hwmon: applesmc: prolong status wait
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-crypt.c
blob682ef9e6acd3344d5bf8a19f4550de90331f37d3
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2008 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <asm/atomic.h>
22 #include <linux/scatterlist.h>
23 #include <asm/page.h>
24 #include <asm/unaligned.h>
26 #include "dm.h"
28 #define DM_MSG_PREFIX "crypt"
29 #define MESG_STR(x) x, sizeof(x)
32 * context holding the current state of a multi-part conversion
34 struct convert_context {
35 struct completion restart;
36 struct bio *bio_in;
37 struct bio *bio_out;
38 unsigned int offset_in;
39 unsigned int offset_out;
40 unsigned int idx_in;
41 unsigned int idx_out;
42 sector_t sector;
43 atomic_t pending;
47 * per bio private data
49 struct dm_crypt_io {
50 struct dm_target *target;
51 struct bio *base_bio;
52 struct work_struct work;
54 struct convert_context ctx;
56 atomic_t pending;
57 int error;
58 sector_t sector;
61 struct dm_crypt_request {
62 struct scatterlist sg_in;
63 struct scatterlist sg_out;
66 struct crypt_config;
68 struct crypt_iv_operations {
69 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
70 const char *opts);
71 void (*dtr)(struct crypt_config *cc);
72 const char *(*status)(struct crypt_config *cc);
73 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
77 * Crypt: maps a linear range of a block device
78 * and encrypts / decrypts at the same time.
80 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
81 struct crypt_config {
82 struct dm_dev *dev;
83 sector_t start;
86 * pool for per bio private data, crypto requests and
87 * encryption requeusts/buffer pages
89 mempool_t *io_pool;
90 mempool_t *req_pool;
91 mempool_t *page_pool;
92 struct bio_set *bs;
94 struct workqueue_struct *io_queue;
95 struct workqueue_struct *crypt_queue;
96 wait_queue_head_t writeq;
99 * crypto related data
101 struct crypt_iv_operations *iv_gen_ops;
102 char *iv_mode;
103 union {
104 struct crypto_cipher *essiv_tfm;
105 int benbi_shift;
106 } iv_gen_private;
107 sector_t iv_offset;
108 unsigned int iv_size;
111 * Layout of each crypto request:
113 * struct ablkcipher_request
114 * context
115 * padding
116 * struct dm_crypt_request
117 * padding
118 * IV
120 * The padding is added so that dm_crypt_request and the IV are
121 * correctly aligned.
123 unsigned int dmreq_start;
124 struct ablkcipher_request *req;
126 char cipher[CRYPTO_MAX_ALG_NAME];
127 char chainmode[CRYPTO_MAX_ALG_NAME];
128 struct crypto_ablkcipher *tfm;
129 unsigned long flags;
130 unsigned int key_size;
131 u8 key[0];
134 #define MIN_IOS 16
135 #define MIN_POOL_PAGES 32
136 #define MIN_BIO_PAGES 8
138 static struct kmem_cache *_crypt_io_pool;
140 static void clone_init(struct dm_crypt_io *, struct bio *);
141 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
144 * Different IV generation algorithms:
146 * plain: the initial vector is the 32-bit little-endian version of the sector
147 * number, padded with zeros if necessary.
149 * essiv: "encrypted sector|salt initial vector", the sector number is
150 * encrypted with the bulk cipher using a salt as key. The salt
151 * should be derived from the bulk cipher's key via hashing.
153 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
154 * (needed for LRW-32-AES and possible other narrow block modes)
156 * null: the initial vector is always zero. Provides compatibility with
157 * obsolete loop_fish2 devices. Do not use for new devices.
