control) ||
372 ieee80211_is_assoc_resp(hdr->frame_control) ||
373 ieee80211_is_reassoc_resp(hdr->frame_control)))
374 return TX_CONTINUE;
376 staflags = get_sta_flags(sta);
378 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
379 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
380 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
381 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
382 "before %d)\n",
383 sta->sta.addr, sta->sta.aid,
384 skb_queue_len(&sta->ps_tx_buf));
385 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
386 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
387 purge_old_ps_buffers(tx->local);
388 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
389 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
390 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
391 if (net_ratelimit()) {
392 printk(KERN_DEBUG "%s: STA %pM TX "
393 "buffer full - dropping oldest frame\n",
394 tx->dev->name, sta->sta.addr);
396 #endif
397 dev_kfree_skb(old);
398 } else
399 tx->local->total_ps_buffered++;
402 * Queue frame to be sent after STA wakes up/polls,
403 * but don't set the TIM bit if the driver is blocking
404 * wakeup or poll response transmissions anyway.
406 if (skb_queue_empty(&sta->ps_tx_buf) &&
407 !(staflags & WLAN_STA_PS_DRIVER))
408 sta_info_set_tim_bit(sta);
410 info->control.jiffies = jiffies;
411 info->control.vif = &tx->sdata->vif;
412 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
413 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
414 return TX_QUEUED;
416 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
417 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
418 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
419 "set -> send frame\n", tx->dev->name,
420 sta->sta.addr);
422 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
424 return TX_CONTINUE;
427 static ieee80211_tx_result debug_noinline
428 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
430 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
431 return TX_CONTINUE;
433 if (tx->flags & IEEE80211_TX_UNICAST)
434 return ieee80211_tx_h_unicast_ps_buf(tx);
435 else
436 return ieee80211_tx_h_multicast_ps_buf(tx);
439 static ieee80211_tx_result debug_noinline
440 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
442 struct ieee80211_key *key = NULL;
443 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
444 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
446 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
447 tx->key = NULL;
448 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
449 tx->key = key;
450 else if (ieee80211_is_mgmt(hdr->frame_control) &&
451 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
452 tx->key = key;
453 else if ((key = rcu_dereference(tx->sdata->default_key)))
454 tx->key = key;
455 else if (tx->sdata->drop_unencrypted &&
456 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
457 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
458 (!ieee80211_is_robust_mgmt_frame(hdr) ||
459 (ieee80211_is_action(hdr->frame_control) &&
460 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
461 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
462 return TX_DROP;
463 } else
464 tx->key = NULL;
466 if (tx->key) {
467 tx->key->tx_rx_count++;
468 /* TODO: add threshold stuff again */
470 switch (tx->key->conf.alg) {
471 case ALG_WEP:
472 if (ieee80211_is_auth(hdr->frame_control))
473 break;
474 case ALG_TKIP:
475 if (!ieee80211_is_data_present(hdr->frame_control))
476 tx->key = NULL;
477 break;
478 case ALG_CCMP:
479 if (!ieee80211_is_data_present(hdr->frame_control) &&
480 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
481 tx->skb))
482 tx->key = NULL;
483 break;
484 case ALG_AES_CMAC:
485 if (!ieee80211_is_mgmt(hdr->frame_control))
486 tx->key = NULL;
487 break;
491 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
492 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
494 return TX_CONTINUE;
497 static ieee80211_tx_result debug_noinline
498 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
500 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
501 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
502 struct ieee80211_supported_band *sband;
503 struct ieee80211_rate *rate;
504 int i, len;
505 bool inval = false, rts = false, short_preamble = false;
506 struct ieee80211_tx_rate_control txrc;
507 u32 sta_flags;
509 memset(&txrc, 0, sizeof(txrc));
511 sband = tx->local->hw.wiphy->bands[tx->channel->band];
513 len = min_t(int, tx->skb->len + FCS_LEN,
514 tx->local->hw.wiphy->frag_threshold);
516 /* set up the tx rate control struct we give the RC algo */
517 txrc.hw = local_to_hw(tx->local);
518 txrc.sband = sband;
519 txrc.bss_conf = &tx->sdata->vif.bss_conf;
520 txrc.skb = tx->skb;
521 txrc.reported_rate.idx = -1;
522 txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx;
524 /* set up RTS protection if desired */
525 if (len > tx->local->hw.wiphy->rts_threshold) {
526 txrc.rts = rts = true;
530 * Use short preamble if the BSS can handle it, but not for
531 * management frames unless we know the receiver can handle
532 * that -- the management frame might be to a station that
533 * just wants a probe response.
535 if (tx->sdata->vif.bss_conf.use_short_preamble &&
536 (ieee80211_is_data(hdr->frame_control) ||
537 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
538 txrc.short_preamble = short_preamble = true;
540 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
543 * Lets not bother rate control if we're associated and cannot
544 * talk to the sta. This should not happen.
546 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
547 (sta_flags & WLAN_STA_ASSOC) &&
548 !rate_usable_index_exists(sband, &tx->sta->sta),
549 "%s: Dropped data frame as no usable bitrate found while "
550 "scanning and associated. Target station: "
551 "%pM on %d GHz band\n",
552 tx->dev->name, hdr->addr1,
553 tx->channel->band ? 5 : 2))
554 return TX_DROP;
557 * If we're associated with the sta at this point we know we can at
558 * least send the frame at the lowest bit rate.
560 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
562 if (unlikely(info->control.rates[0].idx < 0))
563 return TX_DROP;
565 if (txrc.reported_rate.idx < 0)
566 txrc.reported_rate = info->control.rates[0];
568 if (tx->sta)
569 tx->sta->last_tx_rate = txrc.reported_rate;
571 if (unlikely(!info->control.rates[0].count))
572 info->control.rates[0].count = 1;
574 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
575 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
576 info->control.rates[0].count = 1;
578 if (is_multicast_ether_addr(hdr->addr1)) {
580 * XXX: verify the rate is in the basic rateset
582 return TX_CONTINUE;
586 * set up the RTS/CTS rate as the fastest basic rate
587 * that is not faster than the data rate
589 * XXX: Should this check all retry rates?
591 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
592 s8 baserate = 0;
594 rate = &sband->bitrates[info->control.rates[0].idx];
596 for (i = 0; i < sband->n_bitrates; i++) {
597 /* must be a basic rate */
598 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
599 continue;
600 /* must not be faster than the data rate */
601 if (sband->bitrates[i].bitrate > rate->bitrate)
602 continue;
603 /* maximum */
604 if (sband->bitrates[baserate].bitrate <
605 sband->bitrates[i].bitrate)
606 baserate = i;
609 info->control.rts_cts_rate_idx = baserate;
612 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
614 * make sure there's no valid rate following
615 * an invalid one, just in case drivers don't
616 * take the API seriously to stop at -1.
