staging: hv: Convert camel case function names in storvsc.c to lowercase
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / libfs.c
bloba3accdf528add9161bd6dccfb84f7c08ccb28437
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h>
17 #include <asm/uaccess.h>
19 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
20 struct kstat *stat)
22 struct inode *inode = dentry->d_inode;
23 generic_fillattr(inode, stat);
24 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
25 return 0;
28 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
30 buf->f_type = dentry->d_sb->s_magic;
31 buf->f_bsize = PAGE_CACHE_SIZE;
32 buf->f_namelen = NAME_MAX;
33 return 0;
37 * Retaining negative dentries for an in-memory filesystem just wastes
38 * memory and lookup time: arrange for them to be deleted immediately.
40 static int simple_delete_dentry(struct dentry *dentry)
42 return 1;
46 * Lookup the data. This is trivial - if the dentry didn't already
47 * exist, we know it is negative. Set d_op to delete negative dentries.
49 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
51 static const struct dentry_operations simple_dentry_operations = {
52 .d_delete = simple_delete_dentry,
55 if (dentry->d_name.len > NAME_MAX)
56 return ERR_PTR(-ENAMETOOLONG);
57 dentry->d_op = &simple_dentry_operations;
58 d_add(dentry, NULL);
59 return NULL;
62 int dcache_dir_open(struct inode *inode, struct file *file)
64 static struct qstr cursor_name = {.len = 1, .name = "."};
66 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
68 return file->private_data ? 0 : -ENOMEM;
71 int dcache_dir_close(struct inode *inode, struct file *file)
73 dput(file->private_data);
74 return 0;
77 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
79 mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
80 switch (origin) {
81 case 1:
82 offset += file->f_pos;
83 case 0:
84 if (offset >= 0)
85 break;
86 default:
87 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
88 return -EINVAL;
90 if (offset != file->f_pos) {
91 file->f_pos = offset;
92 if (file->f_pos >= 2) {
93 struct list_head *p;
94 struct dentry *cursor = file->private_data;
95 loff_t n = file->f_pos - 2;
97 spin_lock(&dcache_lock);
98 list_del(&cursor->d_u.d_child);
99 p = file->f_path.dentry->d_subdirs.next;
100 while (n && p != &file->f_path.dentry->d_subdirs) {
101 struct dentry *next;
102 next = list_entry(p, struct dentry, d_u.d_child);
103 if (!d_unhashed(next) && next->d_inode)
104 n--;
105 p = p->next;
107 list_add_tail(&cursor->d_u.d_child, p);
108 spin_unlock(&dcache_lock);
111 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
112 return offset;
115 /* Relationship between i_mode and the DT_xxx types */
116 static inline unsigned char dt_type(struct inode *inode)
118 return (inode->i_mode >> 12) & 15;
122 * Directory is locked and all positive dentries in it are safe, since
123 * for ramfs-type trees they can't go away without unlink() or rmdir(),
124 * both impossible due to the lock on directory.
127 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
129 struct dentry *dentry = filp->f_path.dentry;
130 struct dentry *cursor = filp->private_data;
131 struct list_head *p, *q = &cursor->d_u.d_child;
132 ino_t ino;
133 int i = filp->f_pos;
135 switch (i) {
136 case 0:
137 ino = dentry->d_inode->i_ino;
138 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
139 break;
140 filp->f_pos++;
141 i++;
142 /* fallthrough */
143 case 1:
144 ino = parent_ino(dentry);
145 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
146 break;
147 filp->f_pos++;
148 i++;
149 /* fallthrough */
150 default:
151 spin_lock(&dcache_lock);
152 if (filp->f_pos == 2)
153 list_move(q, &dentry->d_subdirs);
155 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
156 struct dentry *next;
157 next = list_entry(p, struct dentry, d_u.d_child);
158 if (d_unhashed(next) || !next->d_inode)
159 continue;
161 spin_unlock(&dcache_lock);
162 if (filldir(dirent, next->d_name.name,
163 next->d_name.len, filp->f_pos,
164 next->d_inode->i_ino,
165 dt_type(next->d_inode)) < 0)
166 return 0;
167 spin_lock(&dcache_lock);
168 /* next is still alive */
169 list_move(q, p);
170 p = q;
171 filp->f_pos++;
173 spin_unlock(&dcache_lock);
175 return 0;
178 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
180 return -EISDIR;
183 const struct file_operations simple_dir_operations = {
184 .open = dcache_dir_open,
185 .release = dcache_dir_close,
186 .llseek = dcache_dir_lseek,
187 .read = generic_read_dir,
188 .readdir = dcache_readdir,
189 .fsync = noop_fsync,
192 const struct inode_operations simple_dir_inode_operations = {
193 .lookup = simple_lookup,
196 static const struct super_operations simple_super_operations = {
197 .statfs = simple_statfs,
201 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
202 * will never be mountable)
204 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
205 const struct super_operations *ops, unsigned long magic)
207 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
208 struct dentry *dentry;
209 struct inode *root;
210 struct qstr d_name = {.name = name, .len = strlen(name)};
212 if (IS_ERR(s))
213 return ERR_CAST(s);
215 s->s_flags = MS_NOUSER;
216 s->s_maxbytes = MAX_LFS_FILESIZE;
217 s->s_blocksize = PAGE_SIZE;
218 s->s_blocksize_bits = PAGE_SHIFT;
219 s->s_magic = magic;
220 s->s_op = ops ? ops : &simple_super_operations;
221 s->s_time_gran = 1;
222 root = new_inode(s);
223 if (!root)
224 goto Enomem;
226 * since this is the first inode, make it number 1. New inodes created
227 * after this must take care not to collide with it (by passing
228 * max_reserved of 1 to iunique).