159 * plumb: unimplemented, see:
160 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
163 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
165 memset(iv, 0, cc->iv_size);
166 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
168 return 0;
171 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
172 const char *opts)
174 struct crypto_cipher *essiv_tfm;
175 struct crypto_hash *hash_tfm;
176 struct hash_desc desc;
177 struct scatterlist sg;
178 unsigned int saltsize;
179 u8 *salt;
180 int err;
182 if (opts == NULL) {
183 ti->error = "Digest algorithm missing for ESSIV mode";
184 return -EINVAL;
187 /* Hash the cipher key with the given hash algorithm */
188 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
189 if (IS_ERR(hash_tfm)) {
190 ti->error = "Error initializing ESSIV hash";
191 return PTR_ERR(hash_tfm);
194 saltsize = crypto_hash_digestsize(hash_tfm);
195 salt = kmalloc(saltsize, GFP_KERNEL);
196 if (salt == NULL) {
197 ti->error = "Error kmallocing salt storage in ESSIV";
198 crypto_free_hash(hash_tfm);
199 return -ENOMEM;
202 sg_init_one(&sg, cc->key, cc->key_size);
203 desc.tfm = hash_tfm;
204 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
205 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
206 crypto_free_hash(hash_tfm);
208 if (err) {
209 ti->error = "Error calculating hash in ESSIV";
210 kfree(salt);
211 return err;
214 /* Setup the essiv_tfm with the given salt */
215 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
216 if (IS_ERR(essiv_tfm)) {
217 ti->error = "Error allocating crypto tfm for ESSIV";
218 kfree(salt);
219 return PTR_ERR(essiv_tfm);
221 if (crypto_cipher_blocksize(essiv_tfm) !=
222 crypto_ablkcipher_ivsize(cc->tfm)) {
223 ti->error = "Block size of ESSIV cipher does "
224 "not match IV size of block cipher";
225 crypto_free_cipher(essiv_tfm);
226 kfree(salt);
227 return -EINVAL;
229 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
230 if (err) {
231 ti->error = "Failed to set key for ESSIV cipher";
232 crypto_free_cipher(essiv_tfm);
233 kfree(salt);
234 return err;
236 kfree(salt);
238 cc->iv_gen_private.essiv_tfm = essiv_tfm;
239 return 0;
242 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
244 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
245 cc->iv_gen_private.essiv_tfm = NULL;
248 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
250 memset(iv, 0, cc->iv_size);
251 *(u64 *)iv = cpu_to_le64(sector);
252 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
253 return 0;
256 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
257 const char *opts)
259 unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
260 int log = ilog2(bs);
262 /* we need to calculate how far we must shift the sector count
263 * to get the cipher block count, we use this shift in _gen */
265 if (1 << log != bs) {
266 ti->error = "cypher blocksize is not a power of 2";
267 return -EINVAL;
270 if (log > 9) {
271 ti->error = "cypher blocksize is > 512";
272 return -EINVAL;
275 cc->iv_gen_private.benbi_shift = 9 - log;
277 return 0;
280 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
284 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
286 __be64 val;
288 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
290 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
291 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
293 return 0;
296 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
298 memset(iv, 0, cc->iv_size);
300 return 0;
303 static struct crypt_iv_operations crypt_iv_plain_ops = {
304 .generator = crypt_iv_plain_gen
307 static struct crypt_iv_operations crypt_iv_essiv_ops = {
308 .ctr = crypt_iv_essiv_ctr,
309 .dtr = crypt_iv_essiv_dtr,
310 .generator = crypt_iv_essiv_gen