618 if (inval) {
619 info->control.rates[i].idx = -1;
620 continue;
622 if (info->control.rates[i].idx < 0) {
623 inval = true;
624 continue;
628 * For now assume MCS is already set up correctly, this
629 * needs to be fixed.
631 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
632 WARN_ON(info->control.rates[i].idx > 76);
633 continue;
636 /* set up RTS protection if desired */
637 if (rts)
638 info->control.rates[i].flags |=
639 IEEE80211_TX_RC_USE_RTS_CTS;
641 /* RC is busted */
642 if (WARN_ON_ONCE(info->control.rates[i].idx >=
643 sband->n_bitrates)) {
644 info->control.rates[i].idx = -1;
645 continue;
648 rate = &sband->bitrates[info->control.rates[i].idx];
650 /* set up short preamble */
651 if (short_preamble &&
652 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
653 info->control.rates[i].flags |=
654 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
656 /* set up G protection */
657 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
658 rate->flags & IEEE80211_RATE_ERP_G)
659 info->control.rates[i].flags |=
660 IEEE80211_TX_RC_USE_CTS_PROTECT;
663 return TX_CONTINUE;
666 static ieee80211_tx_result debug_noinline
667 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
669 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
671 if (tx->sta)
672 info->control.sta = &tx->sta->sta;
674 return TX_CONTINUE;
677 static ieee80211_tx_result debug_noinline
678 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
680 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
681 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
682 u16 *seq;
683 u8 *qc;
684 int tid;
687 * Packet injection may want to control the sequence
688 * number, if we have no matching interface then we
689 * neither assign one ourselves nor ask the driver to.
691 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
692 return TX_CONTINUE;
694 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
695 return TX_CONTINUE;
697 if (ieee80211_hdrlen(hdr->frame_control) < 24)
698 return TX_CONTINUE;
701 * Anything but QoS data that has a sequence number field
702 * (is long enough) gets a sequence number from the global
703 * counter.
705 if (!ieee80211_is_data_qos(hdr->frame_control)) {
706 /* driver should assign sequence number */
707 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
708 /* for pure STA mode without beacons, we can do it */
709 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
710 tx->sdata->sequence_number += 0x10;
711 return TX_CONTINUE;
715 * This should be true for injected/management frames only, for
716 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
717 * above since they are not QoS-data frames.
719 if (!tx->sta)
720 return TX_CONTINUE;
722 /* include per-STA, per-TID sequence counter */
724 qc = ieee80211_get_qos_ctl(hdr);
725 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
726 seq = &tx->sta->tid_seq[tid];
728 hdr->seq_ctrl = cpu_to_le16(*seq);
730 /* Increase the sequence number. */
731 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
733 return TX_CONTINUE;
736 static int ieee80211_fragment(struct ieee80211_local *local,
737 struct sk_buff *skb, int hdrlen,
738 int frag_threshold)
740 struct sk_buff *tail = skb, *tmp;
741 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
742 int pos = hdrlen + per_fragm;
743 int rem = skb->len - hdrlen - per_fragm;
745 if (WARN_ON(rem < 0))
746 return -EINVAL;
748 while (rem) {
749 int fraglen = per_fragm;
751 if (fraglen > rem)
752 fraglen = rem;
753 rem -= fraglen;
754 tmp = dev_alloc_skb(local->tx_headroom +
755 frag_threshold +
756 IEEE80211_ENCRYPT_HEADROOM +
757 IEEE80211_ENCRYPT_TAILROOM);
758 if (!tmp)
759 return -ENOMEM;
760 tail->next = tmp;
761 tail = tmp;
762 skb_reserve(tmp, local->tx_headroom +
763 IEEE80211_ENCRYPT_HEADROOM);
764 /* copy control information */
765 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
766 skb_copy_queue_mapping(tmp, skb);
767 tmp->priority = skb->priority;
768 tmp->dev = skb->dev;
770 /* copy header and data */
771 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
772 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
774 pos += fraglen;
777 skb->len = hdrlen + per_fragm;
778 return 0;
781 static ieee80211_tx_result debug_noinline
782 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
784 struct sk_buff *skb = tx->skb;
785 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
786 struct ieee80211_hdr *hdr = (void *)skb->data;
787 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
788 int hdrlen;
789 int fragnum;
791 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
792 return TX_CONTINUE;
795 * Warn when submitting a fragmented A-MPDU frame and drop it.
796 * This scenario is handled in ieee80211_tx_prepare but extra
797 * caution taken here as fragmented ampdu may cause Tx stop.
799 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
800 return TX_DROP;
802 hdrlen = ieee80211_hdrlen(hdr->frame_control);
804 /* internal error, why is TX_FRAGMENTED set? */
805 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
806 return TX_DROP;
809 * Now fragment the frame. This will allocate all the fragments and
810 * chain them (using skb as the first fragment) to skb->next.
811 * During transmission, we will remove the successfully transmitted
812 * fragments from this list. When the low-level driver rejects one
813 * of the fragments then we will simply pretend to accept the skb
814 * but store it away as pending.
816 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
817 return TX_DROP;
819 /* update duration/seq/flags of fragments */
820 fragnum = 0;
821 do {
822 int next_len;
823 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
825 hdr = (void *)skb->data;
826 info = IEEE80211_SKB_CB(skb);
828 if (skb->next) {
829 hdr->frame_control |= morefrags;
830 next_len = skb->next->len;
832 * No multi-rate retries for fragmented frames, that
833 * would completely throw off the NAV at other STAs.