230 root->i_ino = 1;
231 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
232 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
233 dentry = d_alloc(NULL, &d_name);
234 if (!dentry) {
235 iput(root);
236 goto Enomem;
238 dentry->d_sb = s;
239 dentry->d_parent = dentry;
240 d_instantiate(dentry, root);
241 s->s_root = dentry;
242 s->s_flags |= MS_ACTIVE;
243 return dget(s->s_root);
245 Enomem:
246 deactivate_locked_super(s);
247 return ERR_PTR(-ENOMEM);
250 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
252 struct inode *inode = old_dentry->d_inode;
254 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
255 inc_nlink(inode);
256 ihold(inode);
257 dget(dentry);
258 d_instantiate(dentry, inode);
259 return 0;
262 static inline int simple_positive(struct dentry *dentry)
264 return dentry->d_inode && !d_unhashed(dentry);
267 int simple_empty(struct dentry *dentry)
269 struct dentry *child;
270 int ret = 0;
272 spin_lock(&dcache_lock);
273 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
274 if (simple_positive(child))
275 goto out;
276 ret = 1;
277 out:
278 spin_unlock(&dcache_lock);
279 return ret;
282 int simple_unlink(struct inode *dir, struct dentry *dentry)
284 struct inode *inode = dentry->d_inode;
286 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
287 drop_nlink(inode);
288 dput(dentry);
289 return 0;
292 int simple_rmdir(struct inode *dir, struct dentry *dentry)
294 if (!simple_empty(dentry))
295 return -ENOTEMPTY;
297 drop_nlink(dentry->d_inode);
298 simple_unlink(dir, dentry);
299 drop_nlink(dir);
300 return 0;
303 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
304 struct inode *new_dir, struct dentry *new_dentry)
306 struct inode *inode = old_dentry->d_inode;
307 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
309 if (!simple_empty(new_dentry))
310 return -ENOTEMPTY;
312 if (new_dentry->d_inode) {
313 simple_unlink(new_dir, new_dentry);
314 if (they_are_dirs)
315 drop_nlink(old_dir);
316 } else if (they_are_dirs) {
317 drop_nlink(old_dir);
318 inc_nlink(new_dir);
321 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
322 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
324 return 0;
328 * simple_setattr - setattr for simple filesystem
329 * @dentry: dentry
330 * @iattr: iattr structure
332 * Returns 0 on success, -error on failure.
334 * simple_setattr is a simple ->setattr implementation without a proper
335 * implementation of size changes.
337 * It can either be used for in-memory filesystems or special files
338 * on simple regular filesystems. Anything that needs to change on-disk
339 * or wire state on size changes needs its own setattr method.