313 static struct crypt_iv_operations crypt_iv_benbi_ops = {
314 .ctr = crypt_iv_benbi_ctr,
315 .dtr = crypt_iv_benbi_dtr,
316 .generator = crypt_iv_benbi_gen
319 static struct crypt_iv_operations crypt_iv_null_ops = {
320 .generator = crypt_iv_null_gen
323 static void crypt_convert_init(struct crypt_config *cc,
324 struct convert_context *ctx,
325 struct bio *bio_out, struct bio *bio_in,
326 sector_t sector)
328 ctx->bio_in = bio_in;
329 ctx->bio_out = bio_out;
330 ctx->offset_in = 0;
331 ctx->offset_out = 0;
332 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
333 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
334 ctx->sector = sector + cc->iv_offset;
335 init_completion(&ctx->restart);
338 static int crypt_convert_block(struct crypt_config *cc,
339 struct convert_context *ctx,
340 struct ablkcipher_request *req)
342 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
343 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
344 struct dm_crypt_request *dmreq;
345 u8 *iv;
346 int r = 0;
348 dmreq = (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
349 iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
350 crypto_ablkcipher_alignmask(cc->tfm) + 1);
352 sg_init_table(&dmreq->sg_in, 1);
353 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
354 bv_in->bv_offset + ctx->offset_in);
356 sg_init_table(&dmreq->sg_out, 1);
357 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
358 bv_out->bv_offset + ctx->offset_out);
360 ctx->offset_in += 1 << SECTOR_SHIFT;
361 if (ctx->offset_in >= bv_in->bv_len) {
362 ctx->offset_in = 0;
363 ctx->idx_in++;
366 ctx->offset_out += 1 << SECTOR_SHIFT;
367 if (ctx->offset_out >= bv_out->bv_len) {
368 ctx->offset_out = 0;
369 ctx->idx_out++;
372 if (cc->iv_gen_ops) {
373 r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
374 if (r < 0)
375 return r;
378 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
379 1 << SECTOR_SHIFT, iv);
381 if (bio_data_dir(ctx->bio_in) == WRITE)
382 r = crypto_ablkcipher_encrypt(req);
383 else
384 r = crypto_ablkcipher_decrypt(req);
386 return r;
389 static void kcryptd_async_done(struct crypto_async_request *async_req,
390 int error);
391 static void crypt_alloc_req(struct crypt_config *cc,
392 struct convert_context *ctx)
394 if (!cc->req)
395 cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
396 ablkcipher_request_set_tfm(cc->req, cc->tfm);
397 ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
398 CRYPTO_TFM_REQ_MAY_SLEEP,
399 kcryptd_async_done, ctx);
403 * Encrypt / decrypt data from one bio to another one (can be the same one)
405 static int crypt_convert(struct crypt_config *cc,
406 struct convert_context *ctx)
408 int r;
410 atomic_set(&ctx->pending, 1);
412 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
413 ctx->idx_out < ctx->bio_out->bi_vcnt) {
415 crypt_alloc_req(cc, ctx);
417 atomic_inc(&ctx->pending);
419 r = crypt_convert_block(cc, ctx, cc->req);
421 switch (r) {
422 /* async */
423 case -EBUSY:
424 wait_for_completion(&ctx->restart);
425 INIT_COMPLETION(ctx->restart);
426 /* fall through*/
427 case -EINPROGRESS:
428 cc->req = NULL;
429 ctx->sector++;
430 continue;
432 /* sync */
433 case 0:
434 atomic_dec(&ctx->pending);
435 ctx->sector++;
436 cond_resched();
437 continue;
439 /* error */
440 default:
441 atomic_dec(&ctx->pending);
442 return r;
446 return 0;
449 static void dm_crypt_bio_destructor(struct bio *bio)
451 struct dm_crypt_io *io = bio->bi_private;
452 struct crypt_config *cc = io->target->private;
454 bio_free(bio, cc->bs);
458 * Generate a new unfragmented bio with the given size
459 * This should never violate the device limitations
460 * May return a smaller bio when running out of pages, indicated by
461 * *out_of_pages set to 1.