835 info->control.rates[1].idx = -1;
836 info->control.rates[2].idx = -1;
837 info->control.rates[3].idx = -1;
838 info->control.rates[4].idx = -1;
839 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
840 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
841 } else {
842 hdr->frame_control &= ~morefrags;
843 next_len = 0;
845 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
846 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
847 fragnum++;
848 } while ((skb = skb->next));
850 return TX_CONTINUE;
853 static ieee80211_tx_result debug_noinline
854 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
856 struct sk_buff *skb = tx->skb;
858 if (!tx->sta)
859 return TX_CONTINUE;
861 tx->sta->tx_packets++;
862 do {
863 tx->sta->tx_fragments++;
864 tx->sta->tx_bytes += skb->len;
865 } while ((skb = skb->next));
867 return TX_CONTINUE;
870 static ieee80211_tx_result debug_noinline
871 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
873 if (!tx->key)
874 return TX_CONTINUE;
876 switch (tx->key->conf.alg) {
877 case ALG_WEP:
878 return ieee80211_crypto_wep_encrypt(tx);
879 case ALG_TKIP:
880 return ieee80211_crypto_tkip_encrypt(tx);
881 case ALG_CCMP:
882 return ieee80211_crypto_ccmp_encrypt(tx);
883 case ALG_AES_CMAC:
884 return ieee80211_crypto_aes_cmac_encrypt(tx);
887 /* not reached */
888 WARN_ON(1);
889 return TX_DROP;
892 static ieee80211_tx_result debug_noinline
893 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
895 struct sk_buff *skb = tx->skb;
896 struct ieee80211_hdr *hdr;
897 int next_len;
898 bool group_addr;
900 do {
901 hdr = (void *) skb->data;
902 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
903 break; /* must not overwrite AID */
904 next_len = skb->next ? skb->next->len : 0;
905 group_addr = is_multicast_ether_addr(hdr->addr1);
907 hdr->duration_id =
908 ieee80211_duration(tx, group_addr, next_len);
909 } while ((skb = skb->next));
911 return TX_CONTINUE;
914 /* actual transmit path */
917 * deal with packet injection down monitor interface
918 * with Radiotap Header -- only called for monitor mode interface
920 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
921 struct sk_buff *skb)
924 * this is the moment to interpret and discard the radiotap header that
925 * must be at the start of the packet injected in Monitor mode
927 * Need to take some care with endian-ness since radiotap
928 * args are little-endian
931 struct ieee80211_radiotap_iterator iterator;
932 struct ieee80211_radiotap_header *rthdr =
933 (struct ieee80211_radiotap_header *) skb->data;
934 struct ieee80211_supported_band *sband;
935 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
936 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
938 sband = tx->local->hw.wiphy->bands[tx->channel->band];
940 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
941 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
944 * for every radiotap entry that is present
945 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
946 * entries present, or -EINVAL on error)
949 while (!ret) {
950 ret = ieee80211_radiotap_iterator_next(&iterator);
952 if (ret)
953 continue;
955 /* see if this argument is something we can use */
956 switch (iterator.this_arg_index) {
958 * You must take care when dereferencing iterator.this_arg
959 * for multibyte types... the pointer is not aligned. Use
960 * get_unaligned((type *)iterator.this_arg) to dereference
961 * iterator.this_arg for type "type" safely on all arches.
963 case IEEE80211_RADIOTAP_FLAGS:
964 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
966 * this indicates that the skb we have been
967 * handed has the 32-bit FCS CRC at the end...
968 * we should react to that by snipping it off
969 * because it will be recomputed and added
970 * on transmission
972 if (skb->len < (iterator.max_length + FCS_LEN))
973 return false;
975 skb_trim(skb, skb->len - FCS_LEN);
977 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
978 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
979 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
980 tx->flags |= IEEE80211_TX_FRAGMENTED;
981 break;
984 * Please update the file
985 * Documentation/networking/mac80211-injection.txt
986 * when parsing new fields here.
989 default:
990 break;
994 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
995 return false;
998 * remove the radiotap header
999 * iterator->max_length was sanity-checked against
1000 * skb->len by iterator init
1002 skb_pull(skb, iterator.max_length);
1004 return true;
1008 * initialises @tx
1010 static ieee80211_tx_result
1011 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1012 struct ieee80211_tx_data *tx,
1013 struct sk_buff *skb)
1015 struct ieee80211_local *local = sdata->local;
1016 struct ieee80211_hdr *hdr;
1017 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1018 int hdrlen, tid;
1019 u8 *qc, *state;
1020 bool queued = false;
1022 memset(tx, 0, sizeof(*tx));
1023 tx->skb = skb;
1024 tx->dev = sdata->dev; /* use original interface */
1025 tx->local = local;
1026 tx->sdata = sdata;
1027 tx->channel = local->hw.conf.channel;
1029 * Set this flag (used below to indicate "automatic fragmentation"),
1030 * it will be cleared/left by radiotap as desired.
1032 tx->flags |= IEEE80211_TX_FRAGMENTED;
1034 /* process and remove the injection radiotap header */
1035 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
1036 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1037 return TX_DROP;
1040 * __ieee80211_parse_tx_radiotap has now removed
1041 * the radiotap header that was present and pre-filled
1042 * 'tx' with tx control information.
1047 * If this flag is set to true anywhere, and we get here,
1048 * we are doing the needed processing, so remove the flag
1049 * now.
1051 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1053 hdr = (struct ieee80211_hdr *) skb->data;
1055 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1056 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1057 if (!tx->sta)
1058 tx->sta = sta_info_get(local, hdr->addr1);
1060 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1061 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1062 unsigned long flags;
1063 struct tid_ampdu_tx *tid_tx;
1065 qc = ieee80211_get_qos_ctl(hdr);
1066 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1068 spin_lock_irqsave(&tx->sta->lock, flags);
1070 * XXX: This spinlock could be fairly expensive, but see the
1071 * comment in agg-tx.c:ieee80211_agg_tx_operational().
1072 * One way to solve this would be to do something RCU-like
1073 * for managing the tid_tx struct and using atomic bitops
1074 * for the actual state -- by introducing an actual
1075 * 'operational' bit that would be possible. It would
1076 * require changing ieee80211_agg_tx_operational() to
1077 * set that bit, and changing the way tid_tx is managed
1078 * everywhere, including races between that bit and
1079 * tid_tx going away (tid_tx being added can be easily
1080 * committed to memory before the 'operational' bit).