341 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
343 struct inode *inode = dentry->d_inode;
344 int error;
346 WARN_ON_ONCE(inode->i_op->truncate);
348 error = inode_change_ok(inode, iattr);
349 if (error)
350 return error;
352 if (iattr->ia_valid & ATTR_SIZE)
353 truncate_setsize(inode, iattr->ia_size);
354 setattr_copy(inode, iattr);
355 mark_inode_dirty(inode);
356 return 0;
358 EXPORT_SYMBOL(simple_setattr);
360 int simple_readpage(struct file *file, struct page *page)
362 clear_highpage(page);
363 flush_dcache_page(page);
364 SetPageUptodate(page);
365 unlock_page(page);
366 return 0;
369 int simple_write_begin(struct file *file, struct address_space *mapping,
370 loff_t pos, unsigned len, unsigned flags,
371 struct page **pagep, void **fsdata)
373 struct page *page;
374 pgoff_t index;
376 index = pos >> PAGE_CACHE_SHIFT;
378 page = grab_cache_page_write_begin(mapping, index, flags);
379 if (!page)
380 return -ENOMEM;
382 *pagep = page;
384 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
385 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
387 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
389 return 0;
393 * simple_write_end - .write_end helper for non-block-device FSes
394 * @available: See .write_end of address_space_operations
395 * @file: "
396 * @mapping: "
397 * @pos: "
398 * @len: "
399 * @copied: "
400 * @page: "
401 * @fsdata: "
403 * simple_write_end does the minimum needed for updating a page after writing is
404 * done. It has the same API signature as the .write_end of
405 * address_space_operations vector. So it can just be set onto .write_end for
406 * FSes that don't need any other processing. i_mutex is assumed to be held.
407 * Block based filesystems should use generic_write_end().
408 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
409 * is not called, so a filesystem that actually does store data in .write_inode
410 * should extend on what's done here with a call to mark_inode_dirty() in the
411 * case that i_size has changed.
413 int simple_write_end(struct file *file, struct address_space *mapping,
414 loff_t pos, unsigned len, unsigned copied,
415 struct page *page, void *fsdata)
417 struct inode *inode = page->mapping->host;
418 loff_t last_pos = pos + copied;
420 /* zero the stale part of the page if we did a short copy */
421 if (copied < len) {
422 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
424 zero_user(page, from + copied, len - copied);
427 if (!PageUptodate(page))
428 SetPageUptodate(page);
430 * No need to use i_size_read() here, the i_size
431 * cannot change under us because we hold the i_mutex.
433 if (last_pos > inode->i_size)
434 i_size_write(inode, last_pos);
436 set_page_dirty(page);
437 unlock_page(page);
438 page_cache_release(page);
440 return copied;
444 * the inodes created here are not hashed. If you use iunique to generate
445 * unique inode values later for this filesystem, then you must take care
446 * to pass it an appropriate max_reserved value to avoid collisions.
448 int simple_fill_super(struct super_block *s, unsigned long magic,
449 struct tree_descr *files)
451 struct inode *inode;
452 struct dentry *root;
453 struct dentry *dentry;
454 int i;
456 s->s_blocksize = PAGE_CACHE_SIZE;
457 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
458 s->s_magic = magic;
459 s->s_op = &simple_super_operations;
460 s->s_time_gran = 1;
462 inode = new_inode(s);
463 if (!inode)
464 return -ENOMEM;
466 * because the root inode is 1, the files array must not contain an
467 * entry at index 1
469 inode->i_ino = 1;
470 inode->i_mode = S_IFDIR | 0755;
471 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
472 inode->i_op = &simple_dir_inode_operations;
473 inode->i_fop = &simple_dir_operations;
474 inode->i_nlink = 2;
475 root = d_alloc_root(inode);
476 if (!root) {
477 iput(inode);
478 return -ENOMEM;
480 for (i = 0; !files->name || files->name[0]; i++, files++) {
481 if (!files->name)
482 continue;
484 /* warn if it tries to conflict with the root inode */
485 if (unlikely(i == 1))
486 printk(KERN_WARNING "%s: %s passed in a files array"
487 "with an index of 1!\n", __func__,
488 s->s_type->name);
490 dentry = d_alloc_name(root, files->name);
491 if (!dentry)
492 goto out;
493 inode = new_inode(s);
494 if (!inode)
495 goto out;
496 inode->i_mode = S_IFREG | files->mode;
497 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
498 inode->i_fop = files->ops;
499 inode->i_ino = i;
500 d_add(dentry, inode);
502 s->s_root = root;
503 return 0;
504 out:
505 d_genocide(root);
506 dput(root);
507 return -ENOMEM;
510 static DEFINE_SPINLOCK(pin_fs_lock);
512 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
514 struct vfsmount *mnt = NULL;
515 spin_lock(&pin_fs_lock);
516 if (unlikely(!*mount)) {
517 spin_unlock(&pin_fs_lock);
518 mnt = vfs_kern_mount(type, 0, type->name, NULL);
519 if (IS_ERR(mnt))
520 return PTR_ERR(mnt);
521 spin_lock(&pin_fs_lock);
522 if (!*mount)
523 *mount = mnt;
525 mntget(*mount);
526 ++*count;
527 spin_unlock(&pin_fs_lock);
528 mntput(mnt);
529 return 0;
532 void simple_release_fs(struct vfsmount **mount, int *count)
534 struct vfsmount *mnt;
535 spin_lock(&pin_fs_lock);
536 mnt = *mount;
537 if (!--*count)
538 *mount = NULL;
539 spin_unlock(&pin_fs_lock);
540 mntput(mnt);
544 * simple_read_from_buffer - copy data from the buffer to user space
545 * @to: the user space buffer to read to
546 * @count: the maximum number of bytes to read
547 * @ppos: the current position in the buffer
548 * @from: the buffer to read from
549 * @available: the size of the buffer
551 * The simple_read_from_buffer() function reads up to @count bytes from the
552 * buffer @from at offset @ppos into the user space address starting at @to.