463 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
464 unsigned *out_of_pages)
466 struct crypt_config *cc = io->target->private;
467 struct bio *clone;
468 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
469 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
470 unsigned i, len;
471 struct page *page;
473 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
474 if (!clone)
475 return NULL;
477 clone_init(io, clone);
478 *out_of_pages = 0;
480 for (i = 0; i < nr_iovecs; i++) {
481 page = mempool_alloc(cc->page_pool, gfp_mask);
482 if (!page) {
483 *out_of_pages = 1;
484 break;
488 * if additional pages cannot be allocated without waiting,
489 * return a partially allocated bio, the caller will then try
490 * to allocate additional bios while submitting this partial bio
492 if (i == (MIN_BIO_PAGES - 1))
493 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
495 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
497 if (!bio_add_page(clone, page, len, 0)) {
498 mempool_free(page, cc->page_pool);
499 break;
502 size -= len;
505 if (!clone->bi_size) {
506 bio_put(clone);
507 return NULL;
510 return clone;
513 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
515 unsigned int i;
516 struct bio_vec *bv;
518 for (i = 0; i < clone->bi_vcnt; i++) {
519 bv = bio_iovec_idx(clone, i);
520 BUG_ON(!bv->bv_page);
521 mempool_free(bv->bv_page, cc->page_pool);
522 bv->bv_page = NULL;
526 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
527 struct bio *bio, sector_t sector)
529 struct crypt_config *cc = ti->private;
530 struct dm_crypt_io *io;
532 io = mempool_alloc(cc->io_pool, GFP_NOIO);
533 io->target = ti;
534 io->base_bio = bio;
535 io->sector = sector;
536 io->error = 0;
537 atomic_set(&io->pending, 0);
539 return io;
542 static void crypt_inc_pending(struct dm_crypt_io *io)
544 atomic_inc(&io->pending);
548 * One of the bios was finished. Check for completion of
549 * the whole request and correctly clean up the buffer.
551 static void crypt_dec_pending(struct dm_crypt_io *io)
553 struct crypt_config *cc = io->target->private;
555 if (!atomic_dec_and_test(&io->pending))
556 return;
558 bio_endio(io->base_bio, io->error);
559 mempool_free(io, cc->io_pool);
563 * kcryptd/kcryptd_io:
565 * Needed because it would be very unwise to do decryption in an
566 * interrupt context.
568 * kcryptd performs the actual encryption or decryption.
570 * kcryptd_io performs the IO submission.
572 * They must be separated as otherwise the final stages could be
573 * starved by new requests which can block in the first stages due
574 * to memory allocation.
576 static void crypt_endio(struct bio *clone, int error)
578 struct dm_crypt_io *io = clone->bi_private;
579 struct crypt_config *cc = io->target->private;
580 unsigned rw = bio_data_dir(clone);
582 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
583 error = -EIO;
586 * free the processed pages
588 if (rw == WRITE)
589 crypt_free_buffer_pages(cc, clone);
591 bio_put(clone);
593 if (rw == READ && !error) {
594 kcryptd_queue_crypt(io);
595 return;
598 if (unlikely(error))
599 io->error = error;
601 crypt_dec_pending(io);
604 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
606 struct crypt_config *cc = io->target->private;
608 clone->bi_private = io;
609 clone->bi_end_io = crypt_endio;
610 clone->bi_bdev = cc->dev->bdev;
611 clone->bi_rw = io->base_bio->bi_rw;
612 clone->bi_destructor = dm_crypt_bio_destructor;
615 static void kcryptd_io_read(struct dm_crypt_io *io)
617 struct crypt_config *cc = io->target->private;
618 struct bio *base_bio = io->base_bio;
619 struct bio *clone;
621 crypt_inc_pending(io);
624 * The block layer might modify the bvec array, so always
625 * copy the required bvecs because we need the original
626 * one in order to decrypt the whole bio data *afterwards*.