1082 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1083 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1084 if (*state == HT_AGG_STATE_OPERATIONAL) {
1085 info->flags |= IEEE80211_TX_CTL_AMPDU;
1086 } else if (*state != HT_AGG_STATE_IDLE) {
1087 /* in progress */
1088 queued = true;
1089 info->control.vif = &sdata->vif;
1090 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1091 __skb_queue_tail(&tid_tx->pending, skb);
1093 spin_unlock_irqrestore(&tx->sta->lock, flags);
1095 if (unlikely(queued))
1096 return TX_QUEUED;
1099 if (is_multicast_ether_addr(hdr->addr1)) {
1100 tx->flags &= ~IEEE80211_TX_UNICAST;
1101 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1102 } else {
1103 tx->flags |= IEEE80211_TX_UNICAST;
1104 if (unlikely(local->wifi_wme_noack_test))
1105 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1106 else
1107 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1110 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1111 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1112 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1113 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1114 tx->flags |= IEEE80211_TX_FRAGMENTED;
1115 else
1116 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1119 if (!tx->sta)
1120 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1121 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1122 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1124 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1125 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1126 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1127 tx->ethertype = (pos[0] << 8) | pos[1];
1129 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1131 return TX_CONTINUE;
1134 static int __ieee80211_tx(struct ieee80211_local *local,
1135 struct sk_buff **skbp,
1136 struct sta_info *sta,
1137 bool txpending)
1139 struct sk_buff *skb = *skbp, *next;
1140 struct ieee80211_tx_info *info;
1141 struct ieee80211_sub_if_data *sdata;
1142 unsigned long flags;
1143 int ret, len;
1144 bool fragm = false;
1146 while (skb) {
1147 int q = skb_get_queue_mapping(skb);
1149 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1150 ret = IEEE80211_TX_OK;
1151 if (local->queue_stop_reasons[q] ||
1152 (!txpending && !skb_queue_empty(&local->pending[q])))
1153 ret = IEEE80211_TX_PENDING;
1154 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1155 if (ret != IEEE80211_TX_OK)
1156 return ret;
1158 info = IEEE80211_SKB_CB(skb);
1160 if (fragm)
1161 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1162 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1164 next = skb->next;
1165 len = skb->len;
1167 if (next)
1168 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1170 sdata = vif_to_sdata(info->control.vif);
1172 switch (sdata->vif.type) {
1173 case NL80211_IFTYPE_MONITOR:
1174 info->control.vif = NULL;
1175 break;
1176 case NL80211_IFTYPE_AP_VLAN:
1177 info->control.vif = &container_of(sdata->bss,
1178 struct ieee80211_sub_if_data, u.ap)->vif;
1179 break;
1180 default:
1181 /* keep */
1182 break;
1185 ret = drv_tx(local, skb);
1186 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1187 dev_kfree_skb(skb);
1188 ret = NETDEV_TX_OK;
1190 if (ret != NETDEV_TX_OK) {
1191 info->control.vif = &sdata->vif;
1192 return IEEE80211_TX_AGAIN;
1195 *skbp = skb = next;
1196 ieee80211_led_tx(local, 1);
1197 fragm = true;
1200 return IEEE80211_TX_OK;
1204 * Invoke TX handlers, return 0 on success and non-zero if the
1205 * frame was dropped or queued.
1207 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1209 struct sk_buff *skb = tx->skb;
1210 ieee80211_tx_result res = TX_DROP;
1212 #define CALL_TXH(txh) \
1213 do { \
1214 res = txh(tx); \
1215 if (res != TX_CONTINUE) \
1216 goto txh_done; \
1217 } while (0)
1219 CALL_TXH(ieee80211_tx_h_check_assoc);
1220 CALL_TXH(ieee80211_tx_h_ps_buf);
1221 CALL_TXH(ieee80211_tx_h_select_key);
1222 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1223 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1224 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1225 CALL_TXH(ieee80211_tx_h_misc);
1226 CALL_TXH(ieee80211_tx_h_sequence);
1227 CALL_TXH(ieee80211_tx_h_fragment);
1228 /* handlers after fragment must be aware of tx info fragmentation! */
1229 CALL_TXH(ieee80211_tx_h_stats);
1230 CALL_TXH(ieee80211_tx_h_encrypt);
1231 CALL_TXH(ieee80211_tx_h_calculate_duration);
1232 #undef CALL_TXH
1234 txh_done:
1235 if (unlikely(res == TX_DROP)) {
1236 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1237 while (skb) {
1238 struct sk_buff *next;
1240 next = skb->next;
1241 dev_kfree_skb(skb);
1242 skb = next;
1244 return -1;
1245 } else if (unlikely(res == TX_QUEUED)) {
1246 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1247 return -1;
1250 return 0;
1253 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1254 struct sk_buff *skb, bool txpending)
1256 struct ieee80211_local *local = sdata->local;
1257 struct ieee80211_tx_data tx;
1258 ieee80211_tx_result res_prepare;
1259 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1260 struct sk_buff *next;
1261 unsigned long flags;
1262 int ret, retries;
1263 u16 queue;
1265 queue = skb_get_queue_mapping(skb);
1267 if (unlikely(skb->len < 10)) {
1268 dev_kfree_skb(skb);
1269 return;
1272 rcu_read_lock();
1274 /* initialises tx */
1275 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1277 if (unlikely(res_prepare == TX_DROP)) {
1278 dev_kfree_skb(skb);
1279 rcu_read_unlock();
1280 return;
1281 } else if (unlikely(res_prepare == TX_QUEUED)) {
1282 rcu_read_unlock();
1283 return;
1286 tx.channel = local->hw.conf.channel;
1287 info->band = tx.channel->band;
1289 if (invoke_tx_handlers(&tx))
1290 goto out;
1292 retries = 0;
1293 retry:
1294 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1295 switch (ret) {
1296 case IEEE80211_TX_OK:
1297 break;
1298 case IEEE80211_TX_AGAIN:
1300 * Since there are no fragmented frames on A-MPDU
1301 * queues, there's no reason for a driver to reject
1302 * a frame there, warn and drop it.
1304 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1305 goto drop;
1306 /* fall through */
1307 case IEEE80211_TX_PENDING:
1308 skb = tx.skb;
1310 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1312 if (local->queue_stop_reasons[queue] ||
1313 !skb_queue_empty(&local->pending[queue])) {
1315 * if queue is stopped, queue up frames for later
1316 * transmission from the tasklet
1318 do {
1319 next = skb->next;
1320 skb->next = NULL;
1321 if (unlikely(txpending))
1322 __skb_queue_head(&local->pending[queue],
1323 skb);
1324 else
1325 __skb_queue_tail(&local->pending[queue],
1326 skb);
1327 } while ((skb = next));
1329 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1330 flags);
1331 } else {
1333 * otherwise retry, but this is a race condition or
1334 * a driver bug (which we warn about if it persists)
1336 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1337 flags);
1339 retries++;
1340 if (WARN(retries > 10, "tx refused but queue active\n"))
1341 goto drop;
1342 goto retry;
1345 out:
1346 rcu_read_unlock();
1347 return;
1349 drop:
1350 rcu_read_unlock();
1352 skb = tx.skb;
1353 while (skb) {
1354 next = skb->next;
1355 dev_kfree_skb(skb);
1356 skb = next;
1360 /* device xmit handlers */
1362 static int ieee80211_skb_resize(struct ieee80211_local *local,
1363 struct sk_buff *skb,
1364 int head_need, bool may_encrypt)
1366 int tail_need = 0;
1369 * This could be optimised, devices that do full hardware
1370 * crypto (including TKIP MMIC) need no tailroom... But we
1371 * have no drivers for such devices currently.