554 * On success, the number of bytes read is returned and the offset @ppos is
555 * advanced by this number, or negative value is returned on error.
557 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
558 const void *from, size_t available)
560 loff_t pos = *ppos;
561 size_t ret;
563 if (pos < 0)
564 return -EINVAL;
565 if (pos >= available || !count)
566 return 0;
567 if (count > available - pos)
568 count = available - pos;
569 ret = copy_to_user(to, from + pos, count);
570 if (ret == count)
571 return -EFAULT;
572 count -= ret;
573 *ppos = pos + count;
574 return count;
578 * simple_write_to_buffer - copy data from user space to the buffer
579 * @to: the buffer to write to
580 * @available: the size of the buffer
581 * @ppos: the current position in the buffer
582 * @from: the user space buffer to read from
583 * @count: the maximum number of bytes to read
585 * The simple_write_to_buffer() function reads up to @count bytes from the user
586 * space address starting at @from into the buffer @to at offset @ppos.
588 * On success, the number of bytes written is returned and the offset @ppos is
589 * advanced by this number, or negative value is returned on error.
591 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
592 const void __user *from, size_t count)
594 loff_t pos = *ppos;
595 size_t res;
597 if (pos < 0)
598 return -EINVAL;
599 if (pos >= available || !count)
600 return 0;
601 if (count > available - pos)
602 count = available - pos;
603 res = copy_from_user(to + pos, from, count);
604 if (res == count)
605 return -EFAULT;
606 count -= res;
607 *ppos = pos + count;
608 return count;
612 * memory_read_from_buffer - copy data from the buffer
613 * @to: the kernel space buffer to read to
614 * @count: the maximum number of bytes to read
615 * @ppos: the current position in the buffer
616 * @from: the buffer to read from
617 * @available: the size of the buffer
619 * The memory_read_from_buffer() function reads up to @count bytes from the
620 * buffer @from at offset @ppos into the kernel space address starting at @to.
622 * On success, the number of bytes read is returned and the offset @ppos is
623 * advanced by this number, or negative value is returned on error.
625 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
626 const void *from, size_t available)
628 loff_t pos = *ppos;
630 if (pos < 0)
631 return -EINVAL;
632 if (pos >= available)
633 return 0;
634 if (count > available - pos)
635 count = available - pos;
636 memcpy(to, from + pos, count);
637 *ppos = pos + count;
639 return count;
643 * Transaction based IO.
644 * The file expects a single write which triggers the transaction, and then
645 * possibly a read which collects the result - which is stored in a
646 * file-local buffer.
649 void simple_transaction_set(struct file *file, size_t n)
651 struct simple_transaction_argresp *ar = file->private_data;
653 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
656 * The barrier ensures that ar->size will really remain zero until
657 * ar->data is ready for reading.