628 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
629 if (unlikely(!clone)) {
630 io->error = -ENOMEM;
631 crypt_dec_pending(io);
632 return;
635 clone_init(io, clone);
636 clone->bi_idx = 0;
637 clone->bi_vcnt = bio_segments(base_bio);
638 clone->bi_size = base_bio->bi_size;
639 clone->bi_sector = cc->start + io->sector;
640 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
641 sizeof(struct bio_vec) * clone->bi_vcnt);
643 generic_make_request(clone);
646 static void kcryptd_io_write(struct dm_crypt_io *io)
648 struct bio *clone = io->ctx.bio_out;
649 struct crypt_config *cc = io->target->private;
651 generic_make_request(clone);
652 wake_up(&cc->writeq);
655 static void kcryptd_io(struct work_struct *work)
657 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
659 if (bio_data_dir(io->base_bio) == READ)
660 kcryptd_io_read(io);
661 else
662 kcryptd_io_write(io);
665 static void kcryptd_queue_io(struct dm_crypt_io *io)
667 struct crypt_config *cc = io->target->private;
669 INIT_WORK(&io->work, kcryptd_io);
670 queue_work(cc->io_queue, &io->work);
673 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
674 int error, int async)
676 struct bio *clone = io->ctx.bio_out;
677 struct crypt_config *cc = io->target->private;
679 if (unlikely(error < 0)) {
680 crypt_free_buffer_pages(cc, clone);
681 bio_put(clone);
682 io->error = -EIO;
683 crypt_dec_pending(io);
684 return;
687 /* crypt_convert should have filled the clone bio */
688 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
690 clone->bi_sector = cc->start + io->sector;
691 io->sector += bio_sectors(clone);
693 if (async)
694 kcryptd_queue_io(io);
695 else
696 generic_make_request(clone);
699 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
701 struct crypt_config *cc = io->target->private;
702 struct bio *clone;
703 int crypt_finished;
704 unsigned out_of_pages = 0;
705 unsigned remaining = io->base_bio->bi_size;
706 int r;
709 * Prevent io from disappearing until this function completes.
711 crypt_inc_pending(io);
712 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, io->sector);
715 * The allocated buffers can be smaller than the whole bio,
716 * so repeat the whole process until all the data can be handled.
718 while (remaining) {
719 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
720 if (unlikely(!clone)) {
721 io->error = -ENOMEM;
722 break;
725 io->ctx.bio_out = clone;
726 io->ctx.idx_out = 0;
728 remaining -= clone->bi_size;
730 crypt_inc_pending(io);
731 r = crypt_convert(cc, &io->ctx);
732 crypt_finished = atomic_dec_and_test(&io->ctx.pending);
734 /* Encryption was already finished, submit io now */
735 if (crypt_finished) {
736 kcryptd_crypt_write_io_submit(io, r, 0);
739 * If there was an error, do not try next fragments.
740 * For async, error is processed in async handler.
742 if (unlikely(r < 0))
743 break;
747 * Out of memory -> run queues
748 * But don't wait if split was due to the io size restriction
750 if (unlikely(out_of_pages))
751 congestion_wait(WRITE, HZ/100);
753 if (unlikely(remaining))
754 wait_event(cc->writeq, !atomic_read(&io->ctx.pending));
757 crypt_dec_pending(io);
760 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
762 if (unlikely(error < 0))
763 io->error = -EIO;
765 crypt_dec_pending(io);
768 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
770 struct crypt_config *cc = io->target->private;
771 int r = 0;
773 crypt_inc_pending(io);
775 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
776 io->sector);
778 r = crypt_convert(cc, &io->ctx);
780 if (atomic_dec_and_test(&io->ctx.pending))
781 kcryptd_crypt_read_done(io, r);
783 crypt_dec_pending(io);
786 static void kcryptd_async_done(struct crypto_async_request *async_req,
787 int error)
789 struct convert_context *ctx = async_req->data;
790 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
791 struct crypt_config *cc = io->target->private;
793 if (error == -EINPROGRESS) {
794 complete(&ctx->restart);
795 return;
798 mempool_free(ablkcipher_request_cast(async_req), cc->req_pool);
800 if (!atomic_dec_and_test(&ctx->pending))