1373 if (may_encrypt) {
1374 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1375 tail_need -= skb_tailroom(skb);
1376 tail_need = max_t(int, tail_need, 0);
1379 if (head_need || tail_need) {
1380 /* Sorry. Can't account for this any more */
1381 skb_orphan(skb);
1384 if (skb_header_cloned(skb))
1385 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1386 else
1387 I802_DEBUG_INC(local->tx_expand_skb_head);
1389 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1390 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1391 wiphy_name(local->hw.wiphy));
1392 return -ENOMEM;
1395 /* update truesize too */
1396 skb->truesize += head_need + tail_need;
1398 return 0;
1401 static bool need_dynamic_ps(struct ieee80211_local *local)
1403 /* driver doesn't support power save */
1404 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
1405 return false;
1407 /* hardware does dynamic power save */
1408 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
1409 return false;
1411 /* dynamic power save disabled */
1412 if (local->hw.conf.dynamic_ps_timeout <= 0)
1413 return false;
1415 /* we are scanning, don't enable power save */
1416 if (local->scanning)
1417 return false;
1419 if (!local->ps_sdata)
1420 return false;
1422 /* No point if we're going to suspend */
1423 if (local->quiescing)
1424 return false;
1426 return true;
1429 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1430 struct sk_buff *skb)
1432 struct ieee80211_local *local = sdata->local;
1433 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1434 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1435 struct ieee80211_sub_if_data *tmp_sdata;
1436 int headroom;
1437 bool may_encrypt;
1439 if (need_dynamic_ps(local)) {
1440 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
1441 ieee80211_stop_queues_by_reason(&local->hw,
1442 IEEE80211_QUEUE_STOP_REASON_PS);
1443 ieee80211_queue_work(&local->hw,
1444 &local->dynamic_ps_disable_work);
1447 mod_timer(&local->dynamic_ps_timer, jiffies +
1448 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1451 rcu_read_lock();
1453 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1454 int hdrlen;
1455 u16 len_rthdr;
1457 info->flags |= IEEE80211_TX_CTL_INJECTED;
1459 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1460 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1461 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1463 /* check the header is complete in the frame */
1464 if (likely(skb->len >= len_rthdr + hdrlen)) {
1466 * We process outgoing injected frames that have a
1467 * local address we handle as though they are our
1468 * own frames.
1469 * This code here isn't entirely correct, the local
1470 * MAC address is not necessarily enough to find
1471 * the interface to use; for that proper VLAN/WDS
1472 * support we will need a different mechanism.
1475 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1476 list) {
1477 if (!netif_running(tmp_sdata->dev))
1478 continue;
1479 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
1480 continue;
1481 if (compare_ether_addr(tmp_sdata->dev->dev_addr,
1482 hdr->addr2) == 0) {
1483 sdata = tmp_sdata;
1484 break;
1490 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1492 headroom = local->tx_headroom;
1493 if (may_encrypt)
1494 headroom += IEEE80211_ENCRYPT_HEADROOM;
1495 headroom -= skb_headroom(skb);
1496 headroom = max_t(int, 0, headroom);
1498 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1499 dev_kfree_skb(skb);
1500 rcu_read_unlock();
1501 return;
1504 info->control.vif = &sdata->vif;
1506 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1507 ieee80211_is_data(hdr->frame_control) &&
1508 !is_multicast_ether_addr(hdr->addr1))
1509 if (mesh_nexthop_lookup(skb, sdata)) {
1510 /* skb queued: don't free */
1511 rcu_read_unlock();
1512 return;
1515 ieee80211_set_qos_hdr(local, skb);
1516 ieee80211_tx(sdata, skb, false);
1517 rcu_read_unlock();
1520 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1521 struct net_device *dev)
1523 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1524 struct ieee80211_channel *chan = local->hw.conf.channel;
1525 struct ieee80211_radiotap_header *prthdr =
1526 (struct ieee80211_radiotap_header *)skb->data;
1527 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1528 u16 len_rthdr;
1531 * Frame injection is not allowed if beaconing is not allowed
1532 * or if we need radar detection. Beaconing is usually not allowed when
1533 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1534 * Passive scan is also used in world regulatory domains where
1535 * your country is not known and as such it should be treated as
1536 * NO TX unless the channel is explicitly allowed in which case
1537 * your current regulatory domain would not have the passive scan
1538 * flag.
1540 * Since AP mode uses monitor interfaces to inject/TX management
1541 * frames we can make AP mode the exception to this rule once it
1542 * supports radar detection as its implementation can deal with
1543 * radar detection by itself. We can do that later by adding a
1544 * monitor flag interfaces used for AP support.
1546 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1547 IEEE80211_CHAN_PASSIVE_SCAN)))
1548 goto fail;
1550 /* check for not even having the fixed radiotap header part */
1551 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1552 goto fail; /* too short to be possibly valid */
1554 /* is it a header version we can trust to find length from? */
1555 if (unlikely(prthdr->it_version))
1556 goto fail; /* only version 0 is supported */
1558 /* then there must be a radiotap header with a length we can use */
1559 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1561 /* does the skb contain enough to deliver on the alleged length? */
1562 if (unlikely(skb->len < len_rthdr))
1563 goto fail; /* skb too short for claimed rt header extent */
1566 * fix up the pointers accounting for the radiotap
1567 * header still being in there. We are being given
1568 * a precooked IEEE80211 header so no need for
1569 * normal processing
1571 skb_set_mac_header(skb, len_rthdr);
1573 * these are just fixed to the end of the rt area since we
1574 * don't have any better information and at this point, nobody cares
1576 skb_set_network_header(skb, len_rthdr);
1577 skb_set_transport_header(skb, len_rthdr);
1579 memset(info, 0, sizeof(*info));
1581 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1583 /* pass the radiotap header up to xmit */
1584 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1585 return NETDEV_TX_OK;
1587 fail:
1588 dev_kfree_skb(skb);
1589 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1593 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1594 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1595 * @skb: packet to be sent
1596 * @dev: incoming interface
1598 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1599 * not be freed, and caller is responsible for either retrying later or freeing
1600 * skb).
1602 * This function takes in an Ethernet header and encapsulates it with suitable
1603 * IEEE 802.11 header based on which interface the packet is coming in. The
1604 * encapsulated packet will then be passed to master interface, wlan#.11, for
1605 * transmission (through low-level driver).