659 smp_mb();
660 ar->size = n;
663 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
665 struct simple_transaction_argresp *ar;
666 static DEFINE_SPINLOCK(simple_transaction_lock);
668 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
669 return ERR_PTR(-EFBIG);
671 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
672 if (!ar)
673 return ERR_PTR(-ENOMEM);
675 spin_lock(&simple_transaction_lock);
677 /* only one write allowed per open */
678 if (file->private_data) {
679 spin_unlock(&simple_transaction_lock);
680 free_page((unsigned long)ar);
681 return ERR_PTR(-EBUSY);
684 file->private_data = ar;
686 spin_unlock(&simple_transaction_lock);
688 if (copy_from_user(ar->data, buf, size))
689 return ERR_PTR(-EFAULT);
691 return ar->data;
694 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
696 struct simple_transaction_argresp *ar = file->private_data;
698 if (!ar)
699 return 0;
700 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
703 int simple_transaction_release(struct inode *inode, struct file *file)
705 free_page((unsigned long)file->private_data);
706 return 0;
709 /* Simple attribute files */
711 struct simple_attr {
712 int (*get)(void *, u64 *);
713 int (*set)(void *, u64);
714 char get_buf[24]; /* enough to store a u64 and "\n\0" */
715 char set_buf[24];
716 void *data;
717 const char *fmt; /* format for read operation */
718 struct mutex mutex; /* protects access to these buffers */
721 /* simple_attr_open is called by an actual attribute open file operation
722 * to set the attribute specific access operations. */
723 int simple_attr_open(struct inode *inode, struct file *file,
724 int (*get)(void *, u64 *), int (*set)(void *, u64),
725 const char *fmt)
727 struct simple_attr *attr;
729 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
730 if (!attr)
731 return -ENOMEM;
733 attr->get = get;
734 attr->set = set;
735 attr->data = inode->i_private;
736 attr->fmt = fmt;
737 mutex_init(&attr->mutex);
739 file->private_data = attr;
741 return nonseekable_open(inode, file);
744 int simple_attr_release(struct inode *inode, struct file *file)
746 kfree(file->private_data);
747 return 0;
750 /* read from the buffer that is filled with the get function */
751 ssize_t simple_attr_read(struct file *file, char __user *buf,
752 size_t len, loff_t *ppos)
754 struct simple_attr *attr;
755 size_t size;
756 ssize_t ret;
758 attr = file->private_data;
760 if (!attr->get)
761 return -EACCES;
763 ret = mutex_lock_interruptible(&attr->mutex);
764 if (ret)
765 return ret;
767 if (*ppos) { /* continued read */
768 size = strlen(attr->get_buf);
769 } else { /* first read */
770 u64 val;
771 ret = attr->get(attr->data, &val);
772 if (ret)
773 goto out;
775 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
776 attr->fmt, (unsigned long long)val);
779 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
780 out:
781 mutex_unlock(&attr->mutex);
782 return ret;
785 /* interpret the buffer as a number to call the set function with */
786 ssize_t simple_attr_write(struct file *file, const char __user *buf,
787 size_t len, loff_t *ppos)
789 struct simple_attr *attr;
790 u64 val;
791 size_t size;
792 ssize_t ret;
794 attr = file->private_data;
795 if (!attr->set)
796 return -EACCES;
798 ret = mutex_lock_interruptible(&attr->mutex);
799 if (ret)
800 return ret;
802 ret = -EFAULT;
803 size = min(sizeof(attr->set_buf) - 1, len);
804 if (copy_from_user(attr->set_buf, buf, size))
805 goto out;
807 attr->set_buf[size] = '\0';
808 val = simple_strtol(attr->set_buf, NULL, 0);
809 ret = attr->set(attr->data, val);
810 if (ret == 0)
811 ret = len; /* on success, claim we got the whole input */
812 out:
813 mutex_unlock(&attr->mutex);
814 return ret;
818 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
819 * @sb: filesystem to do the file handle conversion on
820 * @fid: file handle to convert
821 * @fh_len: length of the file handle in bytes
822 * @fh_type: type of file handle
823 * @get_inode: filesystem callback to retrieve inode
825 * This function decodes @fid as long as it has one of the well-known
826 * Linux filehandle types and calls @get_inode on it to retrieve the
827 * inode for the object specified in the file handle.
829 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
830 int fh_len, int fh_type, struct inode *(*get_inode)
831 (struct super_block *sb, u64 ino, u32 gen))
833 struct inode *inode = NULL;
835 if (fh_len < 2)
836 return NULL;
838 switch (fh_type) {
839 case FILEID_INO32_GEN:
840 case FILEID_INO32_GEN_PARENT:
841 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
842 break;
845 return d_obtain_alias(inode);
847 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
850 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
851 * @sb: filesystem to do the file handle conversion on
852 * @fid: file handle to convert
853 * @fh_len: length of the file handle in bytes
854 * @fh_type: type of file handle
855 * @get_inode: filesystem callback to retrieve inode
857 * This function decodes @fid as long as it has one of the well-known
858 * Linux filehandle types and calls @get_inode on it to retrieve the
859 * inode for the _parent_ object specified in the file handle if it
860 * is specified in the file handle, or NULL otherwise.