801 return;
803 if (bio_data_dir(io->base_bio) == READ)
804 kcryptd_crypt_read_done(io, error);
805 else
806 kcryptd_crypt_write_io_submit(io, error, 1);
809 static void kcryptd_crypt(struct work_struct *work)
811 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
813 if (bio_data_dir(io->base_bio) == READ)
814 kcryptd_crypt_read_convert(io);
815 else
816 kcryptd_crypt_write_convert(io);
819 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
821 struct crypt_config *cc = io->target->private;
823 INIT_WORK(&io->work, kcryptd_crypt);
824 queue_work(cc->crypt_queue, &io->work);
828 * Decode key from its hex representation
830 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
832 char buffer[3];
833 char *endp;
834 unsigned int i;
836 buffer[2] = '\0';
838 for (i = 0; i < size; i++) {
839 buffer[0] = *hex++;
840 buffer[1] = *hex++;
842 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
844 if (endp != &buffer[2])
845 return -EINVAL;
848 if (*hex != '\0')
849 return -EINVAL;
851 return 0;
855 * Encode key into its hex representation
857 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
859 unsigned int i;
861 for (i = 0; i < size; i++) {
862 sprintf(hex, "%02x", *key);
863 hex += 2;
864 key++;
868 static int crypt_set_key(struct crypt_config *cc, char *key)
870 unsigned key_size = strlen(key) >> 1;
872 if (cc->key_size && cc->key_size != key_size)
873 return -EINVAL;
875 cc->key_size = key_size; /* initial settings */
877 if ((!key_size && strcmp(key, "-")) ||
878 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
879 return -EINVAL;
881 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
883 return 0;
886 static int crypt_wipe_key(struct crypt_config *cc)
888 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
889 memset(&cc->key, 0, cc->key_size * sizeof(u8));
890 return 0;
894 * Construct an encryption mapping:
895 * <cipher> <key> <iv_offset> <dev_path> <start>
897 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
899 struct crypt_config *cc;
900 struct crypto_ablkcipher *tfm;
901 char *tmp;
902 char *cipher;
903 char *chainmode;
904 char *ivmode;
905 char *ivopts;
906 unsigned int key_size;
907 unsigned long long tmpll;
909 if (argc != 5) {
910 ti->error = "Not enough arguments";
911 return -EINVAL;
914 tmp = argv[0];
915 cipher = strsep(&tmp, "-");
916 chainmode = strsep(&tmp, "-");
917 ivopts = strsep(&tmp, "-");
918 ivmode = strsep(&ivopts, ":");
920 if (tmp)
921 DMWARN("Unexpected additional cipher options");
923 key_size = strlen(argv[1]) >> 1;
925 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
926 if (cc == NULL) {
927 ti->error =
928 "Cannot allocate transparent encryption context";
929 return -ENOMEM;
932 if (crypt_set_key(cc, argv[1])) {
933 ti->error = "Error decoding key";
934 goto bad_cipher;
937 /* Compatiblity mode for old dm-crypt cipher strings */
938 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
939 chainmode = "cbc";
940 ivmode = "plain";
943 if (strcmp(chainmode, "ecb") && !ivmode) {
944 ti->error = "This chaining mode requires an IV mechanism";
945 goto bad_cipher;
948 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
949 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
950 ti->error = "Chain mode + cipher name is too long";
951 goto bad_cipher;
954 tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
955 if (IS_ERR(tfm)) {
956 ti->error = "Error allocating crypto tfm";
957 goto bad_cipher;
960 strcpy(cc->cipher, cipher);
961 strcpy(cc->chainmode, chainmode);
962 cc->tfm = tfm;
965 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
966 * See comments at iv code
969 if (ivmode == NULL)
970 cc->iv_gen_ops = NULL;
971 else if (strcmp(ivmode, "plain") == 0)
972 cc->iv_gen_ops = &crypt_iv_plain_ops;
973 else if (strcmp(ivmode, "essiv") == 0)
974 cc->iv_gen_ops = &crypt_iv_essiv_ops;
975 else if (strcmp(ivmode, "benbi") == 0)
976 cc->iv_gen_ops = &crypt_iv_benbi_ops;
977 else if (strcmp(ivmode, "null") == 0)
978 cc->iv_gen_ops = &crypt_iv_null_ops;
979 else {
980 ti->error = "Invalid IV mode";
981 goto bad_ivmode;