1607 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1608 struct net_device *dev)
1610 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1611 struct ieee80211_local *local = sdata->local;
1612 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1613 int ret = NETDEV_TX_BUSY, head_need;
1614 u16 ethertype, hdrlen, meshhdrlen = 0;
1615 __le16 fc;
1616 struct ieee80211_hdr hdr;
1617 struct ieee80211s_hdr mesh_hdr;
1618 const u8 *encaps_data;
1619 int encaps_len, skip_header_bytes;
1620 int nh_pos, h_pos;
1621 struct sta_info *sta = NULL;
1622 u32 sta_flags = 0;
1624 if (unlikely(skb->len < ETH_HLEN)) {
1625 ret = NETDEV_TX_OK;
1626 goto fail;
1629 nh_pos = skb_network_header(skb) - skb->data;
1630 h_pos = skb_transport_header(skb) - skb->data;
1632 /* convert Ethernet header to proper 802.11 header (based on
1633 * operation mode) */
1634 ethertype = (skb->data[12] << 8) | skb->data[13];
1635 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1637 switch (sdata->vif.type) {
1638 case NL80211_IFTYPE_AP_VLAN:
1639 rcu_read_lock();
1640 sta = rcu_dereference(sdata->u.vlan.sta);
1641 if (sta) {
1642 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1643 /* RA TA DA SA */
1644 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1645 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1646 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1647 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1648 hdrlen = 30;
1649 sta_flags = get_sta_flags(sta);
1651 rcu_read_unlock();
1652 if (sta)
1653 break;
1654 /* fall through */
1655 case NL80211_IFTYPE_AP:
1656 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1657 /* DA BSSID SA */
1658 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1659 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1660 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1661 hdrlen = 24;
1662 break;
1663 case NL80211_IFTYPE_WDS:
1664 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1665 /* RA TA DA SA */
1666 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1667 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1668 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1669 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1670 hdrlen = 30;
1671 break;
1672 #ifdef CONFIG_MAC80211_MESH
1673 case NL80211_IFTYPE_MESH_POINT:
1674 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1675 /* Do not send frames with mesh_ttl == 0 */
1676 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1677 ret = NETDEV_TX_OK;
1678 goto fail;
1681 if (compare_ether_addr(dev->dev_addr,
1682 skb->data + ETH_ALEN) == 0) {
1683 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1684 skb->data, skb->data + ETH_ALEN);
1685 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1686 sdata, NULL, NULL, NULL);
1687 } else {
1688 /* packet from other interface */
1689 struct mesh_path *mppath;
1690 int is_mesh_mcast = 1;
1691 const u8 *mesh_da;
1693 rcu_read_lock();
1694 if (is_multicast_ether_addr(skb->data))
1695 /* DA TA mSA AE:SA */
1696 mesh_da = skb->data;
1697 else {
1698 static const u8 bcast[ETH_ALEN] =
1699 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1701 mppath = mpp_path_lookup(skb->data, sdata);
1702 if (mppath) {
1703 /* RA TA mDA mSA AE:DA SA */
1704 mesh_da = mppath->mpp;
1705 is_mesh_mcast = 0;
1706 } else {
1707 /* DA TA mSA AE:SA */
1708 mesh_da = bcast;
1711 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1712 mesh_da, dev->dev_addr);
1713 rcu_read_unlock();
1714 if (is_mesh_mcast)
1715 meshhdrlen =
1716 ieee80211_new_mesh_header(&mesh_hdr,
1717 sdata,
1718 skb->data + ETH_ALEN,
1719 NULL,
1720 NULL);
1721 else
1722 meshhdrlen =
1723 ieee80211_new_mesh_header(&mesh_hdr,
1724 sdata,
1725 NULL,
1726 skb->data,
1727 skb->data + ETH_ALEN);
1730 break;
1731 #endif
1732 case NL80211_IFTYPE_STATION:
1733 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1734 if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) {
1735 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1736 /* RA TA DA SA */
1737 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1738 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1739 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1740 hdrlen = 30;
1741 } else {
1742 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1743 /* BSSID SA DA */
1744 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1745 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1746 hdrlen = 24;
1748 break;
1749 case NL80211_IFTYPE_ADHOC:
1750 /* DA SA BSSID */
1751 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1752 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1753 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1754 hdrlen = 24;
1755 break;
1756 default:
1757 ret = NETDEV_TX_OK;
1758 goto fail;
1762 * There's no need to try to look up the destination
1763 * if it is a multicast address (which can only happen
1764 * in AP mode)
1766 if (!is_multicast_ether_addr(hdr.addr1)) {
1767 rcu_read_lock();
1768 sta = sta_info_get(local, hdr.addr1);
1769 /* XXX: in the future, use sdata to look up the sta */
1770 if (sta && sta->sdata == sdata)
1771 sta_flags = get_sta_flags(sta);
1772 rcu_read_unlock();
1775 /* receiver and we are QoS enabled, use a QoS type frame */
1776 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1777 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1778 hdrlen += 2;
1782 * Drop unicast frames to unauthorised stations unless they are
1783 * EAPOL frames from the local station.
1785 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1786 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1787 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1788 !(ethertype == ETH_P_PAE &&
1789 compare_ether_addr(dev->dev_addr,
1790 skb->data + ETH_ALEN) == 0))) {
1791 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1792 if (net_ratelimit())
1793 printk(KERN_DEBUG "%s: dropped frame to %pM"
1794 " (unauthorized port)\n", dev->name,
1795 hdr.addr1);
1796 #endif
1798 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1800 ret = NETDEV_TX_OK;
1801 goto fail;
1804 hdr.frame_control = fc;
1805 hdr.duration_id = 0;
1806 hdr.seq_ctrl = 0;
1808 skip_header_bytes = ETH_HLEN;
1809 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1810 encaps_data = bridge_tunnel_header;
1811 encaps_len = sizeof(bridge_tunnel_header);
1812 skip_header_bytes -= 2;
1813 } else if (ethertype >= 0x600) {
1814 encaps_data = rfc1042_header;
1815 encaps_len = sizeof(rfc1042_header);
1816 skip_header_bytes -= 2;
1817 } else {
1818 encaps_data = NULL;
1819 encaps_len = 0;
1822 skb_pull(skb, skip_header_bytes);
1823 nh_pos -= skip_header_bytes;
1824 h_pos -= skip_header_bytes;
1826 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1829 * So we need to modify the skb header and hence need a copy of
1830 * that. The head_need variable above doesn't, so far, include
1831 * the needed header space that we don't need right away. If we
1832 * can, then we don't reallocate right now but only after the
1833 * frame arrives at the master device (if it does...)