862 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
863 int fh_len, int fh_type, struct inode *(*get_inode)
864 (struct super_block *sb, u64 ino, u32 gen))
866 struct inode *inode = NULL;
868 if (fh_len <= 2)
869 return NULL;
871 switch (fh_type) {
872 case FILEID_INO32_GEN_PARENT:
873 inode = get_inode(sb, fid->i32.parent_ino,
874 (fh_len > 3 ? fid->i32.parent_gen : 0));
875 break;
878 return d_obtain_alias(inode);
880 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
883 * generic_file_fsync - generic fsync implementation for simple filesystems
884 * @file: file to synchronize
885 * @datasync: only synchronize essential metadata if true
887 * This is a generic implementation of the fsync method for simple
888 * filesystems which track all non-inode metadata in the buffers list
889 * hanging off the address_space structure.
891 int generic_file_fsync(struct file *file, int datasync)
893 struct inode *inode = file->f_mapping->host;
894 int err;
895 int ret;
897 ret = sync_mapping_buffers(inode->i_mapping);
898 if (!(inode->i_state & I_DIRTY))
899 return ret;
900 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
901 return ret;
903 err = sync_inode_metadata(inode, 1);
904 if (ret == 0)
905 ret = err;
906 return ret;
908 EXPORT_SYMBOL(generic_file_fsync);
911 * generic_check_addressable - Check addressability of file system
912 * @blocksize_bits: log of file system block size
913 * @num_blocks: number of blocks in file system
915 * Determine whether a file system with @num_blocks blocks (and a
916 * block size of 2**@blocksize_bits) is addressable by the sector_t
917 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
919 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
921 u64 last_fs_block = num_blocks - 1;
922 u64 last_fs_page =
923 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
925 if (unlikely(num_blocks == 0))
926 return 0;
928 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
929 return -EINVAL;
931 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
932 (last_fs_page > (pgoff_t)(~0ULL))) {
933 return -EFBIG;
935 return 0;
937 EXPORT_SYMBOL(generic_check_addressable);
940 * No-op implementation of ->fsync for in-memory filesystems.
942 int noop_fsync(struct file *file, int datasync)
944 return 0;
947 EXPORT_SYMBOL(dcache_dir_close);
948 EXPORT_SYMBOL(dcache_dir_lseek);
949 EXPORT_SYMBOL(dcache_dir_open);
950 EXPORT_SYMBOL(dcache_readdir);
951 EXPORT_SYMBOL(generic_read_dir);
952 EXPORT_SYMBOL(mount_pseudo);
953 EXPORT_SYMBOL(simple_write_begin);
954 EXPORT_SYMBOL(simple_write_end);
955 EXPORT_SYMBOL(simple_dir_inode_operations);
956 EXPORT_SYMBOL(simple_dir_operations);
957 EXPORT_SYMBOL(simple_empty);
958 EXPORT_SYMBOL(simple_fill_super);
959 EXPORT_SYMBOL(simple_getattr);
960 EXPORT_SYMBOL(simple_link);
961 EXPORT_SYMBOL(simple_lookup);
962 EXPORT_SYMBOL(simple_pin_fs);
963 EXPORT_SYMBOL(simple_readpage);
964 EXPORT_SYMBOL(simple_release_fs);
965 EXPORT_SYMBOL(simple_rename);
966 EXPORT_SYMBOL(simple_rmdir);
967 EXPORT_SYMBOL(simple_statfs);
968 EXPORT_SYMBOL(noop_fsync);
969 EXPORT_SYMBOL(simple_unlink);
970 EXPORT_SYMBOL(simple_read_from_buffer);
971 EXPORT_SYMBOL(simple_write_to_buffer);
972 EXPORT_SYMBOL(memory_read_from_buffer);
973 EXPORT_SYMBOL(simple_transaction_set);
974 EXPORT_SYMBOL(simple_transaction_get);
975 EXPORT_SYMBOL(simple_transaction_read);
976 EXPORT_SYMBOL(simple_transaction_release);
977 EXPORT_SYMBOL_GPL(simple_attr_open);
978 EXPORT_SYMBOL_GPL(simple_attr_release);
979 EXPORT_SYMBOL_GPL(simple_attr_read);
980 EXPORT_SYMBOL_GPL(simple_attr_write);