984 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
985 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
986 goto bad_ivmode;
988 cc->iv_size = crypto_ablkcipher_ivsize(tfm);
989 if (cc->iv_size)
990 /* at least a 64 bit sector number should fit in our buffer */
991 cc->iv_size = max(cc->iv_size,
992 (unsigned int)(sizeof(u64) / sizeof(u8)));
993 else {
994 if (cc->iv_gen_ops) {
995 DMWARN("Selected cipher does not support IVs");
996 if (cc->iv_gen_ops->dtr)
997 cc->iv_gen_ops->dtr(cc);
998 cc->iv_gen_ops = NULL;
1002 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1003 if (!cc->io_pool) {
1004 ti->error = "Cannot allocate crypt io mempool";
1005 goto bad_slab_pool;
1008 cc->dmreq_start = sizeof(struct ablkcipher_request);
1009 cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
1010 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1011 cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
1012 ~(crypto_tfm_ctx_alignment() - 1);
1014 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1015 sizeof(struct dm_crypt_request) + cc->iv_size);
1016 if (!cc->req_pool) {
1017 ti->error = "Cannot allocate crypt request mempool";
1018 goto bad_req_pool;
1020 cc->req = NULL;
1022 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1023 if (!cc->page_pool) {
1024 ti->error = "Cannot allocate page mempool";
1025 goto bad_page_pool;
1028 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
1029 if (!cc->bs) {
1030 ti->error = "Cannot allocate crypt bioset";
1031 goto bad_bs;
1034 if (crypto_ablkcipher_setkey(tfm, cc->key, key_size) < 0) {
1035 ti->error = "Error setting key";
1036 goto bad_device;
1039 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1040 ti->error = "Invalid iv_offset sector";
1041 goto bad_device;
1043 cc->iv_offset = tmpll;
1045 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1046 ti->error = "Invalid device sector";
1047 goto bad_device;
1049 cc->start = tmpll;
1051 if (dm_get_device(ti, argv[3], cc->start, ti->len,
1052 dm_table_get_mode(ti->table), &cc->dev)) {
1053 ti->error = "Device lookup failed";
1054 goto bad_device;
1057 if (ivmode && cc->iv_gen_ops) {
1058 if (ivopts)
1059 *(ivopts - 1) = ':';
1060 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1061 if (!cc->iv_mode) {
1062 ti->error = "Error kmallocing iv_mode string";
1063 goto bad_ivmode_string;
1065 strcpy(cc->iv_mode, ivmode);
1066 } else
1067 cc->iv_mode = NULL;
1069 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1070 if (!cc->io_queue) {
1071 ti->error = "Couldn't create kcryptd io queue";
1072 goto bad_io_queue;
1075 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1076 if (!cc->crypt_queue) {
1077 ti->error = "Couldn't create kcryptd queue";
1078 goto bad_crypt_queue;
1081 init_waitqueue_head(&cc->writeq);
1082 ti->private = cc;
1083 return 0;
1085 bad_crypt_queue:
1086 destroy_workqueue(cc->io_queue);
1087 bad_io_queue:
1088 kfree(cc->iv_mode);
1089 bad_ivmode_string:
1090 dm_put_device(ti, cc->dev);
1091 bad_device:
1092 bioset_free(cc->bs);
1093 bad_bs:
1094 mempool_destroy(cc->page_pool);
1095 bad_page_pool:
1096 mempool_destroy(cc->req_pool);
1097 bad_req_pool:
1098 mempool_destroy(cc->io_pool);
1099 bad_slab_pool:
1100 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1101 cc->iv_gen_ops->dtr(cc);
1102 bad_ivmode:
1103 crypto_free_ablkcipher(tfm);
1104 bad_cipher:
1105 /* Must zero key material before freeing */
1106 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
1107 kfree(cc);
1108 return -EINVAL;
1111 static void crypt_dtr(struct dm_target *ti)
1113 struct crypt_config *cc = (struct crypt_config *) ti->private;
1115 destroy_workqueue(cc->io_queue);
1116 destroy_workqueue(cc->crypt_queue);
1118 if (cc->req)
1119 mempool_free(cc->req, cc->req_pool);
1121 bioset_free(cc->bs);
1122 mempool_destroy(cc->page_pool);
1123 mempool_destroy(cc->req_pool);
1124 mempool_destroy(cc->io_pool);
1126 kfree(cc->iv_mode);
1127 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1128 cc->iv_gen_ops->dtr(cc);
1129 crypto_free_ablkcipher(cc->tfm);
1130 dm_put_device(ti, cc->dev);