1835 * If we cannot, however, then we will reallocate to include all
1836 * the ever needed space. Also, if we need to reallocate it anyway,
1837 * make it big enough for everything we may ever need.
1840 if (head_need > 0 || skb_cloned(skb)) {
1841 head_need += IEEE80211_ENCRYPT_HEADROOM;
1842 head_need += local->tx_headroom;
1843 head_need = max_t(int, 0, head_need);
1844 if (ieee80211_skb_resize(local, skb, head_need, true))
1845 goto fail;
1848 if (encaps_data) {
1849 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1850 nh_pos += encaps_len;
1851 h_pos += encaps_len;
1854 if (meshhdrlen > 0) {
1855 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1856 nh_pos += meshhdrlen;
1857 h_pos += meshhdrlen;
1860 if (ieee80211_is_data_qos(fc)) {
1861 __le16 *qos_control;
1863 qos_control = (__le16*) skb_push(skb, 2);
1864 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1866 * Maybe we could actually set some fields here, for now just
1867 * initialise to zero to indicate no special operation.
1869 *qos_control = 0;
1870 } else
1871 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1873 nh_pos += hdrlen;
1874 h_pos += hdrlen;
1876 dev->stats.tx_packets++;
1877 dev->stats.tx_bytes += skb->len;
1879 /* Update skb pointers to various headers since this modified frame
1880 * is going to go through Linux networking code that may potentially
1881 * need things like pointer to IP header. */
1882 skb_set_mac_header(skb, 0);
1883 skb_set_network_header(skb, nh_pos);
1884 skb_set_transport_header(skb, h_pos);
1886 memset(info, 0, sizeof(*info));
1888 dev->trans_start = jiffies;
1889 ieee80211_xmit(sdata, skb);
1891 return NETDEV_TX_OK;
1893 fail:
1894 if (ret == NETDEV_TX_OK)
1895 dev_kfree_skb(skb);
1897 return ret;
1902 * ieee80211_clear_tx_pending may not be called in a context where
1903 * it is possible that it packets could come in again.
1905 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1907 int i;
1909 for (i = 0; i < local->hw.queues; i++)
1910 skb_queue_purge(&local->pending[i]);
1913 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1914 struct sk_buff *skb)
1916 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1917 struct ieee80211_sub_if_data *sdata;
1918 struct sta_info *sta;
1919 struct ieee80211_hdr *hdr;
1920 int ret;
1921 bool result = true;
1923 sdata = vif_to_sdata(info->control.vif);
1925 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
1926 ieee80211_tx(sdata, skb, true);
1927 } else {
1928 hdr = (struct ieee80211_hdr *)skb->data;
1929 sta = sta_info_get(local, hdr->addr1);
1931 ret = __ieee80211_tx(local, &skb, sta, true);
1932 if (ret != IEEE80211_TX_OK)
1933 result = false;
1936 return result;
1940 * Transmit all pending packets. Called from tasklet.
1942 void ieee80211_tx_pending(unsigned long data)
1944 struct ieee80211_local *local = (struct ieee80211_local *)data;
1945 unsigned long flags;
1946 int i;
1947 bool txok;
1949 rcu_read_lock();
1951 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1952 for (i = 0; i < local->hw.queues; i++) {
1954 * If queue is stopped by something other than due to pending
1955 * frames, or we have no pending frames, proceed to next queue.
1957 if (local->queue_stop_reasons[i] ||
1958 skb_queue_empty(&local->pending[i]))
1959 continue;
1961 while (!skb_queue_empty(&local->pending[i])) {
1962 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
1963 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1964 struct ieee80211_sub_if_data *sdata;
1966 if (WARN_ON(!info->control.vif)) {
1967 kfree_skb(skb);
1968 continue;
1971 sdata = vif_to_sdata(info->control.vif);
1972 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1973 flags);
1975 txok = ieee80211_tx_pending_skb(local, skb);
1976 if (!txok)
1977 __skb_queue_head(&local->pending[i], skb);
1978 spin_lock_irqsave(&local->queue_stop_reason_lock,
1979 flags);
1980 if (!txok)
1981 break;
1984 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1986 rcu_read_unlock();
1989 /* functions for drivers to get certain frames */
1991 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
1992 struct sk_buff *skb,
1993 struct beacon_data *beacon)
1995 u8 *pos, *tim;
1996 int aid0 = 0;
1997 int i, have_bits = 0, n1, n2;
1999 /* Generate bitmap for TIM only if there are any STAs in power save
2000 * mode. */
2001 if (atomic_read(&bss->num_sta_ps) > 0)
2002 /* in the hope that this is faster than
2003 * checking byte-for-byte */
2004 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2005 IEEE80211_MAX_AID+1);
2007 if (bss->dtim_count == 0)
2008 bss->dtim_count = beacon->dtim_period - 1;
2009 else
2010 bss->dtim_count--;
2012 tim = pos = (u8 *) skb_put(skb, 6);
2013 *pos++ = WLAN_EID_TIM;
2014 *pos++ = 4;
2015 *pos++ = bss->dtim_count;
2016 *pos++ = beacon->dtim_period;
2018 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2019 aid0 = 1;
2021 if (have_bits) {
2022 /* Find largest even number N1 so that bits numbered 1 through
2023 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2024 * (N2 + 1) x 8 through 2007 are 0. */
2025 n1 = 0;
2026 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2027 if (bss->tim[i]) {
2028 n1 = i & 0xfe;
2029 break;
2032 n2 = n1;
2033 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2034 if (bss->tim[i]) {
2035 n2 = i;
2036 break;
2040 /* Bitmap control */
2041 *pos++ = n1 | aid0;
2042 /* Part Virt Bitmap */
2043 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2045 tim[1] = n2 - n1 + 4;
2046 skb_put(skb, n2 - n1);
2047 } else {
2048 *pos++ = aid0; /* Bitmap control */
2049 *pos++ = 0; /* Part Virt Bitmap */
2053 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2054 struct ieee80211_vif *vif,
2055 u16 *tim_offset, u16 *tim_length)
2057 struct ieee80211_local *local = hw_to_local(hw);
2058 struct sk_buff *skb = NULL;
2059 struct ieee80211_tx_info *info;
2060 struct ieee80211_sub_if_data *sdata = NULL;
2061 struct ieee80211_if_ap *ap = NULL;
2062 struct beacon_data *beacon;
2063 struct ieee80211_supported_band *sband;
2064 enum ieee80211_band band = local->hw.conf.channel->band;
2066 sband = local->hw.wiphy->bands[band];
2068 rcu_read_lock();
2070 sdata = vif_to_sdata(vif);
2072 if (tim_offset)
2073 *tim_offset = 0;
2074 if (tim_length)
2075 *tim_length = 0;
2077 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2078 ap = &sdata->u.ap;
2079 beacon = rcu_dereference(ap->beacon);
2080 if (ap && beacon) {
2082 * headroom, head length,
2083 * tail length and maximum TIM length
2085 skb = dev_alloc_skb(local->tx_headroom +
2086 beacon->head_len +
2087 beacon->tail_len + 256);
2088 if (!skb)
2089 goto out;
2091 skb_reserve(skb, local->tx_headroom);
2092 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2093 beacon->head_len);
2096 * Not very nice, but we want to allow the driver to call
2097 * ieee80211_beacon_get() as a response to the set_tim()
2098 * callback. That, however, is already invoked under the
2099 * sta_lock to guarantee consistent and race-free update
2100 * of the tim bitmap in mac80211 and the driver.