1132 /* Must zero key material before freeing */
1133 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
1134 kfree(cc);
1137 static int crypt_map(struct dm_target *ti, struct bio *bio,
1138 union map_info *map_context)
1140 struct dm_crypt_io *io;
1142 io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin);
1144 if (bio_data_dir(io->base_bio) == READ)
1145 kcryptd_queue_io(io);
1146 else
1147 kcryptd_queue_crypt(io);
1149 return DM_MAPIO_SUBMITTED;
1152 static int crypt_status(struct dm_target *ti, status_type_t type,
1153 char *result, unsigned int maxlen)
1155 struct crypt_config *cc = (struct crypt_config *) ti->private;
1156 unsigned int sz = 0;
1158 switch (type) {
1159 case STATUSTYPE_INFO:
1160 result[0] = '\0';
1161 break;
1163 case STATUSTYPE_TABLE:
1164 if (cc->iv_mode)
1165 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1166 cc->iv_mode);
1167 else
1168 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1170 if (cc->key_size > 0) {
1171 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1172 return -ENOMEM;
1174 crypt_encode_key(result + sz, cc->key, cc->key_size);
1175 sz += cc->key_size << 1;
1176 } else {
1177 if (sz >= maxlen)
1178 return -ENOMEM;
1179 result[sz++] = '-';
1182 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1183 cc->dev->name, (unsigned long long)cc->start);
1184 break;
1186 return 0;
1189 static void crypt_postsuspend(struct dm_target *ti)
1191 struct crypt_config *cc = ti->private;
1193 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1196 static int crypt_preresume(struct dm_target *ti)
1198 struct crypt_config *cc = ti->private;
1200 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1201 DMERR("aborting resume - crypt key is not set.");
1202 return -EAGAIN;
1205 return 0;
1208 static void crypt_resume(struct dm_target *ti)
1210 struct crypt_config *cc = ti->private;
1212 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1215 /* Message interface
1216 * key set <key>
1217 * key wipe
1219 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1221 struct crypt_config *cc = ti->private;
1223 if (argc < 2)
1224 goto error;
1226 if (!strnicmp(argv[0], MESG_STR("key"))) {
1227 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1228 DMWARN("not suspended during key manipulation.");
1229 return -EINVAL;
1231 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1232 return crypt_set_key(cc, argv[2]);
1233 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1234 return crypt_wipe_key(cc);
1237 error:
1238 DMWARN("unrecognised message received.");
1239 return -EINVAL;
1242 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1243 struct bio_vec *biovec, int max_size)
1245 struct crypt_config *cc = ti->private;
1246 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1248 if (!q->merge_bvec_fn)
1249 return max_size;
1251 bvm->bi_bdev = cc->dev->bdev;
1252 bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
1254 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1257 static struct target_type crypt_target = {
1258 .name = "crypt",
1259 .version= {1, 6, 0},
1260 .module = THIS_MODULE,
1261 .ctr = crypt_ctr,
1262 .dtr = crypt_dtr,
1263 .map = crypt_map,
1264 .status = crypt_status,
1265 .postsuspend = crypt_postsuspend,
1266 .preresume = crypt_preresume,
1267 .resume = crypt_resume,
1268 .message = crypt_message,
1269 .merge = crypt_merge,
1272 static int __init dm_crypt_init(void)
1274 int r;
1276 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1277 if (!_crypt_io_pool)
1278 return -ENOMEM;
1280 r = dm_register_target(&crypt_target);
1281 if (r < 0) {
1282 DMERR("register failed %d", r);
1283 kmem_cache_destroy(_crypt_io_pool);
1286 return r;
1289 static void __exit dm_crypt_exit(void)
1291 int r = dm_unregister_target(&crypt_target);
1293 if (r < 0)
1294 DMERR("unregister failed %d", r);
1296 kmem_cache_destroy(_crypt_io_pool);
1299 module_init(dm_crypt_init);
1300 module_exit(dm_crypt_exit);
1302 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1303 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1304 MODULE_LICENSE("GPL");