2102 if (local->tim_in_locked_section) {
2103 ieee80211_beacon_add_tim(ap, skb, beacon);
2104 } else {
2105 unsigned long flags;
2107 spin_lock_irqsave(&local->sta_lock, flags);
2108 ieee80211_beacon_add_tim(ap, skb, beacon);
2109 spin_unlock_irqrestore(&local->sta_lock, flags);
2112 if (tim_offset)
2113 *tim_offset = beacon->head_len;
2114 if (tim_length)
2115 *tim_length = skb->len - beacon->head_len;
2117 if (beacon->tail)
2118 memcpy(skb_put(skb, beacon->tail_len),
2119 beacon->tail, beacon->tail_len);
2120 } else
2121 goto out;
2122 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2123 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2124 struct ieee80211_hdr *hdr;
2125 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2127 if (!presp)
2128 goto out;
2130 skb = skb_copy(presp, GFP_ATOMIC);
2131 if (!skb)
2132 goto out;
2134 hdr = (struct ieee80211_hdr *) skb->data;
2135 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2136 IEEE80211_STYPE_BEACON);
2137 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2138 struct ieee80211_mgmt *mgmt;
2139 u8 *pos;
2141 /* headroom, head length, tail length and maximum TIM length */
2142 skb = dev_alloc_skb(local->tx_headroom + 400);
2143 if (!skb)
2144 goto out;
2146 skb_reserve(skb, local->hw.extra_tx_headroom);
2147 mgmt = (struct ieee80211_mgmt *)
2148 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2149 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2150 mgmt->frame_control =
2151 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2152 memset(mgmt->da, 0xff, ETH_ALEN);
2153 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
2154 memcpy(mgmt->bssid, sdata->dev->dev_addr, ETH_ALEN);
2155 mgmt->u.beacon.beacon_int =
2156 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2157 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2159 pos = skb_put(skb, 2);
2160 *pos++ = WLAN_EID_SSID;
2161 *pos++ = 0x0;
2163 mesh_mgmt_ies_add(skb, sdata);
2164 } else {
2165 WARN_ON(1);
2166 goto out;
2169 info = IEEE80211_SKB_CB(skb);
2171 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2172 info->band = band;
2174 * XXX: For now, always use the lowest rate
2176 info->control.rates[0].idx = 0;
2177 info->control.rates[0].count = 1;
2178 info->control.rates[1].idx = -1;
2179 info->control.rates[2].idx = -1;
2180 info->control.rates[3].idx = -1;
2181 info->control.rates[4].idx = -1;
2182 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
2184 info->control.vif = vif;
2186 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2187 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2188 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2189 out:
2190 rcu_read_unlock();
2191 return skb;
2193 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2195 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2196 const void *frame, size_t frame_len,
2197 const struct ieee80211_tx_info *frame_txctl,
2198 struct ieee80211_rts *rts)
2200 const struct ieee80211_hdr *hdr = frame;
2202 rts->frame_control =
2203 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2204 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2205 frame_txctl);
2206 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2207 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2209 EXPORT_SYMBOL(ieee80211_rts_get);
2211 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2212 const void *frame, size_t frame_len,
2213 const struct ieee80211_tx_info *frame_txctl,
2214 struct ieee80211_cts *cts)
2216 const struct ieee80211_hdr *hdr = frame;
2218 cts->frame_control =
2219 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2220 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2221 frame_len, frame_txctl);
2222 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2224 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2226 struct sk_buff *
2227 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2228 struct ieee80211_vif *vif)
2230 struct ieee80211_local *local = hw_to_local(hw);
2231 struct sk_buff *skb = NULL;
2232 struct sta_info *sta;
2233 struct ieee80211_tx_data tx;
2234 struct ieee80211_sub_if_data *sdata;
2235 struct ieee80211_if_ap *bss = NULL;
2236 struct beacon_data *beacon;
2237 struct ieee80211_tx_info *info;
2239 sdata = vif_to_sdata(vif);
2240 bss = &sdata->u.ap;
2242 rcu_read_lock();
2243 beacon = rcu_dereference(bss->beacon);
2245 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2246 goto out;
2248 if (bss->dtim_count != 0)
2249 goto out; /* send buffered bc/mc only after DTIM beacon */
2251 while (1) {
2252 skb = skb_dequeue(&bss->ps_bc_buf);
2253 if (!skb)
2254 goto out;
2255 local->total_ps_buffered--;
2257 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2258 struct ieee80211_hdr *hdr =
2259 (struct ieee80211_hdr *) skb->data;
2260 /* more buffered multicast/broadcast frames ==> set
2261 * MoreData flag in IEEE 802.11 header to inform PS
2262 * STAs */
2263 hdr->frame_control |=
2264 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2267 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2268 break;
2269 dev_kfree_skb_any(skb);
2272 info = IEEE80211_SKB_CB(skb);
2274 sta = tx.sta;
2275 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2276 tx.channel = local->hw.conf.channel;
2277 info->band = tx.channel->band;
2279 if (invoke_tx_handlers(&tx))
2280 skb = NULL;
2281 out:
2282 rcu_read_unlock();
2284 return skb;
2286 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2288 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2290 skb_set_mac_header(skb, 0);
2291 skb_set_network_header(skb, 0);
2292 skb_set_transport_header(skb, 0);
2294 /* send all internal mgmt frames on VO */
2295 skb_set_queue_mapping(skb, 0);
2298 * The other path calling ieee80211_xmit is from the tasklet,
2299 * and while we can handle concurrent transmissions locking
2300 * requirements are that we do not come into tx with bhs on.
2302 local_bh_disable();
2303 ieee80211_xmit(sdata, skb);
2304 local_bh_enable();